1 | /* |
2 | * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #ifndef CPU_X86_NATIVEINST_X86_HPP |
26 | #define CPU_X86_NATIVEINST_X86_HPP |
27 | |
28 | #include "asm/assembler.hpp" |
29 | #include "runtime/icache.hpp" |
30 | #include "runtime/os.hpp" |
31 | #include "runtime/safepointMechanism.hpp" |
32 | |
33 | // We have interfaces for the following instructions: |
34 | // - NativeInstruction |
35 | // - - NativeCall |
36 | // - - NativeMovConstReg |
37 | // - - NativeMovConstRegPatching |
38 | // - - NativeMovRegMem |
39 | // - - NativeMovRegMemPatching |
40 | // - - NativeJump |
41 | // - - NativeFarJump |
42 | // - - NativeIllegalOpCode |
43 | // - - NativeGeneralJump |
44 | // - - NativeReturn |
45 | // - - NativeReturnX (return with argument) |
46 | // - - NativePushConst |
47 | // - - NativeTstRegMem |
48 | |
49 | // The base class for different kinds of native instruction abstractions. |
50 | // Provides the primitive operations to manipulate code relative to this. |
51 | |
52 | class NativeInstruction { |
53 | friend class Relocation; |
54 | |
55 | public: |
56 | enum Intel_specific_constants { |
57 | nop_instruction_code = 0x90, |
58 | nop_instruction_size = 1 |
59 | }; |
60 | |
61 | bool is_nop() { return ubyte_at(0) == nop_instruction_code; } |
62 | inline bool is_call(); |
63 | inline bool is_call_reg(); |
64 | inline bool is_illegal(); |
65 | inline bool is_return(); |
66 | inline bool is_jump(); |
67 | inline bool is_jump_reg(); |
68 | inline bool is_far_jump(); |
69 | inline bool is_cond_jump(); |
70 | inline bool is_safepoint_poll(); |
71 | inline bool is_mov_literal64(); |
72 | |
73 | protected: |
74 | address addr_at(int offset) const { return address(this) + offset; } |
75 | |
76 | s_char sbyte_at(int offset) const { return *(s_char*) addr_at(offset); } |
77 | u_char ubyte_at(int offset) const { return *(u_char*) addr_at(offset); } |
78 | |
79 | jint int_at(int offset) const { return *(jint*) addr_at(offset); } |
80 | |
81 | intptr_t ptr_at(int offset) const { return *(intptr_t*) addr_at(offset); } |
82 | |
83 | oop oop_at (int offset) const { return *(oop*) addr_at(offset); } |
84 | |
85 | |
86 | void set_char_at(int offset, char c) { *addr_at(offset) = (u_char)c; wrote(offset); } |
87 | void set_int_at(int offset, jint i) { *(jint*)addr_at(offset) = i; wrote(offset); } |
88 | void set_ptr_at (int offset, intptr_t ptr) { *(intptr_t*) addr_at(offset) = ptr; wrote(offset); } |
89 | void set_oop_at (int offset, oop o) { *(oop*) addr_at(offset) = o; wrote(offset); } |
90 | |
91 | // This doesn't really do anything on Intel, but it is the place where |
92 | // cache invalidation belongs, generically: |
93 | void wrote(int offset); |
94 | |
95 | public: |
96 | |
97 | // unit test stuff |
98 | static void test() {} // override for testing |
99 | |
100 | inline friend NativeInstruction* nativeInstruction_at(address address); |
101 | }; |
102 | |
103 | inline NativeInstruction* nativeInstruction_at(address address) { |
104 | NativeInstruction* inst = (NativeInstruction*)address; |
105 | #ifdef ASSERT |
106 | //inst->verify(); |
107 | #endif |
108 | return inst; |
109 | } |
110 | |
111 | class NativePltCall: public NativeInstruction { |
112 | public: |
113 | enum Intel_specific_constants { |
114 | instruction_code = 0xE8, |
115 | instruction_size = 5, |
116 | instruction_offset = 0, |
117 | displacement_offset = 1, |
118 | return_address_offset = 5 |
119 | }; |
