1 | /* |
2 | * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #ifndef SHARE_C1_C1_LINEARSCAN_HPP |
26 | #define SHARE_C1_C1_LINEARSCAN_HPP |
27 | |
28 | #include "c1/c1_FpuStackSim.hpp" |
29 | #include "c1/c1_FrameMap.hpp" |
30 | #include "c1/c1_IR.hpp" |
31 | #include "c1/c1_Instruction.hpp" |
32 | #include "c1/c1_LIR.hpp" |
33 | #include "c1/c1_LIRGenerator.hpp" |
34 | #include "utilities/align.hpp" |
35 | #include "utilities/macros.hpp" |
36 | |
37 | class FpuStackAllocator; |
38 | class IRScopeDebugInfo; |
39 | class Interval; |
40 | class IntervalWalker; |
41 | class LIRGenerator; |
42 | class LinearScan; |
43 | class MoveResolver; |
44 | class Range; |
45 | |
46 | typedef GrowableArray<Interval*> IntervalArray; |
47 | typedef GrowableArray<Interval*> IntervalList; |
48 | typedef GrowableArray<IntervalList*> IntervalsList; |
49 | typedef GrowableArray<ScopeValue*> ScopeValueArray; |
50 | typedef GrowableArray<LIR_OpList*> LIR_OpListStack; |
51 | |
52 | enum IntervalUseKind { |
53 | // priority of use kinds must be ascending |
54 | noUse = 0, |
55 | loopEndMarker = 1, |
56 | shouldHaveRegister = 2, |
57 | mustHaveRegister = 3, |
58 | |
59 | firstValidKind = 1, |
60 | lastValidKind = 3 |
61 | }; |
62 | |
63 | enum IntervalKind { |
64 | fixedKind = 0, // interval pre-colored by LIR_Generator |
65 | anyKind = 1, // no register/memory allocated by LIR_Generator |
66 | nofKinds, |
67 | firstKind = fixedKind |
68 | }; |
69 | |
70 | |
71 | // during linear scan an interval is in one of four states in |
72 | enum IntervalState { |
73 | unhandledState = 0, // unhandled state (not processed yet) |
74 | activeState = 1, // life and is in a physical register |
75 | inactiveState = 2, // in a life time hole and is in a physical register |
76 | handledState = 3, // spilled or not life again |
77 | invalidState = -1 |
78 | }; |
79 | |
80 | |
81 | enum IntervalSpillState { |
82 | noDefinitionFound, // starting state of calculation: no definition found yet |
83 | oneDefinitionFound, // one definition has already been found. |
84 | // Note: two consecutive definitions are treated as one (e.g. consecutive move and add because of two-operand LIR form) |
85 | // the position of this definition is stored in _definition_pos |
86 | oneMoveInserted, // one spill move has already been inserted. |
87 | storeAtDefinition, // the interval should be stored immediately after its definition because otherwise |
88 | // there would be multiple redundant stores |
89 | startInMemory, // the interval starts in memory (e.g. method parameter), so a store is never necessary |
90 | noOptimization // the interval has more then one definition (e.g. resulting from phi moves), so stores to memory are not optimized |
91 | }; |
92 | |
93 | |
94 | #define for_each_interval_kind(kind) \ |
95 | for (IntervalKind kind = firstKind; kind < nofKinds; kind = (IntervalKind)(kind + 1)) |
96 | |
97 | #define for_each_visitor_mode(mode) \ |
98 | for (LIR_OpVisitState::OprMode mode = LIR_OpVisitState::firstMode; mode < LIR_OpVisitState::numModes; mode = (LIR_OpVisitState::OprMode)(mode + 1)) |
99 | |
100 | |
101 | class LinearScan : public CompilationResourceObj { |
102 | // declare classes used by LinearScan as friends because they |
103 | // need a wide variety of functions declared here |
104 | // |
105 | // Only the small interface to the rest of the compiler is public |
106 | friend class Interval; |
107 | friend class IntervalWalker; |
108 | friend class LinearScanWalker; |
109 | friend class FpuStackAllocator; |
110 | friend class MoveResolver; |
111 | friend class LinearScanStatistic; |
112 | friend class LinearScanTimers; |
113 | friend class RegisterVerifier; |
114 | |
115 | public: |
116 | enum { |
117 | any_reg = -1, |
118 | nof_cpu_regs = pd_nof_cpu_regs_linearscan, |
119 | nof_fpu_regs = pd_nof_fpu_regs_linearscan, |
120 | nof_xmm_regs = pd_nof_xmm_regs_linearscan, |
121 | nof_regs = nof_cpu_regs + nof_fpu_regs + nof_xmm_regs |
122 | }; |
123 | |
124 | private: |
125 | Compilation* _compilation; |
126 | IR* _ir; |
127 | LIRGenerator* _gen; |
128 | FrameMap* _frame_map; |
129 | |
130 | BlockList _cached_blocks; // cached list with all blocks in linear-scan order (only correct if original list keeps unchanged) |
131 | int _num_virtual_regs; // number of virtual registers (without new registers introduced because of splitting intervals) |
132 | bool _has_fpu_registers; // true if this method uses any floating point registers (and so fpu stack allocation is necessary) |
133 | int _num_calls; // total number of calls in this method |
134 | int _max_spills; // number of stack slots used for intervals allocated to memory |
135 | int _unused_spill_slot; // unused spill slot for a single-word value because of alignment of a double-word value |
136 | |
137 | IntervalList _intervals; // mapping from register number to interval |
138 | IntervalList* _new_intervals_from_allocation; // list with all intervals created during allocation when an existing interval is split |
139 | IntervalArray* _sorted_intervals; // intervals sorted by Interval::from() |
140 | bool _needs_full_resort; // set to true if an Interval::from() is changed and _sorted_intervals must be resorted |
141 | |
142 | LIR_OpArray _lir_ops; // mapping from LIR_Op id to LIR_Op node |
143 | BlockBeginArray _block_of_op; // mapping from LIR_Op id to the BlockBegin containing this instruction |
