| 1 | /* |
| 2 | * Copyright (c) 2005, 2017, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "c1/c1_Instruction.hpp" |
| 27 | #include "c1/c1_LinearScan.hpp" |
| 28 | #include "utilities/bitMap.inline.hpp" |
| 29 | |
| 30 | |
| 31 | //---------------------------------------------------------------------- |
| 32 | // Allocation of FPU stack slots (Intel x86 only) |
| 33 | //---------------------------------------------------------------------- |
| 34 | |
| 35 | void LinearScan::allocate_fpu_stack() { |
| 36 | // First compute which FPU registers are live at the start of each basic block |
| 37 | // (To minimize the amount of work we have to do if we have to merge FPU stacks) |
| 38 | if (ComputeExactFPURegisterUsage) { |
| 39 | Interval* intervals_in_register, *intervals_in_memory; |
| 40 | create_unhandled_lists(&intervals_in_register, &intervals_in_memory, is_in_fpu_register, NULL); |
| 41 | |
| 42 | // ignore memory intervals by overwriting intervals_in_memory |
| 43 | // the dummy interval is needed to enforce the walker to walk until the given id: |
| 44 | // without it, the walker stops when the unhandled-list is empty -> live information |
| 45 | // beyond this point would be incorrect. |
| 46 | Interval* dummy_interval = new Interval(any_reg); |
| 47 | dummy_interval->add_range(max_jint - 2, max_jint - 1); |
| 48 | dummy_interval->set_next(Interval::end()); |
| 49 | intervals_in_memory = dummy_interval; |
| 50 | |
| 51 | IntervalWalker iw(this, intervals_in_register, intervals_in_memory); |
| 52 | |
| 53 | const int num_blocks = block_count(); |
| 54 | for (int i = 0; i < num_blocks; i++) { |
| 55 | BlockBegin* b = block_at(i); |
| 56 | |
| 57 | // register usage is only needed for merging stacks -> compute only |
| 58 | // when more than one predecessor. |
| 59 | // the block must not have any spill moves at the beginning (checked by assertions) |
| 60 | // spill moves would use intervals that are marked as handled and so the usage bit |
| 61 | // would been set incorrectly |
| 62 | |
| 63 | // NOTE: the check for number_of_preds > 1 is necessary. A block with only one |
| 64 | // predecessor may have spill moves at the begin of the block. |
| 65 | // If an interval ends at the current instruction id, it is not possible |
| 66 | // to decide if the register is live or not at the block begin -> the |
| 67 | // register information would be incorrect. |
| 68 | if (b->number_of_preds() > 1) { |
| 69 | int id = b->first_lir_instruction_id(); |
| 70 | ResourceBitMap regs(FrameMap::nof_fpu_regs); |
| 71 | |
| 72 | iw.walk_to(id); // walk after the first instruction (always a label) of the block |
| 73 | assert(iw.current_position() == id, "did not walk completely to id" ); |
| 74 | |
| 75 | // Only consider FPU values in registers |
| 76 | Interval* interval = iw.active_first(fixedKind); |
| 77 | while (interval != Interval::end()) { |
| 78 | int reg = interval->assigned_reg(); |
| 79 | assert(reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg, "no fpu register" ); |
| 80 | assert(interval->assigned_regHi() == -1, "must not have hi register (doubles stored in one register)" ); |
| 81 | assert(interval->from() <= id && id < interval->to(), "interval out of range" ); |
| 82 | |
| 83 | #ifndef PRODUCT |
| 84 | if (TraceFPURegisterUsage) { |
| 85 | tty->print("fpu reg %d is live because of " , reg - pd_first_fpu_reg); interval->print(); |
| 86 | } |
| 87 | #endif |
| 88 | |
| 89 | regs.set_bit(reg - pd_first_fpu_reg); |
| 90 | interval = interval->next(); |
| 91 | } |
| 92 | |
| 93 | b->set_fpu_register_usage(regs); |
| 94 | |
| 95 | #ifndef PRODUCT |
| 96 | if (TraceFPURegisterUsage) { |
| 97 | tty->print("FPU regs for block %d, LIR instr %d): " , b->block_id(), id); regs.print_on(tty); tty->cr(); |
| 98 | } |
| 99 | #endif |
| 100 | } |
| 101 | } |
| 102 | } |
| 103 | |
| 104 | FpuStackAllocator alloc(ir()->compilation(), this); |
| 105 | _fpu_stack_allocator = &alloc; |
| 106 | alloc.allocate(); |
| 107 | _fpu_stack_allocator = NULL; |
| 108 | } |
| 109 | |
| 110 | |
| 111 | FpuStackAllocator::FpuStackAllocator(Compilation* compilation, LinearScan* allocator) |
| 112 | : _compilation(compilation) |
| 113 | , _allocator(allocator) |
| 114 | , _lir(NULL) |
| 115 | , _pos(-1) |
| 116 | , _sim(compilation) |
| 117 | , _temp_sim(compilation) |
| 118 | {} |
| 119 | |
| 120 | void FpuStackAllocator::allocate() { |
| 121 | int num_blocks = allocator()->block_count(); |
| 122 | for (int i = 0; i < num_blocks; i++) { |
| 123 | // Set up to process block |
| 124 | BlockBegin* block = allocator()->block_at(i); |
| 125 | intArray* fpu_stack_state = block->fpu_stack_state(); |
| 126 | |
| 127 | #ifndef PRODUCT |
| 128 | if (TraceFPUStack) { |
| 129 | tty->cr(); |
| 130 | tty->print_cr("------- Begin of new Block %d -------" , block->block_id()); |
| 131 | } |
| 132 | #endif |
| 133 | |
| 134 | assert(fpu_stack_state != NULL || |
| 135 | block->end()->as_Base() != NULL || |
| 136 | block->is_set(BlockBegin::exception_entry_flag), |
| 137 | "FPU stack state must be present due to linear-scan order for FPU stack allocation" ); |
| 138 | // note: exception handler entries always start with an empty fpu stack |