120 | address instruction_address() const { return addr_at(instruction_offset); } |
121 | address next_instruction_address() const { return addr_at(return_address_offset); } |
122 | address displacement_address() const { return addr_at(displacement_offset); } |
123 | int displacement() const { return (jint) int_at(displacement_offset); } |
124 | address return_address() const { return addr_at(return_address_offset); } |
125 | address destination() const; |
126 | address plt_entry() const; |
127 | address plt_jump() const; |
128 | address plt_load_got() const; |
129 | address plt_resolve_call() const; |
130 | address plt_c2i_stub() const; |
131 | void set_stub_to_clean(); |
132 | |
133 | void reset_to_plt_resolve_call(); |
134 | void set_destination_mt_safe(address dest); |
135 | |
136 | void verify() const; |
137 | }; |
138 | |
139 | inline NativePltCall* nativePltCall_at(address address) { |
140 | NativePltCall* call = (NativePltCall*) address; |
141 | #ifdef ASSERT |
142 | call->verify(); |
143 | #endif |
144 | return call; |
145 | } |
146 | |
147 | inline NativePltCall* nativePltCall_before(address addr) { |
148 | address at = addr - NativePltCall::instruction_size; |
149 | return nativePltCall_at(at); |
150 | } |
151 | |
152 | class NativeCall; |
153 | inline NativeCall* nativeCall_at(address address); |
154 | // The NativeCall is an abstraction for accessing/manipulating native call imm32/rel32off |
155 | // instructions (used to manipulate inline caches, primitive & dll calls, etc.). |
156 | |
157 | class NativeCall: public NativeInstruction { |
158 | public: |
159 | enum Intel_specific_constants { |
160 | instruction_code = 0xE8, |
161 | instruction_size = 5, |
162 | instruction_offset = 0, |
163 | displacement_offset = 1, |
164 | return_address_offset = 5 |
165 | }; |
166 | |
167 | enum { cache_line_size = BytesPerWord }; // conservative estimate! |
168 | |
169 | address instruction_address() const { return addr_at(instruction_offset); } |
170 | address next_instruction_address() const { return addr_at(return_address_offset); } |
171 | int displacement() const { return (jint) int_at(displacement_offset); } |
172 | address displacement_address() const { return addr_at(displacement_offset); } |
173 | address return_address() const { return addr_at(return_address_offset); } |
174 | address destination() const; |
175 | void set_destination(address dest) { |
176 | #ifdef AMD64 |
177 | intptr_t disp = dest - return_address(); |
178 | guarantee(disp == (intptr_t)(jint)disp, "must be 32-bit offset" ); |
179 | #endif // AMD64 |
180 | set_int_at(displacement_offset, dest - return_address()); |
181 | } |
182 | void set_destination_mt_safe(address dest); |
183 | |
184 | void verify_alignment() { assert((intptr_t)addr_at(displacement_offset) % BytesPerInt == 0, "must be aligned" ); } |
185 | void verify(); |
186 | void print(); |
187 | |
188 | // Creation |
189 | inline friend NativeCall* nativeCall_at(address address); |
190 | inline friend NativeCall* nativeCall_before(address return_address); |
191 | |
192 | static bool is_call_at(address instr) { |
193 | return ((*instr) & 0xFF) == NativeCall::instruction_code; |
194 | } |
195 | |
196 | static bool is_call_before(address return_address) { |
197 | return is_call_at(return_address - NativeCall::return_address_offset); |
198 | } |
199 | |
200 | static bool is_call_to(address instr, address target) { |
201 | return nativeInstruction_at(instr)->is_call() && |
