1 | /* |
2 | * Copyright (c) 2005, 2017, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "c1/c1_Instruction.hpp" |
27 | #include "c1/c1_LinearScan.hpp" |
28 | #include "utilities/bitMap.inline.hpp" |
29 | |
30 | |
31 | //---------------------------------------------------------------------- |
32 | // Allocation of FPU stack slots (Intel x86 only) |
33 | //---------------------------------------------------------------------- |
34 | |
35 | void LinearScan::allocate_fpu_stack() { |
36 | // First compute which FPU registers are live at the start of each basic block |
37 | // (To minimize the amount of work we have to do if we have to merge FPU stacks) |
38 | if (ComputeExactFPURegisterUsage) { |
39 | Interval* intervals_in_register, *intervals_in_memory; |
40 | create_unhandled_lists(&intervals_in_register, &intervals_in_memory, is_in_fpu_register, NULL); |
41 | |
42 | // ignore memory intervals by overwriting intervals_in_memory |
43 | // the dummy interval is needed to enforce the walker to walk until the given id: |
44 | // without it, the walker stops when the unhandled-list is empty -> live information |
45 | // beyond this point would be incorrect. |
46 | Interval* dummy_interval = new Interval(any_reg); |
47 | dummy_interval->add_range(max_jint - 2, max_jint - 1); |
48 | dummy_interval->set_next(Interval::end()); |
49 | intervals_in_memory = dummy_interval; |
50 | |
51 | IntervalWalker iw(this, intervals_in_register, intervals_in_memory); |
52 | |
53 | const int num_blocks = block_count(); |
54 | for (int i = 0; i < num_blocks; i++) { |
55 | BlockBegin* b = block_at(i); |
56 | |
57 | // register usage is only needed for merging stacks -> compute only |
58 | // when more than one predecessor. |
59 | // the block must not have any spill moves at the beginning (checked by assertions) |
60 | // spill moves would use intervals that are marked as handled and so the usage bit |
61 | // would been set incorrectly |
62 | |
63 | // NOTE: the check for number_of_preds > 1 is necessary. A block with only one |
64 | // predecessor may have spill moves at the begin of the block. |
65 | // If an interval ends at the current instruction id, it is not possible |
66 | // to decide if the register is live or not at the block begin -> the |
67 | // register information would be incorrect. |
68 | if (b->number_of_preds() > 1) { |
69 | int id = b->first_lir_instruction_id(); |
70 | ResourceBitMap regs(FrameMap::nof_fpu_regs); |
71 | |
72 | iw.walk_to(id); // walk after the first instruction (always a label) of the block |
73 | assert(iw.current_position() == id, "did not walk completely to id" ); |
74 | |
75 | // Only consider FPU values in registers |
76 | Interval* interval = iw.active_first(fixedKind); |
77 | while (interval != Interval::end()) { |
78 | int reg = interval->assigned_reg(); |
79 | assert(reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg, "no fpu register" ); |
80 | assert(interval->assigned_regHi() == -1, "must not have hi register (doubles stored in one register)" ); |
81 | assert(interval->from() <= id && id < interval->to(), "interval out of range" ); |
82 | |
83 | #ifndef PRODUCT |
84 | if (TraceFPURegisterUsage) { |
85 | tty->print("fpu reg %d is live because of " , reg - pd_first_fpu_reg); interval->print(); |
86 | } |
87 | #endif |
88 | |
89 | regs.set_bit(reg - pd_first_fpu_reg); |
90 | interval = interval->next(); |
91 | } |
92 | |
93 | b->set_fpu_register_usage(regs); |
94 | |
95 | #ifndef PRODUCT |
96 | if (TraceFPURegisterUsage) { |
97 | tty->print("FPU regs for block %d, LIR instr %d): " , b->block_id(), id); regs.print_on(tty); tty->cr(); |
98 | } |
99 | #endif |
100 | } |
101 | } |
102 | } |
103 | |
104 | FpuStackAllocator alloc(ir()->compilation(), this); |
105 | _fpu_stack_allocator = &alloc; |
106 | alloc.allocate(); |
107 | _fpu_stack_allocator = NULL; |
108 | } |
109 | |
110 | |
111 | FpuStackAllocator::FpuStackAllocator(Compilation* compilation, LinearScan* allocator) |
112 | : _compilation(compilation) |
113 | , _allocator(allocator) |
114 | , _lir(NULL) |
115 | , _pos(-1) |
116 | , _sim(compilation) |
117 | , _temp_sim(compilation) |
118 | {} |
119 | |
120 | void FpuStackAllocator::allocate() { |
121 | int num_blocks = allocator()->block_count(); |
122 | for (int i = 0; i < num_blocks; i++) { |
123 | // Set up to process block |
124 | BlockBegin* block = allocator()->block_at(i); |
125 | intArray* fpu_stack_state = block->fpu_stack_state(); |
126 | |
127 | #ifndef PRODUCT |
128 | if (TraceFPUStack) { |
129 | tty->cr(); |
130 | tty->print_cr("------- Begin of new Block %d -------" , block->block_id()); |
131 | } |
132 | #endif |
133 | |
134 | assert(fpu_stack_state != NULL || |
135 | block->end()->as_Base() != NULL || |
136 | block->is_set(BlockBegin::exception_entry_flag), |
137 | "FPU stack state must be present due to linear-scan order for FPU stack allocation" ); |
138 | // note: exception handler entries always start with an empty fpu stack |
