1 | /* |
2 | * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #ifndef CPU_X86_ASSEMBLER_X86_HPP |
26 | #define CPU_X86_ASSEMBLER_X86_HPP |
27 | |
28 | #include "asm/register.hpp" |
29 | #include "vm_version_x86.hpp" |
30 | |
31 | class BiasedLockingCounters; |
32 | |
33 | // Contains all the definitions needed for x86 assembly code generation. |
34 | |
35 | // Calling convention |
36 | class Argument { |
37 | public: |
38 | enum { |
39 | #ifdef _LP64 |
40 | #ifdef _WIN64 |
41 | n_int_register_parameters_c = 4, // rcx, rdx, r8, r9 (c_rarg0, c_rarg1, ...) |
42 | n_float_register_parameters_c = 4, // xmm0 - xmm3 (c_farg0, c_farg1, ... ) |
43 | #else |
44 | n_int_register_parameters_c = 6, // rdi, rsi, rdx, rcx, r8, r9 (c_rarg0, c_rarg1, ...) |
45 | n_float_register_parameters_c = 8, // xmm0 - xmm7 (c_farg0, c_farg1, ... ) |
46 | #endif // _WIN64 |
47 | n_int_register_parameters_j = 6, // j_rarg0, j_rarg1, ... |
48 | n_float_register_parameters_j = 8 // j_farg0, j_farg1, ... |
49 | #else |
50 | n_register_parameters = 0 // 0 registers used to pass arguments |
51 | #endif // _LP64 |
52 | }; |
53 | }; |
54 | |
55 | |
56 | #ifdef _LP64 |
57 | // Symbolically name the register arguments used by the c calling convention. |
58 | // Windows is different from linux/solaris. So much for standards... |
59 | |
60 | #ifdef _WIN64 |
61 | |
62 | REGISTER_DECLARATION(Register, c_rarg0, rcx); |
63 | REGISTER_DECLARATION(Register, c_rarg1, rdx); |
64 | REGISTER_DECLARATION(Register, c_rarg2, r8); |
65 | REGISTER_DECLARATION(Register, c_rarg3, r9); |
66 | |
67 | REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0); |
68 | REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1); |
69 | REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2); |
70 | REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3); |
71 | |
72 | #else |
73 | |
74 | REGISTER_DECLARATION(Register, c_rarg0, rdi); |
75 | REGISTER_DECLARATION(Register, c_rarg1, rsi); |
76 | REGISTER_DECLARATION(Register, c_rarg2, rdx); |
77 | REGISTER_DECLARATION(Register, c_rarg3, rcx); |
78 | REGISTER_DECLARATION(Register, c_rarg4, r8); |
79 | REGISTER_DECLARATION(Register, c_rarg5, r9); |
80 | |
81 | REGISTER_DECLARATION(XMMRegister, c_farg0, xmm0); |
82 | REGISTER_DECLARATION(XMMRegister, c_farg1, xmm1); |
83 | REGISTER_DECLARATION(XMMRegister, c_farg2, xmm2); |
84 | REGISTER_DECLARATION(XMMRegister, c_farg3, xmm3); |
85 | REGISTER_DECLARATION(XMMRegister, c_farg4, xmm4); |
86 | REGISTER_DECLARATION(XMMRegister, c_farg5, xmm5); |
87 | REGISTER_DECLARATION(XMMRegister, c_farg6, xmm6); |
88 | REGISTER_DECLARATION(XMMRegister, c_farg7, xmm7); |
89 | |
90 | #endif // _WIN64 |
91 | |
92 | // Symbolically name the register arguments used by the Java calling convention. |
93 | // We have control over the convention for java so we can do what we please. |
94 | // What pleases us is to offset the java calling convention so that when |
95 | // we call a suitable jni method the arguments are lined up and we don't |
96 | // have to do little shuffling. A suitable jni method is non-static and a |
97 | // small number of arguments (two fewer args on windows) |
98 | // |
99 | // |-------------------------------------------------------| |
100 | // | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 | |
101 | // |-------------------------------------------------------| |
102 | // | rcx rdx r8 r9 rdi* rsi* | windows (* not a c_rarg) |
103 | // | rdi rsi rdx rcx r8 r9 | solaris/linux |
104 | // |-------------------------------------------------------| |
105 | // | j_rarg5 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 | |
106 | // |-------------------------------------------------------| |
107 | |
108 | REGISTER_DECLARATION(Register, j_rarg0, c_rarg1); |
109 | REGISTER_DECLARATION(Register, j_rarg1, c_rarg2); |
110 | REGISTER_DECLARATION(Register, j_rarg2, c_rarg3); |
111 | // Windows runs out of register args here |
112 | #ifdef _WIN64 |
113 | REGISTER_DECLARATION(Register, j_rarg3, rdi); |
114 | REGISTER_DECLARATION(Register, j_rarg4, rsi); |
115 | #else |
116 | REGISTER_DECLARATION(Register, j_rarg3, c_rarg4); |
117 | REGISTER_DECLARATION(Register, j_rarg4, c_rarg5); |
118 | #endif /* _WIN64 */ |
119 | REGISTER_DECLARATION(Register, j_rarg5, c_rarg0); |
120 | |
121 | REGISTER_DECLARATION(XMMRegister, j_farg0, xmm0); |
122 | REGISTER_DECLARATION(XMMRegister, j_farg1, xmm1); |
123 | REGISTER_DECLARATION(XMMRegister, j_farg2, xmm2); |
124 | REGISTER_DECLARATION(XMMRegister, j_farg3, xmm3); |
125 | REGISTER_DECLARATION(XMMRegister, j_farg4, xmm4); |
126 | REGISTER_DECLARATION(XMMRegister, j_farg5, xmm5); |
127 | REGISTER_DECLARATION(XMMRegister, j_farg6, xmm6); |
128 | REGISTER_DECLARATION(XMMRegister, j_farg7, xmm7); |
129 | |
130 | REGISTER_DECLARATION(Register, rscratch1, r10); // volatile |
131 | REGISTER_DECLARATION(Register, rscratch2, r11); // volatile |
132 | |
133 | REGISTER_DECLARATION(Register, r12_heapbase, r12); // callee-saved |
134 | REGISTER_DECLARATION(Register, r15_thread, r15); // callee-saved |
135 | |
136 | #else |
137 | // rscratch1 will apear in 32bit code that is dead but of course must compile |
138 | // Using noreg ensures if the dead code is incorrectly live and executed it |
139 | // will cause an assertion failure |
140 | #define rscratch1 noreg |
141 | #define rscratch2 noreg |
142 | |
143 | #endif // _LP64 |
144 | |
145 | // JSR 292 |
146 | // On x86, the SP does not have to be saved when invoking method handle intrinsics |
147 | // or compiled lambda forms. We indicate that by setting rbp_mh_SP_save to noreg. |
148 | REGISTER_DECLARATION(Register, rbp_mh_SP_save, noreg); |
149 | |
150 | // Address is an abstraction used to represent a memory location |
151 | // using any of the amd64 addressing modes with one object. |
152 | // |
153 | // Note: A register location is represented via a Register, not |
154 | // via an address for efficiency & simplicity reasons. |
155 | |
156 | class ArrayAddress; |
157 | |
158 | class Address { |
159 | public: |
160 | enum ScaleFactor { |
161 | no_scale = -1, |
162 | times_1 = 0, |
163 | times_2 = 1, |
164 | times_4 = 2, |
165 | times_8 = 3, |
166 | times_ptr = LP64_ONLY(times_8) NOT_LP64(times_4) |
167 | }; |
168 | static ScaleFactor times(int size) { |
169 | assert(size >= 1 && size <= 8 && is_power_of_2(size), "bad scale size" ); |
170 | if (size == 8) return times_8; |
171 | if (size == 4) return times_4; |
172 | if (size == 2) return times_2; |
173 | return times_1; |
174 | } |
175 | static int scale_size(ScaleFactor scale) { |
176 | assert(scale != no_scale, "" ); |
177 | assert(((1 << (int)times_1) == 1 && |
178 | (1 << (int)times_2) == 2 && |
179 | (1 << (int)times_4) == 4 && |
180 | (1 << (int)times_8) == 8), "" ); |
181 | return (1 << (int)scale); |
182 | } |
183 | |
184 | private: |
185 | Register _base; |
186 | Register _index; |
187 | XMMRegister _xmmindex; |
188 | ScaleFactor _scale; |
189 | int _disp; |
190 | bool _isxmmindex; |
191 | RelocationHolder _rspec; |
192 | |
193 | // Easily misused constructors make them private |
194 | // %%% can we make these go away? |
195 | NOT_LP64(Address(address loc, RelocationHolder spec);) |
196 | Address(int disp, address loc, relocInfo::relocType rtype); |
197 | Address(int disp, address loc, RelocationHolder spec); |
198 | |
199 | public: |
200 | |
201 | int disp() { return _disp; } |
202 | // creation |
203 | Address() |
204 | : _base(noreg), |
205 | _index(noreg), |
206 | _xmmindex(xnoreg), |
207 | _scale(no_scale), |
208 | _disp(0), |
209 | _isxmmindex(false){ |
210 | } |
211 | |
212 | // No default displacement otherwise Register can be implicitly |
213 | // converted to 0(Register) which is quite a different animal. |
214 | |
215 | Address(Register base, int disp) |
216 | : _base(base), |
217 | _index(noreg), |
218 | _xmmindex(xnoreg), |
219 | _scale(no_scale), |
220 | _disp(disp), |
221 | _isxmmindex(false){ |
222 | } |
223 | |
224 | Address(Register base, Register index, ScaleFactor scale, int disp = 0) |
225 | : _base (base), |
226 | _index(index), |
227 | _xmmindex(xnoreg), |
228 | _scale(scale), |
229 | _disp (disp), |
230 | _isxmmindex(false) { |
231 | assert(!index->is_valid() == (scale == Address::no_scale), |
232 | "inconsistent address" ); |
233 | } |
234 | |
235 | Address(Register base, RegisterOrConstant index, ScaleFactor scale = times_1, int disp = 0) |
236 | : _base (base), |
237 | _index(index.register_or_noreg()), |
238 | _xmmindex(xnoreg), |
239 | _scale(scale), |
240 | _disp (disp + (index.constant_or_zero() * scale_size(scale))), |
241 | _isxmmindex(false){ |
242 | if (!index.is_register()) scale = Address::no_scale; |
243 | assert(!_index->is_valid() == (scale == Address::no_scale), |
244 | "inconsistent address" ); |
245 | } |
246 | |
247 | Address(Register base, XMMRegister index, ScaleFactor scale, int disp = 0) |
248 | : _base (base), |
249 | _index(noreg), |
250 | _xmmindex(index), |
251 | _scale(scale), |
252 | _disp(disp), |
253 | _isxmmindex(true) { |
254 | assert(!index->is_valid() == (scale == Address::no_scale), |
255 | "inconsistent address" ); |
256 | } |
257 | |
258 | Address plus_disp(int disp) const { |
259 | Address a = (*this); |
260 | a._disp += disp; |
261 | return a; |
262 | } |
263 | Address plus_disp(RegisterOrConstant disp, ScaleFactor scale = times_1) const { |
264 | Address a = (*this); |
265 | a._disp += disp.constant_or_zero() * scale_size(scale); |
266 | if (disp.is_register()) { |
267 | assert(!a.index()->is_valid(), "competing indexes" ); |
268 | a._index = disp.as_register(); |
269 | a._scale = scale; |
270 | } |
271 | return a; |
272 | } |
273 | bool is_same_address(Address a) const { |
274 | // disregard _rspec |
275 | return _base == a._base && _disp == a._disp && _index == a._index && _scale == a._scale; |
276 | } |
277 | |
278 | // The following two overloads are used in connection with the |
279 | // ByteSize type (see sizes.hpp). They simplify the use of |
280 | // ByteSize'd arguments in assembly code. Note that their equivalent |
281 | // for the optimized build are the member functions with int disp |
282 | // argument since ByteSize is mapped to an int type in that case. |
283 | // |
284 | // Note: DO NOT introduce similar overloaded functions for WordSize |
285 | // arguments as in the optimized mode, both ByteSize and WordSize |
286 | // are mapped to the same type and thus the compiler cannot make a |
287 | // distinction anymore (=> compiler errors). |
288 | |
289 | #ifdef ASSERT |
290 | Address(Register base, ByteSize disp) |
291 | : _base(base), |
292 | _index(noreg), |
293 | _xmmindex(xnoreg), |
294 | _scale(no_scale), |
295 | _disp(in_bytes(disp)), |
296 | _isxmmindex(false){ |
297 | } |
298 | |
299 | Address(Register base, Register index, ScaleFactor scale, ByteSize disp) |
300 | : _base(base), |
301 | _index(index), |
302 | _xmmindex(xnoreg), |
303 | _scale(scale), |
304 | _disp(in_bytes(disp)), |