| 139 | // because stack merging would be too complicated |
| 140 | |
| 141 | if (fpu_stack_state != NULL) { |
| 142 | sim()->read_state(fpu_stack_state); |
| 143 | } else { |
| 144 | sim()->clear(); |
| 145 | } |
| 146 | |
| 147 | #ifndef PRODUCT |
| 148 | if (TraceFPUStack) { |
| 149 | tty->print("Reading FPU state for block %d:" , block->block_id()); |
| 150 | sim()->print(); |
| 151 | tty->cr(); |
| 152 | } |
| 153 | #endif |
| 154 | |
| 155 | allocate_block(block); |
| 156 | CHECK_BAILOUT(); |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | void FpuStackAllocator::allocate_block(BlockBegin* block) { |
| 161 | bool processed_merge = false; |
| 162 | LIR_OpList* insts = block->lir()->instructions_list(); |
| 163 | set_lir(block->lir()); |
| 164 | set_pos(0); |
| 165 | |
| 166 | |
| 167 | // Note: insts->length() may change during loop |
| 168 | while (pos() < insts->length()) { |
| 169 | LIR_Op* op = insts->at(pos()); |
| 170 | _debug_information_computed = false; |
| 171 | |
| 172 | #ifndef PRODUCT |
| 173 | if (TraceFPUStack) { |
| 174 | op->print(); |
| 175 | } |
| 176 | check_invalid_lir_op(op); |
| 177 | #endif |
| 178 | |
| 179 | LIR_OpBranch* branch = op->as_OpBranch(); |
| 180 | LIR_Op1* op1 = op->as_Op1(); |
| 181 | LIR_Op2* op2 = op->as_Op2(); |
| 182 | LIR_OpCall* opCall = op->as_OpCall(); |
| 183 | |
| 184 | if (branch != NULL && branch->block() != NULL) { |
| 185 | if (!processed_merge) { |
| 186 | // propagate stack at first branch to a successor |
| 187 | processed_merge = true; |
| 188 | bool required_merge = merge_fpu_stack_with_successors(block); |
| 189 | |
| 190 | assert(!required_merge || branch->cond() == lir_cond_always, "splitting of critical edges should prevent FPU stack mismatches at cond branches" ); |
| 191 | } |
| 192 | |
| 193 | } else if (op1 != NULL) { |
| 194 | handle_op1(op1); |
| 195 | } else if (op2 != NULL) { |
| 196 | handle_op2(op2); |
| 197 | } else if (opCall != NULL) { |
| 198 | handle_opCall(opCall); |
| 199 | } |
| 200 | |
| 201 | compute_debug_information(op); |
| 202 | |
| 203 | set_pos(1 + pos()); |
| 204 | } |
| 205 | |
| 206 | // Propagate stack when block does not end with branch |
| 207 | if (!processed_merge) { |
| 208 | merge_fpu_stack_with_successors(block); |
| 209 | } |
| 210 | } |
| 211 | |
| 212 | |
| 213 | void FpuStackAllocator::compute_debug_information(LIR_Op* op) { |
| 214 | if (!_debug_information_computed && op->id() != -1 && allocator()->has_info(op->id())) { |
| 215 | visitor.visit(op); |
| 216 | |
| 217 | // exception handling |
| 218 | if (allocator()->compilation()->has_exception_handlers()) { |
| 219 | XHandlers* xhandlers = visitor.all_xhandler(); |
| 220 | int n = xhandlers->length(); |
| 221 | for (int k = 0; k < n; k++) { |
| 222 | allocate_exception_handler(xhandlers->handler_at(k)); |
| 223 | } |
| 224 | } else { |
| 225 | assert(visitor.all_xhandler()->length() == 0, "missed exception handler" ); |
| 226 | } |
| 227 | |
| 228 | // compute debug information |
| 229 | int n = visitor.info_count(); |
| 230 | assert(n > 0, "should not visit operation otherwise" ); |
| 231 | |
| 232 | for (int j = 0; j < n; j++) { |
| 233 | CodeEmitInfo* info = visitor.info_at(j); |
| 234 | // Compute debug information |
| 235 | allocator()->compute_debug_info(info, op->id()); |
| 236 | } |
| 237 | } |
| 238 | _debug_information_computed = true; |
| 239 | } |
| 240 | |
| 241 | void FpuStackAllocator::allocate_exception_handler(XHandler* xhandler) { |
| 242 | if (!sim()->is_empty()) { |
| 243 | LIR_List* old_lir = lir(); |
| 244 | int old_pos = pos(); |
| 245 | intArray* old_state = sim()->write_state(); |
| 246 | |
| 247 | #ifndef PRODUCT |
| 248 | if (TraceFPUStack) { |
| 249 | tty->cr(); |
| 250 | tty->print_cr("------- begin of exception handler -------" ); |
| 251 | } |
| 252 | #endif |
| 253 | |
| 254 | if (xhandler->entry_code() == NULL) { |
| 255 | // need entry code to clear FPU stack |
| 256 | LIR_List* entry_code = new LIR_List(_compilation); |
| 257 | entry_code->jump(xhandler->entry_block()); |
| 258 | xhandler->set_entry_code(entry_code); |
| 259 | } |
| 260 | |
| 261 | LIR_OpList* insts = xhandler->entry_code()->instructions_list(); |
| 262 | set_lir(xhandler->entry_code()); |
| 263 | set_pos(0); |
| 264 | |
| 265 | // Note: insts->length() may change during loop |
| 266 | while (pos() < insts->length()) { |
| 267 | LIR_Op* op = insts->at(pos()); |
| 268 | |
| 269 | #ifndef PRODUCT |
| 270 | if (TraceFPUStack) { |
| 271 | op->print(); |
| 272 | } |
| 273 | check_invalid_lir_op(op); |
| 274 | #endif |
| 275 | |
| 276 | switch (op->code()) { |
| 277 | case lir_move: |
| 278 | assert(op->as_Op1() != NULL, "must be LIR_Op1" ); |
| 279 | assert(pos() != insts->length() - 1, "must not be last operation" ); |
| 280 | |
| 281 | handle_op1((LIR_Op1*)op); |
| 282 | break; |
| 283 | |
| 284 | case lir_branch: |
| 285 | assert(op->as_OpBranch()->cond() == lir_cond_always, "must be unconditional branch" ); |
| 286 | assert(pos() == insts->length() - 1, "must be last operation" ); |
| 287 | |
| 288 | // remove all remaining dead registers from FPU stack |
| 289 | clear_fpu_stack(LIR_OprFact::illegalOpr); |
| 290 | break; |
| 291 | |
| 292 | default: |
| 293 | // other operations not allowed in exception entry code |