139 | // because stack merging would be too complicated |
140 | |
141 | if (fpu_stack_state != NULL) { |
142 | sim()->read_state(fpu_stack_state); |
143 | } else { |
144 | sim()->clear(); |
145 | } |
146 | |
147 | #ifndef PRODUCT |
148 | if (TraceFPUStack) { |
149 | tty->print("Reading FPU state for block %d:" , block->block_id()); |
150 | sim()->print(); |
151 | tty->cr(); |
152 | } |
153 | #endif |
154 | |
155 | allocate_block(block); |
156 | CHECK_BAILOUT(); |
157 | } |
158 | } |
159 | |
160 | void FpuStackAllocator::allocate_block(BlockBegin* block) { |
161 | bool processed_merge = false; |
162 | LIR_OpList* insts = block->lir()->instructions_list(); |
163 | set_lir(block->lir()); |
164 | set_pos(0); |
165 | |
166 | |
167 | // Note: insts->length() may change during loop |
168 | while (pos() < insts->length()) { |
169 | LIR_Op* op = insts->at(pos()); |
170 | _debug_information_computed = false; |
171 | |
172 | #ifndef PRODUCT |
173 | if (TraceFPUStack) { |
174 | op->print(); |
175 | } |
176 | check_invalid_lir_op(op); |
177 | #endif |
178 | |
179 | LIR_OpBranch* branch = op->as_OpBranch(); |
180 | LIR_Op1* op1 = op->as_Op1(); |
181 | LIR_Op2* op2 = op->as_Op2(); |
182 | LIR_OpCall* opCall = op->as_OpCall(); |
183 | |
184 | if (branch != NULL && branch->block() != NULL) { |
185 | if (!processed_merge) { |
186 | // propagate stack at first branch to a successor |
187 | processed_merge = true; |
188 | bool required_merge = merge_fpu_stack_with_successors(block); |
189 | |
190 | assert(!required_merge || branch->cond() == lir_cond_always, "splitting of critical edges should prevent FPU stack mismatches at cond branches" ); |
191 | } |
192 | |
193 | } else if (op1 != NULL) { |
194 | handle_op1(op1); |
195 | } else if (op2 != NULL) { |
196 | handle_op2(op2); |
197 | } else if (opCall != NULL) { |
198 | handle_opCall(opCall); |
199 | } |
200 | |
201 | compute_debug_information(op); |
202 | |
203 | set_pos(1 + pos()); |
204 | } |
205 | |
206 | // Propagate stack when block does not end with branch |
207 | if (!processed_merge) { |
208 | merge_fpu_stack_with_successors(block); |
209 | } |
210 | } |
211 | |
212 | |
213 | void FpuStackAllocator::compute_debug_information(LIR_Op* op) { |
214 | if (!_debug_information_computed && op->id() != -1 && allocator()->has_info(op->id())) { |
215 | visitor.visit(op); |
216 | |
217 | // exception handling |
218 | if (allocator()->compilation()->has_exception_handlers()) { |
219 | XHandlers* xhandlers = visitor.all_xhandler(); |
220 | int n = xhandlers->length(); |
221 | for (int k = 0; k < n; k++) { |
222 | allocate_exception_handler(xhandlers->handler_at(k)); |
223 | } |
224 | } else { |
225 | assert(visitor.all_xhandler()->length() == 0, "missed exception handler" ); |
226 | } |
227 | |
228 | // compute debug information |
229 | int n = visitor.info_count(); |
230 | assert(n > 0, "should not visit operation otherwise" ); |
231 | |
232 | for (int j = 0; j < n; j++) { |
233 | CodeEmitInfo* info = visitor.info_at(j); |
234 | // Compute debug information |
235 | allocator()->compute_debug_info(info, op->id()); |
236 | } |
237 | } |
238 | _debug_information_computed = true; |
239 | } |
240 | |
241 | void FpuStackAllocator::allocate_exception_handler(XHandler* xhandler) { |
242 | if (!sim()->is_empty()) { |
243 | LIR_List* old_lir = lir(); |
244 | int old_pos = pos(); |
245 | intArray* old_state = sim()->write_state(); |
246 | |
247 | #ifndef PRODUCT |
248 | if (TraceFPUStack) { |
249 | tty->cr(); |
250 | tty->print_cr("------- begin of exception handler -------" ); |
251 | } |
252 | #endif |
253 | |
254 | if (xhandler->entry_code() == NULL) { |
255 | // need entry code to clear FPU stack |
256 | LIR_List* entry_code = new LIR_List(_compilation); |
257 | entry_code->jump(xhandler->entry_block()); |
258 | xhandler->set_entry_code(entry_code); |
259 | } |
260 | |
261 | LIR_OpList* insts = xhandler->entry_code()->instructions_list(); |
262 | set_lir(xhandler->entry_code()); |
263 | set_pos(0); |
264 | |
265 | // Note: insts->length() may change during loop |
266 | while (pos() < insts->length()) { |
267 | LIR_Op* op = insts->at(pos()); |
268 | |
269 | #ifndef PRODUCT |
270 | if (TraceFPUStack) { |
271 | op->print(); |
272 | } |
273 | check_invalid_lir_op(op); |
274 | #endif |
275 | |
276 | switch (op->code()) { |
277 | case lir_move: |
278 | assert(op->as_Op1() != NULL, "must be LIR_Op1" ); |
279 | assert(pos() != insts->length() - 1, "must not be last operation" ); |
280 | |
281 | handle_op1((LIR_Op1*)op); |
282 | break; |
283 | |
284 | case lir_branch: |
285 | assert(op->as_OpBranch()->cond() == lir_cond_always, "must be unconditional branch" ); |
286 | assert(pos() == insts->length() - 1, "must be last operation" ); |
287 | |
288 | // remove all remaining dead registers from FPU stack |
289 | clear_fpu_stack(LIR_OprFact::illegalOpr); |
290 | break; |
291 | |
292 | default: |