305 | _isxmmindex(false){ |
306 | assert(!index->is_valid() == (scale == Address::no_scale), |
307 | "inconsistent address" ); |
308 | } |
309 | Address(Register base, RegisterOrConstant index, ScaleFactor scale, ByteSize disp) |
310 | : _base (base), |
311 | _index(index.register_or_noreg()), |
312 | _xmmindex(xnoreg), |
313 | _scale(scale), |
314 | _disp (in_bytes(disp) + (index.constant_or_zero() * scale_size(scale))), |
315 | _isxmmindex(false) { |
316 | if (!index.is_register()) scale = Address::no_scale; |
317 | assert(!_index->is_valid() == (scale == Address::no_scale), |
318 | "inconsistent address" ); |
319 | } |
320 | |
321 | #endif // ASSERT |
322 | |
323 | // accessors |
324 | bool uses(Register reg) const { return _base == reg || _index == reg; } |
325 | Register base() const { return _base; } |
326 | Register index() const { return _index; } |
327 | XMMRegister xmmindex() const { return _xmmindex; } |
328 | ScaleFactor scale() const { return _scale; } |
329 | int disp() const { return _disp; } |
330 | bool isxmmindex() const { return _isxmmindex; } |
331 | |
332 | // Convert the raw encoding form into the form expected by the constructor for |
333 | // Address. An index of 4 (rsp) corresponds to having no index, so convert |
334 | // that to noreg for the Address constructor. |
335 | static Address make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc); |
336 | |
337 | static Address make_array(ArrayAddress); |
338 | |
339 | private: |
340 | bool base_needs_rex() const { |
341 | return _base != noreg && _base->encoding() >= 8; |
342 | } |
343 | |
344 | bool index_needs_rex() const { |
345 | return _index != noreg &&_index->encoding() >= 8; |
346 | } |
347 | |
348 | bool xmmindex_needs_rex() const { |
349 | return _xmmindex != xnoreg && _xmmindex->encoding() >= 8; |
350 | } |
351 | |
352 | relocInfo::relocType reloc() const { return _rspec.type(); } |
353 | |
354 | friend class Assembler; |
355 | friend class MacroAssembler; |
356 | friend class LIR_Assembler; // base/index/scale/disp |
357 | }; |
358 | |
359 | // |
360 | // AddressLiteral has been split out from Address because operands of this type |
361 | // need to be treated specially on 32bit vs. 64bit platforms. By splitting it out |
362 | // the few instructions that need to deal with address literals are unique and the |
363 | // MacroAssembler does not have to implement every instruction in the Assembler |
364 | // in order to search for address literals that may need special handling depending |
365 | // on the instruction and the platform. As small step on the way to merging i486/amd64 |
366 | // directories. |
367 | // |
368 | class AddressLiteral { |
369 | friend class ArrayAddress; |
370 | RelocationHolder _rspec; |
371 | // Typically we use AddressLiterals we want to use their rval |
372 | // However in some situations we want the lval (effect address) of the item. |
373 | // We provide a special factory for making those lvals. |
374 | bool _is_lval; |
375 | |
376 | // If the target is far we'll need to load the ea of this to |
377 | // a register to reach it. Otherwise if near we can do rip |
378 | // relative addressing. |
379 | |
380 | address _target; |
381 | |
382 | protected: |
383 | // creation |
384 | AddressLiteral() |
385 | : _is_lval(false), |
386 | _target(NULL) |
387 | {} |
388 | |
389 | public: |
390 | |
391 | |
392 | AddressLiteral(address target, relocInfo::relocType rtype); |
393 | |
394 | AddressLiteral(address target, RelocationHolder const& rspec) |
395 | : _rspec(rspec), |
396 | _is_lval(false), |
397 | _target(target) |
398 | {} |
399 | |
400 | AddressLiteral addr() { |
401 | AddressLiteral ret = *this; |
402 | ret._is_lval = true; |
403 | return ret; |
404 | } |
405 | |
406 | |
407 | private: |
408 | |
409 | address target() { return _target; } |
410 | bool is_lval() { return _is_lval; } |
411 | |
412 | relocInfo::relocType reloc() const { return _rspec.type(); } |
413 | const RelocationHolder& rspec() const { return _rspec; } |
414 | |
415 | friend class Assembler; |
416 | friend class MacroAssembler; |
417 | friend class Address; |
418 | friend class LIR_Assembler; |
419 | }; |
420 | |
421 | // Convience classes |
422 | class RuntimeAddress: public AddressLiteral { |
423 | |
424 | public: |
425 | |
426 | RuntimeAddress(address target) : AddressLiteral(target, relocInfo::runtime_call_type) {} |
427 | |
428 | }; |
429 | |
430 | class ExternalAddress: public AddressLiteral { |
431 | private: |
432 | static relocInfo::relocType reloc_for_target(address target) { |
433 | // Sometimes ExternalAddress is used for values which aren't |
434 | // exactly addresses, like the card table base. |
435 | // external_word_type can't be used for values in the first page |
436 | // so just skip the reloc in that case. |
437 | return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none; |
438 | } |
439 | |
440 | public: |
441 | |
442 | ExternalAddress(address target) : AddressLiteral(target, reloc_for_target(target)) {} |
443 | |
444 | }; |
445 | |
446 | class InternalAddress: public AddressLiteral { |
447 | |
448 | public: |
449 | |
450 | InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {} |
451 | |
452 | }; |
453 | |
454 | // x86 can do array addressing as a single operation since disp can be an absolute |
455 | // address amd64 can't. We create a class that expresses the concept but does extra |
456 | // magic on amd64 to get the final result |
457 | |
458 | class ArrayAddress { |
459 | private: |
460 | |
461 | AddressLiteral _base; |
462 | Address _index; |
463 | |
464 | public: |
465 | |
466 | ArrayAddress() {}; |
467 | ArrayAddress(AddressLiteral base, Address index): _base(base), _index(index) {}; |
468 | AddressLiteral base() { return _base; } |
469 | Address index() { return _index; } |
470 | |
471 | }; |
472 | |
473 | class InstructionAttr; |
474 | |
475 | // 64-bit refect the fxsave size which is 512 bytes and the new xsave area on EVEX which is another 2176 bytes |
476 | // See fxsave and xsave(EVEX enabled) documentation for layout |
477 | const int FPUStateSizeInWords = NOT_LP64(27) LP64_ONLY(2688 / wordSize); |
478 | |
479 | // The Intel x86/Amd64 Assembler: Pure assembler doing NO optimizations on the instruction |
480 | // level (e.g. mov rax, 0 is not translated into xor rax, rax!); i.e., what you write |
481 | // is what you get. The Assembler is generating code into a CodeBuffer. |
482 | |
483 | class Assembler : public AbstractAssembler { |
484 | friend class AbstractAssembler; // for the non-virtual hack |
485 | friend class LIR_Assembler; // as_Address() |
486 | friend class StubGenerator; |
487 | |
488 | public: |
489 | enum Condition { // The x86 condition codes used for conditional jumps/moves. |
490 | zero = 0x4, |
491 | notZero = 0x5, |
492 | equal = 0x4, |
493 | notEqual = 0x5, |
494 | less = 0xc, |
495 | lessEqual = 0xe, |
496 | greater = 0xf, |
497 | greaterEqual = 0xd, |
498 | below = 0x2, |
499 | belowEqual = 0x6, |
500 | above = 0x7, |
501 | aboveEqual = 0x3, |
502 | overflow = 0x0, |
503 | noOverflow = 0x1, |
504 | carrySet = 0x2, |
505 | carryClear = 0x3, |
506 | negative = 0x8, |
507 | positive = 0x9, |
508 | parity = 0xa, |
509 | noParity = 0xb |
510 | }; |
511 | |
512 | enum Prefix { |
513 | // segment overrides |
514 | CS_segment = 0x2e, |
515 | SS_segment = 0x36, |
516 | DS_segment = 0x3e, |
517 | ES_segment = 0x26, |
518 | FS_segment = 0x64, |
519 | GS_segment = 0x65, |
520 | |
521 | REX = 0x40, |
522 | |
523 | REX_B = 0x41, |
524 | REX_X = 0x42, |
525 | REX_XB = 0x43, |
526 | REX_R = 0x44, |
527 | REX_RB = 0x45, |
528 | REX_RX = 0x46, |
529 | REX_RXB = 0x47, |
530 | |
531 | REX_W = 0x48, |
532 | |
533 | REX_WB = 0x49, |
534 | REX_WX = 0x4A, |
535 | REX_WXB = 0x4B, |
536 | REX_WR = 0x4C, |
537 | REX_WRB = 0x4D, |
538 | REX_WRX = 0x4E, |
539 | REX_WRXB = 0x4F, |
540 | |
541 | VEX_3bytes = 0xC4, |
542 | VEX_2bytes = 0xC5, |
543 | EVEX_4bytes = 0x62, |
544 | Prefix_EMPTY = 0x0 |
545 | }; |
546 | |
547 | enum VexPrefix { |
548 | VEX_B = 0x20, |
549 | VEX_X = 0x40, |
550 | VEX_R = 0x80, |
551 | VEX_W = 0x80 |
552 | }; |
553 | |
554 | enum ExexPrefix { |
555 | EVEX_F = 0x04, |
556 | EVEX_V = 0x08, |
557 | EVEX_Rb = 0x10, |
558 | EVEX_X = 0x40, |
559 | EVEX_Z = 0x80 |
560 | }; |
561 | |
562 | enum VexSimdPrefix { |
563 | VEX_SIMD_NONE = 0x0, |
564 | VEX_SIMD_66 = 0x1, |
565 | VEX_SIMD_F3 = 0x2, |
566 | VEX_SIMD_F2 = 0x3 |
567 | }; |
568 | |
569 | enum VexOpcode { |
570 | VEX_OPCODE_NONE = 0x0, |
571 | VEX_OPCODE_0F = 0x1, |
572 | VEX_OPCODE_0F_38 = 0x2, |
573 | VEX_OPCODE_0F_3A = 0x3, |
574 | VEX_OPCODE_MASK = 0x1F |
575 | }; |
576 | |
577 | enum AvxVectorLen { |
578 | AVX_128bit = 0x0, |
579 | AVX_256bit = 0x1, |
580 | AVX_512bit = 0x2, |
581 | AVX_NoVec = 0x4 |
582 | }; |
583 | |
584 | enum EvexTupleType { |
585 | EVEX_FV = 0, |
586 | EVEX_HV = 4, |
587 | EVEX_FVM = 6, |
588 | EVEX_T1S = 7, |
589 | EVEX_T1F = 11, |
590 | EVEX_T2 = 13, |
591 | EVEX_T4 = 15, |
592 | EVEX_T8 = 17, |
593 | EVEX_HVM = 18, |
594 | EVEX_QVM = 19, |
595 | EVEX_OVM = 20, |
596 | EVEX_M128 = 21, |
597 | EVEX_DUP = 22, |
598 | EVEX_ETUP = 23 |
599 | }; |
600 | |
601 | enum EvexInputSizeInBits { |
602 | EVEX_8bit = 0, |
603 | EVEX_16bit = 1, |
604 | EVEX_32bit = 2, |
605 | EVEX_64bit = 3, |
606 | EVEX_NObit = 4 |
607 | }; |
608 | |
609 | enum WhichOperand { |
610 | // input to locate_operand, and format code for relocations |
611 | imm_operand = 0, // embedded 32-bit|64-bit immediate operand |
612 | disp32_operand = 1, // embedded 32-bit displacement or address |
613 | call32_operand = 2, // embedded 32-bit self-relative displacement |
614 | #ifndef _LP64 |
615 | _WhichOperand_limit = 3 |
616 | #else |
617 | narrow_oop_operand = 3, // embedded 32-bit immediate narrow oop |
618 | _WhichOperand_limit = 4 |
619 | #endif |
620 | }; |
621 | |
622 | enum ComparisonPredicate { |
623 | eq = 0, |
624 | lt = 1, |
625 | le = 2, |
626 | _false = 3, |
627 | neq = 4, |
628 | nlt = 5, |
629 | nle = 6, |
630 | _true = 7 |
631 | }; |
632 | |
633 | //---< calculate length of instruction >--- |
634 | // As instruction size can't be found out easily on x86/x64, |
635 | // we just use '4' for len and maxlen. |
636 | // instruction must start at passed address |
637 | static unsigned int instr_len(unsigned char *instr) { return 4; } |
638 | |
639 | //---< longest instructions >--- |
640 | // Max instruction length is not specified in architecture documentation. |
641 | // We could use a "safe enough" estimate (15), but just default to |
642 | // instruction length guess from above. |
643 | static unsigned int instr_maxlen() { return 4; } |
644 | |
645 | // NOTE: The general philopsophy of the declarations here is that 64bit versions |
646 | // of instructions are freely declared without the need for wrapping them an ifdef. |
647 | // (Some dangerous instructions are ifdef's out of inappropriate jvm's.) |
648 | // In the .cpp file the implementations are wrapped so that they are dropped out |