| 294 | ShouldNotReachHere(); |
| 295 | } |
| 296 | |
| 297 | set_pos(pos() + 1); |
| 298 | } |
| 299 | |
| 300 | #ifndef PRODUCT |
| 301 | if (TraceFPUStack) { |
| 302 | tty->cr(); |
| 303 | tty->print_cr("------- end of exception handler -------" ); |
| 304 | } |
| 305 | #endif |
| 306 | |
| 307 | set_lir(old_lir); |
| 308 | set_pos(old_pos); |
| 309 | sim()->read_state(old_state); |
| 310 | } |
| 311 | } |
| 312 | |
| 313 | |
| 314 | int FpuStackAllocator::fpu_num(LIR_Opr opr) { |
| 315 | assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise" ); |
| 316 | return opr->is_single_fpu() ? opr->fpu_regnr() : opr->fpu_regnrLo(); |
| 317 | } |
| 318 | |
| 319 | int FpuStackAllocator::tos_offset(LIR_Opr opr) { |
| 320 | return sim()->offset_from_tos(fpu_num(opr)); |
| 321 | } |
| 322 | |
| 323 | |
| 324 | LIR_Opr FpuStackAllocator::to_fpu_stack(LIR_Opr opr) { |
| 325 | assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise" ); |
| 326 | |
| 327 | int stack_offset = tos_offset(opr); |
| 328 | if (opr->is_single_fpu()) { |
| 329 | return LIR_OprFact::single_fpu(stack_offset)->make_fpu_stack_offset(); |
| 330 | } else { |
| 331 | assert(opr->is_double_fpu(), "shouldn't call this otherwise" ); |
| 332 | return LIR_OprFact::double_fpu(stack_offset)->make_fpu_stack_offset(); |
| 333 | } |
| 334 | } |
| 335 | |
| 336 | LIR_Opr FpuStackAllocator::to_fpu_stack_top(LIR_Opr opr, bool dont_check_offset) { |
| 337 | assert(opr->is_fpu_register() && !opr->is_xmm_register(), "shouldn't call this otherwise" ); |
| 338 | assert(dont_check_offset || tos_offset(opr) == 0, "operand is not on stack top" ); |
| 339 | |
| 340 | int stack_offset = 0; |
| 341 | if (opr->is_single_fpu()) { |
| 342 | return LIR_OprFact::single_fpu(stack_offset)->make_fpu_stack_offset(); |
| 343 | } else { |
| 344 | assert(opr->is_double_fpu(), "shouldn't call this otherwise" ); |
| 345 | return LIR_OprFact::double_fpu(stack_offset)->make_fpu_stack_offset(); |
| 346 | } |
| 347 | } |
| 348 | |
| 349 | |
| 350 | |
| 351 | void FpuStackAllocator::insert_op(LIR_Op* op) { |
| 352 | lir()->insert_before(pos(), op); |
| 353 | set_pos(1 + pos()); |
| 354 | } |
| 355 | |
| 356 | |
| 357 | void FpuStackAllocator::insert_exchange(int offset) { |
| 358 | if (offset > 0) { |
| 359 | LIR_Op1* fxch_op = new LIR_Op1(lir_fxch, LIR_OprFact::intConst(offset), LIR_OprFact::illegalOpr); |
| 360 | insert_op(fxch_op); |
| 361 | sim()->swap(offset); |
| 362 | |
| 363 | #ifndef PRODUCT |
| 364 | if (TraceFPUStack) { |
| 365 | tty->print("Exchanged register: %d New state: " , sim()->get_slot(0)); sim()->print(); tty->cr(); |
| 366 | } |
| 367 | #endif |
| 368 | |
| 369 | } |
| 370 | } |
| 371 | |
| 372 | void FpuStackAllocator::insert_exchange(LIR_Opr opr) { |
| 373 | insert_exchange(tos_offset(opr)); |
| 374 | } |
| 375 | |
| 376 | |
| 377 | void FpuStackAllocator::insert_free(int offset) { |
| 378 | // move stack slot to the top of stack and then pop it |
| 379 | insert_exchange(offset); |
| 380 | |
| 381 | LIR_Op* fpop = new LIR_Op0(lir_fpop_raw); |
| 382 | insert_op(fpop); |
| 383 | sim()->pop(); |
| 384 | |
| 385 | #ifndef PRODUCT |
| 386 | if (TraceFPUStack) { |
| 387 | tty->print("Inserted pop New state: " ); sim()->print(); tty->cr(); |
| 388 | } |
| 389 | #endif |
| 390 | } |
| 391 | |
| 392 | |
| 393 | void FpuStackAllocator::insert_free_if_dead(LIR_Opr opr) { |
| 394 | if (sim()->contains(fpu_num(opr))) { |
| 395 | int res_slot = tos_offset(opr); |
| 396 | insert_free(res_slot); |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | void FpuStackAllocator::insert_free_if_dead(LIR_Opr opr, LIR_Opr ignore) { |
| 401 | if (fpu_num(opr) != fpu_num(ignore) && sim()->contains(fpu_num(opr))) { |
| 402 | int res_slot = tos_offset(opr); |
| 403 | insert_free(res_slot); |
| 404 | } |
| 405 | } |
| 406 | |
| 407 | void FpuStackAllocator::insert_copy(LIR_Opr from, LIR_Opr to) { |
| 408 | int offset = tos_offset(from); |
| 409 | LIR_Op1* fld = new LIR_Op1(lir_fld, LIR_OprFact::intConst(offset), LIR_OprFact::illegalOpr); |
| 410 | insert_op(fld); |
| 411 | |
| 412 | sim()->push(fpu_num(to)); |
| 413 | |
| 414 | #ifndef PRODUCT |
| 415 | if (TraceFPUStack) { |
| 416 | tty->print("Inserted copy (%d -> %d) New state: " , fpu_num(from), fpu_num(to)); sim()->print(); tty->cr(); |
| 417 | } |
| 418 | #endif |
| 419 | } |
| 420 | |
| 421 | void FpuStackAllocator::do_rename(LIR_Opr from, LIR_Opr to) { |
| 422 | sim()->rename(fpu_num(from), fpu_num(to)); |
| 423 | } |
| 424 | |
| 425 | void FpuStackAllocator::do_push(LIR_Opr opr) { |
| 426 | sim()->push(fpu_num(opr)); |
| 427 | } |
| 428 | |
| 429 | void FpuStackAllocator::pop_if_last_use(LIR_Op* op, LIR_Opr opr) { |
| 430 | assert(op->fpu_pop_count() == 0, "fpu_pop_count alredy set" ); |
| 431 | assert(tos_offset(opr) == 0, "can only pop stack top" ); |
| 432 | |
| 433 | if (opr->is_last_use()) { |
| 434 | op->set_fpu_pop_count(1); |
| 435 | sim()->pop(); |
| 436 | } |
| 437 | } |
| 438 | |
| 439 | void FpuStackAllocator::pop_always(LIR_Op* op, LIR_Opr opr) { |
| 440 | assert(op->fpu_pop_count() == 0, "fpu_pop_count alredy set" ); |
| 441 | assert(tos_offset(opr) == 0, "can only pop stack top" ); |
| 442 | |
