| 1 | /* |
| 2 | * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #ifndef SHARE_C1_C1_LINEARSCAN_HPP |
| 26 | #define SHARE_C1_C1_LINEARSCAN_HPP |
| 27 | |
| 28 | #include "c1/c1_FpuStackSim.hpp" |
| 29 | #include "c1/c1_FrameMap.hpp" |
| 30 | #include "c1/c1_IR.hpp" |
| 31 | #include "c1/c1_Instruction.hpp" |
| 32 | #include "c1/c1_LIR.hpp" |
| 33 | #include "c1/c1_LIRGenerator.hpp" |
| 34 | #include "utilities/align.hpp" |
| 35 | #include "utilities/macros.hpp" |
| 36 | |
| 37 | class FpuStackAllocator; |
| 38 | class IRScopeDebugInfo; |
| 39 | class Interval; |
| 40 | class IntervalWalker; |
| 41 | class LIRGenerator; |
| 42 | class LinearScan; |
| 43 | class MoveResolver; |
| 44 | class Range; |
| 45 | |
| 46 | typedef GrowableArray<Interval*> IntervalArray; |
| 47 | typedef GrowableArray<Interval*> IntervalList; |
| 48 | typedef GrowableArray<IntervalList*> IntervalsList; |
| 49 | typedef GrowableArray<ScopeValue*> ScopeValueArray; |
| 50 | typedef GrowableArray<LIR_OpList*> LIR_OpListStack; |
| 51 | |
| 52 | enum IntervalUseKind { |
| 53 | // priority of use kinds must be ascending |
| 54 | noUse = 0, |
| 55 | loopEndMarker = 1, |
| 56 | shouldHaveRegister = 2, |
| 57 | mustHaveRegister = 3, |
| 58 | |
| 59 | firstValidKind = 1, |
| 60 | lastValidKind = 3 |
| 61 | }; |
| 62 | |
| 63 | enum IntervalKind { |
| 64 | fixedKind = 0, // interval pre-colored by LIR_Generator |
| 65 | anyKind = 1, // no register/memory allocated by LIR_Generator |
| 66 | nofKinds, |
| 67 | firstKind = fixedKind |
| 68 | }; |
| 69 | |
| 70 | |
| 71 | // during linear scan an interval is in one of four states in |
| 72 | enum IntervalState { |
| 73 | unhandledState = 0, // unhandled state (not processed yet) |
| 74 | activeState = 1, // life and is in a physical register |
| 75 | inactiveState = 2, // in a life time hole and is in a physical register |
| 76 | handledState = 3, // spilled or not life again |
| 77 | invalidState = -1 |
| 78 | }; |
| 79 | |
| 80 | |
| 81 | enum IntervalSpillState { |
| 82 | noDefinitionFound, // starting state of calculation: no definition found yet |
| 83 | oneDefinitionFound, // one definition has already been found. |
| 84 | // Note: two consecutive definitions are treated as one (e.g. consecutive move and add because of two-operand LIR form) |
| 85 | // the position of this definition is stored in _definition_pos |
| 86 | oneMoveInserted, // one spill move has already been inserted. |
| 87 | storeAtDefinition, // the interval should be stored immediately after its definition because otherwise |
| 88 | // there would be multiple redundant stores |
| 89 | startInMemory, // the interval starts in memory (e.g. method parameter), so a store is never necessary |
| 90 | noOptimization // the interval has more then one definition (e.g. resulting from phi moves), so stores to memory are not optimized |
| 91 | }; |
| 92 | |
| 93 | |
| 94 | #define for_each_interval_kind(kind) \ |
| 95 | for (IntervalKind kind = firstKind; kind < nofKinds; kind = (IntervalKind)(kind + 1)) |
| 96 | |
| 97 | #define for_each_visitor_mode(mode) \ |
| 98 | for (LIR_OpVisitState::OprMode mode = LIR_OpVisitState::firstMode; mode < LIR_OpVisitState::numModes; mode = (LIR_OpVisitState::OprMode)(mode + 1)) |
| 99 | |
| 100 | |
| 101 | class LinearScan : public CompilationResourceObj { |
| 102 | // declare classes used by LinearScan as friends because they |
| 103 | // need a wide variety of functions declared here |
| 104 | // |
| 105 | // Only the small interface to the rest of the compiler is public |
| 106 | friend class Interval; |
| 107 | friend class IntervalWalker; |
| 108 | friend class LinearScanWalker; |
| 109 | friend class FpuStackAllocator; |
| 110 | friend class MoveResolver; |
| 111 | friend class LinearScanStatistic; |
| 112 | friend class LinearScanTimers; |
| 113 | friend class RegisterVerifier; |
| 114 | |
| 115 | public: |
| 116 | enum { |
| 117 | any_reg = -1, |
| 118 | nof_cpu_regs = pd_nof_cpu_regs_linearscan, |
| 119 | nof_fpu_regs = pd_nof_fpu_regs_linearscan, |
| 120 | nof_xmm_regs = pd_nof_xmm_regs_linearscan, |
| 121 | nof_regs = nof_cpu_regs + nof_fpu_regs + nof_xmm_regs |
| 122 | }; |
| 123 | |
| 124 | private: |
| 125 | Compilation* _compilation; |
| 126 | IR* _ir; |
| 127 | LIRGenerator* _gen; |
| 128 | FrameMap* _frame_map; |
| 129 | |
| 130 | BlockList _cached_blocks; // cached list with all blocks in linear-scan order (only correct if original list keeps unchanged) |
| 131 | int _num_virtual_regs; // number of virtual registers (without new registers introduced because of splitting intervals) |
| 132 | bool _has_fpu_registers; // true if this method uses any floating point registers (and so fpu stack allocation is necessary) |
| 133 | int _num_calls; // total number of calls in this method |
| 134 | int _max_spills; // number of stack slots used for intervals allocated to memory |
| 135 | int _unused_spill_slot; // unused spill slot for a single-word value because of alignment of a double-word value |
| 136 | |
| 137 | IntervalList _intervals; // mapping from register number to interval |
| 138 | IntervalList* _new_intervals_from_allocation; // list with all intervals created during allocation when an existing interval is split |
| 139 | IntervalArray* _sorted_intervals; // intervals sorted by Interval::from() |
| 140 | bool _needs_full_resort; // set to true if an Interval::from() is changed and _sorted_intervals must be resorted |
| 141 | |
| 142 | LIR_OpArray _lir_ops; // mapping from LIR_Op id to LIR_Op node |
| 143 | BlockBeginArray _block_of_op; // mapping from LIR_Op id to the BlockBegin containing this instruction |