144 | ResourceBitMap _has_info; // bit set for each LIR_Op id that has a CodeEmitInfo |
145 | ResourceBitMap _has_call; // bit set for each LIR_Op id that destroys all caller save registers |
146 | BitMap2D _interval_in_loop; // bit set for each virtual register that is contained in each loop |
147 | |
148 | // cached debug info to prevent multiple creation of same object |
149 | // TODO: cached scope values for registers could be static |
150 | ScopeValueArray _scope_value_cache; |
151 | |
152 | static ConstantOopWriteValue* _oop_null_scope_value; |
153 | static ConstantIntValue* _int_m1_scope_value; |
154 | static ConstantIntValue* _int_0_scope_value; |
155 | static ConstantIntValue* _int_1_scope_value; |
156 | static ConstantIntValue* _int_2_scope_value; |
157 | |
158 | // accessors |
159 | IR* ir() const { return _ir; } |
160 | Compilation* compilation() const { return _compilation; } |
161 | LIRGenerator* gen() const { return _gen; } |
162 | FrameMap* frame_map() const { return _frame_map; } |
163 | |
164 | // unified bailout support |
165 | void bailout(const char* msg) const { compilation()->bailout(msg); } |
166 | bool bailed_out() const { return compilation()->bailed_out(); } |
167 | |
168 | // access to block list (sorted in linear scan order) |
169 | int block_count() const { assert(_cached_blocks.length() == ir()->linear_scan_order()->length(), "invalid cached block list" ); return _cached_blocks.length(); } |
170 | BlockBegin* block_at(int idx) const { assert(_cached_blocks.at(idx) == ir()->linear_scan_order()->at(idx), "invalid cached block list" ); return _cached_blocks.at(idx); } |
171 | |
172 | int num_virtual_regs() const { return _num_virtual_regs; } |
173 | // size of live_in and live_out sets of BasicBlocks (BitMap needs rounded size for iteration) |
174 | int live_set_size() const { return align_up(_num_virtual_regs, BitsPerWord); } |
175 | bool has_fpu_registers() const { return _has_fpu_registers; } |
176 | int num_loops() const { return ir()->num_loops(); } |
177 | bool is_interval_in_loop(int interval, int loop) const { return _interval_in_loop.at(interval, loop); } |
178 | |
179 | // handling of fpu stack allocation (platform dependent, needed for debug information generation) |
180 | #ifdef X86 |
181 | FpuStackAllocator* _fpu_stack_allocator; |
182 | bool use_fpu_stack_allocation() const { return UseSSE < 2 && has_fpu_registers(); } |
183 | #else |
184 | bool use_fpu_stack_allocation() const { return false; } |
185 | #endif |
186 | |
187 | |
188 | // access to interval list |
189 | int interval_count() const { return _intervals.length(); } |
190 | Interval* interval_at(int reg_num) const { return _intervals.at(reg_num); } |
191 | |
192 | // access to LIR_Ops and Blocks indexed by op_id |
193 | int max_lir_op_id() const { assert(_lir_ops.length() > 0, "no operations" ); return (_lir_ops.length() - 1) << 1; } |
194 | LIR_Op* lir_op_with_id(int op_id) const { assert(op_id >= 0 && op_id <= max_lir_op_id() && op_id % 2 == 0, "op_id out of range or not even" ); return _lir_ops.at(op_id >> 1); } |
195 | BlockBegin* block_of_op_with_id(int op_id) const { assert(_block_of_op.length() > 0 && op_id >= 0 && op_id <= max_lir_op_id() + 1, "op_id out of range" ); return _block_of_op.at(op_id >> 1); } |
196 | |
197 | bool is_block_begin(int op_id) { return op_id == 0 || block_of_op_with_id(op_id) != block_of_op_with_id(op_id - 1); } |
198 | |
199 | bool has_call(int op_id) { assert(op_id % 2 == 0, "must be even" ); return _has_call.at(op_id >> 1); } |
200 | bool has_info(int op_id) { assert(op_id % 2 == 0, "must be even" ); return _has_info.at(op_id >> 1); } |
201 | |
202 | |
203 | // functions for converting LIR-Operands to register numbers |
204 | static bool is_valid_reg_num(int reg_num) { return reg_num >= 0; } |
205 | static int reg_num(LIR_Opr opr); |
206 | static int reg_numHi(LIR_Opr opr); |
207 | |
208 | // functions for classification of intervals |
209 | static bool is_precolored_interval(const Interval* i); |
210 | static bool is_virtual_interval(const Interval* i); |
211 | |
212 | static bool is_precolored_cpu_interval(const Interval* i); |
213 | static bool is_virtual_cpu_interval(const Interval* i); |
214 | static bool is_precolored_fpu_interval(const Interval* i); |
215 | static bool is_virtual_fpu_interval(const Interval* i); |
216 | |
217 | static bool is_in_fpu_register(const Interval* i); |
218 | static bool is_oop_interval(const Interval* i); |
219 | |
220 | |
221 | // General helper functions |
222 | int allocate_spill_slot(bool double_word); |
223 | void assign_spill_slot(Interval* it); |
224 | void propagate_spill_slots(); |
225 | |
226 | Interval* create_interval(int reg_num); |
227 | void append_interval(Interval* it); |
228 | void copy_register_flags(Interval* from, Interval* to); |
229 | |
230 | // platform dependent functions |
231 | static bool is_processed_reg_num(int reg_num); |
232 | static int num_physical_regs(BasicType type); |
233 | static bool requires_adjacent_regs(BasicType type); |
234 | static bool is_caller_save(int assigned_reg); |
235 | |
236 | // spill move optimization: eliminate moves from register to stack if |
237 | // stack slot is known to be correct |
238 | void change_spill_definition_pos(Interval* interval, int def_pos); |
239 | void change_spill_state(Interval* interval, int spill_pos); |
240 | static bool must_store_at_definition(const Interval* i); |
241 | void eliminate_spill_moves(); |