| 443 | op->set_fpu_pop_count(1); |
| 444 | sim()->pop(); |
| 445 | } |
| 446 | |
| 447 | void FpuStackAllocator::clear_fpu_stack(LIR_Opr preserve) { |
| 448 | int result_stack_size = (preserve->is_fpu_register() && !preserve->is_xmm_register() ? 1 : 0); |
| 449 | while (sim()->stack_size() > result_stack_size) { |
| 450 | assert(!sim()->slot_is_empty(0), "not allowed" ); |
| 451 | |
| 452 | if (result_stack_size == 0 || sim()->get_slot(0) != fpu_num(preserve)) { |
| 453 | insert_free(0); |
| 454 | } else { |
| 455 | // move "preserve" to bottom of stack so that all other stack slots can be popped |
| 456 | insert_exchange(sim()->stack_size() - 1); |
| 457 | } |
| 458 | } |
| 459 | } |
| 460 | |
| 461 | |
| 462 | void FpuStackAllocator::handle_op1(LIR_Op1* op1) { |
| 463 | LIR_Opr in = op1->in_opr(); |
| 464 | LIR_Opr res = op1->result_opr(); |
| 465 | |
| 466 | LIR_Opr new_in = in; // new operands relative to the actual fpu stack top |
| 467 | LIR_Opr new_res = res; |
| 468 | |
| 469 | // Note: this switch is processed for all LIR_Op1, regardless if they have FPU-arguments, |
| 470 | // so checks for is_float_kind() are necessary inside the cases |
| 471 | switch (op1->code()) { |
| 472 | |
| 473 | case lir_return: { |
| 474 | // FPU-Stack must only contain the (optional) fpu return value. |
| 475 | // All remaining dead values are popped from the stack |
| 476 | // If the input operand is a fpu-register, it is exchanged to the bottom of the stack |
| 477 | |
| 478 | clear_fpu_stack(in); |
| 479 | if (in->is_fpu_register() && !in->is_xmm_register()) { |
| 480 | new_in = to_fpu_stack_top(in); |
| 481 | } |
| 482 | |
| 483 | break; |
| 484 | } |
| 485 | |
| 486 | case lir_move: { |
| 487 | if (in->is_fpu_register() && !in->is_xmm_register()) { |
| 488 | if (res->is_xmm_register()) { |
| 489 | // move from fpu register to xmm register (necessary for operations that |
| 490 | // are not available in the SSE instruction set) |
| 491 | insert_exchange(in); |
| 492 | new_in = to_fpu_stack_top(in); |
| 493 | pop_always(op1, in); |
| 494 | |
| 495 | } else if (res->is_fpu_register() && !res->is_xmm_register()) { |
| 496 | // move from fpu-register to fpu-register: |
| 497 | // * input and result register equal: |
| 498 | // nothing to do |
| 499 | // * input register is last use: |
| 500 | // rename the input register to result register -> input register |
| 501 | // not present on fpu-stack afterwards |
| 502 | // * input register not last use: |
| 503 | // duplicate input register to result register to preserve input |
| 504 | // |
| 505 | // Note: The LIR-Assembler does not produce any code for fpu register moves, |
| 506 | // so input and result stack index must be equal |
| 507 | |
| 508 | if (fpu_num(in) == fpu_num(res)) { |
| 509 | // nothing to do |
| 510 | } else if (in->is_last_use()) { |
| 511 | insert_free_if_dead(res);//, in); |
| 512 | do_rename(in, res); |
| 513 | } else { |
| 514 | insert_free_if_dead(res); |
| 515 | insert_copy(in, res); |
| 516 | } |
| 517 | new_in = to_fpu_stack(res); |
| 518 | new_res = new_in; |
| 519 | |
| 520 | } else { |
| 521 | // move from fpu-register to memory |
| 522 | // input operand must be on top of stack |
| 523 | |
| 524 | insert_exchange(in); |
| 525 | |
| 526 | // create debug information here because afterwards the register may have been popped |
| 527 | compute_debug_information(op1); |
| 528 | |
| 529 | new_in = to_fpu_stack_top(in); |
| 530 | pop_if_last_use(op1, in); |
| 531 | } |
| 532 | |
| 533 | } else if (res->is_fpu_register() && !res->is_xmm_register()) { |
| 534 | // move from memory/constant to fpu register |
| 535 | // result is pushed on the stack |
| 536 | |
| 537 | insert_free_if_dead(res); |
| 538 | |
| 539 | // create debug information before register is pushed |
| 540 | compute_debug_information(op1); |
| 541 | |
| 542 | do_push(res); |
| 543 | new_res = to_fpu_stack_top(res); |
| 544 | } |
| 545 | break; |
| 546 | } |
| 547 | |
| 548 | case lir_neg: { |
| 549 | if (in->is_fpu_register() && !in->is_xmm_register()) { |
| 550 | assert(res->is_fpu_register() && !res->is_xmm_register(), "must be" ); |
| 551 | assert(in->is_last_use(), "old value gets destroyed" ); |
| 552 | |
| 553 | insert_free_if_dead(res, in); |
| 554 | insert_exchange(in); |
| 555 | new_in = to_fpu_stack_top(in); |
| 556 | |
| 557 | do_rename(in, res); |
| 558 | new_res = to_fpu_stack_top(res); |
| 559 | } |
| 560 | break; |
| 561 | } |
| 562 | |
| 563 | case lir_convert: { |
| 564 | Bytecodes::Code bc = op1->as_OpConvert()->bytecode(); |
| 565 | switch (bc) { |
| 566 | case Bytecodes::_d2f: |
| 567 | case Bytecodes::_f2d: |
| 568 | assert(res->is_fpu_register(), "must be" ); |
| 569 | assert(in->is_fpu_register(), "must be" ); |
| 570 | |
| 571 | if (!in->is_xmm_register() && !res->is_xmm_register()) { |
| 572 | // this is quite the same as a move from fpu-register to fpu-register |
| 573 | // Note: input and result operands must have different types |
| 574 | if (fpu_num(in) == fpu_num(res)) { |
| 575 | // nothing to do |
| 576 | new_in = to_fpu_stack(in); |
| 577 | } else if (in->is_last_use()) { |
| 578 | insert_free_if_dead(res);//, in); |
| 579 | new_in = to_fpu_stack(in); |
| 580 | do_rename(in, res); |