649 | // of the resulting jvm. This is done mostly to keep the footprint of MINIMAL |
650 | // to the size it was prior to merging up the 32bit and 64bit assemblers. |
651 | // |
652 | // This does mean you'll get a linker/runtime error if you use a 64bit only instruction |
653 | // in a 32bit vm. This is somewhat unfortunate but keeps the ifdef noise down. |
654 | |
655 | private: |
656 | |
657 | bool _legacy_mode_bw; |
658 | bool _legacy_mode_dq; |
659 | bool _legacy_mode_vl; |
660 | bool _legacy_mode_vlbw; |
661 | bool _is_managed; |
662 | bool _vector_masking; // For stub code use only |
663 | |
664 | class InstructionAttr *_attributes; |
665 | |
666 | // 64bit prefixes |
667 | int prefix_and_encode(int reg_enc, bool byteinst = false); |
668 | int prefixq_and_encode(int reg_enc); |
669 | |
670 | int prefix_and_encode(int dst_enc, int src_enc) { |
671 | return prefix_and_encode(dst_enc, false, src_enc, false); |
672 | } |
673 | int prefix_and_encode(int dst_enc, bool dst_is_byte, int src_enc, bool src_is_byte); |
674 | int prefixq_and_encode(int dst_enc, int src_enc); |
675 | |
676 | void prefix(Register reg); |
677 | void prefix(Register dst, Register src, Prefix p); |
678 | void prefix(Register dst, Address adr, Prefix p); |
679 | void prefix(Address adr); |
680 | void prefixq(Address adr); |
681 | |
682 | void prefix(Address adr, Register reg, bool byteinst = false); |
683 | void prefix(Address adr, XMMRegister reg); |
684 | void prefixq(Address adr, Register reg); |
685 | void prefixq(Address adr, XMMRegister reg); |
686 | |
687 | void prefetch_prefix(Address src); |
688 | |
689 | void rex_prefix(Address adr, XMMRegister xreg, |
690 | VexSimdPrefix pre, VexOpcode opc, bool rex_w); |
691 | int rex_prefix_and_encode(int dst_enc, int src_enc, |
692 | VexSimdPrefix pre, VexOpcode opc, bool rex_w); |
693 | |
694 | void vex_prefix(bool vex_r, bool vex_b, bool vex_x, int nds_enc, VexSimdPrefix pre, VexOpcode opc); |
695 | |
696 | void evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool evex_r, bool evex_v, |
697 | int nds_enc, VexSimdPrefix pre, VexOpcode opc); |
698 | |
699 | void vex_prefix(Address adr, int nds_enc, int xreg_enc, |
700 | VexSimdPrefix pre, VexOpcode opc, |
701 | InstructionAttr *attributes); |
702 | |
703 | int vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, |
704 | VexSimdPrefix pre, VexOpcode opc, |
705 | InstructionAttr *attributes); |
706 | |
707 | void simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, |
708 | VexOpcode opc, InstructionAttr *attributes); |
709 | |
710 | int simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, |
711 | VexOpcode opc, InstructionAttr *attributes); |
712 | |
713 | // Helper functions for groups of instructions |
714 | void emit_arith_b(int op1, int op2, Register dst, int imm8); |
715 | |
716 | void emit_arith(int op1, int op2, Register dst, int32_t imm32); |
717 | // Force generation of a 4 byte immediate value even if it fits into 8bit |
718 | void emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32); |
719 | void emit_arith(int op1, int op2, Register dst, Register src); |
720 | |
721 | bool emit_compressed_disp_byte(int &disp); |
722 | |
723 | void emit_operand(Register reg, |
724 | Register base, Register index, Address::ScaleFactor scale, |
725 | int disp, |
726 | RelocationHolder const& rspec, |
727 | int rip_relative_correction = 0); |
728 | |
729 | void emit_operand(XMMRegister reg, Register base, XMMRegister index, |
730 | Address::ScaleFactor scale, |
731 | int disp, RelocationHolder const& rspec); |
732 | |
733 | void emit_operand(Register reg, Address adr, int rip_relative_correction = 0); |
734 | |
735 | // operands that only take the original 32bit registers |
736 | void emit_operand32(Register reg, Address adr); |
737 | |
738 | void emit_operand(XMMRegister reg, |
739 | Register base, Register index, Address::ScaleFactor scale, |
740 | int disp, |
741 | RelocationHolder const& rspec); |
742 | |
743 | void emit_operand(XMMRegister reg, Address adr); |
744 | |
745 | void emit_operand(MMXRegister reg, Address adr); |
746 | |
747 | // workaround gcc (3.2.1-7) bug |
748 | void emit_operand(Address adr, MMXRegister reg); |
749 | |
750 | |
751 | // Immediate-to-memory forms |
752 | void emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32); |
753 | |
754 | void emit_farith(int b1, int b2, int i); |
755 | |
756 | |
757 | protected: |
758 | #ifdef ASSERT |
759 | void check_relocation(RelocationHolder const& rspec, int format); |
760 | #endif |
761 | |
762 | void emit_data(jint data, relocInfo::relocType rtype, int format); |
763 | void emit_data(jint data, RelocationHolder const& rspec, int format); |
764 | void emit_data64(jlong data, relocInfo::relocType rtype, int format = 0); |
765 | void emit_data64(jlong data, RelocationHolder const& rspec, int format = 0); |
766 | |
767 | bool reachable(AddressLiteral adr) NOT_LP64({ return true;}); |
768 | |
769 | // These are all easily abused and hence protected |
770 | |
771 | // 32BIT ONLY SECTION |
772 | #ifndef _LP64 |
773 | // Make these disappear in 64bit mode since they would never be correct |
774 | void cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY |
775 | void cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY |
776 | |
777 | void mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY |
778 | void mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY |
779 | |
780 | void push_literal32(int32_t imm32, RelocationHolder const& rspec); // 32BIT ONLY |
781 | #else |
782 | // 64BIT ONLY SECTION |
783 | void mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec); // 64BIT ONLY |
784 | |
785 | void cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec); |
786 | void cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec); |
787 | |
788 | void mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec); |
789 | void mov_narrow_oop(Address dst, int32_t imm32, RelocationHolder const& rspec); |
790 | #endif // _LP64 |
791 | |
792 | // These are unique in that we are ensured by the caller that the 32bit |
793 | // relative in these instructions will always be able to reach the potentially |
794 | // 64bit address described by entry. Since they can take a 64bit address they |
795 | // don't have the 32 suffix like the other instructions in this class. |
796 | |
797 | void call_literal(address entry, RelocationHolder const& rspec); |
798 | void jmp_literal(address entry, RelocationHolder const& rspec); |
799 | |
800 | // Avoid using directly section |
801 | // Instructions in this section are actually usable by anyone without danger |
802 | // of failure but have performance issues that are addressed my enhanced |
803 | // instructions which will do the proper thing base on the particular cpu. |
804 | // We protect them because we don't trust you... |
805 | |
806 | // Don't use next inc() and dec() methods directly. INC & DEC instructions |
807 | // could cause a partial flag stall since they don't set CF flag. |
808 | // Use MacroAssembler::decrement() & MacroAssembler::increment() methods |
809 | // which call inc() & dec() or add() & sub() in accordance with |
810 | // the product flag UseIncDec value. |
811 | |
812 | void decl(Register dst); |
813 | void decl(Address dst); |
814 | void decq(Register dst); |
815 | void decq(Address dst); |
816 | |
817 | void incl(Register dst); |
818 | void incl(Address dst); |
819 | void incq(Register dst); |
820 | void incq(Address dst); |
821 | |
822 | // New cpus require use of movsd and movss to avoid partial register stall |
823 | // when loading from memory. But for old Opteron use movlpd instead of movsd. |
824 | // The selection is done in MacroAssembler::movdbl() and movflt(). |
825 | |
826 | // Move Scalar Single-Precision Floating-Point Values |
827 | void movss(XMMRegister dst, Address src); |
828 | void movss(XMMRegister dst, XMMRegister src); |
829 | void movss(Address dst, XMMRegister src); |
830 | |
831 | // Move Scalar Double-Precision Floating-Point Values |
832 | void movsd(XMMRegister dst, Address src); |
833 | void movsd(XMMRegister dst, XMMRegister src); |
834 | void movsd(Address dst, XMMRegister src); |
835 | void movlpd(XMMRegister dst, Address src); |
836 | |
837 | // New cpus require use of movaps and movapd to avoid partial register stall |
838 | // when moving between registers. |
839 | void movaps(XMMRegister dst, XMMRegister src); |
840 | void movapd(XMMRegister dst, XMMRegister src); |
841 | |
842 | // End avoid using directly |
843 | |
844 | |
845 | // Instruction prefixes |
846 | void prefix(Prefix p); |
847 | |
848 | public: |
849 | |
850 | // Creation |
851 | Assembler(CodeBuffer* code) : AbstractAssembler(code) { |
852 | init_attributes(); |
853 | } |
854 | |
855 | // Decoding |
856 | static address locate_operand(address inst, WhichOperand which); |
857 | static address locate_next_instruction(address inst); |
858 | |
859 | // Utilities |
860 | static bool is_polling_page_far() NOT_LP64({ return false;}); |
861 | static bool query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len, |
862 | int cur_tuple_type, int in_size_in_bits, int cur_encoding); |
863 | |
864 | // Generic instructions |
865 | // Does 32bit or 64bit as needed for the platform. In some sense these |
866 | // belong in macro assembler but there is no need for both varieties to exist |
867 | |
868 | void init_attributes(void) { |
869 | _legacy_mode_bw = (VM_Version::supports_avx512bw() == false); |
870 | _legacy_mode_dq = (VM_Version::supports_avx512dq() == false); |
871 | _legacy_mode_vl = (VM_Version::supports_avx512vl() == false); |
872 | _legacy_mode_vlbw = (VM_Version::supports_avx512vlbw() == false); |
873 | _is_managed = false; |
874 | _vector_masking = false; |
875 | _attributes = NULL; |
876 | } |
877 | |
878 | void set_attributes(InstructionAttr *attributes) { _attributes = attributes; } |
879 | void clear_attributes(void) { _attributes = NULL; } |
880 | |
881 | void set_managed(void) { _is_managed = true; } |
882 | void clear_managed(void) { _is_managed = false; } |
883 | bool is_managed(void) { return _is_managed; } |
884 | |
885 | void lea(Register dst, Address src); |
886 | |
887 | void mov(Register dst, Register src); |
888 | |
889 | void pusha(); |
890 | void popa(); |
891 | |
892 | void pushf(); |
893 | void popf(); |
894 | |
895 | void push(int32_t imm32); |
896 | |
897 | void push(Register src); |
898 | |
899 | void pop(Register dst); |
900 | |
901 | // These are dummies to prevent surprise implicit conversions to Register |
902 | void push(void* v); |
903 | void pop(void* v); |
904 | |
905 | // These do register sized moves/scans |
906 | void rep_mov(); |
907 | void rep_stos(); |
908 | void rep_stosb(); |
909 | void repne_scan(); |
910 | #ifdef _LP64 |
911 | void repne_scanl(); |
912 | #endif |
913 | |
914 | // Vanilla instructions in lexical order |
915 | |
916 | void adcl(Address dst, int32_t imm32); |