242 | |
243 | // Phase 1: number all instructions in all blocks |
244 | void number_instructions(); |
245 | |
246 | // Phase 2: compute local live sets separately for each block |
247 | // (sets live_gen and live_kill for each block) |
248 | // |
249 | // helper methods used by compute_local_live_sets() |
250 | void set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill); |
251 | |
252 | void compute_local_live_sets(); |
253 | |
254 | // Phase 3: perform a backward dataflow analysis to compute global live sets |
255 | // (sets live_in and live_out for each block) |
256 | void compute_global_live_sets(); |
257 | |
258 | |
259 | // Phase 4: build intervals |
260 | // (fills the list _intervals) |
261 | // |
262 | // helper methods used by build_intervals() |
263 | void add_use (Value value, int from, int to, IntervalUseKind use_kind); |
264 | |
265 | void add_def (LIR_Opr opr, int def_pos, IntervalUseKind use_kind); |
266 | void add_use (LIR_Opr opr, int from, int to, IntervalUseKind use_kind); |
267 | void add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind); |
268 | |
269 | void add_def (int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type); |
270 | void add_use (int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type); |
271 | void add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type); |
272 | |
273 | // Add platform dependent kills for particular LIR ops. Can be used |
274 | // to add platform dependent behaviour for some operations. |
275 | void pd_add_temps(LIR_Op* op); |
276 | |
277 | IntervalUseKind use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr); |
278 | IntervalUseKind use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr); |
279 | void handle_method_arguments(LIR_Op* op); |
280 | void handle_doubleword_moves(LIR_Op* op); |
281 | void add_register_hints(LIR_Op* op); |
282 | |
283 | void build_intervals(); |
284 | |
285 | |
286 | // Phase 5: actual register allocation |
287 | // (Uses LinearScanWalker) |
288 | // |
289 | // helper functions for building a sorted list of intervals |
290 | NOT_PRODUCT(bool is_sorted(IntervalArray* intervals);) |
291 | static int interval_cmp(Interval** a, Interval** b); |
292 | void add_to_list(Interval** first, Interval** prev, Interval* interval); |
293 | void create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)); |
294 | |
295 | void sort_intervals_before_allocation(); |
296 | void sort_intervals_after_allocation(); |
297 | void allocate_registers(); |
298 | |
299 | |
300 | // Phase 6: resolve data flow |
301 | // (insert moves at edges between blocks if intervals have been split) |
302 | // |
303 | // helper functions for resolve_data_flow() |
304 | Interval* split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode); |
305 | Interval* interval_at_block_begin(BlockBegin* block, int reg_num); |
306 | Interval* interval_at_block_end(BlockBegin* block, int reg_num); |
307 | Interval* interval_at_op_id(int reg_num, int op_id); |
308 | void resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver); |
309 | void resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver); |
310 | void resolve_data_flow(); |
311 | |
312 | void resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver); |
313 | void resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver); |
314 | void resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver); |
315 | void resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver); |
316 | void resolve_exception_handlers(); |
317 | |
318 | // Phase 7: assign register numbers back to LIR |
319 | // (includes computation of debug information and oop maps) |
320 | // |
321 | // helper functions for assign_reg_num() |
322 | VMReg vm_reg_for_interval(Interval* interval); |
323 | VMReg vm_reg_for_operand(LIR_Opr opr); |
324 | |
325 | static LIR_Opr operand_for_interval(Interval* interval); |
326 | static LIR_Opr calc_operand_for_interval(const Interval* interval); |
327 | LIR_Opr canonical_spill_opr(Interval* interval); |
328 | |
329 | LIR_Opr color_lir_opr(LIR_Opr opr, int id, LIR_OpVisitState::OprMode); |
330 | |
331 | // methods used for oop map computation |
332 | IntervalWalker* init_compute_oop_maps(); |
333 | OopMap* compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site); |
334 | void compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op); |
335 | |
336 | // methods used for debug information computation |
337 | void init_compute_debug_info(); |
338 | |
339 | MonitorValue* location_for_monitor_index(int monitor_index); |
340 | LocationValue* location_for_name(int name, Location::Type loc_type); |
341 | void set_oop(OopMap* map, VMReg name) { |
342 | if (map->legal_vm_reg_name(name)) { |
343 | map->set_oop(name); |
344 | } else { |
345 | bailout("illegal oopMap register name" ); |
346 | } |
347 | } |
348 | |
349 | int append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values); |
350 | int append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values); |
351 | int append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values); |
352 | |
353 | IRScopeDebugInfo* compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state); |
354 | void compute_debug_info(CodeEmitInfo* info, int op_id); |
355 | |
356 | void assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw); |
357 | void assign_reg_num(); |
358 | |
359 | |
360 | // Phase 8: fpu stack allocation |