| 581 | } else { |
| 582 | insert_free_if_dead(res); |
| 583 | insert_copy(in, res); |
| 584 | new_in = to_fpu_stack_top(in, true); |
| 585 | } |
| 586 | new_res = to_fpu_stack(res); |
| 587 | } |
| 588 | |
| 589 | break; |
| 590 | |
| 591 | case Bytecodes::_i2f: |
| 592 | case Bytecodes::_l2f: |
| 593 | case Bytecodes::_i2d: |
| 594 | case Bytecodes::_l2d: |
| 595 | assert(res->is_fpu_register(), "must be" ); |
| 596 | if (!res->is_xmm_register()) { |
| 597 | insert_free_if_dead(res); |
| 598 | do_push(res); |
| 599 | new_res = to_fpu_stack_top(res); |
| 600 | } |
| 601 | break; |
| 602 | |
| 603 | case Bytecodes::_f2i: |
| 604 | case Bytecodes::_d2i: |
| 605 | assert(in->is_fpu_register(), "must be" ); |
| 606 | if (!in->is_xmm_register()) { |
| 607 | insert_exchange(in); |
| 608 | new_in = to_fpu_stack_top(in); |
| 609 | |
| 610 | // TODO: update registes of stub |
| 611 | } |
| 612 | break; |
| 613 | |
| 614 | case Bytecodes::_f2l: |
| 615 | case Bytecodes::_d2l: |
| 616 | assert(in->is_fpu_register(), "must be" ); |
| 617 | if (!in->is_xmm_register()) { |
| 618 | insert_exchange(in); |
| 619 | new_in = to_fpu_stack_top(in); |
| 620 | pop_always(op1, in); |
| 621 | } |
| 622 | break; |
| 623 | |
| 624 | case Bytecodes::_i2l: |
| 625 | case Bytecodes::_l2i: |
| 626 | case Bytecodes::_i2b: |
| 627 | case Bytecodes::_i2c: |
| 628 | case Bytecodes::_i2s: |
| 629 | // no fpu operands |
| 630 | break; |
| 631 | |
| 632 | default: |
| 633 | ShouldNotReachHere(); |
| 634 | } |
| 635 | break; |
| 636 | } |
| 637 | |
| 638 | case lir_roundfp: { |
| 639 | assert(in->is_fpu_register() && !in->is_xmm_register(), "input must be in register" ); |
| 640 | assert(res->is_stack(), "result must be on stack" ); |
| 641 | |
| 642 | insert_exchange(in); |
| 643 | new_in = to_fpu_stack_top(in); |
| 644 | pop_if_last_use(op1, in); |
| 645 | break; |
| 646 | } |
| 647 | |
| 648 | default: { |
| 649 | assert(!in->is_float_kind() && !res->is_float_kind(), "missed a fpu-operation" ); |
| 650 | } |
| 651 | } |
| 652 | |
| 653 | op1->set_in_opr(new_in); |
| 654 | op1->set_result_opr(new_res); |
| 655 | } |
| 656 | |
| 657 | void FpuStackAllocator::handle_op2(LIR_Op2* op2) { |
| 658 | LIR_Opr left = op2->in_opr1(); |
| 659 | if (!left->is_float_kind()) { |
| 660 | return; |
| 661 | } |
| 662 | if (left->is_xmm_register()) { |
| 663 | return; |
| 664 | } |
| 665 | |
| 666 | LIR_Opr right = op2->in_opr2(); |
| 667 | LIR_Opr res = op2->result_opr(); |
| 668 | LIR_Opr new_left = left; // new operands relative to the actual fpu stack top |
| 669 | LIR_Opr new_right = right; |
| 670 | LIR_Opr new_res = res; |
| 671 | |
| 672 | assert(!left->is_xmm_register() && !right->is_xmm_register() && !res->is_xmm_register(), "not for xmm registers" ); |
| 673 | |
| 674 | switch (op2->code()) { |
| 675 | case lir_cmp: |
| 676 | case lir_cmp_fd2i: |
| 677 | case lir_ucmp_fd2i: |
| 678 | case lir_assert: { |
| 679 | assert(left->is_fpu_register(), "invalid LIR" ); |
| 680 | assert(right->is_fpu_register(), "invalid LIR" ); |
| 681 | |
| 682 | // the left-hand side must be on top of stack. |
| 683 | // the right-hand side is never popped, even if is_last_use is set |
| 684 | insert_exchange(left); |
| 685 | new_left = to_fpu_stack_top(left); |
| 686 | new_right = to_fpu_stack(right); |
| 687 | pop_if_last_use(op2, left); |
| 688 | break; |
| 689 | } |
| 690 | |
| 691 | case lir_mul_strictfp: |
| 692 | case lir_div_strictfp: { |
| 693 | assert(op2->tmp1_opr()->is_fpu_register(), "strict operations need temporary fpu stack slot" ); |
| 694 | insert_free_if_dead(op2->tmp1_opr()); |
| 695 | assert(sim()->stack_size() <= 7, "at least one stack slot must be free" ); |
| 696 | // fall-through: continue with the normal handling of lir_mul and lir_div |
| 697 | } |
| 698 | case lir_add: |
| 699 | case lir_sub: |
| 700 | case lir_mul: |
| 701 | case lir_div: { |
| 702 | assert(left->is_fpu_register(), "must be" ); |
| 703 | assert(res->is_fpu_register(), "must be" ); |
| 704 | assert(left->is_equal(res), "must be" ); |
| 705 | |
| 706 | // either the left-hand or the right-hand side must be on top of stack |
| 707 | // (if right is not a register, left must be on top) |
| 708 | if (!right->is_fpu_register()) { |
| 709 | insert_exchange(left); |
| 710 | new_left = to_fpu_stack_top(left); |
| 711 | } else { |
| 712 | // no exchange necessary if right is alredy on top of stack |
| 713 | if (tos_offset(right) == 0) { |
| 714 | new_left = to_fpu_stack(left); |
| 715 | new_right = to_fpu_stack_top(right); |
| 716 | } else { |
| 717 | insert_exchange(left); |
| 718 | new_left = to_fpu_stack_top(left); |
| 719 | new_right = to_fpu_stack(right); |
| 720 | } |
| 721 | |
| 722 | if (right->is_last_use()) { |
| 723 | op2->set_fpu_pop_count(1); |
| 724 | |
| 725 | if (tos_offset(right) == 0) { |
| 726 | sim()->pop(); |
| 727 | } else { |
| 728 | // if left is on top of stack, the result is placed in the stack |
| 729 | // slot of right, so a renaming from right to res is necessary |
| 730 | assert(tos_offset(left) == 0, "must be" ); |
| 731 | sim()->pop(); |
| 732 | do_rename(right, res); |
| 733 | } |
| 734 | } |
| 735 | } |
| 736 | new_res = to_fpu_stack(res); |
| 737 | |
| 738 | break; |