| 144 | ResourceBitMap _has_info; // bit set for each LIR_Op id that has a CodeEmitInfo |
| 145 | ResourceBitMap _has_call; // bit set for each LIR_Op id that destroys all caller save registers |
| 146 | BitMap2D _interval_in_loop; // bit set for each virtual register that is contained in each loop |
| 147 | |
| 148 | // cached debug info to prevent multiple creation of same object |
| 149 | // TODO: cached scope values for registers could be static |
| 150 | ScopeValueArray _scope_value_cache; |
| 151 | |
| 152 | static ConstantOopWriteValue* _oop_null_scope_value; |
| 153 | static ConstantIntValue* _int_m1_scope_value; |
| 154 | static ConstantIntValue* _int_0_scope_value; |
| 155 | static ConstantIntValue* _int_1_scope_value; |
| 156 | static ConstantIntValue* _int_2_scope_value; |
| 157 | |
| 158 | // accessors |
| 159 | IR* ir() const { return _ir; } |
| 160 | Compilation* compilation() const { return _compilation; } |
| 161 | LIRGenerator* gen() const { return _gen; } |
| 162 | FrameMap* frame_map() const { return _frame_map; } |
| 163 | |
| 164 | // unified bailout support |
| 165 | void bailout(const char* msg) const { compilation()->bailout(msg); } |
| 166 | bool bailed_out() const { return compilation()->bailed_out(); } |
| 167 | |
| 168 | // access to block list (sorted in linear scan order) |
| 169 | int block_count() const { assert(_cached_blocks.length() == ir()->linear_scan_order()->length(), "invalid cached block list" ); return _cached_blocks.length(); } |
| 170 | BlockBegin* block_at(int idx) const { assert(_cached_blocks.at(idx) == ir()->linear_scan_order()->at(idx), "invalid cached block list" ); return _cached_blocks.at(idx); } |
| 171 | |
| 172 | int num_virtual_regs() const { return _num_virtual_regs; } |
| 173 | // size of live_in and live_out sets of BasicBlocks (BitMap needs rounded size for iteration) |
| 174 | int live_set_size() const { return align_up(_num_virtual_regs, BitsPerWord); } |
| 175 | bool has_fpu_registers() const { return _has_fpu_registers; } |
| 176 | int num_loops() const { return ir()->num_loops(); } |
| 177 | bool is_interval_in_loop(int interval, int loop) const { return _interval_in_loop.at(interval, loop); } |
| 178 | |
| 179 | // handling of fpu stack allocation (platform dependent, needed for debug information generation) |
| 180 | #ifdef X86 |
| 181 | FpuStackAllocator* _fpu_stack_allocator; |
| 182 | bool use_fpu_stack_allocation() const { return UseSSE < 2 && has_fpu_registers(); } |
| 183 | #else |
| 184 | bool use_fpu_stack_allocation() const { return false; } |
| 185 | #endif |
| 186 | |
| 187 | |
| 188 | // access to interval list |
| 189 | int interval_count() const { return _intervals.length(); } |
| 190 | Interval* interval_at(int reg_num) const { return _intervals.at(reg_num); } |
| 191 | |
| 192 | // access to LIR_Ops and Blocks indexed by op_id |
| 193 | int max_lir_op_id() const { assert(_lir_ops.length() > 0, "no operations" ); return (_lir_ops.length() - 1) << 1; } |
| 194 | LIR_Op* lir_op_with_id(int op_id) const { assert(op_id >= 0 && op_id <= max_lir_op_id() && op_id % 2 == 0, "op_id out of range or not even" ); return _lir_ops.at(op_id >> 1); } |
| 195 | BlockBegin* block_of_op_with_id(int op_id) const { assert(_block_of_op.length() > 0 && op_id >= 0 && op_id <= max_lir_op_id() + 1, "op_id out of range" ); return _block_of_op.at(op_id >> 1); } |
| 196 | |
| 197 | bool is_block_begin(int op_id) { return op_id == 0 || block_of_op_with_id(op_id) != block_of_op_with_id(op_id - 1); } |
| 198 | |
| 199 | bool has_call(int op_id) { assert(op_id % 2 == 0, "must be even" ); return _has_call.at(op_id >> 1); } |
| 200 | bool has_info(int op_id) { assert(op_id % 2 == 0, "must be even" ); return _has_info.at(op_id >> 1); } |
| 201 | |
| 202 | |
| 203 | // functions for converting LIR-Operands to register numbers |
| 204 | static bool is_valid_reg_num(int reg_num) { return reg_num >= 0; } |
| 205 | static int reg_num(LIR_Opr opr); |
| 206 | static int reg_numHi(LIR_Opr opr); |
| 207 | |
| 208 | // functions for classification of intervals |
| 209 | static bool is_precolored_interval(const Interval* i); |
| 210 | static bool is_virtual_interval(const Interval* i); |
| 211 | |
| 212 | static bool is_precolored_cpu_interval(const Interval* i); |
| 213 | static bool is_virtual_cpu_interval(const Interval* i); |
| 214 | static bool is_precolored_fpu_interval(const Interval* i); |
| 215 | static bool is_virtual_fpu_interval(const Interval* i); |
| 216 | |
| 217 | static bool is_in_fpu_register(const Interval* i); |
| 218 | static bool is_oop_interval(const Interval* i); |
| 219 | |
| 220 | |
| 221 | // General helper functions |
| 222 | int allocate_spill_slot(bool double_word); |
| 223 | void assign_spill_slot(Interval* it); |
| 224 | void propagate_spill_slots(); |
| 225 | |
| 226 | Interval* create_interval(int reg_num); |
| 227 | void append_interval(Interval* it); |
| 228 | void copy_register_flags(Interval* from, Interval* to); |
| 229 | |
| 230 | // platform dependent functions |
| 231 | static bool is_processed_reg_num(int reg_num); |
| 232 | static int num_physical_regs(BasicType type); |
| 233 | static bool requires_adjacent_regs(BasicType type); |
| 234 | static bool is_caller_save(int assigned_reg); |
| 235 | |
| 236 | // spill move optimization: eliminate moves from register to stack if |
| 237 | // stack slot is known to be correct |
| 238 | void change_spill_definition_pos(Interval* interval, int def_pos); |
| 239 | void change_spill_state(Interval* interval, int spill_pos); |
| 240 | static bool must_store_at_definition(const Interval* i); |
| 241 | void eliminate_spill_moves(); |
| 242 | |