361 | // (Used only on x86 when fpu operands are present) |
362 | void allocate_fpu_stack(); |
363 | |
364 | |
365 | // helper functions for printing state |
366 | #ifndef PRODUCT |
367 | static void print_bitmap(BitMap& bitmap); |
368 | void print_intervals(const char* label); |
369 | void print_lir(int level, const char* label, bool hir_valid = true); |
370 | #endif |
371 | |
372 | #ifdef ASSERT |
373 | // verification functions for allocation |
374 | // (check that all intervals have a correct register and that no registers are overwritten) |
375 | void verify(); |
376 | void verify_intervals(); |
377 | void verify_no_oops_in_fixed_intervals(); |
378 | void verify_constants(); |
379 | void verify_registers(); |
380 | #endif |
381 | |
382 | public: |
383 | // creation |
384 | LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map); |
385 | |
386 | // main entry function: perform linear scan register allocation |
387 | void do_linear_scan(); |
388 | |
389 | // accessors used by Compilation |
390 | int max_spills() const { return _max_spills; } |
391 | int num_calls() const { assert(_num_calls >= 0, "not set" ); return _num_calls; } |
392 | |
393 | // entry functions for printing |
394 | #ifndef PRODUCT |
395 | static void print_statistics(); |
396 | static void print_timers(double total); |
397 | #endif |
398 | }; |
399 | |
400 | |
401 | // Helper class for ordering moves that are inserted at the same position in the LIR |
402 | // When moves between registers are inserted, it is important that the moves are |
403 | // ordered such that no register is overwritten. So moves from register to stack |
404 | // are processed prior to moves from stack to register. When moves have circular |
405 | // dependencies, a temporary stack slot is used to break the circle. |
406 | // The same logic is used in the LinearScanWalker and in LinearScan during resolve_data_flow |
407 | // and therefore factored out in a separate class |
408 | class MoveResolver: public StackObj { |
409 | private: |
410 | LinearScan* _allocator; |
411 | |
412 | LIR_List* _insert_list; |
413 | int _insert_idx; |
414 | LIR_InsertionBuffer _insertion_buffer; // buffer where moves are inserted |
415 | |
416 | IntervalList _mapping_from; |
417 | LIR_OprList _mapping_from_opr; |
418 | IntervalList _mapping_to; |
419 | bool _multiple_reads_allowed; |
420 | int _register_blocked[LinearScan::nof_regs]; |
421 | |
422 | int register_blocked(int reg) { assert(reg >= 0 && reg < LinearScan::nof_regs, "out of bounds" ); return _register_blocked[reg]; } |
423 | void set_register_blocked(int reg, int direction) { assert(reg >= 0 && reg < LinearScan::nof_regs, "out of bounds" ); assert(direction == 1 || direction == -1, "out of bounds" ); _register_blocked[reg] += direction; } |
424 | |
425 | void block_registers(Interval* it); |
426 | void unblock_registers(Interval* it); |
427 | bool save_to_process_move(Interval* from, Interval* to); |
428 | |
429 | void create_insertion_buffer(LIR_List* list); |
430 | void append_insertion_buffer(); |
431 | void insert_move(Interval* from_interval, Interval* to_interval); |
432 | void insert_move(LIR_Opr from_opr, Interval* to_interval); |
433 | |
434 | DEBUG_ONLY(void verify_before_resolve();) |
435 | void resolve_mappings(); |
436 | public: |
437 | MoveResolver(LinearScan* allocator); |
438 | |
439 | DEBUG_ONLY(void check_empty();) |
440 | void set_multiple_reads_allowed() { _multiple_reads_allowed = true; } |
441 | void set_insert_position(LIR_List* insert_list, int insert_idx); |
442 | void move_insert_position(LIR_List* insert_list, int insert_idx); |
443 | void add_mapping(Interval* from, Interval* to); |
444 | void add_mapping(LIR_Opr from, Interval* to); |
445 | void resolve_and_append_moves(); |
446 | |
447 | LinearScan* allocator() { return _allocator; } |
448 | bool has_mappings() { return _mapping_from.length() > 0; } |
449 | }; |
450 | |
451 | |
452 | class Range : public CompilationResourceObj { |
453 | friend class Interval; |
454 | |
455 | private: |
456 | static Range* _end; // sentinel (from == to == max_jint) |
457 | |
458 | int _from; // from (inclusive) |
459 | int _to; // to (exclusive) |
460 | Range* _next; // linear list of Ranges |
461 | |
462 | // used only by class Interval, so hide them |
463 | bool intersects(Range* r) const { return intersects_at(r) != -1; } |
464 | int intersects_at(Range* r) const; |
465 | |
466 | public: |
467 | Range(int from, int to, Range* next); |
468 | |
469 | static void initialize(Arena* arena); |
470 | static Range* end() { return _end; } |
471 | |
472 | int from() const { return _from; } |
473 | int to() const { return _to; } |
474 | Range* next() const { return _next; } |
475 | void set_from(int from) { _from = from; } |
476 | void set_to(int to) { _to = to; } |
477 | void set_next(Range* next) { _next = next; } |
478 | |
479 | // for testing |
480 | void print(outputStream* out = tty) const PRODUCT_RETURN; |
481 | }; |
482 | |
483 | |
484 | // Interval is an ordered list of disjoint ranges. |
485 | |
486 | // For pre-colored double word LIR_Oprs, one interval is created for |
487 | // the low word register and one is created for the hi word register. |
488 | // On Intel for FPU double registers only one interval is created. At |
489 | // all times assigned_reg contains the reg. number of the physical |
490 | // register. |
491 | |
492 | // For LIR_Opr in virtual registers a single interval can represent |