917 | void adcl(Address dst, Register src); |
918 | void adcl(Register dst, int32_t imm32); |
919 | void adcl(Register dst, Address src); |
920 | void adcl(Register dst, Register src); |
921 | |
922 | void adcq(Register dst, int32_t imm32); |
923 | void adcq(Register dst, Address src); |
924 | void adcq(Register dst, Register src); |
925 | |
926 | void addb(Address dst, int imm8); |
927 | void addw(Address dst, int imm16); |
928 | |
929 | void addl(Address dst, int32_t imm32); |
930 | void addl(Address dst, Register src); |
931 | void addl(Register dst, int32_t imm32); |
932 | void addl(Register dst, Address src); |
933 | void addl(Register dst, Register src); |
934 | |
935 | void addq(Address dst, int32_t imm32); |
936 | void addq(Address dst, Register src); |
937 | void addq(Register dst, int32_t imm32); |
938 | void addq(Register dst, Address src); |
939 | void addq(Register dst, Register src); |
940 | |
941 | #ifdef _LP64 |
942 | //Add Unsigned Integers with Carry Flag |
943 | void adcxq(Register dst, Register src); |
944 | |
945 | //Add Unsigned Integers with Overflow Flag |
946 | void adoxq(Register dst, Register src); |
947 | #endif |
948 | |
949 | void addr_nop_4(); |
950 | void addr_nop_5(); |
951 | void addr_nop_7(); |
952 | void addr_nop_8(); |
953 | |
954 | // Add Scalar Double-Precision Floating-Point Values |
955 | void addsd(XMMRegister dst, Address src); |
956 | void addsd(XMMRegister dst, XMMRegister src); |
957 | |
958 | // Add Scalar Single-Precision Floating-Point Values |
959 | void addss(XMMRegister dst, Address src); |
960 | void addss(XMMRegister dst, XMMRegister src); |
961 | |
962 | // AES instructions |
963 | void aesdec(XMMRegister dst, Address src); |
964 | void aesdec(XMMRegister dst, XMMRegister src); |
965 | void aesdeclast(XMMRegister dst, Address src); |
966 | void aesdeclast(XMMRegister dst, XMMRegister src); |
967 | void aesenc(XMMRegister dst, Address src); |
968 | void aesenc(XMMRegister dst, XMMRegister src); |
969 | void aesenclast(XMMRegister dst, Address src); |
970 | void aesenclast(XMMRegister dst, XMMRegister src); |
971 | void vaesdec(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
972 | void vaesdeclast(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
973 | |
974 | void andl(Address dst, int32_t imm32); |
975 | void andl(Register dst, int32_t imm32); |
976 | void andl(Register dst, Address src); |
977 | void andl(Register dst, Register src); |
978 | |
979 | void andq(Address dst, int32_t imm32); |
980 | void andq(Register dst, int32_t imm32); |
981 | void andq(Register dst, Address src); |
982 | void andq(Register dst, Register src); |
983 | |
984 | // BMI instructions |
985 | void andnl(Register dst, Register src1, Register src2); |
986 | void andnl(Register dst, Register src1, Address src2); |
987 | void andnq(Register dst, Register src1, Register src2); |
988 | void andnq(Register dst, Register src1, Address src2); |
989 | |
990 | void blsil(Register dst, Register src); |
991 | void blsil(Register dst, Address src); |
992 | void blsiq(Register dst, Register src); |
993 | void blsiq(Register dst, Address src); |
994 | |
995 | void blsmskl(Register dst, Register src); |
996 | void blsmskl(Register dst, Address src); |
997 | void blsmskq(Register dst, Register src); |
998 | void blsmskq(Register dst, Address src); |
999 | |
1000 | void blsrl(Register dst, Register src); |
1001 | void blsrl(Register dst, Address src); |
1002 | void blsrq(Register dst, Register src); |
1003 | void blsrq(Register dst, Address src); |
1004 | |
1005 | void bsfl(Register dst, Register src); |
1006 | void bsrl(Register dst, Register src); |
1007 | |
1008 | #ifdef _LP64 |
1009 | void bsfq(Register dst, Register src); |
1010 | void bsrq(Register dst, Register src); |
1011 | #endif |
1012 | |
1013 | void bswapl(Register reg); |
1014 | |
1015 | void bswapq(Register reg); |
1016 | |
1017 | void call(Label& L, relocInfo::relocType rtype); |
1018 | void call(Register reg); // push pc; pc <- reg |
1019 | void call(Address adr); // push pc; pc <- adr |
1020 | |
1021 | void cdql(); |
1022 | |
1023 | void cdqq(); |
1024 | |
1025 | void cld(); |
1026 | |
1027 | void clflush(Address adr); |
1028 | |
1029 | void cmovl(Condition cc, Register dst, Register src); |
1030 | void cmovl(Condition cc, Register dst, Address src); |
1031 | |
1032 | void cmovq(Condition cc, Register dst, Register src); |
1033 | void cmovq(Condition cc, Register dst, Address src); |
1034 | |
1035 | |
1036 | void cmpb(Address dst, int imm8); |
1037 | |
1038 | void cmpl(Address dst, int32_t imm32); |
1039 | |
1040 | void cmpl(Register dst, int32_t imm32); |
1041 | void cmpl(Register dst, Register src); |
1042 | void cmpl(Register dst, Address src); |
1043 | |
1044 | void cmpq(Address dst, int32_t imm32); |
1045 | void cmpq(Address dst, Register src); |
1046 | |
1047 | void cmpq(Register dst, int32_t imm32); |
1048 | void cmpq(Register dst, Register src); |
1049 | void cmpq(Register dst, Address src); |
1050 | |
1051 | // these are dummies used to catch attempting to convert NULL to Register |
1052 | void cmpl(Register dst, void* junk); // dummy |
1053 | void cmpq(Register dst, void* junk); // dummy |
1054 | |
1055 | void cmpw(Address dst, int imm16); |
1056 | |
1057 | void cmpxchg8 (Address adr); |
1058 | |
1059 | void cmpxchgb(Register reg, Address adr); |
1060 | void cmpxchgl(Register reg, Address adr); |
1061 | |
1062 | void cmpxchgq(Register reg, Address adr); |
1063 | |
1064 | // Ordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS |
1065 | void comisd(XMMRegister dst, Address src); |
1066 | void comisd(XMMRegister dst, XMMRegister src); |
1067 | |
1068 | // Ordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS |
1069 | void comiss(XMMRegister dst, Address src); |
1070 | void comiss(XMMRegister dst, XMMRegister src); |
1071 | |
1072 | // Identify processor type and features |
1073 | void cpuid(); |
1074 | |
1075 | // CRC32C |
1076 | void crc32(Register crc, Register v, int8_t sizeInBytes); |
1077 | void crc32(Register crc, Address adr, int8_t sizeInBytes); |
1078 | |
1079 | // Convert Scalar Double-Precision Floating-Point Value to Scalar Single-Precision Floating-Point Value |
1080 | void cvtsd2ss(XMMRegister dst, XMMRegister src); |
1081 | void cvtsd2ss(XMMRegister dst, Address src); |
1082 | |
1083 | // Convert Doubleword Integer to Scalar Double-Precision Floating-Point Value |
1084 | void cvtsi2sdl(XMMRegister dst, Register src); |
1085 | void cvtsi2sdl(XMMRegister dst, Address src); |
1086 | void cvtsi2sdq(XMMRegister dst, Register src); |
1087 | void cvtsi2sdq(XMMRegister dst, Address src); |
1088 | |
1089 | // Convert Doubleword Integer to Scalar Single-Precision Floating-Point Value |
1090 | void cvtsi2ssl(XMMRegister dst, Register src); |
1091 | void cvtsi2ssl(XMMRegister dst, Address src); |
1092 | void cvtsi2ssq(XMMRegister dst, Register src); |
1093 | void cvtsi2ssq(XMMRegister dst, Address src); |
1094 | |
1095 | // Convert Packed Signed Doubleword Integers to Packed Double-Precision Floating-Point Value |
1096 | void cvtdq2pd(XMMRegister dst, XMMRegister src); |
1097 | |
1098 | // Convert Packed Signed Doubleword Integers to Packed Single-Precision Floating-Point Value |
1099 | void cvtdq2ps(XMMRegister dst, XMMRegister src); |
1100 | |
1101 | // Convert Scalar Single-Precision Floating-Point Value to Scalar Double-Precision Floating-Point Value |
1102 | void cvtss2sd(XMMRegister dst, XMMRegister src); |
1103 | void cvtss2sd(XMMRegister dst, Address src); |
1104 | |
1105 | // Convert with Truncation Scalar Double-Precision Floating-Point Value to Doubleword Integer |
1106 | void cvttsd2sil(Register dst, Address src); |
1107 | void cvttsd2sil(Register dst, XMMRegister src); |
1108 | void cvttsd2siq(Register dst, XMMRegister src); |
1109 | |
1110 | // Convert with Truncation Scalar Single-Precision Floating-Point Value to Doubleword Integer |
1111 | void cvttss2sil(Register dst, XMMRegister src); |
1112 | void cvttss2siq(Register dst, XMMRegister src); |
1113 | |
1114 | void cvttpd2dq(XMMRegister dst, XMMRegister src); |
1115 | |
1116 | //Abs of packed Integer values |
1117 | void pabsb(XMMRegister dst, XMMRegister src); |
1118 | void pabsw(XMMRegister dst, XMMRegister src); |
1119 | void pabsd(XMMRegister dst, XMMRegister src); |
1120 | void vpabsb(XMMRegister dst, XMMRegister src, int vector_len); |
1121 | void vpabsw(XMMRegister dst, XMMRegister src, int vector_len); |
1122 | void vpabsd(XMMRegister dst, XMMRegister src, int vector_len); |
1123 | void evpabsq(XMMRegister dst, XMMRegister src, int vector_len); |
1124 | |
1125 | // Divide Scalar Double-Precision Floating-Point Values |
1126 | void divsd(XMMRegister dst, Address src); |
1127 | void divsd(XMMRegister dst, XMMRegister src); |
1128 | |
1129 | // Divide Scalar Single-Precision Floating-Point Values |
1130 | void divss(XMMRegister dst, Address src); |
1131 | void divss(XMMRegister dst, XMMRegister src); |
1132 | |
1133 | void emms(); |
1134 | |
1135 | void fabs(); |
1136 | |
1137 | void fadd(int i); |
1138 | |
1139 | void fadd_d(Address src); |
1140 | void fadd_s(Address src); |
1141 | |
1142 | // "Alternate" versions of x87 instructions place result down in FPU |
1143 | // stack instead of on TOS |
1144 | |
1145 | void fadda(int i); // "alternate" fadd |
1146 | void faddp(int i = 1); |
1147 | |
1148 | void fchs(); |
1149 | |
1150 | void fcom(int i); |
1151 | |
1152 | void fcomp(int i = 1); |
1153 | void fcomp_d(Address src); |
1154 | void fcomp_s(Address src); |
1155 | |
1156 | void fcompp(); |
1157 | |
1158 | void fcos(); |
1159 | |
1160 | void fdecstp(); |
1161 | |
1162 | void fdiv(int i); |
1163 | void fdiv_d(Address src); |
1164 | void fdivr_s(Address src); |
1165 | void fdiva(int i); // "alternate" fdiv |
1166 | void fdivp(int i = 1); |
1167 | |
1168 | void fdivr(int i); |
1169 | void fdivr_d(Address src); |
1170 | void fdiv_s(Address src); |
1171 | |
1172 | void fdivra(int i); // "alternate" reversed fdiv |
1173 | |
1174 | void fdivrp(int i = 1); |
1175 | |
1176 | void ffree(int i = 0); |
1177 | |
1178 | void fild_d(Address adr); |
1179 | void fild_s(Address adr); |
1180 | |
1181 | void fincstp(); |
1182 | |
1183 | void finit(); |
1184 | |
1185 | void fist_s (Address adr); |
1186 | void fistp_d(Address adr); |
1187 | void fistp_s(Address adr); |
1188 | |
1189 | void fld1(); |
1190 | |
1191 | void fld_d(Address adr); |
1192 | void fld_s(Address adr); |
1193 | void fld_s(int index); |
1194 | void fld_x(Address adr); // extended-precision (80-bit) format |
1195 | |
1196 | void fldcw(Address src); |
1197 | |
1198 | void fldenv(Address src); |
1199 | |
1200 | void fldlg2(); |
1201 | |
1202 | void fldln2(); |
1203 | |
1204 | void fldz(); |
1205 | |
1206 | void flog(); |
1207 | void flog10(); |
1208 | |
1209 | void fmul(int i); |
1210 | |
1211 | void fmul_d(Address src); |
1212 | void fmul_s(Address src); |
1213 | |
1214 | void fmula(int i); // "alternate" fmul |