| 243 | // Phase 1: number all instructions in all blocks |
| 244 | void number_instructions(); |
| 245 | |
| 246 | // Phase 2: compute local live sets separately for each block |
| 247 | // (sets live_gen and live_kill for each block) |
| 248 | // |
| 249 | // helper methods used by compute_local_live_sets() |
| 250 | void set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill); |
| 251 | |
| 252 | void compute_local_live_sets(); |
| 253 | |
| 254 | // Phase 3: perform a backward dataflow analysis to compute global live sets |
| 255 | // (sets live_in and live_out for each block) |
| 256 | void compute_global_live_sets(); |
| 257 | |
| 258 | |
| 259 | // Phase 4: build intervals |
| 260 | // (fills the list _intervals) |
| 261 | // |
| 262 | // helper methods used by build_intervals() |
| 263 | void add_use (Value value, int from, int to, IntervalUseKind use_kind); |
| 264 | |
| 265 | void add_def (LIR_Opr opr, int def_pos, IntervalUseKind use_kind); |
| 266 | void add_use (LIR_Opr opr, int from, int to, IntervalUseKind use_kind); |
| 267 | void add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind); |
| 268 | |
| 269 | void add_def (int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type); |
| 270 | void add_use (int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type); |
| 271 | void add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type); |
| 272 | |
| 273 | // Add platform dependent kills for particular LIR ops. Can be used |
| 274 | // to add platform dependent behaviour for some operations. |
| 275 | void pd_add_temps(LIR_Op* op); |
| 276 | |
| 277 | IntervalUseKind use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr); |
| 278 | IntervalUseKind use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr); |
| 279 | void handle_method_arguments(LIR_Op* op); |
| 280 | void handle_doubleword_moves(LIR_Op* op); |
| 281 | void add_register_hints(LIR_Op* op); |
| 282 | |
| 283 | void build_intervals(); |
| 284 | |
| 285 | |
| 286 | // Phase 5: actual register allocation |
| 287 | // (Uses LinearScanWalker) |
| 288 | // |
| 289 | // helper functions for building a sorted list of intervals |
| 290 | NOT_PRODUCT(bool is_sorted(IntervalArray* intervals);) |
| 291 | static int interval_cmp(Interval** a, Interval** b); |
| 292 | void add_to_list(Interval** first, Interval** prev, Interval* interval); |
| 293 | void create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)); |
| 294 | |
| 295 | void sort_intervals_before_allocation(); |
| 296 | void sort_intervals_after_allocation(); |
| 297 | void allocate_registers(); |
| 298 | |
| 299 | |
| 300 | // Phase 6: resolve data flow |
| 301 | // (insert moves at edges between blocks if intervals have been split) |
| 302 | // |
| 303 | // helper functions for resolve_data_flow() |
| 304 | Interval* split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode); |
| 305 | Interval* interval_at_block_begin(BlockBegin* block, int reg_num); |
| 306 | Interval* interval_at_block_end(BlockBegin* block, int reg_num); |
| 307 | Interval* interval_at_op_id(int reg_num, int op_id); |
| 308 | void resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver); |
| 309 | void resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver); |
| 310 | void resolve_data_flow(); |
| 311 | |
| 312 | void resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver); |
| 313 | void resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver); |
| 314 | void resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver); |
| 315 | void resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver); |
| 316 | void resolve_exception_handlers(); |
| 317 | |
| 318 | // Phase 7: assign register numbers back to LIR |
| 319 | // (includes computation of debug information and oop maps) |
| 320 | // |
| 321 | // helper functions for assign_reg_num() |
| 322 | VMReg vm_reg_for_interval(Interval* interval); |
| 323 | VMReg vm_reg_for_operand(LIR_Opr opr); |
| 324 | |
| 325 | static LIR_Opr operand_for_interval(Interval* interval); |
| 326 | static LIR_Opr calc_operand_for_interval(const Interval* interval); |
| 327 | LIR_Opr canonical_spill_opr(Interval* interval); |
| 328 | |
| 329 | LIR_Opr color_lir_opr(LIR_Opr opr, int id, LIR_OpVisitState::OprMode); |
| 330 | |
| 331 | // methods used for oop map computation |
| 332 | IntervalWalker* init_compute_oop_maps(); |
| 333 | OopMap* compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site); |
| 334 | void compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op); |
| 335 | |
| 336 | // methods used for debug information computation |
| 337 | void init_compute_debug_info(); |
| 338 | |
| 339 | MonitorValue* location_for_monitor_index(int monitor_index); |
| 340 | LocationValue* location_for_name(int name, Location::Type loc_type); |
| 341 | void set_oop(OopMap* map, VMReg name) { |
| 342 | if (map->legal_vm_reg_name(name)) { |
| 343 | map->set_oop(name); |
| 344 | } else { |
| 345 | bailout("illegal oopMap register name" ); |
| 346 | } |
| 347 | } |
| 348 | |
| 349 | int append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values); |
| 350 | int append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values); |
| 351 | int append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values); |
| 352 | |
| 353 | IRScopeDebugInfo* compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state); |
| 354 | void compute_debug_info(CodeEmitInfo* info, int op_id); |
| 355 | |
| 356 | void assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw); |
| 357 | void assign_reg_num(); |
| 358 | |
| 359 | |
| 360 | // Phase 8: fpu stack allocation |
| 361 | // (Used only on x86 when fpu operands are present) |