202 | nativeCall_at(instr)->destination() == target; |
203 | } |
204 | |
205 | #if INCLUDE_AOT |
206 | static bool is_far_call(address instr, address target) { |
207 | intptr_t disp = target - (instr + sizeof(int32_t)); |
208 | return !Assembler::is_simm32(disp); |
209 | } |
210 | #endif |
211 | |
212 | // MT-safe patching of a call instruction. |
213 | static void insert(address code_pos, address entry); |
214 | |
215 | static void replace_mt_safe(address instr_addr, address code_buffer); |
216 | }; |
217 | |
218 | inline NativeCall* nativeCall_at(address address) { |
219 | NativeCall* call = (NativeCall*)(address - NativeCall::instruction_offset); |
220 | #ifdef ASSERT |
221 | call->verify(); |
222 | #endif |
223 | return call; |
224 | } |
225 | |
226 | inline NativeCall* nativeCall_before(address return_address) { |
227 | NativeCall* call = (NativeCall*)(return_address - NativeCall::return_address_offset); |
228 | #ifdef ASSERT |
229 | call->verify(); |
230 | #endif |
231 | return call; |
232 | } |
233 | |
234 | class NativeCallReg: public NativeInstruction { |
235 | public: |
236 | enum Intel_specific_constants { |
237 | instruction_code = 0xFF, |
238 | instruction_offset = 0, |
239 | return_address_offset_norex = 2, |
240 | return_address_offset_rex = 3 |
241 | }; |
242 | |
243 | int next_instruction_offset() const { |
244 | if (ubyte_at(0) == NativeCallReg::instruction_code) { |
245 | return return_address_offset_norex; |
246 | } else { |
247 | return return_address_offset_rex; |
248 | } |
249 | } |
250 | }; |
251 | |
252 | // An interface for accessing/manipulating native mov reg, imm32 instructions. |
253 | // (used to manipulate inlined 32bit data dll calls, etc.) |
254 | class NativeMovConstReg: public NativeInstruction { |
255 | #ifdef AMD64 |
256 | static const bool has_rex = true; |
257 | static const int rex_size = 1; |
258 | #else |
259 | static const bool has_rex = false; |
260 | static const int rex_size = 0; |
261 | #endif // AMD64 |
262 | public: |
263 | enum Intel_specific_constants { |
264 | instruction_code = 0xB8, |
265 | instruction_size = 1 + rex_size + wordSize, |
266 | instruction_offset = 0, |
267 | data_offset = 1 + rex_size, |
268 | next_instruction_offset = instruction_size, |
269 | register_mask = 0x07 |
270 | }; |
271 | |
272 | address instruction_address() const { return addr_at(instruction_offset); } |
273 | address next_instruction_address() const { return addr_at(next_instruction_offset); } |
274 | intptr_t data() const { return ptr_at(data_offset); } |
275 | void set_data(intptr_t x) { set_ptr_at(data_offset, x); } |
276 | |
277 | void verify(); |
278 | void print(); |
279 | |
280 | // unit test stuff |
281 | static void test() {} |
282 | |
283 | // Creation |
284 | inline friend NativeMovConstReg* nativeMovConstReg_at(address address); |
285 | inline friend NativeMovConstReg* nativeMovConstReg_before(address address); |
286 | }; |
287 | |
288 | inline NativeMovConstReg* nativeMovConstReg_at(address address) { |
289 | NativeMovConstReg* test = (NativeMovConstReg*)(address - NativeMovConstReg::instruction_offset); |
290 | #ifdef ASSERT |
291 | test->verify(); |
292 | #endif |
293 | return test; |
294 | } |
295 | |
296 | inline NativeMovConstReg* nativeMovConstReg_before(address address) { |
297 | NativeMovConstReg* test = (NativeMovConstReg*)(address - NativeMovConstReg::instruction_size - NativeMovConstReg::instruction_offset); |
298 | #ifdef ASSERT |
299 | test->verify(); |