1215 | |
1216 | void fmulp(int i = 1); |
1217 | |
1218 | void fnsave(Address dst); |
1219 | |
1220 | void fnstcw(Address src); |
1221 | |
1222 | void fnstsw_ax(); |
1223 | |
1224 | void fprem(); |
1225 | void fprem1(); |
1226 | |
1227 | void frstor(Address src); |
1228 | |
1229 | void fsin(); |
1230 | |
1231 | void fsqrt(); |
1232 | |
1233 | void fst_d(Address adr); |
1234 | void fst_s(Address adr); |
1235 | |
1236 | void fstp_d(Address adr); |
1237 | void fstp_d(int index); |
1238 | void fstp_s(Address adr); |
1239 | void fstp_x(Address adr); // extended-precision (80-bit) format |
1240 | |
1241 | void fsub(int i); |
1242 | void fsub_d(Address src); |
1243 | void fsub_s(Address src); |
1244 | |
1245 | void fsuba(int i); // "alternate" fsub |
1246 | |
1247 | void fsubp(int i = 1); |
1248 | |
1249 | void fsubr(int i); |
1250 | void fsubr_d(Address src); |
1251 | void fsubr_s(Address src); |
1252 | |
1253 | void fsubra(int i); // "alternate" reversed fsub |
1254 | |
1255 | void fsubrp(int i = 1); |
1256 | |
1257 | void ftan(); |
1258 | |
1259 | void ftst(); |
1260 | |
1261 | void fucomi(int i = 1); |
1262 | void fucomip(int i = 1); |
1263 | |
1264 | void fwait(); |
1265 | |
1266 | void fxch(int i = 1); |
1267 | |
1268 | void fxrstor(Address src); |
1269 | void xrstor(Address src); |
1270 | |
1271 | void fxsave(Address dst); |
1272 | void xsave(Address dst); |
1273 | |
1274 | void fyl2x(); |
1275 | void frndint(); |
1276 | void f2xm1(); |
1277 | void fldl2e(); |
1278 | |
1279 | void hlt(); |
1280 | |
1281 | void idivl(Register src); |
1282 | void divl(Register src); // Unsigned division |
1283 | |
1284 | #ifdef _LP64 |
1285 | void idivq(Register src); |
1286 | #endif |
1287 | |
1288 | void imull(Register src); |
1289 | void imull(Register dst, Register src); |
1290 | void imull(Register dst, Register src, int value); |
1291 | void imull(Register dst, Address src); |
1292 | |
1293 | #ifdef _LP64 |
1294 | void imulq(Register dst, Register src); |
1295 | void imulq(Register dst, Register src, int value); |
1296 | void imulq(Register dst, Address src); |
1297 | #endif |
1298 | |
1299 | // jcc is the generic conditional branch generator to run- |
1300 | // time routines, jcc is used for branches to labels. jcc |
1301 | // takes a branch opcode (cc) and a label (L) and generates |
1302 | // either a backward branch or a forward branch and links it |
1303 | // to the label fixup chain. Usage: |
1304 | // |
1305 | // Label L; // unbound label |
1306 | // jcc(cc, L); // forward branch to unbound label |
1307 | // bind(L); // bind label to the current pc |
1308 | // jcc(cc, L); // backward branch to bound label |
1309 | // bind(L); // illegal: a label may be bound only once |
1310 | // |
1311 | // Note: The same Label can be used for forward and backward branches |
1312 | // but it may be bound only once. |
1313 | |
1314 | void jcc(Condition cc, Label& L, bool maybe_short = true); |
1315 | |
1316 | // Conditional jump to a 8-bit offset to L. |
1317 | // WARNING: be very careful using this for forward jumps. If the label is |
1318 | // not bound within an 8-bit offset of this instruction, a run-time error |
1319 | // will occur. |
1320 | |
1321 | // Use macro to record file and line number. |
1322 | #define jccb(cc, L) jccb_0(cc, L, __FILE__, __LINE__) |
1323 | |
1324 | void jccb_0(Condition cc, Label& L, const char* file, int line); |
1325 | |
1326 | void jmp(Address entry); // pc <- entry |
1327 | |
1328 | // Label operations & relative jumps (PPUM Appendix D) |
1329 | void jmp(Label& L, bool maybe_short = true); // unconditional jump to L |
1330 | |
1331 | void jmp(Register entry); // pc <- entry |
1332 | |
1333 | // Unconditional 8-bit offset jump to L. |
1334 | // WARNING: be very careful using this for forward jumps. If the label is |
1335 | // not bound within an 8-bit offset of this instruction, a run-time error |
1336 | // will occur. |
1337 | |
1338 | // Use macro to record file and line number. |
1339 | #define jmpb(L) jmpb_0(L, __FILE__, __LINE__) |
1340 | |
1341 | void jmpb_0(Label& L, const char* file, int line); |
1342 | |
1343 | void ldmxcsr( Address src ); |
1344 | |
1345 | void leal(Register dst, Address src); |
1346 | |
1347 | void leaq(Register dst, Address src); |
1348 | |
1349 | void lfence(); |
1350 | |
1351 | void lock(); |
1352 | |
1353 | void lzcntl(Register dst, Register src); |
1354 | |
1355 | #ifdef _LP64 |
1356 | void lzcntq(Register dst, Register src); |
1357 | #endif |
1358 | |
1359 | enum Membar_mask_bits { |
1360 | StoreStore = 1 << 3, |
1361 | LoadStore = 1 << 2, |
1362 | StoreLoad = 1 << 1, |
1363 | LoadLoad = 1 << 0 |
1364 | }; |
1365 | |
1366 | // Serializes memory and blows flags |
1367 | void membar(Membar_mask_bits order_constraint) { |
1368 | // We only have to handle StoreLoad |
1369 | if (order_constraint & StoreLoad) { |
1370 | // All usable chips support "locked" instructions which suffice |
1371 | // as barriers, and are much faster than the alternative of |
1372 | // using cpuid instruction. We use here a locked add [esp-C],0. |
1373 | // This is conveniently otherwise a no-op except for blowing |
1374 | // flags, and introducing a false dependency on target memory |
1375 | // location. We can't do anything with flags, but we can avoid |
1376 | // memory dependencies in the current method by locked-adding |
1377 | // somewhere else on the stack. Doing [esp+C] will collide with |
1378 | // something on stack in current method, hence we go for [esp-C]. |
1379 | // It is convenient since it is almost always in data cache, for |
1380 | // any small C. We need to step back from SP to avoid data |
1381 | // dependencies with other things on below SP (callee-saves, for |
1382 | // example). Without a clear way to figure out the minimal safe |
1383 | // distance from SP, it makes sense to step back the complete |
1384 | // cache line, as this will also avoid possible second-order effects |
1385 | // with locked ops against the cache line. Our choice of offset |
1386 | // is bounded by x86 operand encoding, which should stay within |
1387 | // [-128; +127] to have the 8-byte displacement encoding. |
1388 | // |
1389 | // Any change to this code may need to revisit other places in |
1390 | // the code where this idiom is used, in particular the |
1391 | // orderAccess code. |
1392 | |
1393 | int offset = -VM_Version::L1_line_size(); |
1394 | if (offset < -128) { |
1395 | offset = -128; |
1396 | } |
1397 | |
1398 | lock(); |
1399 | addl(Address(rsp, offset), 0);// Assert the lock# signal here |
1400 | } |
1401 | } |
1402 | |
1403 | void mfence(); |
1404 | |
1405 | // Moves |
1406 | |
1407 | void mov64(Register dst, int64_t imm64); |
1408 | |
1409 | void movb(Address dst, Register src); |
1410 | void movb(Address dst, int imm8); |
1411 | void movb(Register dst, Address src); |
1412 | |
1413 | void movddup(XMMRegister dst, XMMRegister src); |
1414 | |
1415 | void kmovbl(KRegister dst, Register src); |
1416 | void kmovbl(Register dst, KRegister src); |
1417 | void kmovwl(KRegister dst, Register src); |
1418 | void kmovwl(KRegister dst, Address src); |
1419 | void kmovwl(Register dst, KRegister src); |
1420 | void kmovdl(KRegister dst, Register src); |
1421 | void kmovdl(Register dst, KRegister src); |
1422 | void kmovql(KRegister dst, KRegister src); |
1423 | void kmovql(Address dst, KRegister src); |
1424 | void kmovql(KRegister dst, Address src); |
1425 | void kmovql(KRegister dst, Register src); |
1426 | void kmovql(Register dst, KRegister src); |
1427 | |
1428 | void knotwl(KRegister dst, KRegister src); |
1429 | |
1430 | void kortestbl(KRegister dst, KRegister src); |
1431 | void kortestwl(KRegister dst, KRegister src); |
1432 | void kortestdl(KRegister dst, KRegister src); |
1433 | void kortestql(KRegister dst, KRegister src); |
1434 | |
1435 | void ktestq(KRegister src1, KRegister src2); |
1436 | void ktestd(KRegister src1, KRegister src2); |
1437 | |
1438 | void ktestql(KRegister dst, KRegister src); |
1439 | |
1440 | void movdl(XMMRegister dst, Register src); |
1441 | void movdl(Register dst, XMMRegister src); |
1442 | void movdl(XMMRegister dst, Address src); |
1443 | void movdl(Address dst, XMMRegister src); |
1444 | |
1445 | // Move Double Quadword |
1446 | void movdq(XMMRegister dst, Register src); |
1447 | void movdq(Register dst, XMMRegister src); |
1448 | |
1449 | // Move Aligned Double Quadword |
1450 | void movdqa(XMMRegister dst, XMMRegister src); |
1451 | void movdqa(XMMRegister dst, Address src); |
1452 | |
1453 | // Move Unaligned Double Quadword |
1454 | void movdqu(Address dst, XMMRegister src); |
1455 | void movdqu(XMMRegister dst, Address src); |
1456 | void movdqu(XMMRegister dst, XMMRegister src); |
1457 | |
1458 | // Move Unaligned 256bit Vector |
1459 | void vmovdqu(Address dst, XMMRegister src); |
1460 | void vmovdqu(XMMRegister dst, Address src); |
1461 | void vmovdqu(XMMRegister dst, XMMRegister src); |
1462 | |
1463 | // Move Unaligned 512bit Vector |
1464 | void evmovdqub(Address dst, XMMRegister src, int vector_len); |
1465 | void evmovdqub(XMMRegister dst, Address src, int vector_len); |
1466 | void evmovdqub(XMMRegister dst, XMMRegister src, int vector_len); |
1467 | void evmovdqub(XMMRegister dst, KRegister mask, Address src, int vector_len); |
1468 | void evmovdquw(Address dst, XMMRegister src, int vector_len); |
1469 | void evmovdquw(Address dst, KRegister mask, XMMRegister src, int vector_len); |
1470 | void evmovdquw(XMMRegister dst, Address src, int vector_len); |
1471 | void evmovdquw(XMMRegister dst, KRegister mask, Address src, int vector_len); |
1472 | void evmovdqul(Address dst, XMMRegister src, int vector_len); |
1473 | void evmovdqul(XMMRegister dst, Address src, int vector_len); |
1474 | void evmovdqul(XMMRegister dst, XMMRegister src, int vector_len); |
1475 | void evmovdquq(Address dst, XMMRegister src, int vector_len); |
1476 | void evmovdquq(XMMRegister dst, Address src, int vector_len); |
1477 | void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len); |
1478 | |
1479 | // Move lower 64bit to high 64bit in 128bit register |
1480 | void movlhps(XMMRegister dst, XMMRegister src); |
1481 | |
1482 | void movl(Register dst, int32_t imm32); |
1483 | void movl(Address dst, int32_t imm32); |
1484 | void movl(Register dst, Register src); |
1485 | void movl(Register dst, Address src); |
1486 | void movl(Address dst, Register src); |
1487 | |
1488 | // These dummies prevent using movl from converting a zero (like NULL) into Register |
1489 | // by giving the compiler two choices it can't resolve |
1490 | |
1491 | void movl(Address dst, void* junk); |
1492 | void movl(Register dst, void* junk); |
1493 | |
1494 | #ifdef _LP64 |
1495 | void movq(Register dst, Register src); |
1496 | void movq(Register dst, Address src); |
1497 | void movq(Address dst, Register src); |
1498 | #endif |
1499 | |
1500 | void movq(Address dst, MMXRegister src ); |
1501 | void movq(MMXRegister dst, Address src ); |