| 362 | void allocate_fpu_stack(); |
| 363 | |
| 364 | |
| 365 | // helper functions for printing state |
| 366 | #ifndef PRODUCT |
| 367 | static void print_bitmap(BitMap& bitmap); |
| 368 | void print_intervals(const char* label); |
| 369 | void print_lir(int level, const char* label, bool hir_valid = true); |
| 370 | #endif |
| 371 | |
| 372 | #ifdef ASSERT |
| 373 | // verification functions for allocation |
| 374 | // (check that all intervals have a correct register and that no registers are overwritten) |
| 375 | void verify(); |
| 376 | void verify_intervals(); |
| 377 | void verify_no_oops_in_fixed_intervals(); |
| 378 | void verify_constants(); |
| 379 | void verify_registers(); |
| 380 | #endif |
| 381 | |
| 382 | public: |
| 383 | // creation |
| 384 | LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map); |
| 385 | |
| 386 | // main entry function: perform linear scan register allocation |
| 387 | void do_linear_scan(); |
| 388 | |
| 389 | // accessors used by Compilation |
| 390 | int max_spills() const { return _max_spills; } |
| 391 | int num_calls() const { assert(_num_calls >= 0, "not set" ); return _num_calls; } |
| 392 | |
| 393 | // entry functions for printing |
| 394 | #ifndef PRODUCT |
| 395 | static void print_statistics(); |
| 396 | static void print_timers(double total); |
| 397 | #endif |
| 398 | }; |
| 399 | |
| 400 | |
| 401 | // Helper class for ordering moves that are inserted at the same position in the LIR |
| 402 | // When moves between registers are inserted, it is important that the moves are |
| 403 | // ordered such that no register is overwritten. So moves from register to stack |
| 404 | // are processed prior to moves from stack to register. When moves have circular |
| 405 | // dependencies, a temporary stack slot is used to break the circle. |
| 406 | // The same logic is used in the LinearScanWalker and in LinearScan during resolve_data_flow |
| 407 | // and therefore factored out in a separate class |
| 408 | class MoveResolver: public StackObj { |
| 409 | private: |
| 410 | LinearScan* _allocator; |
| 411 | |
| 412 | LIR_List* _insert_list; |
| 413 | int _insert_idx; |
| 414 | LIR_InsertionBuffer _insertion_buffer; // buffer where moves are inserted |
| 415 | |
| 416 | IntervalList _mapping_from; |
| 417 | LIR_OprList _mapping_from_opr; |
| 418 | IntervalList _mapping_to; |
| 419 | bool _multiple_reads_allowed; |
| 420 | int _register_blocked[LinearScan::nof_regs]; |
| 421 | |
| 422 | int register_blocked(int reg) { assert(reg >= 0 && reg < LinearScan::nof_regs, "out of bounds" ); return _register_blocked[reg]; } |
| 423 | void set_register_blocked(int reg, int direction) { assert(reg >= 0 && reg < LinearScan::nof_regs, "out of bounds" ); assert(direction == 1 || direction == -1, "out of bounds" ); _register_blocked[reg] += direction; } |
| 424 | |
| 425 | void block_registers(Interval* it); |
| 426 | void unblock_registers(Interval* it); |
| 427 | bool save_to_process_move(Interval* from, Interval* to); |
| 428 | |
| 429 | void create_insertion_buffer(LIR_List* list); |
| 430 | void append_insertion_buffer(); |
| 431 | void insert_move(Interval* from_interval, Interval* to_interval); |
| 432 | void insert_move(LIR_Opr from_opr, Interval* to_interval); |
| 433 | |
| 434 | DEBUG_ONLY(void verify_before_resolve();) |
| 435 | void resolve_mappings(); |
| 436 | public: |
| 437 | MoveResolver(LinearScan* allocator); |
| 438 | |
| 439 | DEBUG_ONLY(void check_empty();) |
| 440 | void set_multiple_reads_allowed() { _multiple_reads_allowed = true; } |
| 441 | void set_insert_position(LIR_List* insert_list, int insert_idx); |
| 442 | void move_insert_position(LIR_List* insert_list, int insert_idx); |
| 443 | void add_mapping(Interval* from, Interval* to); |
| 444 | void add_mapping(LIR_Opr from, Interval* to); |
| 445 | void resolve_and_append_moves(); |
| 446 | |
| 447 | LinearScan* allocator() { return _allocator; } |
| 448 | bool has_mappings() { return _mapping_from.length() > 0; } |
| 449 | }; |
| 450 | |
| 451 | |
| 452 | class Range : public CompilationResourceObj { |
| 453 | friend class Interval; |
| 454 | |
| 455 | private: |
| 456 | static Range* _end; // sentinel (from == to == max_jint) |
| 457 | |
| 458 | int _from; // from (inclusive) |
| 459 | int _to; // to (exclusive) |
| 460 | Range* _next; // linear list of Ranges |
| 461 | |
| 462 | // used only by class Interval, so hide them |
| 463 | bool intersects(Range* r) const { return intersects_at(r) != -1; } |
| 464 | int intersects_at(Range* r) const; |
| 465 | |
| 466 | public: |
| 467 | Range(int from, int to, Range* next); |
| 468 | |
| 469 | static void initialize(Arena* arena); |
| 470 | static Range* end() { return _end; } |
| 471 | |
| 472 | int from() const { return _from; } |
| 473 | int to() const { return _to; } |
| 474 | Range* next() const { return _next; } |
| 475 | void set_from(int from) { _from = from; } |
| 476 | void set_to(int to) { _to = to; } |
| 477 | void set_next(Range* next) { _next = next; } |
| 478 | |
| 479 | // for testing |
| 480 | void print(outputStream* out = tty) const PRODUCT_RETURN; |
| 481 | }; |
| 482 | |
| 483 | |
| 484 | // Interval is an ordered list of disjoint ranges. |
| 485 | |
| 486 | // For pre-colored double word LIR_Oprs, one interval is created for |
| 487 | // the low word register and one is created for the hi word register. |
| 488 | // On Intel for FPU double registers only one interval is created. At |
| 489 | // all times assigned_reg contains the reg. number of the physical |
| 490 | // register. |
| 491 | |
| 492 | // For LIR_Opr in virtual registers a single interval can represent |