293 | // other operations not allowed in exception entry code |
294 | ShouldNotReachHere(); |
295 | } |
296 | |
297 | set_pos(pos() + 1); |
298 | } |
299 | |
300 | #ifndef PRODUCT |
301 | if (TraceFPUStack) { |
302 | tty->cr(); |
303 | tty->print_cr("------- end of exception handler -------" ); |
304 | } |
305 | #endif |
306 | |
307 | set_lir(old_lir); |
308 | set_pos(old_pos); |
309 | sim()->read_state(old_state); |
310 | } |
311 | } |
312 | |
313 | |
314 | int FpuStackAllocator::fpu_num(LIR_Opr opr) { |
315 | assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise" ); |
316 | return opr->is_single_fpu() ? opr->fpu_regnr() : opr->fpu_regnrLo(); |
317 | } |
318 | |
319 | int FpuStackAllocator::tos_offset(LIR_Opr opr) { |
320 | return sim()->offset_from_tos(fpu_num(opr)); |
321 | } |
322 | |
323 | |
324 | LIR_Opr FpuStackAllocator::to_fpu_stack(LIR_Opr opr) { |
325 | assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise" ); |
326 | |
327 | int stack_offset = tos_offset(opr); |
328 | if (opr->is_single_fpu()) { |
329 | return LIR_OprFact::single_fpu(stack_offset)->make_fpu_stack_offset(); |
330 | } else { |
331 | assert(opr->is_double_fpu(), "shouldn't call this otherwise" ); |
332 | return LIR_OprFact::double_fpu(stack_offset)->make_fpu_stack_offset(); |
333 | } |
334 | } |
335 | |
336 | LIR_Opr FpuStackAllocator::to_fpu_stack_top(LIR_Opr opr, bool dont_check_offset) { |
337 | assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise" ); |
338 | assert(dont_check_offset || tos_offset(opr) == 0, "operand is not on stack top" ); |
339 | |
340 | int stack_offset = 0; |
341 | if (opr->is_single_fpu()) { |
342 | return LIR_OprFact::single_fpu(stack_offset)->make_fpu_stack_offset(); |
343 | } else { |
344 | assert(opr->is_double_fpu(), "shouldn't call this otherwise" ); |
345 | return LIR_OprFact::double_fpu(stack_offset)->make_fpu_stack_offset(); |
346 | } |
347 | } |
348 | |
349 | |
350 | |
351 | void FpuStackAllocator::insert_op(LIR_Op* op) { |
352 | lir()->insert_before(pos(), op); |
353 | set_pos(1 + pos()); |
354 | } |
355 | |
356 | |
357 | void FpuStackAllocator::insert_exchange(int offset) { |
358 | if (offset > 0) { |
359 | LIR_Op1* fxch_op = new LIR_Op1(lir_fxch, LIR_OprFact::intConst(offset), LIR_OprFact::illegalOpr); |
360 | insert_op(fxch_op); |
361 | sim()->swap(offset); |
362 | |
363 | #ifndef PRODUCT |
364 | if (TraceFPUStack) { |
365 | tty->print("Exchanged register: %d New state: " , sim()->get_slot(0)); sim()->print(); tty->cr(); |
366 | } |
367 | #endif |
368 | |
369 | } |
370 | } |
371 | |
372 | void FpuStackAllocator::insert_exchange(LIR_Opr opr) { |
373 | insert_exchange(tos_offset(opr)); |
374 | } |
375 | |
376 | |
377 | void FpuStackAllocator::insert_free(int offset) { |
378 | // move stack slot to the top of stack and then pop it |
379 | insert_exchange(offset); |
380 | |
381 | LIR_Op* fpop = new LIR_Op0(lir_fpop_raw); |
382 | insert_op(fpop); |
383 | sim()->pop(); |
384 | |
385 | #ifndef PRODUCT |
386 | if (TraceFPUStack) { |
387 | tty->print("Inserted pop New state: " ); sim()->print(); tty->cr(); |
388 | } |
389 | #endif |
390 | } |
391 | |
392 | |
393 | void FpuStackAllocator::insert_free_if_dead(LIR_Opr opr) { |
394 | if (sim()->contains(fpu_num(opr))) { |
395 | int res_slot = tos_offset(opr); |
396 | insert_free(res_slot); |
397 | } |
398 | } |
399 | |
400 | void FpuStackAllocator::insert_free_if_dead(LIR_Opr opr, LIR_Opr ignore) { |
401 | if (fpu_num(opr) != fpu_num(ignore) && sim()->contains(fpu_num(opr))) { |
402 | int res_slot = tos_offset(opr); |
403 | insert_free(res_slot); |
404 | } |
405 | } |
406 | |
407 | void FpuStackAllocator::insert_copy(LIR_Opr from, LIR_Opr to) { |
408 | int offset = tos_offset(from); |
409 | LIR_Op1* fld = new LIR_Op1(lir_fld, LIR_OprFact::intConst(offset), LIR_OprFact::illegalOpr); |
410 | insert_op(fld); |
411 | |
412 | sim()->push(fpu_num(to)); |
413 | |
414 | #ifndef PRODUCT |
415 | if (TraceFPUStack) { |
416 | tty->print("Inserted copy (%d -> %d) New state: " , fpu_num(from), fpu_num(to)); sim()->print(); tty->cr(); |
417 | } |
418 | #endif |
419 | } |
420 | |
421 | void FpuStackAllocator::do_rename(LIR_Opr from, LIR_Opr to) { |
422 | sim()->rename(fpu_num(from), fpu_num(to)); |
423 | } |
424 | |
425 | void FpuStackAllocator::do_push(LIR_Opr opr) { |
426 | sim()->push(fpu_num(opr)); |
427 | } |
428 | |
429 | void FpuStackAllocator::pop_if_last_use(LIR_Op* op, LIR_Opr opr) { |
430 | assert(op->fpu_pop_count() == 0, "fpu_pop_count alredy set" ); |
431 | assert(tos_offset(opr) == 0, "can only pop stack top" ); |
432 | |
433 | if (opr->is_last_use()) { |
434 | op->set_fpu_pop_count(1); |
435 | sim()->pop(); |
436 | } |
437 | } |
438 | |
439 | void FpuStackAllocator::pop_always(LIR_Op* op, LIR_Opr opr) { |
440 | assert(op->fpu_pop_count() == 0, "fpu_pop_count alredy set" ); |
441 | assert(tos_offset(opr) == 0, "can only pop stack top" ); |
442 | |
443 | op->set_fpu_pop_count(1); |