493 | // single and double word values. When a physical register is |
494 | // assigned to the interval, assigned_reg contains the |
495 | // phys. reg. number and for double word values assigned_regHi the |
496 | // phys. reg. number of the hi word if there is any. For spilled |
497 | // intervals assigned_reg contains the stack index. assigned_regHi is |
498 | // always -1. |
499 | |
500 | class Interval : public CompilationResourceObj { |
501 | private: |
502 | static Interval* _end; // sentinel (interval with only range Range::end()) |
503 | |
504 | int _reg_num; |
505 | BasicType _type; // valid only for virtual registers |
506 | Range* _first; // sorted list of Ranges |
507 | intStack _use_pos_and_kinds; // sorted list of use-positions and their according use-kinds |
508 | |
509 | Range* _current; // interval iteration: the current Range |
510 | Interval* _next; // interval iteration: sorted list of Intervals (ends with sentinel) |
511 | IntervalState _state; // interval iteration: to which set belongs this interval |
512 | |
513 | |
514 | int _assigned_reg; |
515 | int _assigned_regHi; |
516 | |
517 | int _cached_to; // cached value: to of last range (-1: not cached) |
518 | LIR_Opr _cached_opr; |
519 | VMReg _cached_vm_reg; |
520 | |
521 | Interval* _split_parent; // the original interval where this interval is derived from |
522 | IntervalList* _split_children; // list of all intervals that are split off from this interval (only available for split parents) |
523 | Interval* _current_split_child; // the current split child that has been active or inactive last (always stored in split parents) |
524 | |
525 | int _canonical_spill_slot; // the stack slot where all split parts of this interval are spilled to (always stored in split parents) |
526 | bool _insert_move_when_activated; // true if move is inserted between _current_split_child and this interval when interval gets active the first time |
527 | IntervalSpillState _spill_state; // for spill move optimization |
528 | int _spill_definition_pos; // position where the interval is defined (if defined only once) |
529 | Interval* _register_hint; // this interval should be in the same register as the hint interval |
530 | |
531 | int calc_to(); |
532 | Interval* new_split_child(); |
533 | public: |
534 | Interval(int reg_num); |
535 | |
536 | static void initialize(Arena* arena); |
537 | static Interval* end() { return _end; } |
538 | |
539 | // accessors |
540 | int reg_num() const { return _reg_num; } |
541 | void set_reg_num(int r) { assert(_reg_num == -1, "cannot change reg_num" ); _reg_num = r; } |
542 | BasicType type() const { assert(_reg_num == -1 || _reg_num >= LIR_OprDesc::vreg_base, "cannot access type for fixed interval" ); return _type; } |
543 | void set_type(BasicType type) { assert(_reg_num < LIR_OprDesc::vreg_base || _type == T_ILLEGAL || _type == type, "overwriting existing type" ); _type = type; } |
544 | |
545 | Range* first() const { return _first; } |
546 | int from() const { return _first->from(); } |
547 | int to() { if (_cached_to == -1) _cached_to = calc_to(); assert(_cached_to == calc_to(), "invalid cached value" ); return _cached_to; } |
548 | |
549 | #ifndef PRODUCT |
550 | int num_use_positions() const { return _use_pos_and_kinds.length() / 2; } |
551 | #endif |
552 | |
553 | Interval* next() const { return _next; } |
554 | Interval** next_addr() { return &_next; } |
555 | void set_next(Interval* next) { _next = next; } |
556 | |
557 | int assigned_reg() const { return _assigned_reg; } |
558 | int assigned_regHi() const { return _assigned_regHi; } |
559 | void assign_reg(int reg) { _assigned_reg = reg; _assigned_regHi = LinearScan::any_reg; } |
560 | void assign_reg(int reg,int regHi) { _assigned_reg = reg; _assigned_regHi = regHi; } |
561 | |
562 | Interval* register_hint(bool search_split_child = true) const; // calculation needed |
563 | void set_register_hint(Interval* i) { _register_hint = i; } |
564 | |
565 | int state() const { return _state; } |
566 | void set_state(IntervalState s) { _state = s; } |
567 | |
568 | // access to split parent and split children |
569 | bool is_split_parent() const { return _split_parent == this; } |
570 | bool is_split_child() const { return _split_parent != this; } |
571 | Interval* split_parent() const { assert(_split_parent->is_split_parent(), "must be" ); return _split_parent; } |
572 | Interval* split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode); |
573 | Interval* split_child_before_op_id(int op_id); |
574 | DEBUG_ONLY(void check_split_children();) |
575 | |
576 | // information stored in split parent, but available for all children |
577 | int canonical_spill_slot() const { return split_parent()->_canonical_spill_slot; } |
578 | void set_canonical_spill_slot(int slot) { assert(split_parent()->_canonical_spill_slot == -1, "overwriting existing value" ); split_parent()->_canonical_spill_slot = slot; } |
579 | Interval* current_split_child() const { return split_parent()->_current_split_child; } |
580 | void make_current_split_child() { split_parent()->_current_split_child = this; } |
581 | |
582 | bool insert_move_when_activated() const { return _insert_move_when_activated; } |
583 | void set_insert_move_when_activated(bool b) { _insert_move_when_activated = b; } |
584 | |
585 | // for spill optimization |
586 | IntervalSpillState spill_state() const { return split_parent()->_spill_state; } |