| 493 | // single and double word values. When a physical register is |
| 494 | // assigned to the interval, assigned_reg contains the |
| 495 | // phys. reg. number and for double word values assigned_regHi the |
| 496 | // phys. reg. number of the hi word if there is any. For spilled |
| 497 | // intervals assigned_reg contains the stack index. assigned_regHi is |
| 498 | // always -1. |
| 499 | |
| 500 | class Interval : public CompilationResourceObj { |
| 501 | private: |
| 502 | static Interval* _end; // sentinel (interval with only range Range::end()) |
| 503 | |
| 504 | int _reg_num; |
| 505 | BasicType _type; // valid only for virtual registers |
| 506 | Range* _first; // sorted list of Ranges |
| 507 | intStack _use_pos_and_kinds; // sorted list of use-positions and their according use-kinds |
| 508 | |
| 509 | Range* _current; // interval iteration: the current Range |
| 510 | Interval* _next; // interval iteration: sorted list of Intervals (ends with sentinel) |
| 511 | IntervalState _state; // interval iteration: to which set belongs this interval |
| 512 | |
| 513 | |
| 514 | int _assigned_reg; |
| 515 | int _assigned_regHi; |
| 516 | |
| 517 | int _cached_to; // cached value: to of last range (-1: not cached) |
| 518 | LIR_Opr _cached_opr; |
| 519 | VMReg _cached_vm_reg; |
| 520 | |
| 521 | Interval* _split_parent; // the original interval where this interval is derived from |
| 522 | IntervalList* _split_children; // list of all intervals that are split off from this interval (only available for split parents) |
| 523 | Interval* _current_split_child; // the current split child that has been active or inactive last (always stored in split parents) |
| 524 | |
| 525 | int _canonical_spill_slot; // the stack slot where all split parts of this interval are spilled to (always stored in split parents) |
| 526 | bool _insert_move_when_activated; // true if move is inserted between _current_split_child and this interval when interval gets active the first time |
| 527 | IntervalSpillState _spill_state; // for spill move optimization |
| 528 | int _spill_definition_pos; // position where the interval is defined (if defined only once) |
| 529 | Interval* _register_hint; // this interval should be in the same register as the hint interval |
| 530 | |
| 531 | int calc_to(); |
| 532 | Interval* new_split_child(); |
| 533 | public: |
| 534 | Interval(int reg_num); |
| 535 | |
| 536 | static void initialize(Arena* arena); |
| 537 | static Interval* end() { return _end; } |
| 538 | |
| 539 | // accessors |
| 540 | int reg_num() const { return _reg_num; } |
| 541 | void set_reg_num(int r) { assert(_reg_num == -1, "cannot change reg_num" ); _reg_num = r; } |
| 542 | BasicType type() const { assert(_reg_num == -1 || _reg_num >= LIR_OprDesc::vreg_base, "cannot access type for fixed interval" ); return _type; } |
| 543 | void set_type(BasicType type) { assert(_reg_num < LIR_OprDesc::vreg_base || _type == T_ILLEGAL || _type == type, "overwriting existing type" ); _type = type; } |
| 544 | |
| 545 | Range* first() const { return _first; } |
| 546 | int from() const { return _first->from(); } |
| 547 | int to() { if (_cached_to == -1) _cached_to = calc_to(); assert(_cached_to == calc_to(), "invalid cached value" ); return _cached_to; } |
| 548 | |
| 549 | #ifndef PRODUCT |
| 550 | int num_use_positions() const { return _use_pos_and_kinds.length() / 2; } |
| 551 | #endif |
| 552 | |
| 553 | Interval* next() const { return _next; } |
| 554 | Interval** next_addr() { return &_next; } |
| 555 | void set_next(Interval* next) { _next = next; } |
| 556 | |
| 557 | int assigned_reg() const { return _assigned_reg; } |
| 558 | int assigned_regHi() const { return _assigned_regHi; } |
| 559 | void assign_reg(int reg) { _assigned_reg = reg; _assigned_regHi = LinearScan::any_reg; } |
| 560 | void assign_reg(int reg,int regHi) { _assigned_reg = reg; _assigned_regHi = regHi; } |
| 561 | |
| 562 | Interval* register_hint(bool search_split_child = true) const; // calculation needed |
| 563 | void set_register_hint(Interval* i) { _register_hint = i; } |
| 564 | |
| 565 | int state() const { return _state; } |
| 566 | void set_state(IntervalState s) { _state = s; } |
| 567 | |
| 568 | // access to split parent and split children |
| 569 | bool is_split_parent() const { return _split_parent == this; } |
| 570 | bool is_split_child() const { return _split_parent != this; } |
| 571 | Interval* split_parent() const { assert(_split_parent->is_split_parent(), "must be" ); return _split_parent; } |
| 572 | Interval* split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode); |
| 573 | Interval* split_child_before_op_id(int op_id); |
| 574 | DEBUG_ONLY(void check_split_children();) |
| 575 | |
| 576 | // information stored in split parent, but available for all children |
| 577 | int canonical_spill_slot() const { return split_parent()->_canonical_spill_slot; } |
| 578 | void set_canonical_spill_slot(int slot) { assert(split_parent()->_canonical_spill_slot == -1, "overwriting existing value" ); split_parent()->_canonical_spill_slot = slot; } |
| 579 | Interval* current_split_child() const { return split_parent()->_current_split_child; } |
| 580 | void make_current_split_child() { split_parent()->_current_split_child = this; } |
| 581 | |
| 582 | bool insert_move_when_activated() const { return _insert_move_when_activated; } |
| 583 | void set_insert_move_when_activated(bool b) { _insert_move_when_activated = b; } |
| 584 | |
| 585 | // for spill optimization |
| 586 | IntervalSpillState spill_state() const { return split_parent()->_spill_state; } |