1502 | |
1503 | #ifdef _LP64 |
1504 | // These dummies prevent using movq from converting a zero (like NULL) into Register |
1505 | // by giving the compiler two choices it can't resolve |
1506 | |
1507 | void movq(Address dst, void* dummy); |
1508 | void movq(Register dst, void* dummy); |
1509 | #endif |
1510 | |
1511 | // Move Quadword |
1512 | void movq(Address dst, XMMRegister src); |
1513 | void movq(XMMRegister dst, Address src); |
1514 | |
1515 | void movsbl(Register dst, Address src); |
1516 | void movsbl(Register dst, Register src); |
1517 | |
1518 | #ifdef _LP64 |
1519 | void movsbq(Register dst, Address src); |
1520 | void movsbq(Register dst, Register src); |
1521 | |
1522 | // Move signed 32bit immediate to 64bit extending sign |
1523 | void movslq(Address dst, int32_t imm64); |
1524 | void movslq(Register dst, int32_t imm64); |
1525 | |
1526 | void movslq(Register dst, Address src); |
1527 | void movslq(Register dst, Register src); |
1528 | void movslq(Register dst, void* src); // Dummy declaration to cause NULL to be ambiguous |
1529 | #endif |
1530 | |
1531 | void movswl(Register dst, Address src); |
1532 | void movswl(Register dst, Register src); |
1533 | |
1534 | #ifdef _LP64 |
1535 | void movswq(Register dst, Address src); |
1536 | void movswq(Register dst, Register src); |
1537 | #endif |
1538 | |
1539 | void movw(Address dst, int imm16); |
1540 | void movw(Register dst, Address src); |
1541 | void movw(Address dst, Register src); |
1542 | |
1543 | void movzbl(Register dst, Address src); |
1544 | void movzbl(Register dst, Register src); |
1545 | |
1546 | #ifdef _LP64 |
1547 | void movzbq(Register dst, Address src); |
1548 | void movzbq(Register dst, Register src); |
1549 | #endif |
1550 | |
1551 | void movzwl(Register dst, Address src); |
1552 | void movzwl(Register dst, Register src); |
1553 | |
1554 | #ifdef _LP64 |
1555 | void movzwq(Register dst, Address src); |
1556 | void movzwq(Register dst, Register src); |
1557 | #endif |
1558 | |
1559 | // Unsigned multiply with RAX destination register |
1560 | void mull(Address src); |
1561 | void mull(Register src); |
1562 | |
1563 | #ifdef _LP64 |
1564 | void mulq(Address src); |
1565 | void mulq(Register src); |
1566 | void mulxq(Register dst1, Register dst2, Register src); |
1567 | #endif |
1568 | |
1569 | // Multiply Scalar Double-Precision Floating-Point Values |
1570 | void mulsd(XMMRegister dst, Address src); |
1571 | void mulsd(XMMRegister dst, XMMRegister src); |
1572 | |
1573 | // Multiply Scalar Single-Precision Floating-Point Values |
1574 | void mulss(XMMRegister dst, Address src); |
1575 | void mulss(XMMRegister dst, XMMRegister src); |
1576 | |
1577 | void negl(Register dst); |
1578 | |
1579 | #ifdef _LP64 |
1580 | void negq(Register dst); |
1581 | #endif |
1582 | |
1583 | void nop(int i = 1); |
1584 | |
1585 | void notl(Register dst); |
1586 | |
1587 | #ifdef _LP64 |
1588 | void notq(Register dst); |
1589 | #endif |
1590 | |
1591 | void orl(Address dst, int32_t imm32); |
1592 | void orl(Register dst, int32_t imm32); |
1593 | void orl(Register dst, Address src); |
1594 | void orl(Register dst, Register src); |
1595 | void orl(Address dst, Register src); |
1596 | |
1597 | void orb(Address dst, int imm8); |
1598 | |
1599 | void orq(Address dst, int32_t imm32); |
1600 | void orq(Register dst, int32_t imm32); |
1601 | void orq(Register dst, Address src); |
1602 | void orq(Register dst, Register src); |
1603 | |
1604 | // Pack with unsigned saturation |
1605 | void packuswb(XMMRegister dst, XMMRegister src); |
1606 | void packuswb(XMMRegister dst, Address src); |
1607 | void vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1608 | |
1609 | // Pemutation of 64bit words |
1610 | void vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len); |
1611 | void vpermq(XMMRegister dst, XMMRegister src, int imm8); |
1612 | void vpermq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1613 | void vperm2i128(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8); |
1614 | void vperm2f128(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8); |
1615 | void evpermi2q(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1616 | |
1617 | void pause(); |
1618 | |
1619 | // Undefined Instruction |
1620 | void ud2(); |
1621 | |
1622 | // SSE4.2 string instructions |
1623 | void pcmpestri(XMMRegister xmm1, XMMRegister xmm2, int imm8); |
1624 | void pcmpestri(XMMRegister xmm1, Address src, int imm8); |
1625 | |
1626 | void pcmpeqb(XMMRegister dst, XMMRegister src); |
1627 | void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1628 | void evpcmpeqb(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len); |
1629 | void evpcmpeqb(KRegister kdst, XMMRegister nds, Address src, int vector_len); |
1630 | void evpcmpeqb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len); |
1631 | |
1632 | void evpcmpgtb(KRegister kdst, XMMRegister nds, Address src, int vector_len); |
1633 | void evpcmpgtb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len); |
1634 | |
1635 | void evpcmpuw(KRegister kdst, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len); |
1636 | void evpcmpuw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, ComparisonPredicate of, int vector_len); |
1637 | void evpcmpuw(KRegister kdst, XMMRegister nds, Address src, ComparisonPredicate vcc, int vector_len); |
1638 | |
1639 | void pcmpeqw(XMMRegister dst, XMMRegister src); |
1640 | void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1641 | void evpcmpeqw(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len); |
1642 | void evpcmpeqw(KRegister kdst, XMMRegister nds, Address src, int vector_len); |
1643 | |
1644 | void pcmpeqd(XMMRegister dst, XMMRegister src); |
1645 | void vpcmpeqd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1646 | void evpcmpeqd(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len); |
1647 | void evpcmpeqd(KRegister kdst, XMMRegister nds, Address src, int vector_len); |
1648 | |
1649 | void pcmpeqq(XMMRegister dst, XMMRegister src); |
1650 | void vpcmpeqq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1651 | void evpcmpeqq(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len); |
1652 | void evpcmpeqq(KRegister kdst, XMMRegister nds, Address src, int vector_len); |
1653 | |
1654 | void pmovmskb(Register dst, XMMRegister src); |
1655 | void vpmovmskb(Register dst, XMMRegister src); |
1656 | |
1657 | // SSE 4.1 extract |
1658 | void pextrd(Register dst, XMMRegister src, int imm8); |
1659 | void pextrq(Register dst, XMMRegister src, int imm8); |
1660 | void pextrd(Address dst, XMMRegister src, int imm8); |
1661 | void pextrq(Address dst, XMMRegister src, int imm8); |
1662 | void pextrb(Address dst, XMMRegister src, int imm8); |
1663 | // SSE 2 extract |
1664 | void pextrw(Register dst, XMMRegister src, int imm8); |
1665 | void pextrw(Address dst, XMMRegister src, int imm8); |
1666 | |
1667 | // SSE 4.1 insert |
1668 | void pinsrd(XMMRegister dst, Register src, int imm8); |
1669 | void pinsrq(XMMRegister dst, Register src, int imm8); |
1670 | void pinsrd(XMMRegister dst, Address src, int imm8); |
1671 | void pinsrq(XMMRegister dst, Address src, int imm8); |
1672 | void pinsrb(XMMRegister dst, Address src, int imm8); |
1673 | // SSE 2 insert |
1674 | void pinsrw(XMMRegister dst, Register src, int imm8); |
1675 | void pinsrw(XMMRegister dst, Address src, int imm8); |
1676 | |
1677 | // SSE4.1 packed move |
1678 | void pmovzxbw(XMMRegister dst, XMMRegister src); |
1679 | void pmovzxbw(XMMRegister dst, Address src); |
1680 | |
1681 | void vpmovzxbw( XMMRegister dst, Address src, int vector_len); |
1682 | void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len); |
1683 | void evpmovzxbw(XMMRegister dst, KRegister mask, Address src, int vector_len); |
1684 | |
1685 | void evpmovwb(Address dst, XMMRegister src, int vector_len); |
1686 | void evpmovwb(Address dst, KRegister mask, XMMRegister src, int vector_len); |
1687 | |
1688 | void vpmovzxwd(XMMRegister dst, XMMRegister src, int vector_len); |
1689 | |
1690 | void evpmovdb(Address dst, XMMRegister src, int vector_len); |
1691 | |
1692 | // Sign extend moves |
1693 | void pmovsxbw(XMMRegister dst, XMMRegister src); |
1694 | void vpmovsxbw(XMMRegister dst, XMMRegister src, int vector_len); |
1695 | |
1696 | // Multiply add |
1697 | void pmaddwd(XMMRegister dst, XMMRegister src); |
1698 | void vpmaddwd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1699 | // Multiply add accumulate |
1700 | void evpdpwssd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1701 | |
1702 | #ifndef _LP64 // no 32bit push/pop on amd64 |
1703 | void popl(Address dst); |
1704 | #endif |
1705 | |
1706 | #ifdef _LP64 |
1707 | void popq(Address dst); |
1708 | #endif |
1709 | |
1710 | void popcntl(Register dst, Address src); |
1711 | void popcntl(Register dst, Register src); |
1712 | |
1713 | void vpopcntd(XMMRegister dst, XMMRegister src, int vector_len); |
1714 | |
1715 | #ifdef _LP64 |
1716 | void popcntq(Register dst, Address src); |
1717 | void popcntq(Register dst, Register src); |
1718 | #endif |
1719 | |
1720 | // Prefetches (SSE, SSE2, 3DNOW only) |
1721 | |
1722 | void prefetchnta(Address src); |
1723 | void prefetchr(Address src); |
1724 | void prefetcht0(Address src); |
1725 | void prefetcht1(Address src); |
1726 | void prefetcht2(Address src); |
1727 | void prefetchw(Address src); |
1728 | |
1729 | // Shuffle Bytes |
1730 | void pshufb(XMMRegister dst, XMMRegister src); |
1731 | void pshufb(XMMRegister dst, Address src); |
1732 | void vpshufb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1733 | |
1734 | // Shuffle Packed Doublewords |
1735 | void pshufd(XMMRegister dst, XMMRegister src, int mode); |
1736 | void pshufd(XMMRegister dst, Address src, int mode); |
1737 | void vpshufd(XMMRegister dst, XMMRegister src, int mode, int vector_len); |
1738 | |
1739 | // Shuffle Packed Low Words |
1740 | void pshuflw(XMMRegister dst, XMMRegister src, int mode); |
1741 | void pshuflw(XMMRegister dst, Address src, int mode); |
1742 | |
1743 | // Shuffle packed values at 128 bit granularity |
1744 | void evshufi64x2(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len); |
1745 | |
1746 | // Shift Right by bytes Logical DoubleQuadword Immediate |
1747 | void psrldq(XMMRegister dst, int shift); |
1748 | // Shift Left by bytes Logical DoubleQuadword Immediate |
1749 | void pslldq(XMMRegister dst, int shift); |
1750 | |
1751 | // Logical Compare 128bit |
1752 | void ptest(XMMRegister dst, XMMRegister src); |
1753 | void ptest(XMMRegister dst, Address src); |
1754 | // Logical Compare 256bit |
1755 | void vptest(XMMRegister dst, XMMRegister src); |
1756 | void vptest(XMMRegister dst, Address src); |
1757 | |
1758 | // Interleave Low Bytes |
1759 | void punpcklbw(XMMRegister dst, XMMRegister src); |
1760 | void punpcklbw(XMMRegister dst, Address src); |
1761 | |
1762 | // Interleave Low Doublewords |