444 | sim()->pop(); |
445 | } |
446 | |
447 | void FpuStackAllocator::clear_fpu_stack(LIR_Opr preserve) { |
448 | int result_stack_size = (preserve->is_fpu_register() && !preserve->is_xmm_register() ? 1 : 0); |
449 | while (sim()->stack_size() > result_stack_size) { |
450 | assert(!sim()->slot_is_empty(0), "not allowed" ); |
451 | |
452 | if (result_stack_size == 0 || sim()->get_slot(0) != fpu_num(preserve)) { |
453 | insert_free(0); |
454 | } else { |
455 | // move "preserve" to bottom of stack so that all other stack slots can be popped |
456 | insert_exchange(sim()->stack_size() - 1); |
457 | } |
458 | } |
459 | } |
460 | |
461 | |
462 | void FpuStackAllocator::handle_op1(LIR_Op1* op1) { |
463 | LIR_Opr in = op1->in_opr(); |
464 | LIR_Opr res = op1->result_opr(); |
465 | |
466 | LIR_Opr new_in = in; // new operands relative to the actual fpu stack top |
467 | LIR_Opr new_res = res; |
468 | |
469 | // Note: this switch is processed for all LIR_Op1, regardless if they have FPU-arguments, |
470 | // so checks for is_float_kind() are necessary inside the cases |
471 | switch (op1->code()) { |
472 | |
473 | case lir_return: { |
474 | // FPU-Stack must only contain the (optional) fpu return value. |
475 | // All remaining dead values are popped from the stack |
476 | // If the input operand is a fpu-register, it is exchanged to the bottom of the stack |
477 | |
478 | clear_fpu_stack(in); |
479 | if (in->is_fpu_register() && !in->is_xmm_register()) { |
480 | new_in = to_fpu_stack_top(in); |
481 | } |
482 | |
483 | break; |
484 | } |
485 | |
486 | case lir_move: { |
487 | if (in->is_fpu_register() && !in->is_xmm_register()) { |
488 | if (res->is_xmm_register()) { |
489 | // move from fpu register to xmm register (necessary for operations that |
490 | // are not available in the SSE instruction set) |
491 | insert_exchange(in); |
492 | new_in = to_fpu_stack_top(in); |
493 | pop_always(op1, in); |
494 | |
495 | } else if (res->is_fpu_register() && !res->is_xmm_register()) { |
496 | // move from fpu-register to fpu-register: |
497 | // * input and result register equal: |
498 | // nothing to do |
499 | // * input register is last use: |
500 | // rename the input register to result register -> input register |
501 | // not present on fpu-stack afterwards |
502 | // * input register not last use: |
503 | // duplicate input register to result register to preserve input |
504 | // |
505 | // Note: The LIR-Assembler does not produce any code for fpu register moves, |
506 | // so input and result stack index must be equal |
507 | |
508 | if (fpu_num(in) == fpu_num(res)) { |
509 | // nothing to do |
510 | } else if (in->is_last_use()) { |
511 | insert_free_if_dead(res);//, in); |
512 | do_rename(in, res); |
513 | } else { |
514 | insert_free_if_dead(res); |
515 | insert_copy(in, res); |
516 | } |
517 | new_in = to_fpu_stack(res); |
518 | new_res = new_in; |
519 | |
520 | } else { |
521 | // move from fpu-register to memory |
522 | // input operand must be on top of stack |
523 | |
524 | insert_exchange(in); |
525 | |
526 | // create debug information here because afterwards the register may have been popped |
527 | compute_debug_information(op1); |
528 | |
529 | new_in = to_fpu_stack_top(in); |
530 | pop_if_last_use(op1, in); |
531 | } |
532 | |
533 | } else if (res->is_fpu_register() && !res->is_xmm_register()) { |
534 | // move from memory/constant to fpu register |
535 | // result is pushed on the stack |
536 | |
537 | insert_free_if_dead(res); |
538 | |
539 | // create debug information before register is pushed |
540 | compute_debug_information(op1); |
541 | |
542 | do_push(res); |
543 | new_res = to_fpu_stack_top(res); |
544 | } |
545 | break; |
546 | } |
547 | |
548 | case lir_neg: { |
549 | if (in->is_fpu_register() && !in->is_xmm_register()) { |
550 | assert(res->is_fpu_register() && !res->is_xmm_register(), "must be" ); |
551 | assert(in->is_last_use(), "old value gets destroyed" ); |
552 | |
553 | insert_free_if_dead(res, in); |
554 | insert_exchange(in); |
555 | new_in = to_fpu_stack_top(in); |
556 | |
557 | do_rename(in, res); |
558 | new_res = to_fpu_stack_top(res); |
559 | } |
560 | break; |
561 | } |
562 | |
563 | case lir_convert: { |
564 | Bytecodes::Code bc = op1->as_OpConvert()->bytecode(); |
565 | switch (bc) { |
566 | case Bytecodes::_d2f: |
567 | case Bytecodes::_f2d: |
568 | assert(res->is_fpu_register(), "must be" ); |
569 | assert(in->is_fpu_register(), "must be" ); |
570 | |
571 | if (!in->is_xmm_register() && !res->is_xmm_register()) { |
572 | // this is quite the same as a move from fpu-register to fpu-register |
573 | // Note: input and result operands must have different types |
574 | if (fpu_num(in) == fpu_num(res)) { |
575 | // nothing to do |
576 | new_in = to_fpu_stack(in); |
577 | } else if (in->is_last_use()) { |
578 | insert_free_if_dead(res);//, in); |
579 | new_in = to_fpu_stack(in); |
580 | do_rename(in, res); |
581 | } else { |