| 587 | int spill_definition_pos() const { return split_parent()->_spill_definition_pos; } |
| 588 | void set_spill_state(IntervalSpillState state) { assert(state >= spill_state(), "state cannot decrease" ); split_parent()->_spill_state = state; } |
| 589 | void set_spill_definition_pos(int pos) { assert(spill_definition_pos() == -1, "cannot set the position twice" ); split_parent()->_spill_definition_pos = pos; } |
| 590 | // returns true if this interval has a shadow copy on the stack that is always correct |
| 591 | bool always_in_memory() const { return split_parent()->_spill_state == storeAtDefinition || split_parent()->_spill_state == startInMemory; } |
| 592 | |
| 593 | // caching of values that take time to compute and are used multiple times |
| 594 | LIR_Opr cached_opr() const { return _cached_opr; } |
| 595 | VMReg cached_vm_reg() const { return _cached_vm_reg; } |
| 596 | void set_cached_opr(LIR_Opr opr) { _cached_opr = opr; } |
| 597 | void set_cached_vm_reg(VMReg reg) { _cached_vm_reg = reg; } |
| 598 | |
| 599 | // access to use positions |
| 600 | int first_usage(IntervalUseKind min_use_kind) const; // id of the first operation requiring this interval in a register |
| 601 | int next_usage(IntervalUseKind min_use_kind, int from) const; // id of next usage seen from the given position |
| 602 | int next_usage_exact(IntervalUseKind exact_use_kind, int from) const; |
| 603 | int previous_usage(IntervalUseKind min_use_kind, int from) const; |
| 604 | |
| 605 | // manipulating intervals |
| 606 | void add_use_pos(int pos, IntervalUseKind use_kind); |
| 607 | void add_range(int from, int to); |
| 608 | Interval* split(int split_pos); |
| 609 | Interval* split_from_start(int split_pos); |
| 610 | void remove_first_use_pos() { _use_pos_and_kinds.trunc_to(_use_pos_and_kinds.length() - 2); } |
| 611 | |
| 612 | // test intersection |
| 613 | bool covers(int op_id, LIR_OpVisitState::OprMode mode) const; |
| 614 | bool has_hole_between(int from, int to); |
| 615 | bool intersects(Interval* i) const { return _first->intersects(i->_first); } |
| 616 | int intersects_at(Interval* i) const { return _first->intersects_at(i->_first); } |
| 617 | |
| 618 | // range iteration |
| 619 | void rewind_range() { _current = _first; } |
| 620 | void next_range() { assert(this != _end, "not allowed on sentinel" ); _current = _current->next(); } |
| 621 | int current_from() const { return _current->from(); } |
| 622 | int current_to() const { return _current->to(); } |
| 623 | bool current_at_end() const { return _current == Range::end(); } |
| 624 | bool current_intersects(Interval* it) { return _current->intersects(it->_current); }; |
| 625 | int current_intersects_at(Interval* it) { return _current->intersects_at(it->_current); }; |
| 626 | |
| 627 | // printing |
| 628 | void print(outputStream* out = tty) const PRODUCT_RETURN; |
| 629 | }; |
| 630 | |
| 631 | |
| 632 | class IntervalWalker : public CompilationResourceObj { |
| 633 | protected: |
| 634 | Compilation* _compilation; |
| 635 | LinearScan* _allocator; |
| 636 | |
| 637 | Interval* _unhandled_first[nofKinds]; // sorted list of intervals, not life before the current position |
| 638 | Interval* _active_first [nofKinds]; // sorted list of intervals, life at the current position |
| 639 | Interval* _inactive_first [nofKinds]; // sorted list of intervals, intervals in a life time hole at the current position |
| 640 | |
| 641 | Interval* _current; // the current interval coming from unhandled list |
| 642 | int _current_position; // the current position (intercept point through the intervals) |
| 643 | IntervalKind _current_kind; // and whether it is fixed_kind or any_kind. |
| 644 | |
| 645 | |
| 646 | Compilation* compilation() const { return _compilation; } |
| 647 | LinearScan* allocator() const { return _allocator; } |
| 648 | |
| 649 | // unified bailout support |
| 650 | void bailout(const char* msg) const { compilation()->bailout(msg); } |
| 651 | bool bailed_out() const { return compilation()->bailed_out(); } |
| 652 | |
| 653 | void check_bounds(IntervalKind kind) { assert(kind >= fixedKind && kind <= anyKind, "invalid interval_kind" ); } |
| 654 | |
| 655 | Interval** unhandled_first_addr(IntervalKind kind) { check_bounds(kind); return &_unhandled_first[kind]; } |
| 656 | Interval** active_first_addr(IntervalKind kind) { check_bounds(kind); return &_active_first[kind]; } |
| 657 | Interval** inactive_first_addr(IntervalKind kind) { check_bounds(kind); return &_inactive_first[kind]; } |
| 658 | |
| 659 | void append_sorted(Interval** first, Interval* interval); |
| 660 | void append_to_unhandled(Interval** list, Interval* interval); |
| 661 | |
| 662 | bool remove_from_list(Interval** list, Interval* i); |
| 663 | void remove_from_list(Interval* i); |
| 664 | |
| 665 | void next_interval(); |
| 666 | Interval* current() const { return _current; } |
| 667 | IntervalKind current_kind() const { return _current_kind; } |
| 668 | |
| 669 | void walk_to(IntervalState state, int from); |
| 670 | |
| 671 | // activate_current() is called when an unhandled interval becomes active (in current(), current_kind()). |
| 672 | // Return false if current() should not be moved the the active interval list. |
| 673 | // It is safe to append current to any interval list but the unhandled list. |
| 674 | virtual bool activate_current() { return true; } |
| 675 | |
| 676 | // interval_moved() is called whenever an interval moves from one interval list to another. |
| 677 | // In the implementation of this method it is prohibited to move the interval to any list. |
| 678 | virtual void interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to); |