300 | #endif |
301 | return test; |
302 | } |
303 | |
304 | class NativeMovConstRegPatching: public NativeMovConstReg { |
305 | private: |
306 | friend NativeMovConstRegPatching* nativeMovConstRegPatching_at(address address) { |
307 | NativeMovConstRegPatching* test = (NativeMovConstRegPatching*)(address - instruction_offset); |
308 | #ifdef ASSERT |
309 | test->verify(); |
310 | #endif |
311 | return test; |
312 | } |
313 | }; |
314 | |
315 | // An interface for accessing/manipulating native moves of the form: |
316 | // mov[b/w/l/q] [reg + offset], reg (instruction_code_reg2mem) |
317 | // mov[b/w/l/q] reg, [reg+offset] (instruction_code_mem2reg |
318 | // mov[s/z]x[w/b/q] [reg + offset], reg |
319 | // fld_s [reg+offset] |
320 | // fld_d [reg+offset] |
321 | // fstp_s [reg + offset] |
322 | // fstp_d [reg + offset] |
323 | // mov_literal64 scratch,<pointer> ; mov[b/w/l/q] 0(scratch),reg | mov[b/w/l/q] reg,0(scratch) |
324 | // |
325 | // Warning: These routines must be able to handle any instruction sequences |
326 | // that are generated as a result of the load/store byte,word,long |
327 | // macros. For example: The load_unsigned_byte instruction generates |
328 | // an xor reg,reg inst prior to generating the movb instruction. This |
329 | // class must skip the xor instruction. |
330 | |
331 | class NativeMovRegMem: public NativeInstruction { |
332 | public: |
333 | enum Intel_specific_constants { |
334 | instruction_prefix_wide_lo = Assembler::REX, |
335 | instruction_prefix_wide_hi = Assembler::REX_WRXB, |
336 | instruction_code_xor = 0x33, |
337 | instruction_extended_prefix = 0x0F, |
338 | instruction_code_mem2reg_movslq = 0x63, |
339 | instruction_code_mem2reg_movzxb = 0xB6, |
340 | instruction_code_mem2reg_movsxb = 0xBE, |
341 | instruction_code_mem2reg_movzxw = 0xB7, |
342 | instruction_code_mem2reg_movsxw = 0xBF, |
343 | instruction_operandsize_prefix = 0x66, |
344 | instruction_code_reg2mem = 0x89, |
345 | instruction_code_mem2reg = 0x8b, |
346 | instruction_code_reg2memb = 0x88, |
347 | instruction_code_mem2regb = 0x8a, |
348 | instruction_code_float_s = 0xd9, |
349 | instruction_code_float_d = 0xdd, |
350 | instruction_code_long_volatile = 0xdf, |
351 | instruction_code_xmm_ss_prefix = 0xf3, |
352 | instruction_code_xmm_sd_prefix = 0xf2, |
353 | instruction_code_xmm_code = 0x0f, |
354 | instruction_code_xmm_load = 0x10, |
355 | instruction_code_xmm_store = 0x11, |
356 | instruction_code_xmm_lpd = 0x12, |
357 | |
358 | instruction_code_lea = 0x8d, |
359 | |
360 | instruction_VEX_prefix_2bytes = Assembler::VEX_2bytes, |
361 | instruction_VEX_prefix_3bytes = Assembler::VEX_3bytes, |
362 | instruction_EVEX_prefix_4bytes = Assembler::EVEX_4bytes, |
363 | |
364 | instruction_size = 4, |
365 | instruction_offset = 0, |
366 | data_offset = 2, |
367 | next_instruction_offset = 4 |
368 | }; |
369 | |
370 | // helper |
371 | int instruction_start() const; |
372 | |
373 | address instruction_address() const; |
374 | |
375 | address next_instruction_address() const; |
376 | |
377 | int offset() const; |
378 | |
379 | void set_offset(int x); |
380 | |
381 | void add_offset_in_bytes(int add_offset) { set_offset ( ( offset() + add_offset ) ); } |
382 | |
383 | void verify(); |
384 | void print (); |
385 | |
386 | // unit test stuff |
387 | static void test() {} |
388 | |
389 | private: |
390 | inline friend NativeMovRegMem* nativeMovRegMem_at (address address); |
391 | }; |
392 | |