| 739 | } |
| 740 | |
| 741 | case lir_rem: { |
| 742 | assert(left->is_fpu_register(), "must be" ); |
| 743 | assert(right->is_fpu_register(), "must be" ); |
| 744 | assert(res->is_fpu_register(), "must be" ); |
| 745 | assert(left->is_equal(res), "must be" ); |
| 746 | |
| 747 | // Must bring both operands to top of stack with following operand ordering: |
| 748 | // * fpu stack before rem: ... right left |
| 749 | // * fpu stack after rem: ... left |
| 750 | if (tos_offset(right) != 1) { |
| 751 | insert_exchange(right); |
| 752 | insert_exchange(1); |
| 753 | } |
| 754 | insert_exchange(left); |
| 755 | assert(tos_offset(right) == 1, "check" ); |
| 756 | assert(tos_offset(left) == 0, "check" ); |
| 757 | |
| 758 | new_left = to_fpu_stack_top(left); |
| 759 | new_right = to_fpu_stack(right); |
| 760 | |
| 761 | op2->set_fpu_pop_count(1); |
| 762 | sim()->pop(); |
| 763 | do_rename(right, res); |
| 764 | |
| 765 | new_res = to_fpu_stack_top(res); |
| 766 | break; |
| 767 | } |
| 768 | |
| 769 | case lir_abs: |
| 770 | case lir_sqrt: { |
| 771 | // Right argument appears to be unused |
| 772 | assert(right->is_illegal(), "must be" ); |
| 773 | assert(left->is_fpu_register(), "must be" ); |
| 774 | assert(res->is_fpu_register(), "must be" ); |
| 775 | assert(left->is_last_use(), "old value gets destroyed" ); |
| 776 | |
| 777 | insert_free_if_dead(res, left); |
| 778 | insert_exchange(left); |
| 779 | do_rename(left, res); |
| 780 | |
| 781 | new_left = to_fpu_stack_top(res); |
| 782 | new_res = new_left; |
| 783 | |
| 784 | op2->set_fpu_stack_size(sim()->stack_size()); |
| 785 | break; |
| 786 | } |
| 787 | |
| 788 | default: { |
| 789 | assert(false, "missed a fpu-operation" ); |
| 790 | } |
| 791 | } |
| 792 | |
| 793 | op2->set_in_opr1(new_left); |
| 794 | op2->set_in_opr2(new_right); |
| 795 | op2->set_result_opr(new_res); |
| 796 | } |
| 797 | |
| 798 | void FpuStackAllocator::handle_opCall(LIR_OpCall* opCall) { |
| 799 | LIR_Opr res = opCall->result_opr(); |
| 800 | |
| 801 | // clear fpu-stack before call |
| 802 | // it may contain dead values that could not have been remved by previous operations |
| 803 | clear_fpu_stack(LIR_OprFact::illegalOpr); |
| 804 | assert(sim()->is_empty(), "fpu stack must be empty now" ); |
| 805 | |
| 806 | // compute debug information before (possible) fpu result is pushed |
| 807 | compute_debug_information(opCall); |
| 808 | |
| 809 | if (res->is_fpu_register() && !res->is_xmm_register()) { |
| 810 | do_push(res); |
| 811 | opCall->set_result_opr(to_fpu_stack_top(res)); |
| 812 | } |
| 813 | } |
| 814 | |
| 815 | #ifndef PRODUCT |
| 816 | void FpuStackAllocator::check_invalid_lir_op(LIR_Op* op) { |
| 817 | switch (op->code()) { |
| 818 | case lir_24bit_FPU: |
| 819 | case lir_reset_FPU: |
| 820 | case lir_ffree: |
| 821 | assert(false, "operations not allowed in lir. If one of these operations is needed, check if they have fpu operands" ); |
| 822 | break; |
| 823 | |
| 824 | case lir_fpop_raw: |
| 825 | case lir_fxch: |
| 826 | case lir_fld: |
| 827 | assert(false, "operations only inserted by FpuStackAllocator" ); |
| 828 | break; |
| 829 | |
| 830 | default: |
| 831 | break; |
| 832 | } |
| 833 | } |
| 834 | #endif |
| 835 | |
| 836 | |
| 837 | void FpuStackAllocator::merge_insert_add(LIR_List* instrs, FpuStackSim* cur_sim, int reg) { |
| 838 | LIR_Op1* move = new LIR_Op1(lir_move, LIR_OprFact::doubleConst(0), LIR_OprFact::double_fpu(reg)->make_fpu_stack_offset()); |
| 839 | |
| 840 | instrs->instructions_list()->push(move); |
| 841 | |
| 842 | cur_sim->push(reg); |
| 843 | move->set_result_opr(to_fpu_stack(move->result_opr())); |
| 844 | |
| 845 | #ifndef PRODUCT |
| 846 | if (TraceFPUStack) { |
| 847 | tty->print("Added new register: %d New state: " , reg); cur_sim->print(); tty->cr(); |
| 848 | } |
| 849 | #endif |
| 850 | } |
| 851 | |
| 852 | void FpuStackAllocator::merge_insert_xchg(LIR_List* instrs, FpuStackSim* cur_sim, int slot) { |
| 853 | assert(slot > 0, "no exchange necessary" ); |
| 854 | |
| 855 | LIR_Op1* fxch = new LIR_Op1(lir_fxch, LIR_OprFact::intConst(slot)); |
| 856 | instrs->instructions_list()->push(fxch); |
| 857 | cur_sim->swap(slot); |
| 858 | |
| 859 | #ifndef PRODUCT |
| 860 | if (TraceFPUStack) { |
| 861 | tty->print("Exchanged register: %d New state: " , cur_sim->get_slot(slot)); cur_sim->print(); tty->cr(); |
| 862 | } |
| 863 | #endif |
| 864 | } |
| 865 | |
| 866 | void FpuStackAllocator::merge_insert_pop(LIR_List* instrs, FpuStackSim* cur_sim) { |
| 867 | int reg = cur_sim->get_slot(0); |
| 868 | |
| 869 | LIR_Op* fpop = new LIR_Op0(lir_fpop_raw); |
| 870 | instrs->instructions_list()->push(fpop); |
| 871 | cur_sim->pop(reg); |
| 872 | |
| 873 | #ifndef PRODUCT |
| 874 | if (TraceFPUStack) { |
| 875 | tty->print("Removed register: %d New state: " , reg); cur_sim->print(); tty->cr(); |
| 876 | } |
| 877 | #endif |
| 878 | } |
| 879 | |
| 880 | bool FpuStackAllocator::merge_rename(FpuStackSim* cur_sim, FpuStackSim* sux_sim, int start_slot, int change_slot) { |
| 881 | int reg = cur_sim->get_slot(change_slot); |
| 882 | |
| 883 | for (int slot = start_slot; slot >= 0; slot--) { |
| 884 | int new_reg = sux_sim->get_slot(slot); |
| 885 | |