| 679 | |
| 680 | public: |
| 681 | IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first); |
| 682 | |
| 683 | Interval* unhandled_first(IntervalKind kind) { check_bounds(kind); return _unhandled_first[kind]; } |
| 684 | Interval* active_first(IntervalKind kind) { check_bounds(kind); return _active_first[kind]; } |
| 685 | Interval* inactive_first(IntervalKind kind) { check_bounds(kind); return _inactive_first[kind]; } |
| 686 | |
| 687 | // active contains the intervals that are live after the lir_op |
| 688 | void walk_to(int lir_op_id); |
| 689 | // active contains the intervals that are live before the lir_op |
| 690 | void walk_before(int lir_op_id) { walk_to(lir_op_id-1); } |
| 691 | // walk through all intervals |
| 692 | void walk() { walk_to(max_jint); } |
| 693 | |
| 694 | int current_position() { return _current_position; } |
| 695 | }; |
| 696 | |
| 697 | |
| 698 | // The actual linear scan register allocator |
| 699 | class LinearScanWalker : public IntervalWalker { |
| 700 | enum { |
| 701 | any_reg = LinearScan::any_reg |
| 702 | }; |
| 703 | |
| 704 | private: |
| 705 | int _first_reg; // the reg. number of the first phys. register |
| 706 | int _last_reg; // the reg. nmber of the last phys. register |
| 707 | int _num_phys_regs; // required by current interval |
| 708 | bool _adjacent_regs; // have lo/hi words of phys. regs be adjacent |
| 709 | |
| 710 | int _use_pos[LinearScan::nof_regs]; |
| 711 | int _block_pos[LinearScan::nof_regs]; |
| 712 | IntervalList* _spill_intervals[LinearScan::nof_regs]; |
| 713 | |
| 714 | MoveResolver _move_resolver; // for ordering spill moves |
| 715 | |
| 716 | // accessors mapped to same functions in class LinearScan |
| 717 | int block_count() const { return allocator()->block_count(); } |
| 718 | BlockBegin* block_at(int idx) const { return allocator()->block_at(idx); } |
| 719 | BlockBegin* block_of_op_with_id(int op_id) const { return allocator()->block_of_op_with_id(op_id); } |
| 720 | |
| 721 | void init_use_lists(bool only_process_use_pos); |
| 722 | void exclude_from_use(int reg); |
| 723 | void exclude_from_use(Interval* i); |
| 724 | void set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos); |
| 725 | void set_use_pos(Interval* i, int use_pos, bool only_process_use_pos); |
| 726 | void set_block_pos(int reg, Interval* i, int block_pos); |
| 727 | void set_block_pos(Interval* i, int block_pos); |
| 728 | |
| 729 | void free_exclude_active_fixed(); |
| 730 | void free_exclude_active_any(); |
| 731 | void free_collect_inactive_fixed(Interval* cur); |
| 732 | void free_collect_inactive_any(Interval* cur); |
| 733 | void spill_exclude_active_fixed(); |
| 734 | void spill_block_inactive_fixed(Interval* cur); |
| 735 | void spill_collect_active_any(); |
| 736 | void spill_collect_inactive_any(Interval* cur); |
| 737 | |
| 738 | void insert_move(int op_id, Interval* src_it, Interval* dst_it); |
| 739 | int find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos); |
| 740 | int find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization); |
| 741 | void split_before_usage(Interval* it, int min_split_pos, int max_split_pos); |
| 742 | void split_for_spilling(Interval* it); |
| 743 | void split_stack_interval(Interval* it); |
| 744 | void split_when_partial_register_available(Interval* it, int register_available_until); |
| 745 | void split_and_spill_interval(Interval* it); |
| 746 | |
| 747 | int find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split); |
| 748 | int find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split); |
| 749 | bool alloc_free_reg(Interval* cur); |
| 750 | |
| 751 | int find_locked_reg(int reg_needed_until, int interval_to, int ignore_reg, bool* need_split); |
| 752 | int find_locked_double_reg(int reg_needed_until, int interval_to, bool* need_split); |
| 753 | void split_and_spill_intersecting_intervals(int reg, int regHi); |
| 754 | void alloc_locked_reg(Interval* cur); |
| 755 | |
| 756 | bool no_allocation_possible(Interval* cur); |
| 757 | void init_vars_for_alloc(Interval* cur); |
| 758 | bool pd_init_regs_for_alloc(Interval* cur); |
| 759 | |
| 760 | void combine_spilled_intervals(Interval* cur); |
| 761 | bool is_move(LIR_Op* op, Interval* from, Interval* to); |
| 762 | |
| 763 | bool activate_current(); |
| 764 | |
| 765 | public: |
| 766 | LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first); |
| 767 | |
| 768 | // must be called when all intervals are allocated |
| 769 | void finish_allocation() { _move_resolver.resolve_and_append_moves(); } |
| 770 | }; |
| 771 | |
| 772 | |
| 773 | |
| 774 | /* |
| 775 | When a block has more than one predecessor, and all predecessors end with |
| 776 | the same sequence of move-instructions, than this moves can be placed once |
| 777 | at the beginning of the block instead of multiple times in the predecessors. |
| 778 | |
| 779 | Similarly, when a block has more than one successor, then equal sequences of |
| 780 | moves at the beginning of the successors can be placed once at the end of |
| 781 | the block. But because the moves must be inserted before all branch |
| 782 | instructions, this works only when there is exactly one conditional branch |
| 783 | at the end of the block (because the moves must be inserted before all |
| 784 | branches, but after all compares). |
| 785 | |
| 786 | This optimization affects all kind of moves (reg->reg, reg->stack and |
| 787 | stack->reg). Because this optimization works best when a block contains only |
| 788 | few moves, it has a huge impact on the number of blocks that are totally |
| 789 | empty. |
| 790 | */ |