587 | int spill_definition_pos() const { return split_parent()->_spill_definition_pos; } |
588 | void set_spill_state(IntervalSpillState state) { assert(state >= spill_state(), "state cannot decrease" ); split_parent()->_spill_state = state; } |
589 | void set_spill_definition_pos(int pos) { assert(spill_definition_pos() == -1, "cannot set the position twice" ); split_parent()->_spill_definition_pos = pos; } |
590 | // returns true if this interval has a shadow copy on the stack that is always correct |
591 | bool always_in_memory() const { return split_parent()->_spill_state == storeAtDefinition || split_parent()->_spill_state == startInMemory; } |
592 | |
593 | // caching of values that take time to compute and are used multiple times |
594 | LIR_Opr cached_opr() const { return _cached_opr; } |
595 | VMReg cached_vm_reg() const { return _cached_vm_reg; } |
596 | void set_cached_opr(LIR_Opr opr) { _cached_opr = opr; } |
597 | void set_cached_vm_reg(VMReg reg) { _cached_vm_reg = reg; } |
598 | |
599 | // access to use positions |
600 | int first_usage(IntervalUseKind min_use_kind) const; // id of the first operation requiring this interval in a register |
601 | int next_usage(IntervalUseKind min_use_kind, int from) const; // id of next usage seen from the given position |
602 | int next_usage_exact(IntervalUseKind exact_use_kind, int from) const; |
603 | int previous_usage(IntervalUseKind min_use_kind, int from) const; |
604 | |
605 | // manipulating intervals |
606 | void add_use_pos(int pos, IntervalUseKind use_kind); |
607 | void add_range(int from, int to); |
608 | Interval* split(int split_pos); |
609 | Interval* split_from_start(int split_pos); |
610 | void remove_first_use_pos() { _use_pos_and_kinds.trunc_to(_use_pos_and_kinds.length() - 2); } |
611 | |
612 | // test intersection |
613 | bool covers(int op_id, LIR_OpVisitState::OprMode mode) const; |
614 | bool has_hole_between(int from, int to); |
615 | bool intersects(Interval* i) const { return _first->intersects(i->_first); } |
616 | int intersects_at(Interval* i) const { return _first->intersects_at(i->_first); } |
617 | |
618 | // range iteration |
619 | void rewind_range() { _current = _first; } |
620 | void next_range() { assert(this != _end, "not allowed on sentinel" ); _current = _current->next(); } |
621 | int current_from() const { return _current->from(); } |
622 | int current_to() const { return _current->to(); } |
623 | bool current_at_end() const { return _current == Range::end(); } |
624 | bool current_intersects(Interval* it) { return _current->intersects(it->_current); }; |
625 | int current_intersects_at(Interval* it) { return _current->intersects_at(it->_current); }; |
626 | |
627 | // printing |
628 | void print(outputStream* out = tty) const PRODUCT_RETURN; |
629 | }; |
630 | |
631 | |
632 | class IntervalWalker : public CompilationResourceObj { |
633 | protected: |
634 | Compilation* _compilation; |
635 | LinearScan* _allocator; |
636 | |
637 | Interval* _unhandled_first[nofKinds]; // sorted list of intervals, not life before the current position |
638 | Interval* _active_first [nofKinds]; // sorted list of intervals, life at the current position |
639 | Interval* _inactive_first [nofKinds]; // sorted list of intervals, intervals in a life time hole at the current position |
640 | |
641 | Interval* _current; // the current interval coming from unhandled list |
642 | int _current_position; // the current position (intercept point through the intervals) |
643 | IntervalKind _current_kind; // and whether it is fixed_kind or any_kind. |
644 | |
645 | |
646 | Compilation* compilation() const { return _compilation; } |
647 | LinearScan* allocator() const { return _allocator; } |
648 | |
649 | // unified bailout support |
650 | void bailout(const char* msg) const { compilation()->bailout(msg); } |
651 | bool bailed_out() const { return compilation()->bailed_out(); } |
652 | |
653 | void check_bounds(IntervalKind kind) { assert(kind >= fixedKind && kind <= anyKind, "invalid interval_kind" ); } |
654 | |
655 | Interval** unhandled_first_addr(IntervalKind kind) { check_bounds(kind); return &_unhandled_first[kind]; } |
656 | Interval** active_first_addr(IntervalKind kind) { check_bounds(kind); return &_active_first[kind]; } |
657 | Interval** inactive_first_addr(IntervalKind kind) { check_bounds(kind); return &_inactive_first[kind]; } |
658 | |
659 | void append_sorted(Interval** first, Interval* interval); |
660 | void append_to_unhandled(Interval** list, Interval* interval); |
661 | |
662 | bool remove_from_list(Interval** list, Interval* i); |
663 | void remove_from_list(Interval* i); |
664 | |
665 | void next_interval(); |
666 | Interval* current() const { return _current; } |
667 | IntervalKind current_kind() const { return _current_kind; } |
668 | |
669 | void walk_to(IntervalState state, int from); |
670 | |
671 | // activate_current() is called when an unhandled interval becomes active (in current(), current_kind()). |
672 | // Return false if current() should not be moved the the active interval list. |
673 | // It is safe to append current to any interval list but the unhandled list. |
674 | virtual bool activate_current() { return true; } |
675 | |
676 | // interval_moved() is called whenever an interval moves from one interval list to another. |
677 | // In the implementation of this method it is prohibited to move the interval to any list. |