582 | insert_free_if_dead(res); |
583 | insert_copy(in, res); |
584 | new_in = to_fpu_stack_top(in, true); |
585 | } |
586 | new_res = to_fpu_stack(res); |
587 | } |
588 | |
589 | break; |
590 | |
591 | case Bytecodes::_i2f: |
592 | case Bytecodes::_l2f: |
593 | case Bytecodes::_i2d: |
594 | case Bytecodes::_l2d: |
595 | assert(res->is_fpu_register(), "must be" ); |
596 | if (!res->is_xmm_register()) { |
597 | insert_free_if_dead(res); |
598 | do_push(res); |
599 | new_res = to_fpu_stack_top(res); |
600 | } |
601 | break; |
602 | |
603 | case Bytecodes::_f2i: |
604 | case Bytecodes::_d2i: |
605 | assert(in->is_fpu_register(), "must be" ); |
606 | if (!in->is_xmm_register()) { |
607 | insert_exchange(in); |
608 | new_in = to_fpu_stack_top(in); |
609 | |
610 | // TODO: update registes of stub |
611 | } |
612 | break; |
613 | |
614 | case Bytecodes::_f2l: |
615 | case Bytecodes::_d2l: |
616 | assert(in->is_fpu_register(), "must be" ); |
617 | if (!in->is_xmm_register()) { |
618 | insert_exchange(in); |
619 | new_in = to_fpu_stack_top(in); |
620 | pop_always(op1, in); |
621 | } |
622 | break; |
623 | |
624 | case Bytecodes::_i2l: |
625 | case Bytecodes::_l2i: |
626 | case Bytecodes::_i2b: |
627 | case Bytecodes::_i2c: |
628 | case Bytecodes::_i2s: |
629 | // no fpu operands |
630 | break; |
631 | |
632 | default: |
633 | ShouldNotReachHere(); |
634 | } |
635 | break; |
636 | } |
637 | |
638 | case lir_roundfp: { |
639 | assert(in->is_fpu_register() && !in->is_xmm_register(), "input must be in register" ); |
640 | assert(res->is_stack(), "result must be on stack" ); |
641 | |
642 | insert_exchange(in); |
643 | new_in = to_fpu_stack_top(in); |
644 | pop_if_last_use(op1, in); |
645 | break; |
646 | } |
647 | |
648 | default: { |
649 | assert(!in->is_float_kind() && !res->is_float_kind(), "missed a fpu-operation" ); |
650 | } |
651 | } |
652 | |
653 | op1->set_in_opr(new_in); |
654 | op1->set_result_opr(new_res); |
655 | } |
656 | |
657 | void FpuStackAllocator::handle_op2(LIR_Op2* op2) { |
658 | LIR_Opr left = op2->in_opr1(); |
659 | if (!left->is_float_kind()) { |
660 | return; |
661 | } |
662 | if (left->is_xmm_register()) { |
663 | return; |
664 | } |
665 | |
666 | LIR_Opr right = op2->in_opr2(); |
667 | LIR_Opr res = op2->result_opr(); |
668 | LIR_Opr new_left = left; // new operands relative to the actual fpu stack top |
669 | LIR_Opr new_right = right; |
670 | LIR_Opr new_res = res; |
671 | |
672 | assert(!left->is_xmm_register() && !right->is_xmm_register() && !res->is_xmm_register(), "not for xmm registers" ); |
673 | |
674 | switch (op2->code()) { |
675 | case lir_cmp: |
676 | case lir_cmp_fd2i: |
677 | case lir_ucmp_fd2i: |
678 | case lir_assert: { |
679 | assert(left->is_fpu_register(), "invalid LIR" ); |
680 | assert(right->is_fpu_register(), "invalid LIR" ); |
681 | |
682 | // the left-hand side must be on top of stack. |
683 | // the right-hand side is never popped, even if is_last_use is set |
684 | insert_exchange(left); |
685 | new_left = to_fpu_stack_top(left); |
686 | new_right = to_fpu_stack(right); |
687 | pop_if_last_use(op2, left); |
688 | break; |
689 | } |
690 | |
691 | case lir_mul_strictfp: |
692 | case lir_div_strictfp: { |
693 | assert(op2->tmp1_opr()->is_fpu_register(), "strict operations need temporary fpu stack slot" ); |
694 | insert_free_if_dead(op2->tmp1_opr()); |
695 | assert(sim()->stack_size() <= 7, "at least one stack slot must be free" ); |
696 | // fall-through: continue with the normal handling of lir_mul and lir_div |
697 | } |
698 | case lir_add: |
699 | case lir_sub: |
700 | case lir_mul: |
701 | case lir_div: { |
702 | assert(left->is_fpu_register(), "must be" ); |
703 | assert(res->is_fpu_register(), "must be" ); |
704 | assert(left->is_equal(res), "must be" ); |
705 | |
706 | // either the left-hand or the right-hand side must be on top of stack |
707 | // (if right is not a register, left must be on top) |
708 | if (!right->is_fpu_register()) { |
709 | insert_exchange(left); |
710 | new_left = to_fpu_stack_top(left); |
711 | } else { |
712 | // no exchange necessary if right is alredy on top of stack |
713 | if (tos_offset(right) == 0) { |
714 | new_left = to_fpu_stack(left); |
715 | new_right = to_fpu_stack_top(right); |
716 | } else { |
717 | insert_exchange(left); |
718 | new_left = to_fpu_stack_top(left); |
719 | new_right = to_fpu_stack(right); |
720 | } |
721 | |
722 | if (right->is_last_use()) { |
723 | op2->set_fpu_pop_count(1); |
724 | |
725 | if (tos_offset(right) == 0) { |
726 | sim()->pop(); |
727 | } else { |
728 | // if left is on top of stack, the result is placed in the stack |
729 | // slot of right, so a renaming from right to res is necessary |
730 | assert(tos_offset(left) == 0, "must be" ); |
731 | sim()->pop(); |
732 | do_rename(right, res); |
733 | } |
734 | } |
735 | } |
736 | new_res = to_fpu_stack(res); |
737 | |
738 | break; |
739 | } |
740 | |
741 | case lir_rem: { |