| 791 | class EdgeMoveOptimizer : public StackObj { |
| 792 | private: |
| 793 | // the class maintains a list with all lir-instruction-list of the |
| 794 | // successors (predecessors) and the current index into the lir-lists |
| 795 | LIR_OpListStack _edge_instructions; |
| 796 | intStack _edge_instructions_idx; |
| 797 | |
| 798 | void init_instructions(); |
| 799 | void append_instructions(LIR_OpList* instructions, int instructions_idx); |
| 800 | LIR_Op* instruction_at(int edge); |
| 801 | void remove_cur_instruction(int edge, bool decrement_index); |
| 802 | |
| 803 | bool operations_different(LIR_Op* op1, LIR_Op* op2); |
| 804 | |
| 805 | void optimize_moves_at_block_end(BlockBegin* cur); |
| 806 | void optimize_moves_at_block_begin(BlockBegin* cur); |
| 807 | |
| 808 | EdgeMoveOptimizer(); |
| 809 | |
| 810 | public: |
| 811 | static void optimize(BlockList* code); |
| 812 | }; |
| 813 | |
| 814 | |
| 815 | |
| 816 | class ControlFlowOptimizer : public StackObj { |
| 817 | private: |
| 818 | BlockList _original_preds; |
| 819 | |
| 820 | enum { |
| 821 | ShortLoopSize = 5 |
| 822 | }; |
| 823 | void reorder_short_loop(BlockList* code, BlockBegin* , int ); |
| 824 | void reorder_short_loops(BlockList* code); |
| 825 | |
| 826 | bool can_delete_block(BlockBegin* cur); |
| 827 | void substitute_branch_target(BlockBegin* cur, BlockBegin* target_from, BlockBegin* target_to); |
| 828 | void delete_empty_blocks(BlockList* code); |
| 829 | |
| 830 | void delete_unnecessary_jumps(BlockList* code); |
| 831 | void delete_jumps_to_return(BlockList* code); |
| 832 | |
| 833 | DEBUG_ONLY(void verify(BlockList* code);) |
| 834 | |
| 835 | ControlFlowOptimizer(); |
| 836 | public: |
| 837 | static void optimize(BlockList* code); |
| 838 | }; |
| 839 | |
| 840 | |
| 841 | #ifndef PRODUCT |
| 842 | |
| 843 | // Helper class for collecting statistics of LinearScan |
| 844 | class LinearScanStatistic : public StackObj { |
| 845 | public: |
| 846 | enum Counter { |
| 847 | // general counters |
| 848 | counter_method, |
| 849 | counter_fpu_method, |
| 850 | counter_loop_method, |
| 851 | counter_exception_method, |
| 852 | counter_loop, |
| 853 | counter_block, |
| 854 | counter_loop_block, |
| 855 | counter_exception_block, |
| 856 | counter_interval, |
| 857 | counter_fixed_interval, |
| 858 | counter_range, |
| 859 | counter_fixed_range, |
| 860 | counter_use_pos, |
| 861 | counter_fixed_use_pos, |
| 862 | counter_spill_slots, |
| 863 | blank_line_1, |
| 864 | |
| 865 | // counter for classes of lir instructions |
| 866 | counter_instruction, |
| 867 | counter_label, |
| 868 | counter_entry, |
| 869 | counter_return, |
| 870 | counter_call, |
| 871 | counter_move, |
| 872 | counter_cmp, |
| 873 | counter_cond_branch, |
| 874 | counter_uncond_branch, |
| 875 | counter_stub_branch, |
| 876 | counter_alu, |
| 877 | counter_alloc, |
| 878 | counter_sync, |
| 879 | counter_throw, |
| 880 | counter_unwind, |
| 881 | counter_typecheck, |
| 882 | counter_fpu_stack, |
| 883 | counter_misc_inst, |
| 884 | counter_other_inst, |
| 885 | blank_line_2, |
| 886 | |
| 887 | // counter for different types of moves |
| 888 | counter_move_total, |
| 889 | counter_move_reg_reg, |
| 890 | counter_move_reg_stack, |
| 891 | counter_move_stack_reg, |
| 892 | counter_move_stack_stack, |
| 893 | counter_move_reg_mem, |
| 894 | counter_move_mem_reg, |
| 895 | counter_move_const_any, |
| 896 | |
| 897 | number_of_counters, |
| 898 | invalid_counter = -1 |
| 899 | }; |
| 900 | |
| 901 | private: |
| 902 | int _counters_sum[number_of_counters]; |
| 903 | int _counters_max[number_of_counters]; |
| 904 | |
| 905 | void inc_counter(Counter idx, int value = 1) { _counters_sum[idx] += value; } |
| 906 | |
| 907 | const char* counter_name(int counter_idx); |
| 908 | Counter base_counter(int counter_idx); |
| 909 | |
| 910 | void sum_up(LinearScanStatistic &method_statistic); |
| 911 | void collect(LinearScan* allocator); |
| 912 | |
| 913 | public: |
| 914 | LinearScanStatistic(); |
| 915 | void print(const char* title); |
| 916 | static void compute(LinearScan* allocator, LinearScanStatistic &global_statistic); |
| 917 | }; |
| 918 | |
| 919 | |
| 920 | // Helper class for collecting compilation time of LinearScan |
| 921 | class LinearScanTimers : public StackObj { |
| 922 | public: |
| 923 | enum Timer { |
| 924 | timer_do_nothing, |
| 925 | timer_number_instructions, |
| 926 | timer_compute_local_live_sets, |
| 927 | timer_compute_global_live_sets, |
| 928 | timer_build_intervals, |
| 929 | timer_sort_intervals_before, |
| 930 | timer_allocate_registers, |
| 931 | timer_resolve_data_flow, |
| 932 | timer_sort_intervals_after, |
| 933 | timer_eliminate_spill_moves, |
| 934 | timer_assign_reg_num, |
| 935 | timer_allocate_fpu_stack, |
| 936 | timer_optimize_lir, |
| 937 | |
| 938 | number_of_timers |
| 939 | }; |
| 940 | |
| 941 | private: |
| 942 | elapsedTimer _timers[number_of_timers]; |
| 943 | const char* timer_name(int idx); |
| 944 | |
| 945 | public: |
| 946 | LinearScanTimers(); |
| 947 | |
| 948 | void begin_method(); // called for each method when register allocation starts |
| 949 | void end_method(LinearScan* allocator); // called for each method when register allocation completed |
| 950 | void print(double total_time); // called before termination of VM to print global summary |
| 951 | |
| 952 | elapsedTimer* timer(int idx) { return &(_timers[idx]); } |
| 953 | }; |
| 954 | |
| 955 | |
| 956 | #endif // ifndef PRODUCT |
| 957 | |
| 958 | // Pick up platform-dependent implementation details |
| 959 | #include CPU_HEADER(c1_LinearScan) |
| 960 | |
| 961 | #endif // SHARE_C1_C1_LINEARSCAN_HPP |
| 962 | |