| 886 | if (!cur_sim->contains(new_reg)) { |
| 887 | cur_sim->set_slot(change_slot, new_reg); |
| 888 | |
| 889 | #ifndef PRODUCT |
| 890 | if (TraceFPUStack) { |
| 891 | tty->print("Renamed register %d to %d New state: " , reg, new_reg); cur_sim->print(); tty->cr(); |
| 892 | } |
| 893 | #endif |
| 894 | |
| 895 | return true; |
| 896 | } |
| 897 | } |
| 898 | return false; |
| 899 | } |
| 900 | |
| 901 | |
| 902 | void FpuStackAllocator::merge_fpu_stack(LIR_List* instrs, FpuStackSim* cur_sim, FpuStackSim* sux_sim) { |
| 903 | #ifndef PRODUCT |
| 904 | if (TraceFPUStack) { |
| 905 | tty->cr(); |
| 906 | tty->print("before merging: pred: " ); cur_sim->print(); tty->cr(); |
| 907 | tty->print(" sux: " ); sux_sim->print(); tty->cr(); |
| 908 | } |
| 909 | |
| 910 | int slot; |
| 911 | for (slot = 0; slot < cur_sim->stack_size(); slot++) { |
| 912 | assert(!cur_sim->slot_is_empty(slot), "not handled by algorithm" ); |
| 913 | } |
| 914 | for (slot = 0; slot < sux_sim->stack_size(); slot++) { |
| 915 | assert(!sux_sim->slot_is_empty(slot), "not handled by algorithm" ); |
| 916 | } |
| 917 | #endif |
| 918 | |
| 919 | // size difference between cur and sux that must be resolved by adding or removing values form the stack |
| 920 | int size_diff = cur_sim->stack_size() - sux_sim->stack_size(); |
| 921 | |
| 922 | if (!ComputeExactFPURegisterUsage) { |
| 923 | // add slots that are currently free, but used in successor |
| 924 | // When the exact FPU register usage is computed, the stack does |
| 925 | // not contain dead values at merging -> no values must be added |
| 926 | |
| 927 | int sux_slot = sux_sim->stack_size() - 1; |
| 928 | while (size_diff < 0) { |
| 929 | assert(sux_slot >= 0, "slot out of bounds -> error in algorithm" ); |
| 930 | |
| 931 | int reg = sux_sim->get_slot(sux_slot); |
| 932 | if (!cur_sim->contains(reg)) { |
| 933 | merge_insert_add(instrs, cur_sim, reg); |
| 934 | size_diff++; |
| 935 | |
| 936 | if (sux_slot + size_diff != 0) { |
| 937 | merge_insert_xchg(instrs, cur_sim, sux_slot + size_diff); |
| 938 | } |
| 939 | } |
| 940 | sux_slot--; |
| 941 | } |
| 942 | } |
| 943 | |
| 944 | assert(cur_sim->stack_size() >= sux_sim->stack_size(), "stack size must be equal or greater now" ); |
| 945 | assert(size_diff == cur_sim->stack_size() - sux_sim->stack_size(), "must be" ); |
| 946 | |
| 947 | // stack merge algorithm: |
| 948 | // 1) as long as the current stack top is not in the right location (that meens |
| 949 | // it should not be on the stack top), exchange it into the right location |
| 950 | // 2) if the stack top is right, but the remaining stack is not ordered correctly, |
| 951 | // the stack top is exchanged away to get another value on top -> |
| 952 | // now step 1) can be continued |
| 953 | // the stack can also contain unused items -> these items are removed from stack |
| 954 | |
| 955 | int finished_slot = sux_sim->stack_size() - 1; |
| 956 | while (finished_slot >= 0 || size_diff > 0) { |
| 957 | while (size_diff > 0 || (cur_sim->stack_size() > 0 && cur_sim->get_slot(0) != sux_sim->get_slot(0))) { |
| 958 | int reg = cur_sim->get_slot(0); |
| 959 | if (sux_sim->contains(reg)) { |
| 960 | int sux_slot = sux_sim->offset_from_tos(reg); |
| 961 | merge_insert_xchg(instrs, cur_sim, sux_slot + size_diff); |
| 962 | |
| 963 | } else if (!merge_rename(cur_sim, sux_sim, finished_slot, 0)) { |
| 964 | assert(size_diff > 0, "must be" ); |
| 965 | |
| 966 | merge_insert_pop(instrs, cur_sim); |
| 967 | size_diff--; |
| 968 | } |
| 969 | assert(cur_sim->stack_size() == 0 || cur_sim->get_slot(0) != reg, "register must have been changed" ); |
| 970 | } |
| 971 | |
| 972 | while (finished_slot >= 0 && cur_sim->get_slot(finished_slot) == sux_sim->get_slot(finished_slot)) { |
| 973 | finished_slot--; |
| 974 | } |
| 975 | |
| 976 | if (finished_slot >= 0) { |
| 977 | int reg = cur_sim->get_slot(finished_slot); |
| 978 | |
| 979 | if (sux_sim->contains(reg) || !merge_rename(cur_sim, sux_sim, finished_slot, finished_slot)) { |
| 980 | assert(sux_sim->contains(reg) || size_diff > 0, "must be" ); |
| 981 | merge_insert_xchg(instrs, cur_sim, finished_slot); |
| 982 | } |
| 983 | assert(cur_sim->get_slot(finished_slot) != reg, "register must have been changed" ); |
| 984 | } |
| 985 | } |
| 986 | |
| 987 | #ifndef PRODUCT |
| 988 | if (TraceFPUStack) { |
| 989 | tty->print("after merging: pred: " ); cur_sim->print(); tty->cr(); |
| 990 | tty->print(" sux: " ); sux_sim->print(); tty->cr(); |
| 991 | tty->cr(); |
| 992 | } |
| 993 | #endif |
| 994 | assert(cur_sim->stack_size() == sux_sim->stack_size(), "stack size must be equal now" ); |
| 995 | } |
| 996 | |
| 997 | |
| 998 | void FpuStackAllocator::merge_cleanup_fpu_stack(LIR_List* instrs, FpuStackSim* cur_sim, BitMap& live_fpu_regs) { |
| 999 | #ifndef PRODUCT |
| 1000 | if (TraceFPUStack) { |
| 1001 | tty->cr(); |
| 1002 | tty->print("before cleanup: state: " ); cur_sim->print(); tty->cr(); |
| 1003 | tty->print(" live: " ); live_fpu_regs.print_on(tty); tty->cr(); |
| 1004 | } |
| 1005 | #endif |
| 1006 | |
| 1007 | int slot = 0; |
| 1008 | while (slot < cur_sim->stack_size()) { |
| 1009 | int reg = cur_sim->get_slot(slot); |
| 1010 | if (!live_fpu_regs.at(reg)) { |