742 | assert(left->is_fpu_register(), "must be" ); |
743 | assert(right->is_fpu_register(), "must be" ); |
744 | assert(res->is_fpu_register(), "must be" ); |
745 | assert(left->is_equal(res), "must be" ); |
746 | |
747 | // Must bring both operands to top of stack with following operand ordering: |
748 | // * fpu stack before rem: ... right left |
749 | // * fpu stack after rem: ... left |
750 | if (tos_offset(right) != 1) { |
751 | insert_exchange(right); |
752 | insert_exchange(1); |
753 | } |
754 | insert_exchange(left); |
755 | assert(tos_offset(right) == 1, "check" ); |
756 | assert(tos_offset(left) == 0, "check" ); |
757 | |
758 | new_left = to_fpu_stack_top(left); |
759 | new_right = to_fpu_stack(right); |
760 | |
761 | op2->set_fpu_pop_count(1); |
762 | sim()->pop(); |
763 | do_rename(right, res); |
764 | |
765 | new_res = to_fpu_stack_top(res); |
766 | break; |
767 | } |
768 | |
769 | case lir_abs: |
770 | case lir_sqrt: { |
771 | // Right argument appears to be unused |
772 | assert(right->is_illegal(), "must be" ); |
773 | assert(left->is_fpu_register(), "must be" ); |
774 | assert(res->is_fpu_register(), "must be" ); |
775 | assert(left->is_last_use(), "old value gets destroyed" ); |
776 | |
777 | insert_free_if_dead(res, left); |
778 | insert_exchange(left); |
779 | do_rename(left, res); |
780 | |
781 | new_left = to_fpu_stack_top(res); |
782 | new_res = new_left; |
783 | |
784 | op2->set_fpu_stack_size(sim()->stack_size()); |
785 | break; |
786 | } |
787 | |
788 | default: { |
789 | assert(false, "missed a fpu-operation" ); |
790 | } |
791 | } |
792 | |
793 | op2->set_in_opr1(new_left); |
794 | op2->set_in_opr2(new_right); |
795 | op2->set_result_opr(new_res); |
796 | } |
797 | |
798 | void FpuStackAllocator::handle_opCall(LIR_OpCall* opCall) { |
799 | LIR_Opr res = opCall->result_opr(); |
800 | |
801 | // clear fpu-stack before call |
802 | // it may contain dead values that could not have been remved by previous operations |
803 | clear_fpu_stack(LIR_OprFact::illegalOpr); |
804 | assert(sim()->is_empty(), "fpu stack must be empty now" ); |
805 | |
806 | // compute debug information before (possible) fpu result is pushed |
807 | compute_debug_information(opCall); |
808 | |
809 | if (res->is_fpu_register() && !res->is_xmm_register()) { |
810 | do_push(res); |
811 | opCall->set_result_opr(to_fpu_stack_top(res)); |
812 | } |
813 | } |
814 | |
815 | #ifndef PRODUCT |
816 | void FpuStackAllocator::check_invalid_lir_op(LIR_Op* op) { |
817 | switch (op->code()) { |
818 | case lir_24bit_FPU: |
819 | case lir_reset_FPU: |
820 | case lir_ffree: |
821 | assert(false, "operations not allowed in lir. If one of these operations is needed, check if they have fpu operands" ); |
822 | break; |
823 | |
824 | case lir_fpop_raw: |
825 | case lir_fxch: |
826 | case lir_fld: |
827 | assert(false, "operations only inserted by FpuStackAllocator" ); |
828 | break; |
829 | |
830 | default: |
831 | break; |
832 | } |
833 | } |
834 | #endif |
835 | |
836 | |
837 | void FpuStackAllocator::merge_insert_add(LIR_List* instrs, FpuStackSim* cur_sim, int reg) { |
838 | LIR_Op1* move = new LIR_Op1(lir_move, LIR_OprFact::doubleConst(0), LIR_OprFact::double_fpu(reg)->make_fpu_stack_offset()); |
839 | |
840 | instrs->instructions_list()->push(move); |
841 | |
842 | cur_sim->push(reg); |
843 | move->set_result_opr(to_fpu_stack(move->result_opr())); |
844 | |
845 | #ifndef PRODUCT |
846 | if (TraceFPUStack) { |
847 | tty->print("Added new register: %d New state: " , reg); cur_sim->print(); tty->cr(); |
848 | } |
849 | #endif |
850 | } |
851 | |
852 | void FpuStackAllocator::merge_insert_xchg(LIR_List* instrs, FpuStackSim* cur_sim, int slot) { |
853 | assert(slot > 0, "no exchange necessary" ); |
854 | |
855 | LIR_Op1* fxch = new LIR_Op1(lir_fxch, LIR_OprFact::intConst(slot)); |
856 | instrs->instructions_list()->push(fxch); |
857 | cur_sim->swap(slot); |
858 | |
859 | #ifndef PRODUCT |
860 | if (TraceFPUStack) { |
861 | tty->print("Exchanged register: %d New state: " , cur_sim->get_slot(slot)); cur_sim->print(); tty->cr(); |
862 | } |
863 | #endif |
864 | } |
865 | |
866 | void FpuStackAllocator::merge_insert_pop(LIR_List* instrs, FpuStackSim* cur_sim) { |
867 | int reg = cur_sim->get_slot(0); |
868 | |
869 | LIR_Op* fpop = new LIR_Op0(lir_fpop_raw); |
870 | instrs->instructions_list()->push(fpop); |
871 | cur_sim->pop(reg); |
872 | |
873 | #ifndef PRODUCT |
874 | if (TraceFPUStack) { |
875 | tty->print("Removed register: %d New state: " , reg); cur_sim->print(); tty->cr(); |
876 | } |
877 | #endif |
878 | } |
879 | |
880 | bool FpuStackAllocator::merge_rename(FpuStackSim* cur_sim, FpuStackSim* sux_sim, int start_slot, int change_slot) { |
881 | int reg = cur_sim->get_slot(change_slot); |
882 | |
883 | for (int slot = start_slot; slot >= 0; slot--) { |
884 | int new_reg = sux_sim->get_slot(slot); |
885 | |
886 | if (!cur_sim->contains(new_reg)) { |
887 | cur_sim->set_slot(change_slot, new_reg); |