678 | virtual void interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to); |
679 | |
680 | public: |
681 | IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first); |
682 | |
683 | Interval* unhandled_first(IntervalKind kind) { check_bounds(kind); return _unhandled_first[kind]; } |
684 | Interval* active_first(IntervalKind kind) { check_bounds(kind); return _active_first[kind]; } |
685 | Interval* inactive_first(IntervalKind kind) { check_bounds(kind); return _inactive_first[kind]; } |
686 | |
687 | // active contains the intervals that are live after the lir_op |
688 | void walk_to(int lir_op_id); |
689 | // active contains the intervals that are live before the lir_op |
690 | void walk_before(int lir_op_id) { walk_to(lir_op_id-1); } |
691 | // walk through all intervals |
692 | void walk() { walk_to(max_jint); } |
693 | |
694 | int current_position() { return _current_position; } |
695 | }; |
696 | |
697 | |
698 | // The actual linear scan register allocator |
699 | class LinearScanWalker : public IntervalWalker { |
700 | enum { |
701 | any_reg = LinearScan::any_reg |
702 | }; |
703 | |
704 | private: |
705 | int _first_reg; // the reg. number of the first phys. register |
706 | int _last_reg; // the reg. nmber of the last phys. register |
707 | int _num_phys_regs; // required by current interval |
708 | bool _adjacent_regs; // have lo/hi words of phys. regs be adjacent |
709 | |
710 | int _use_pos[LinearScan::nof_regs]; |
711 | int _block_pos[LinearScan::nof_regs]; |
712 | IntervalList* _spill_intervals[LinearScan::nof_regs]; |
713 | |
714 | MoveResolver _move_resolver; // for ordering spill moves |
715 | |
716 | // accessors mapped to same functions in class LinearScan |
717 | int block_count() const { return allocator()->block_count(); } |
718 | BlockBegin* block_at(int idx) const { return allocator()->block_at(idx); } |
719 | BlockBegin* block_of_op_with_id(int op_id) const { return allocator()->block_of_op_with_id(op_id); } |
720 | |
721 | void init_use_lists(bool only_process_use_pos); |
722 | void exclude_from_use(int reg); |
723 | void exclude_from_use(Interval* i); |
724 | void set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos); |
725 | void set_use_pos(Interval* i, int use_pos, bool only_process_use_pos); |
726 | void set_block_pos(int reg, Interval* i, int block_pos); |
727 | void set_block_pos(Interval* i, int block_pos); |
728 | |
729 | void free_exclude_active_fixed(); |
730 | void free_exclude_active_any(); |
731 | void free_collect_inactive_fixed(Interval* cur); |
732 | void free_collect_inactive_any(Interval* cur); |
733 | void spill_exclude_active_fixed(); |
734 | void spill_block_inactive_fixed(Interval* cur); |
735 | void spill_collect_active_any(); |
736 | void spill_collect_inactive_any(Interval* cur); |
737 | |
738 | void insert_move(int op_id, Interval* src_it, Interval* dst_it); |
739 | int find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos); |
740 | int find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization); |
741 | void split_before_usage(Interval* it, int min_split_pos, int max_split_pos); |
742 | void split_for_spilling(Interval* it); |
743 | void split_stack_interval(Interval* it); |
744 | void split_when_partial_register_available(Interval* it, int register_available_until); |
745 | void split_and_spill_interval(Interval* it); |
746 | |
747 | int find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split); |
748 | int find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split); |
749 | bool alloc_free_reg(Interval* cur); |
750 | |
751 | int find_locked_reg(int reg_needed_until, int interval_to, int ignore_reg, bool* need_split); |
752 | int find_locked_double_reg(int reg_needed_until, int interval_to, bool* need_split); |
753 | void split_and_spill_intersecting_intervals(int reg, int regHi); |
754 | void alloc_locked_reg(Interval* cur); |
755 | |
756 | bool no_allocation_possible(Interval* cur); |
757 | void init_vars_for_alloc(Interval* cur); |
758 | bool pd_init_regs_for_alloc(Interval* cur); |
759 | |
760 | void combine_spilled_intervals(Interval* cur); |
761 | bool is_move(LIR_Op* op, Interval* from, Interval* to); |
762 | |
763 | bool activate_current(); |
764 | |
765 | public: |
766 | LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first); |
767 | |
768 | // must be called when all intervals are allocated |
769 | void finish_allocation() { _move_resolver.resolve_and_append_moves(); } |
770 | }; |
771 | |
772 | |
773 | |
774 | /* |
775 | When a block has more than one predecessor, and all predecessors end with |
776 | the same sequence of move-instructions, than this moves can be placed once |
777 | at the beginning of the block instead of multiple times in the predecessors. |
778 | |
779 | Similarly, when a block has more than one successor, then equal sequences of |
780 | moves at the beginning of the successors can be placed once at the end of |
781 | the block. But because the moves must be inserted before all branch |
782 | instructions, this works only when there is exactly one conditional branch |
783 | at the end of the block (because the moves must be inserted before all |
784 | branches, but after all compares). |
785 | |
786 | This optimization affects all kind of moves (reg->reg, reg->stack and |
787 | stack->reg). Because this optimization works best when a block contains only |