393 | inline NativeMovRegMem* nativeMovRegMem_at (address address) { |
394 | NativeMovRegMem* test = (NativeMovRegMem*)(address - NativeMovRegMem::instruction_offset); |
395 | #ifdef ASSERT |
396 | test->verify(); |
397 | #endif |
398 | return test; |
399 | } |
400 | |
401 | |
402 | // An interface for accessing/manipulating native leal instruction of form: |
403 | // leal reg, [reg + offset] |
404 | |
405 | class NativeLoadAddress: public NativeMovRegMem { |
406 | #ifdef AMD64 |
407 | static const bool has_rex = true; |
408 | static const int rex_size = 1; |
409 | #else |
410 | static const bool has_rex = false; |
411 | static const int rex_size = 0; |
412 | #endif // AMD64 |
413 | public: |
414 | enum Intel_specific_constants { |
415 | instruction_prefix_wide = Assembler::REX_W, |
416 | instruction_prefix_wide_extended = Assembler::REX_WB, |
417 | lea_instruction_code = 0x8D, |
418 | mov64_instruction_code = 0xB8 |
419 | }; |
420 | |
421 | void verify(); |
422 | void print (); |
423 | |
424 | // unit test stuff |
425 | static void test() {} |
426 | |
427 | private: |
428 | friend NativeLoadAddress* nativeLoadAddress_at (address address) { |
429 | NativeLoadAddress* test = (NativeLoadAddress*)(address - instruction_offset); |
430 | #ifdef ASSERT |
431 | test->verify(); |
432 | #endif |
433 | return test; |
434 | } |
435 | }; |
436 | |
437 | // destination is rbx or rax |
438 | // mov rbx, [rip + offset] |
439 | class NativeLoadGot: public NativeInstruction { |
440 | #ifdef AMD64 |
441 | static const bool has_rex = true; |
442 | static const int rex_size = 1; |
443 | #else |
444 | static const bool has_rex = false; |
445 | static const int rex_size = 0; |
446 | #endif |
447 | public: |
448 | enum Intel_specific_constants { |
449 | rex_prefix = 0x48, |
450 | instruction_code = 0x8b, |
451 | modrm_rbx_code = 0x1d, |
452 | modrm_rax_code = 0x05, |
453 | instruction_length = 6 + rex_size, |
454 | offset_offset = 2 + rex_size |
455 | }; |
456 | |
457 | address instruction_address() const { return addr_at(0); } |
458 | address rip_offset_address() const { return addr_at(offset_offset); } |
459 | int rip_offset() const { return int_at(offset_offset); } |
460 | address return_address() const { return addr_at(instruction_length); } |
461 | address got_address() const { return return_address() + rip_offset(); } |
462 | address next_instruction_address() const { return return_address(); } |
463 | intptr_t data() const; |
464 | void set_data(intptr_t data) { |
465 | intptr_t *addr = (intptr_t *) got_address(); |
466 | *addr = data; |
467 | } |
468 | |
469 | void verify() const; |
470 | private: |
471 | void report_and_fail() const; |
472 | }; |
473 | |
474 | inline NativeLoadGot* nativeLoadGot_at(address addr) { |
475 | NativeLoadGot* load = (NativeLoadGot*) addr; |
476 | #ifdef ASSERT |
477 | load->verify(); |
478 | #endif |
479 | return load; |
480 | } |
481 | |
482 | // jump rel32off |
483 | |
484 | class NativeJump: public NativeInstruction { |
485 | public: |
486 | enum Intel_specific_constants { |
487 | instruction_code = 0xe9, |
488 | instruction_size = 5, |
489 | instruction_offset = 0, |
490 | data_offset = 1, |
491 | next_instruction_offset = 5 |
492 | }; |
493 | |
494 | address instruction_address() const { return addr_at(instruction_offset); } |
495 | address next_instruction_address() const { return addr_at(next_instruction_offset); } |
496 | address jump_destination() const { |