| 1011 | if (slot != 0) { |
| 1012 | merge_insert_xchg(instrs, cur_sim, slot); |
| 1013 | } |
| 1014 | merge_insert_pop(instrs, cur_sim); |
| 1015 | } else { |
| 1016 | slot++; |
| 1017 | } |
| 1018 | } |
| 1019 | |
| 1020 | #ifndef PRODUCT |
| 1021 | if (TraceFPUStack) { |
| 1022 | tty->print("after cleanup: state: " ); cur_sim->print(); tty->cr(); |
| 1023 | tty->print(" live: " ); live_fpu_regs.print_on(tty); tty->cr(); |
| 1024 | tty->cr(); |
| 1025 | } |
| 1026 | |
| 1027 | // check if fpu stack only contains live registers |
| 1028 | for (unsigned int i = 0; i < live_fpu_regs.size(); i++) { |
| 1029 | if (live_fpu_regs.at(i) != cur_sim->contains(i)) { |
| 1030 | tty->print_cr("mismatch between required and actual stack content" ); |
| 1031 | break; |
| 1032 | } |
| 1033 | } |
| 1034 | #endif |
| 1035 | } |
| 1036 | |
| 1037 | |
| 1038 | bool FpuStackAllocator::merge_fpu_stack_with_successors(BlockBegin* block) { |
| 1039 | #ifndef PRODUCT |
| 1040 | if (TraceFPUStack) { |
| 1041 | tty->print_cr("Propagating FPU stack state for B%d at LIR_Op position %d to successors:" , |
| 1042 | block->block_id(), pos()); |
| 1043 | sim()->print(); |
| 1044 | tty->cr(); |
| 1045 | } |
| 1046 | #endif |
| 1047 | |
| 1048 | bool changed = false; |
| 1049 | int number_of_sux = block->number_of_sux(); |
| 1050 | |
| 1051 | if (number_of_sux == 1 && block->sux_at(0)->number_of_preds() > 1) { |
| 1052 | // The successor has at least two incoming edges, so a stack merge will be necessary |
| 1053 | // If this block is the first predecessor, cleanup the current stack and propagate it |
| 1054 | // If this block is not the first predecessor, a stack merge will be necessary |
| 1055 | |
| 1056 | BlockBegin* sux = block->sux_at(0); |
| 1057 | intArray* state = sux->fpu_stack_state(); |
| 1058 | LIR_List* instrs = new LIR_List(_compilation); |
| 1059 | |
| 1060 | if (state != NULL) { |
| 1061 | // Merge with a successors that already has a FPU stack state |
| 1062 | // the block must only have one successor because critical edges must been split |
| 1063 | FpuStackSim* cur_sim = sim(); |
| 1064 | FpuStackSim* sux_sim = temp_sim(); |
| 1065 | sux_sim->read_state(state); |
| 1066 | |
| 1067 | merge_fpu_stack(instrs, cur_sim, sux_sim); |
| 1068 | |
| 1069 | } else { |
| 1070 | // propagate current FPU stack state to successor without state |
| 1071 | // clean up stack first so that there are no dead values on the stack |
| 1072 | if (ComputeExactFPURegisterUsage) { |
| 1073 | FpuStackSim* cur_sim = sim(); |
| 1074 | ResourceBitMap live_fpu_regs = block->sux_at(0)->fpu_register_usage(); |
| 1075 | assert(live_fpu_regs.size() == FrameMap::nof_fpu_regs, "missing register usage" ); |
| 1076 | |
| 1077 | merge_cleanup_fpu_stack(instrs, cur_sim, live_fpu_regs); |
| 1078 | } |
| 1079 | |
| 1080 | intArray* state = sim()->write_state(); |
| 1081 | if (TraceFPUStack) { |
| 1082 | tty->print_cr("Setting FPU stack state of B%d (merge path)" , sux->block_id()); |
| 1083 | sim()->print(); tty->cr(); |
| 1084 | } |
| 1085 | sux->set_fpu_stack_state(state); |
| 1086 | } |
| 1087 | |
| 1088 | if (instrs->instructions_list()->length() > 0) { |
| 1089 | lir()->insert_before(pos(), instrs); |
| 1090 | set_pos(instrs->instructions_list()->length() + pos()); |
| 1091 | changed = true; |
| 1092 | } |
| 1093 | |
| 1094 | } else { |
| 1095 | // Propagate unmodified Stack to successors where a stack merge is not necessary |
| 1096 | intArray* state = sim()->write_state(); |
| 1097 | for (int i = 0; i < number_of_sux; i++) { |
| 1098 | BlockBegin* sux = block->sux_at(i); |
| 1099 | |
| 1100 | #ifdef ASSERT |
| 1101 | for (int j = 0; j < sux->number_of_preds(); j++) { |
| 1102 | assert(block == sux->pred_at(j), "all critical edges must be broken" ); |
| 1103 | } |
| 1104 | |
| 1105 | // check if new state is same |
| 1106 | if (sux->fpu_stack_state() != NULL) { |
| 1107 | intArray* sux_state = sux->fpu_stack_state(); |
| 1108 | assert(state->length() == sux_state->length(), "overwriting existing stack state" ); |
| 1109 | for (int j = 0; j < state->length(); j++) { |
| 1110 | assert(state->at(j) == sux_state->at(j), "overwriting existing stack state" ); |
| 1111 | } |
| 1112 | } |
| 1113 | #endif |
| 1114 | #ifndef PRODUCT |
| 1115 | if (TraceFPUStack) { |
| 1116 | tty->print_cr("Setting FPU stack state of B%d" , sux->block_id()); |
| 1117 | sim()->print(); tty->cr(); |
| 1118 | } |
| 1119 | #endif |
| 1120 | |
| 1121 | sux->set_fpu_stack_state(state); |
| 1122 | } |
| 1123 | } |
| 1124 | |
| 1125 | #ifndef PRODUCT |
| 1126 | // assertions that FPU stack state conforms to all successors' states |
| 1127 | intArray* cur_state = sim()->write_state(); |
| 1128 | for (int i = 0; i < number_of_sux; i++) { |
| 1129 | BlockBegin* sux = block->sux_at(i); |
| 1130 | intArray* sux_state = sux->fpu_stack_state(); |
| 1131 | |
| 1132 | assert(sux_state != NULL, "no fpu state" ); |
| 1133 | assert(cur_state->length() == sux_state->length(), "incorrect length" ); |
| 1134 | for (int i = 0; i < cur_state->length(); i++) { |
| 1135 | assert(cur_state->at(i) == sux_state->at(i), "element not equal" ); |
| 1136 | } |
| 1137 | } |
| 1138 | #endif |
| 1139 | |
| 1140 | return changed; |
| 1141 | } |
| 1142 | |