1763 | void punpckldq(XMMRegister dst, XMMRegister src); |
1764 | void punpckldq(XMMRegister dst, Address src); |
1765 | |
1766 | // Interleave Low Quadwords |
1767 | void punpcklqdq(XMMRegister dst, XMMRegister src); |
1768 | |
1769 | #ifndef _LP64 // no 32bit push/pop on amd64 |
1770 | void pushl(Address src); |
1771 | #endif |
1772 | |
1773 | void pushq(Address src); |
1774 | |
1775 | void rcll(Register dst, int imm8); |
1776 | |
1777 | void rclq(Register dst, int imm8); |
1778 | |
1779 | void rcrq(Register dst, int imm8); |
1780 | |
1781 | void rcpps(XMMRegister dst, XMMRegister src); |
1782 | |
1783 | void rcpss(XMMRegister dst, XMMRegister src); |
1784 | |
1785 | void rdtsc(); |
1786 | |
1787 | void ret(int imm16); |
1788 | |
1789 | #ifdef _LP64 |
1790 | void rorq(Register dst, int imm8); |
1791 | void rorxq(Register dst, Register src, int imm8); |
1792 | void rorxd(Register dst, Register src, int imm8); |
1793 | #endif |
1794 | |
1795 | void sahf(); |
1796 | |
1797 | void sarl(Register dst, int imm8); |
1798 | void sarl(Register dst); |
1799 | |
1800 | void sarq(Register dst, int imm8); |
1801 | void sarq(Register dst); |
1802 | |
1803 | void sbbl(Address dst, int32_t imm32); |
1804 | void sbbl(Register dst, int32_t imm32); |
1805 | void sbbl(Register dst, Address src); |
1806 | void sbbl(Register dst, Register src); |
1807 | |
1808 | void sbbq(Address dst, int32_t imm32); |
1809 | void sbbq(Register dst, int32_t imm32); |
1810 | void sbbq(Register dst, Address src); |
1811 | void sbbq(Register dst, Register src); |
1812 | |
1813 | void setb(Condition cc, Register dst); |
1814 | |
1815 | void palignr(XMMRegister dst, XMMRegister src, int imm8); |
1816 | void vpalignr(XMMRegister dst, XMMRegister src1, XMMRegister src2, int imm8, int vector_len); |
1817 | void evalignq(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8); |
1818 | |
1819 | void pblendw(XMMRegister dst, XMMRegister src, int imm8); |
1820 | |
1821 | void sha1rnds4(XMMRegister dst, XMMRegister src, int imm8); |
1822 | void sha1nexte(XMMRegister dst, XMMRegister src); |
1823 | void sha1msg1(XMMRegister dst, XMMRegister src); |
1824 | void sha1msg2(XMMRegister dst, XMMRegister src); |
1825 | // xmm0 is implicit additional source to the following instruction. |
1826 | void sha256rnds2(XMMRegister dst, XMMRegister src); |
1827 | void sha256msg1(XMMRegister dst, XMMRegister src); |
1828 | void sha256msg2(XMMRegister dst, XMMRegister src); |
1829 | |
1830 | void shldl(Register dst, Register src); |
1831 | void shldl(Register dst, Register src, int8_t imm8); |
1832 | |
1833 | void shll(Register dst, int imm8); |
1834 | void shll(Register dst); |
1835 | |
1836 | void shlq(Register dst, int imm8); |
1837 | void shlq(Register dst); |
1838 | |
1839 | void shrdl(Register dst, Register src); |
1840 | |
1841 | void shrl(Register dst, int imm8); |
1842 | void shrl(Register dst); |
1843 | |
1844 | void shrq(Register dst, int imm8); |
1845 | void shrq(Register dst); |
1846 | |
1847 | void smovl(); // QQQ generic? |
1848 | |
1849 | // Compute Square Root of Scalar Double-Precision Floating-Point Value |
1850 | void sqrtsd(XMMRegister dst, Address src); |
1851 | void sqrtsd(XMMRegister dst, XMMRegister src); |
1852 | |
1853 | // Compute Square Root of Scalar Single-Precision Floating-Point Value |
1854 | void sqrtss(XMMRegister dst, Address src); |
1855 | void sqrtss(XMMRegister dst, XMMRegister src); |
1856 | |
1857 | void std(); |
1858 | |
1859 | void stmxcsr( Address dst ); |
1860 | |
1861 | void subl(Address dst, int32_t imm32); |
1862 | void subl(Address dst, Register src); |
1863 | void subl(Register dst, int32_t imm32); |
1864 | void subl(Register dst, Address src); |
1865 | void subl(Register dst, Register src); |
1866 | |
1867 | void subq(Address dst, int32_t imm32); |
1868 | void subq(Address dst, Register src); |
1869 | void subq(Register dst, int32_t imm32); |
1870 | void subq(Register dst, Address src); |
1871 | void subq(Register dst, Register src); |
1872 | |
1873 | // Force generation of a 4 byte immediate value even if it fits into 8bit |
1874 | void subl_imm32(Register dst, int32_t imm32); |
1875 | void subq_imm32(Register dst, int32_t imm32); |
1876 | |
1877 | // Subtract Scalar Double-Precision Floating-Point Values |
1878 | void subsd(XMMRegister dst, Address src); |
1879 | void subsd(XMMRegister dst, XMMRegister src); |
1880 | |
1881 | // Subtract Scalar Single-Precision Floating-Point Values |
1882 | void subss(XMMRegister dst, Address src); |
1883 | void subss(XMMRegister dst, XMMRegister src); |
1884 | |
1885 | void testb(Register dst, int imm8); |
1886 | void testb(Address dst, int imm8); |
1887 | |
1888 | void testl(Register dst, int32_t imm32); |
1889 | void testl(Register dst, Register src); |
1890 | void testl(Register dst, Address src); |
1891 | |
1892 | void testq(Register dst, int32_t imm32); |
1893 | void testq(Register dst, Register src); |
1894 | void testq(Register dst, Address src); |
1895 | |
1896 | // BMI - count trailing zeros |
1897 | void tzcntl(Register dst, Register src); |
1898 | void tzcntq(Register dst, Register src); |
1899 | |
1900 | // Unordered Compare Scalar Double-Precision Floating-Point Values and set EFLAGS |
1901 | void ucomisd(XMMRegister dst, Address src); |
1902 | void ucomisd(XMMRegister dst, XMMRegister src); |
1903 | |
1904 | // Unordered Compare Scalar Single-Precision Floating-Point Values and set EFLAGS |
1905 | void ucomiss(XMMRegister dst, Address src); |
1906 | void ucomiss(XMMRegister dst, XMMRegister src); |
1907 | |
1908 | void xabort(int8_t imm8); |
1909 | |
1910 | void xaddb(Address dst, Register src); |
1911 | void xaddw(Address dst, Register src); |
1912 | void xaddl(Address dst, Register src); |
1913 | void xaddq(Address dst, Register src); |
1914 | |
1915 | void xbegin(Label& abort, relocInfo::relocType rtype = relocInfo::none); |
1916 | |
1917 | void xchgb(Register reg, Address adr); |
1918 | void xchgw(Register reg, Address adr); |
1919 | void xchgl(Register reg, Address adr); |
1920 | void xchgl(Register dst, Register src); |
1921 | |
1922 | void xchgq(Register reg, Address adr); |
1923 | void xchgq(Register dst, Register src); |
1924 | |
1925 | void xend(); |
1926 | |
1927 | // Get Value of Extended Control Register |
1928 | void xgetbv(); |
1929 | |
1930 | void xorl(Register dst, int32_t imm32); |
1931 | void xorl(Register dst, Address src); |
1932 | void xorl(Register dst, Register src); |
1933 | |
1934 | void xorb(Register dst, Address src); |
1935 | |
1936 | void xorq(Register dst, Address src); |
1937 | void xorq(Register dst, Register src); |
1938 | |
1939 | void set_byte_if_not_zero(Register dst); // sets reg to 1 if not zero, otherwise 0 |
1940 | |
1941 | // AVX 3-operands scalar instructions (encoded with VEX prefix) |
1942 | |
1943 | void vaddsd(XMMRegister dst, XMMRegister nds, Address src); |
1944 | void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src); |
1945 | void vaddss(XMMRegister dst, XMMRegister nds, Address src); |
1946 | void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src); |
1947 | void vdivsd(XMMRegister dst, XMMRegister nds, Address src); |
1948 | void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src); |
1949 | void vdivss(XMMRegister dst, XMMRegister nds, Address src); |
1950 | void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src); |
1951 | void vfmadd231sd(XMMRegister dst, XMMRegister nds, XMMRegister src); |
1952 | void vfmadd231ss(XMMRegister dst, XMMRegister nds, XMMRegister src); |
1953 | void vmulsd(XMMRegister dst, XMMRegister nds, Address src); |
1954 | void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src); |
1955 | void vmulss(XMMRegister dst, XMMRegister nds, Address src); |
1956 | void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src); |
1957 | void vsubsd(XMMRegister dst, XMMRegister nds, Address src); |
1958 | void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src); |
1959 | void vsubss(XMMRegister dst, XMMRegister nds, Address src); |
1960 | void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src); |
1961 | |
1962 | void vmaxss(XMMRegister dst, XMMRegister nds, XMMRegister src); |
1963 | void vmaxsd(XMMRegister dst, XMMRegister nds, XMMRegister src); |
1964 | void vminss(XMMRegister dst, XMMRegister nds, XMMRegister src); |
1965 | void vminsd(XMMRegister dst, XMMRegister nds, XMMRegister src); |
1966 | |
1967 | void shlxl(Register dst, Register src1, Register src2); |
1968 | void shlxq(Register dst, Register src1, Register src2); |
1969 | |
1970 | //====================VECTOR ARITHMETIC===================================== |
1971 | |
1972 | // Add Packed Floating-Point Values |
1973 | void addpd(XMMRegister dst, XMMRegister src); |
1974 | void addpd(XMMRegister dst, Address src); |
1975 | void addps(XMMRegister dst, XMMRegister src); |
1976 | void vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1977 | void vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1978 | void vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
1979 | void vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
1980 | |
1981 | // Subtract Packed Floating-Point Values |
1982 | void subpd(XMMRegister dst, XMMRegister src); |
1983 | void subps(XMMRegister dst, XMMRegister src); |
1984 | void vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1985 | void vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1986 | void vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
1987 | void vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
1988 | |
1989 | // Multiply Packed Floating-Point Values |
1990 | void mulpd(XMMRegister dst, XMMRegister src); |
1991 | void mulpd(XMMRegister dst, Address src); |
1992 | void mulps(XMMRegister dst, XMMRegister src); |
1993 | void vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1994 | void vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1995 | void vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
1996 | void vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
1997 | |
1998 | void vfmadd231pd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
1999 | void vfmadd231ps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2000 | void vfmadd231pd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2001 | void vfmadd231ps(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2002 | |
2003 | // Divide Packed Floating-Point Values |
2004 | void divpd(XMMRegister dst, XMMRegister src); |
2005 | void divps(XMMRegister dst, XMMRegister src); |
2006 | void vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2007 | void vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2008 | void vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2009 | void vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2010 | |
2011 | // Sqrt Packed Floating-Point Values |
2012 | void vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len); |
2013 | void vsqrtpd(XMMRegister dst, Address src, int vector_len); |