497 | address dest = (int_at(data_offset)+next_instruction_address()); |
498 | // 32bit used to encode unresolved jmp as jmp -1 |
499 | // 64bit can't produce this so it used jump to self. |
500 | // Now 32bit and 64bit use jump to self as the unresolved address |
501 | // which the inline cache code (and relocs) know about |
502 | |
503 | // return -1 if jump to self |
504 | dest = (dest == (address) this) ? (address) -1 : dest; |
505 | return dest; |
506 | } |
507 | |
508 | void set_jump_destination(address dest) { |
509 | intptr_t val = dest - next_instruction_address(); |
510 | if (dest == (address) -1) { |
511 | val = -5; // jump to self |
512 | } |
513 | #ifdef AMD64 |
514 | assert((labs(val) & 0xFFFFFFFF00000000) == 0 || dest == (address)-1, "must be 32bit offset or -1" ); |
515 | #endif // AMD64 |
516 | set_int_at(data_offset, (jint)val); |
517 | } |
518 | |
519 | // Creation |
520 | inline friend NativeJump* nativeJump_at(address address); |
521 | |
522 | void verify(); |
523 | |
524 | // Unit testing stuff |
525 | static void test() {} |
526 | |
527 | // Insertion of native jump instruction |
528 | static void insert(address code_pos, address entry); |
529 | // MT-safe insertion of native jump at verified method entry |
530 | static void check_verified_entry_alignment(address entry, address verified_entry); |
531 | static void patch_verified_entry(address entry, address verified_entry, address dest); |
532 | }; |
533 | |
534 | inline NativeJump* nativeJump_at(address address) { |
535 | NativeJump* jump = (NativeJump*)(address - NativeJump::instruction_offset); |
536 | #ifdef ASSERT |
537 | jump->verify(); |
538 | #endif |
539 | return jump; |
540 | } |
541 | |
542 | // far jump reg |
543 | class NativeFarJump: public NativeInstruction { |
544 | public: |
545 | address jump_destination() const; |
546 | |
547 | // Creation |
548 | inline friend NativeFarJump* nativeFarJump_at(address address); |
549 | |
550 | void verify(); |
551 | |
552 | // Unit testing stuff |
553 | static void test() {} |
554 | |
555 | }; |
556 | |
557 | inline NativeFarJump* nativeFarJump_at(address address) { |
558 | NativeFarJump* jump = (NativeFarJump*)(address); |
559 | #ifdef ASSERT |
560 | jump->verify(); |
561 | #endif |
562 | return jump; |
563 | } |
564 | |
565 | // Handles all kinds of jump on Intel. Long/far, conditional/unconditional |
566 | class NativeGeneralJump: public NativeInstruction { |
567 | public: |
568 | enum Intel_specific_constants { |
569 | // Constants does not apply, since the lengths and offsets depends on the actual jump |
570 | // used |
571 | // Instruction codes: |
572 | // Unconditional jumps: 0xE9 (rel32off), 0xEB (rel8off) |
573 | // Conditional jumps: 0x0F8x (rel32off), 0x7x (rel8off) |
574 | unconditional_long_jump = 0xe9, |
575 | unconditional_short_jump = 0xeb, |
576 | instruction_size = 5 |
577 | }; |
578 | |
579 | address instruction_address() const { return addr_at(0); } |
580 | address jump_destination() const; |
581 | |
582 | // Creation |
583 | inline friend NativeGeneralJump* nativeGeneralJump_at(address address); |
584 | |
585 | // Insertion of native general jump instruction |
586 | static void insert_unconditional(address code_pos, address entry); |
587 | static void replace_mt_safe(address instr_addr, address code_buffer); |
588 | |
589 | void verify(); |
590 | }; |
591 | |
592 | inline NativeGeneralJump* nativeGeneralJump_at(address address) { |
593 | NativeGeneralJump* jump = (NativeGeneralJump*)(address); |