888 | |
889 | #ifndef PRODUCT |
890 | if (TraceFPUStack) { |
891 | tty->print("Renamed register %d to %d New state: " , reg, new_reg); cur_sim->print(); tty->cr(); |
892 | } |
893 | #endif |
894 | |
895 | return true; |
896 | } |
897 | } |
898 | return false; |
899 | } |
900 | |
901 | |
902 | void FpuStackAllocator::merge_fpu_stack(LIR_List* instrs, FpuStackSim* cur_sim, FpuStackSim* sux_sim) { |
903 | #ifndef PRODUCT |
904 | if (TraceFPUStack) { |
905 | tty->cr(); |
906 | tty->print("before merging: pred: " ); cur_sim->print(); tty->cr(); |
907 | tty->print(" sux: " ); sux_sim->print(); tty->cr(); |
908 | } |
909 | |
910 | int slot; |
911 | for (slot = 0; slot < cur_sim->stack_size(); slot++) { |
912 | assert(!cur_sim->slot_is_empty(slot), "not handled by algorithm" ); |
913 | } |
914 | for (slot = 0; slot < sux_sim->stack_size(); slot++) { |
915 | assert(!sux_sim->slot_is_empty(slot), "not handled by algorithm" ); |
916 | } |
917 | #endif |
918 | |
919 | // size difference between cur and sux that must be resolved by adding or removing values form the stack |
920 | int size_diff = cur_sim->stack_size() - sux_sim->stack_size(); |
921 | |
922 | if (!ComputeExactFPURegisterUsage) { |
923 | // add slots that are currently free, but used in successor |
924 | // When the exact FPU register usage is computed, the stack does |
925 | // not contain dead values at merging -> no values must be added |
926 | |
927 | int sux_slot = sux_sim->stack_size() - 1; |
928 | while (size_diff < 0) { |
929 | assert(sux_slot >= 0, "slot out of bounds -> error in algorithm" ); |
930 | |
931 | int reg = sux_sim->get_slot(sux_slot); |
932 | if (!cur_sim->contains(reg)) { |
933 | merge_insert_add(instrs, cur_sim, reg); |
934 | size_diff++; |
935 | |
936 | if (sux_slot + size_diff != 0) { |
937 | merge_insert_xchg(instrs, cur_sim, sux_slot + size_diff); |
938 | } |
939 | } |
940 | sux_slot--; |
941 | } |
942 | } |
943 | |
944 | assert(cur_sim->stack_size() >= sux_sim->stack_size(), "stack size must be equal or greater now" ); |
945 | assert(size_diff == cur_sim->stack_size() - sux_sim->stack_size(), "must be" ); |
946 | |
947 | // stack merge algorithm: |
948 | // 1) as long as the current stack top is not in the right location (that meens |
949 | // it should not be on the stack top), exchange it into the right location |
950 | // 2) if the stack top is right, but the remaining stack is not ordered correctly, |
951 | // the stack top is exchanged away to get another value on top -> |
952 | // now step 1) can be continued |
953 | // the stack can also contain unused items -> these items are removed from stack |
954 | |
955 | int finished_slot = sux_sim->stack_size() - 1; |
956 | while (finished_slot >= 0 || size_diff > 0) { |
957 | while (size_diff > 0 || (cur_sim->stack_size() > 0 && cur_sim->get_slot(0) != sux_sim->get_slot(0))) { |
958 | int reg = cur_sim->get_slot(0); |
959 | if (sux_sim->contains(reg)) { |
960 | int sux_slot = sux_sim->offset_from_tos(reg); |
961 | merge_insert_xchg(instrs, cur_sim, sux_slot + size_diff); |
962 | |
963 | } else if (!merge_rename(cur_sim, sux_sim, finished_slot, 0)) { |
964 | assert(size_diff > 0, "must be" ); |
965 | |
966 | merge_insert_pop(instrs, cur_sim); |
967 | size_diff--; |
968 | } |
969 | assert(cur_sim->stack_size() == 0 || cur_sim->get_slot(0) != reg, "register must have been changed" ); |
970 | } |
971 | |
972 | while (finished_slot >= 0 && cur_sim->get_slot(finished_slot) == sux_sim->get_slot(finished_slot)) { |
973 | finished_slot--; |
974 | } |
975 | |
976 | if (finished_slot >= 0) { |
977 | int reg = cur_sim->get_slot(finished_slot); |
978 | |
979 | if (sux_sim->contains(reg) || !merge_rename(cur_sim, sux_sim, finished_slot, finished_slot)) { |
980 | assert(sux_sim->contains(reg) || size_diff > 0, "must be" ); |
981 | merge_insert_xchg(instrs, cur_sim, finished_slot); |
982 | } |
983 | assert(cur_sim->get_slot(finished_slot) != reg, "register must have been changed" ); |
984 | } |
985 | } |
986 | |
987 | #ifndef PRODUCT |
988 | if (TraceFPUStack) { |
989 | tty->print("after merging: pred: " ); cur_sim->print(); tty->cr(); |
990 | tty->print(" sux: " ); sux_sim->print(); tty->cr(); |
991 | tty->cr(); |
992 | } |
993 | #endif |
994 | assert(cur_sim->stack_size() == sux_sim->stack_size(), "stack size must be equal now" ); |
995 | } |
996 | |
997 | |
998 | void FpuStackAllocator::merge_cleanup_fpu_stack(LIR_List* instrs, FpuStackSim* cur_sim, BitMap& live_fpu_regs) { |
999 | #ifndef PRODUCT |
1000 | if (TraceFPUStack) { |
1001 | tty->cr(); |
1002 | tty->print("before cleanup: state: " ); cur_sim->print(); tty->cr(); |
1003 | tty->print(" live: " ); live_fpu_regs.print_on(tty); tty->cr(); |
1004 | } |
1005 | #endif |
1006 | |
1007 | int slot = 0; |
1008 | while (slot < cur_sim->stack_size()) { |
1009 | int reg = cur_sim->get_slot(slot); |
1010 | if (!live_fpu_regs.at(reg)) { |
1011 | if (slot != 0) { |