788 | few moves, it has a huge impact on the number of blocks that are totally |
789 | empty. |
790 | */ |
791 | class EdgeMoveOptimizer : public StackObj { |
792 | private: |
793 | // the class maintains a list with all lir-instruction-list of the |
794 | // successors (predecessors) and the current index into the lir-lists |
795 | LIR_OpListStack _edge_instructions; |
796 | intStack _edge_instructions_idx; |
797 | |
798 | void init_instructions(); |
799 | void append_instructions(LIR_OpList* instructions, int instructions_idx); |
800 | LIR_Op* instruction_at(int edge); |
801 | void remove_cur_instruction(int edge, bool decrement_index); |
802 | |
803 | bool operations_different(LIR_Op* op1, LIR_Op* op2); |
804 | |
805 | void optimize_moves_at_block_end(BlockBegin* cur); |
806 | void optimize_moves_at_block_begin(BlockBegin* cur); |
807 | |
808 | EdgeMoveOptimizer(); |
809 | |
810 | public: |
811 | static void optimize(BlockList* code); |
812 | }; |
813 | |
814 | |
815 | |
816 | class ControlFlowOptimizer : public StackObj { |
817 | private: |
818 | BlockList _original_preds; |
819 | |
820 | enum { |
821 | ShortLoopSize = 5 |
822 | }; |
823 | void reorder_short_loop(BlockList* code, BlockBegin* , int ); |
824 | void reorder_short_loops(BlockList* code); |
825 | |
826 | bool can_delete_block(BlockBegin* cur); |
827 | void substitute_branch_target(BlockBegin* cur, BlockBegin* target_from, BlockBegin* target_to); |
828 | void delete_empty_blocks(BlockList* code); |
829 | |
830 | void delete_unnecessary_jumps(BlockList* code); |
831 | void delete_jumps_to_return(BlockList* code); |
832 | |
833 | DEBUG_ONLY(void verify(BlockList* code);) |
834 | |
835 | ControlFlowOptimizer(); |
836 | public: |
837 | static void optimize(BlockList* code); |
838 | }; |
839 | |
840 | |
841 | #ifndef PRODUCT |
842 | |
843 | // Helper class for collecting statistics of LinearScan |
844 | class LinearScanStatistic : public StackObj { |
845 | public: |
846 | enum Counter { |
847 | // general counters |
848 | counter_method, |
849 | counter_fpu_method, |
850 | counter_loop_method, |
851 | counter_exception_method, |
852 | counter_loop, |
853 | counter_block, |
854 | counter_loop_block, |
855 | counter_exception_block, |
856 | counter_interval, |
857 | counter_fixed_interval, |
858 | counter_range, |
859 | counter_fixed_range, |
860 | counter_use_pos, |
861 | counter_fixed_use_pos, |
862 | counter_spill_slots, |
863 | blank_line_1, |
864 | |
865 | // counter for classes of lir instructions |
866 | counter_instruction, |
867 | counter_label, |
868 | counter_entry, |
869 | counter_return, |
870 | counter_call, |
871 | counter_move, |
872 | counter_cmp, |
873 | counter_cond_branch, |
874 | counter_uncond_branch, |
875 | counter_stub_branch, |
876 | counter_alu, |
877 | counter_alloc, |
878 | counter_sync, |
879 | counter_throw, |
880 | counter_unwind, |
881 | counter_typecheck, |
882 | counter_fpu_stack, |
883 | counter_misc_inst, |
884 | counter_other_inst, |
885 | blank_line_2, |
886 | |
887 | // counter for different types of moves |
888 | counter_move_total, |
889 | counter_move_reg_reg, |
890 | counter_move_reg_stack, |
891 | counter_move_stack_reg, |
892 | counter_move_stack_stack, |
893 | counter_move_reg_mem, |
894 | counter_move_mem_reg, |
895 | counter_move_const_any, |
896 | |
897 | number_of_counters, |
898 | invalid_counter = -1 |
899 | }; |
900 | |
901 | private: |
902 | int _counters_sum[number_of_counters]; |
903 | int _counters_max[number_of_counters]; |
904 | |
905 | void inc_counter(Counter idx, int value = 1) { _counters_sum[idx] += value; } |
906 | |
907 | const char* counter_name(int counter_idx); |
908 | Counter base_counter(int counter_idx); |
909 | |
910 | void sum_up(LinearScanStatistic &method_statistic); |
911 | void collect(LinearScan* allocator); |
912 | |
913 | public: |
914 | LinearScanStatistic(); |
915 | void print(const char* title); |
916 | static void compute(LinearScan* allocator, LinearScanStatistic &global_statistic); |
917 | }; |
918 | |
919 | |
920 | // Helper class for collecting compilation time of LinearScan |
921 | class LinearScanTimers : public StackObj { |
922 | public: |
923 | enum Timer { |
924 | timer_do_nothing, |
925 | timer_number_instructions, |
926 | timer_compute_local_live_sets, |
927 | timer_compute_global_live_sets, |
928 | timer_build_intervals, |
929 | timer_sort_intervals_before, |
930 | timer_allocate_registers, |
931 | timer_resolve_data_flow, |
932 | timer_sort_intervals_after, |
933 | timer_eliminate_spill_moves, |
934 | timer_assign_reg_num, |
935 | timer_allocate_fpu_stack, |
936 | timer_optimize_lir, |
937 | |
938 | number_of_timers |
939 | }; |
940 | |
941 | private: |
942 | elapsedTimer _timers[number_of_timers]; |
943 | const char* timer_name(int idx); |
944 | |
945 | public: |
946 | LinearScanTimers(); |
947 | |
948 | void begin_method(); // called for each method when register allocation starts |
949 | void end_method(LinearScan* allocator); // called for each method when register allocation completed |
950 | void print(double total_time); // called before termination of VM to print global summary |
951 | |
952 | elapsedTimer* timer(int idx) { return &(_timers[idx]); } |
953 | }; |
954 | |
955 | |
956 | #endif // ifndef PRODUCT |
957 | |
958 | // Pick up platform-dependent implementation details |
959 | #include CPU_HEADER(c1_LinearScan) |
960 | |
961 | #endif // SHARE_C1_C1_LINEARSCAN_HPP |
962 | |