594 | debug_only(jump->verify();) |
595 | return jump; |
596 | } |
597 | |
598 | class NativeGotJump: public NativeInstruction { |
599 | public: |
600 | enum Intel_specific_constants { |
601 | instruction_code = 0xff, |
602 | instruction_offset = 0, |
603 | instruction_size = 6, |
604 | rip_offset = 2 |
605 | }; |
606 | |
607 | void verify() const; |
608 | address instruction_address() const { return addr_at(instruction_offset); } |
609 | address destination() const; |
610 | address return_address() const { return addr_at(instruction_size); } |
611 | int got_offset() const { return (jint) int_at(rip_offset); } |
612 | address got_address() const { return return_address() + got_offset(); } |
613 | address next_instruction_address() const { return addr_at(instruction_size); } |
614 | bool is_GotJump() const { return ubyte_at(0) == instruction_code; } |
615 | |
616 | void set_jump_destination(address dest) { |
617 | address *got_entry = (address *) got_address(); |
618 | *got_entry = dest; |
619 | } |
620 | }; |
621 | |
622 | inline NativeGotJump* nativeGotJump_at(address addr) { |
623 | NativeGotJump* jump = (NativeGotJump*)(addr); |
624 | debug_only(jump->verify()); |
625 | return jump; |
626 | } |
627 | |
628 | class NativePopReg : public NativeInstruction { |
629 | public: |
630 | enum Intel_specific_constants { |
631 | instruction_code = 0x58, |
632 | instruction_size = 1, |
633 | instruction_offset = 0, |
634 | data_offset = 1, |
635 | next_instruction_offset = 1 |
636 | }; |
637 | |
638 | // Insert a pop instruction |
639 | static void insert(address code_pos, Register reg); |
640 | }; |
641 | |
642 | |
643 | class NativeIllegalInstruction: public NativeInstruction { |
644 | public: |
645 | enum Intel_specific_constants { |
646 | instruction_code = 0x0B0F, // Real byte order is: 0x0F, 0x0B |
647 | instruction_size = 2, |
648 | instruction_offset = 0, |
649 | next_instruction_offset = 2 |
650 | }; |
651 | |
652 | // Insert illegal opcode as specific address |
653 | static void insert(address code_pos); |
654 | }; |
655 | |
656 | // return instruction that does not pop values of the stack |
657 | class NativeReturn: public NativeInstruction { |
658 | public: |
659 | enum Intel_specific_constants { |
660 | instruction_code = 0xC3, |
661 | instruction_size = 1, |
662 | instruction_offset = 0, |
663 | next_instruction_offset = 1 |
664 | }; |
665 | }; |
666 | |
667 | // return instruction that does pop values of the stack |
668 | class NativeReturnX: public NativeInstruction { |
669 | public: |
670 | enum Intel_specific_constants { |
671 | instruction_code = 0xC2, |
672 | instruction_size = 2, |
673 | instruction_offset = 0, |
674 | next_instruction_offset = 2 |
675 | }; |
676 | }; |
677 | |
678 | // Simple test vs memory |
679 | class NativeTstRegMem: public NativeInstruction { |
680 | public: |
681 | enum Intel_specific_constants { |
682 | instruction_rex_prefix_mask = 0xF0, |
683 | instruction_rex_prefix = Assembler::REX, |
684 | instruction_rex_b_prefix = Assembler::REX_B, |
685 | instruction_code_memXregl = 0x85, |
686 | modrm_mask = 0x38, // select reg from the ModRM byte |
687 | modrm_reg = 0x00 // rax |
688 | }; |
689 | }; |
690 | |
691 | inline bool NativeInstruction::is_illegal() { return (short)int_at(0) == (short)NativeIllegalInstruction::instruction_code; } |
692 | inline bool NativeInstruction::is_call() { return ubyte_at(0) == NativeCall::instruction_code; } |