1012 | merge_insert_xchg(instrs, cur_sim, slot); |
1013 | } |
1014 | merge_insert_pop(instrs, cur_sim); |
1015 | } else { |
1016 | slot++; |
1017 | } |
1018 | } |
1019 | |
1020 | #ifndef PRODUCT |
1021 | if (TraceFPUStack) { |
1022 | tty->print("after cleanup: state: " ); cur_sim->print(); tty->cr(); |
1023 | tty->print(" live: " ); live_fpu_regs.print_on(tty); tty->cr(); |
1024 | tty->cr(); |
1025 | } |
1026 | |
1027 | // check if fpu stack only contains live registers |
1028 | for (unsigned int i = 0; i < live_fpu_regs.size(); i++) { |
1029 | if (live_fpu_regs.at(i) != cur_sim->contains(i)) { |
1030 | tty->print_cr("mismatch between required and actual stack content" ); |
1031 | break; |
1032 | } |
1033 | } |
1034 | #endif |
1035 | } |
1036 | |
1037 | |
1038 | bool FpuStackAllocator::merge_fpu_stack_with_successors(BlockBegin* block) { |
1039 | #ifndef PRODUCT |
1040 | if (TraceFPUStack) { |
1041 | tty->print_cr("Propagating FPU stack state for B%d at LIR_Op position %d to successors:" , |
1042 | block->block_id(), pos()); |
1043 | sim()->print(); |
1044 | tty->cr(); |
1045 | } |
1046 | #endif |
1047 | |
1048 | bool changed = false; |
1049 | int number_of_sux = block->number_of_sux(); |
1050 | |
1051 | if (number_of_sux == 1 && block->sux_at(0)->number_of_preds() > 1) { |
1052 | // The successor has at least two incoming edges, so a stack merge will be necessary |
1053 | // If this block is the first predecessor, cleanup the current stack and propagate it |
1054 | // If this block is not the first predecessor, a stack merge will be necessary |
1055 | |
1056 | BlockBegin* sux = block->sux_at(0); |
1057 | intArray* state = sux->fpu_stack_state(); |
1058 | LIR_List* instrs = new LIR_List(_compilation); |
1059 | |
1060 | if (state != NULL) { |
1061 | // Merge with a successors that already has a FPU stack state |
1062 | // the block must only have one successor because critical edges must been split |
1063 | FpuStackSim* cur_sim = sim(); |
1064 | FpuStackSim* sux_sim = temp_sim(); |
1065 | sux_sim->read_state(state); |
1066 | |
1067 | merge_fpu_stack(instrs, cur_sim, sux_sim); |
1068 | |
1069 | } else { |
1070 | // propagate current FPU stack state to successor without state |
1071 | // clean up stack first so that there are no dead values on the stack |
1072 | if (ComputeExactFPURegisterUsage) { |
1073 | FpuStackSim* cur_sim = sim(); |
1074 | ResourceBitMap live_fpu_regs = block->sux_at(0)->fpu_register_usage(); |
1075 | assert(live_fpu_regs.size() == FrameMap::nof_fpu_regs, "missing register usage" ); |
1076 | |
1077 | merge_cleanup_fpu_stack(instrs, cur_sim, live_fpu_regs); |
1078 | } |
1079 | |
1080 | intArray* state = sim()->write_state(); |
1081 | if (TraceFPUStack) { |
1082 | tty->print_cr("Setting FPU stack state of B%d (merge path)" , sux->block_id()); |
1083 | sim()->print(); tty->cr(); |
1084 | } |
1085 | sux->set_fpu_stack_state(state); |
1086 | } |
1087 | |
1088 | if (instrs->instructions_list()->length() > 0) { |
1089 | lir()->insert_before(pos(), instrs); |
1090 | set_pos(instrs->instructions_list()->length() + pos()); |
1091 | changed = true; |
1092 | } |
1093 | |
1094 | } else { |
1095 | // Propagate unmodified Stack to successors where a stack merge is not necessary |
1096 | intArray* state = sim()->write_state(); |
1097 | for (int i = 0; i < number_of_sux; i++) { |
1098 | BlockBegin* sux = block->sux_at(i); |
1099 | |
1100 | #ifdef ASSERT |
1101 | for (int j = 0; j < sux->number_of_preds(); j++) { |
1102 | assert(block == sux->pred_at(j), "all critical edges must be broken" ); |
1103 | } |
1104 | |
1105 | // check if new state is same |
1106 | if (sux->fpu_stack_state() != NULL) { |
1107 | intArray* sux_state = sux->fpu_stack_state(); |
1108 | assert(state->length() == sux_state->length(), "overwriting existing stack state" ); |
1109 | for (int j = 0; j < state->length(); j++) { |
1110 | assert(state->at(j) == sux_state->at(j), "overwriting existing stack state" ); |
1111 | } |
1112 | } |
1113 | #endif |
1114 | #ifndef PRODUCT |
1115 | if (TraceFPUStack) { |
1116 | tty->print_cr("Setting FPU stack state of B%d" , sux->block_id()); |
1117 | sim()->print(); tty->cr(); |
1118 | } |
1119 | #endif |
1120 | |
1121 | sux->set_fpu_stack_state(state); |
1122 | } |
1123 | } |
1124 | |
1125 | #ifndef PRODUCT |
1126 | // assertions that FPU stack state conforms to all successors' states |
1127 | intArray* cur_state = sim()->write_state(); |
1128 | for (int i = 0; i < number_of_sux; i++) { |
1129 | BlockBegin* sux = block->sux_at(i); |
1130 | intArray* sux_state = sux->fpu_stack_state(); |
1131 | |
1132 | assert(sux_state != NULL, "no fpu state" ); |
1133 | assert(cur_state->length() == sux_state->length(), "incorrect length" ); |
1134 | for (int i = 0; i < cur_state->length(); i++) { |
1135 | assert(cur_state->at(i) == sux_state->at(i), "element not equal" ); |
1136 | } |
1137 | } |
1138 | #endif |
1139 | |
1140 | return changed; |
1141 | } |
1142 | |