693 | inline bool NativeInstruction::is_call_reg() { return ubyte_at(0) == NativeCallReg::instruction_code || |
694 | (ubyte_at(1) == NativeCallReg::instruction_code && |
695 | (ubyte_at(0) == Assembler::REX || ubyte_at(0) == Assembler::REX_B)); } |
696 | inline bool NativeInstruction::is_return() { return ubyte_at(0) == NativeReturn::instruction_code || |
697 | ubyte_at(0) == NativeReturnX::instruction_code; } |
698 | inline bool NativeInstruction::is_jump() { return ubyte_at(0) == NativeJump::instruction_code || |
699 | ubyte_at(0) == 0xEB; /* short jump */ } |
700 | inline bool NativeInstruction::is_jump_reg() { |
701 | int pos = 0; |
702 | if (ubyte_at(0) == Assembler::REX_B) pos = 1; |
703 | return ubyte_at(pos) == 0xFF && (ubyte_at(pos + 1) & 0xF0) == 0xE0; |
704 | } |
705 | inline bool NativeInstruction::is_far_jump() { return is_mov_literal64(); } |
706 | inline bool NativeInstruction::is_cond_jump() { return (int_at(0) & 0xF0FF) == 0x800F /* long jump */ || |
707 | (ubyte_at(0) & 0xF0) == 0x70; /* short jump */ } |
708 | inline bool NativeInstruction::is_safepoint_poll() { |
709 | if (SafepointMechanism::uses_thread_local_poll()) { |
710 | #ifdef AMD64 |
711 | const bool has_rex_prefix = ubyte_at(0) == NativeTstRegMem::instruction_rex_b_prefix; |
712 | const int test_offset = has_rex_prefix ? 1 : 0; |
713 | #else |
714 | const int test_offset = 0; |
715 | #endif |
716 | const bool is_test_opcode = ubyte_at(test_offset) == NativeTstRegMem::instruction_code_memXregl; |
717 | const bool is_rax_target = (ubyte_at(test_offset + 1) & NativeTstRegMem::modrm_mask) == NativeTstRegMem::modrm_reg; |
718 | return is_test_opcode && is_rax_target; |
719 | } |
720 | #ifdef AMD64 |
721 | // Try decoding a near safepoint first: |
722 | if (ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl && |
723 | ubyte_at(1) == 0x05) { // 00 rax 101 |
724 | address fault = addr_at(6) + int_at(2); |
725 | NOT_JVMCI(assert(!Assembler::is_polling_page_far(), "unexpected poll encoding" );) |
726 | return os::is_poll_address(fault); |
727 | } |
728 | // Now try decoding a far safepoint: |
729 | // two cases, depending on the choice of the base register in the address. |
730 | if (((ubyte_at(0) & NativeTstRegMem::instruction_rex_prefix_mask) == NativeTstRegMem::instruction_rex_prefix && |
731 | ubyte_at(1) == NativeTstRegMem::instruction_code_memXregl && |
732 | (ubyte_at(2) & NativeTstRegMem::modrm_mask) == NativeTstRegMem::modrm_reg) || |
733 | (ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl && |
734 | (ubyte_at(1) & NativeTstRegMem::modrm_mask) == NativeTstRegMem::modrm_reg)) { |
735 | NOT_JVMCI(assert(Assembler::is_polling_page_far(), "unexpected poll encoding" );) |
736 | return true; |
737 | } |
738 | return false; |
739 | #else |
740 | return ( ubyte_at(0) == NativeMovRegMem::instruction_code_mem2reg || |
741 | ubyte_at(0) == NativeTstRegMem::instruction_code_memXregl ) && |
742 | (ubyte_at(1)&0xC7) == 0x05 && /* Mod R/M == disp32 */ |
743 | (os::is_poll_address((address)int_at(2))); |
744 | #endif // AMD64 |
745 | } |
746 | |
747 | inline bool NativeInstruction::is_mov_literal64() { |
748 | #ifdef AMD64 |
749 | return ((ubyte_at(0) == Assembler::REX_W || ubyte_at(0) == Assembler::REX_WB) && |
750 | (ubyte_at(1) & (0xff ^ NativeMovConstReg::register_mask)) == 0xB8); |
751 | #else |
752 | return false; |
753 | #endif // AMD64 |
754 | } |
755 | |
756 | #endif // CPU_X86_NATIVEINST_X86_HPP |
757 | |