2014 | void vsqrtps(XMMRegister dst, XMMRegister src, int vector_len); |
2015 | void vsqrtps(XMMRegister dst, Address src, int vector_len); |
2016 | |
2017 | // Bitwise Logical AND of Packed Floating-Point Values |
2018 | void andpd(XMMRegister dst, XMMRegister src); |
2019 | void andps(XMMRegister dst, XMMRegister src); |
2020 | void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2021 | void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2022 | void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2023 | void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2024 | |
2025 | void unpckhpd(XMMRegister dst, XMMRegister src); |
2026 | void unpcklpd(XMMRegister dst, XMMRegister src); |
2027 | |
2028 | // Bitwise Logical XOR of Packed Floating-Point Values |
2029 | void xorpd(XMMRegister dst, XMMRegister src); |
2030 | void xorps(XMMRegister dst, XMMRegister src); |
2031 | void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2032 | void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2033 | void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2034 | void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2035 | |
2036 | // Add horizontal packed integers |
2037 | void vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2038 | void vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2039 | void phaddw(XMMRegister dst, XMMRegister src); |
2040 | void phaddd(XMMRegister dst, XMMRegister src); |
2041 | |
2042 | // Add packed integers |
2043 | void paddb(XMMRegister dst, XMMRegister src); |
2044 | void paddw(XMMRegister dst, XMMRegister src); |
2045 | void paddd(XMMRegister dst, XMMRegister src); |
2046 | void paddd(XMMRegister dst, Address src); |
2047 | void paddq(XMMRegister dst, XMMRegister src); |
2048 | void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2049 | void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2050 | void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2051 | void vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2052 | void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2053 | void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2054 | void vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2055 | void vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2056 | |
2057 | // Sub packed integers |
2058 | void psubb(XMMRegister dst, XMMRegister src); |
2059 | void psubw(XMMRegister dst, XMMRegister src); |
2060 | void psubd(XMMRegister dst, XMMRegister src); |
2061 | void psubq(XMMRegister dst, XMMRegister src); |
2062 | void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2063 | void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2064 | void vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2065 | void vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2066 | void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2067 | void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2068 | void vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2069 | void vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2070 | |
2071 | // Multiply packed integers (only shorts and ints) |
2072 | void pmullw(XMMRegister dst, XMMRegister src); |
2073 | void pmulld(XMMRegister dst, XMMRegister src); |
2074 | void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2075 | void vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2076 | void vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2077 | void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2078 | void vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2079 | void vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2080 | |
2081 | // Shift left packed integers |
2082 | void psllw(XMMRegister dst, int shift); |
2083 | void pslld(XMMRegister dst, int shift); |
2084 | void psllq(XMMRegister dst, int shift); |
2085 | void psllw(XMMRegister dst, XMMRegister shift); |
2086 | void pslld(XMMRegister dst, XMMRegister shift); |
2087 | void psllq(XMMRegister dst, XMMRegister shift); |
2088 | void vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len); |
2089 | void vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len); |
2090 | void vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len); |
2091 | void vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); |
2092 | void vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); |
2093 | void vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); |
2094 | void vpslldq(XMMRegister dst, XMMRegister src, int shift, int vector_len); |
2095 | |
2096 | // Logical shift right packed integers |
2097 | void psrlw(XMMRegister dst, int shift); |
2098 | void psrld(XMMRegister dst, int shift); |
2099 | void psrlq(XMMRegister dst, int shift); |
2100 | void psrlw(XMMRegister dst, XMMRegister shift); |
2101 | void psrld(XMMRegister dst, XMMRegister shift); |
2102 | void psrlq(XMMRegister dst, XMMRegister shift); |
2103 | void vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len); |
2104 | void vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len); |
2105 | void vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len); |
2106 | void vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); |
2107 | void vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); |
2108 | void vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); |
2109 | void vpsrldq(XMMRegister dst, XMMRegister src, int shift, int vector_len); |
2110 | void evpsrlvw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2111 | void evpsllvw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2112 | |
2113 | // Arithmetic shift right packed integers (only shorts and ints, no instructions for longs) |
2114 | void psraw(XMMRegister dst, int shift); |
2115 | void psrad(XMMRegister dst, int shift); |
2116 | void psraw(XMMRegister dst, XMMRegister shift); |
2117 | void psrad(XMMRegister dst, XMMRegister shift); |
2118 | void vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len); |
2119 | void vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len); |
2120 | void vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); |
2121 | void vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); |
2122 | void evpsraq(XMMRegister dst, XMMRegister src, int shift, int vector_len); |
2123 | void evpsraq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len); |
2124 | |
2125 | // And packed integers |
2126 | void pand(XMMRegister dst, XMMRegister src); |
2127 | void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2128 | void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2129 | void vpandq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2130 | |
2131 | // Andn packed integers |
2132 | void pandn(XMMRegister dst, XMMRegister src); |
2133 | void vpandn(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2134 | |
2135 | // Or packed integers |
2136 | void por(XMMRegister dst, XMMRegister src); |
2137 | void vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2138 | void vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2139 | void vporq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2140 | |
2141 | // Xor packed integers |
2142 | void pxor(XMMRegister dst, XMMRegister src); |
2143 | void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2144 | void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2145 | void evpxorq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len); |
2146 | void evpxorq(XMMRegister dst, XMMRegister nds, Address src, int vector_len); |
2147 | |
2148 | |
2149 | // vinserti forms |
2150 | void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8); |
2151 | void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8); |
2152 | void vinserti32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8); |
2153 | void vinserti32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8); |
2154 | void vinserti64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8); |
2155 | |
2156 | // vinsertf forms |
2157 | void vinsertf128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8); |
2158 | void vinsertf128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8); |
2159 | void vinsertf32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8); |
2160 | void vinsertf32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8); |
2161 | void vinsertf64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8); |
2162 | void vinsertf64x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8); |
2163 | |
2164 | // vextracti forms |
2165 | void (XMMRegister dst, XMMRegister src, uint8_t imm8); |
2166 | void (Address dst, XMMRegister src, uint8_t imm8); |
2167 | void (XMMRegister dst, XMMRegister src, uint8_t imm8); |
2168 | void (Address dst, XMMRegister src, uint8_t imm8); |
2169 | void (XMMRegister dst, XMMRegister src, uint8_t imm8); |
2170 | void (XMMRegister dst, XMMRegister src, uint8_t imm8); |
2171 | void (Address dst, XMMRegister src, uint8_t imm8); |
2172 | |
2173 | // vextractf forms |
2174 | void (XMMRegister dst, XMMRegister src, uint8_t imm8); |
2175 | void (Address dst, XMMRegister src, uint8_t imm8); |
2176 | void (XMMRegister dst, XMMRegister src, uint8_t imm8); |
2177 | void (Address dst, XMMRegister src, uint8_t imm8); |
2178 | void (XMMRegister dst, XMMRegister src, uint8_t imm8); |
2179 | void (XMMRegister dst, XMMRegister src, uint8_t imm8); |
2180 | void (Address dst, XMMRegister src, uint8_t imm8); |
2181 | |
2182 | // xmm/mem sourced byte/word/dword/qword replicate |
2183 | void vpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len); |
2184 | void vpbroadcastb(XMMRegister dst, Address src, int vector_len); |
2185 | void vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len); |
2186 | void vpbroadcastw(XMMRegister dst, Address src, int vector_len); |
2187 | void vpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len); |
2188 | void vpbroadcastd(XMMRegister dst, Address src, int vector_len); |
2189 | void vpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len); |
2190 | void vpbroadcastq(XMMRegister dst, Address src, int vector_len); |
2191 | |
2192 | void evbroadcasti64x2(XMMRegister dst, XMMRegister src, int vector_len); |
2193 | void evbroadcasti64x2(XMMRegister dst, Address src, int vector_len); |
2194 | |
2195 | // scalar single/double precision replicate |
2196 | void vpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len); |
2197 | void vpbroadcastss(XMMRegister dst, Address src, int vector_len); |
2198 | void vpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len); |
2199 | void vpbroadcastsd(XMMRegister dst, Address src, int vector_len); |
2200 | |
2201 | // gpr sourced byte/word/dword/qword replicate |
2202 | void evpbroadcastb(XMMRegister dst, Register src, int vector_len); |
2203 | void evpbroadcastw(XMMRegister dst, Register src, int vector_len); |
2204 | void evpbroadcastd(XMMRegister dst, Register src, int vector_len); |
2205 | void evpbroadcastq(XMMRegister dst, Register src, int vector_len); |
2206 | |
2207 | void evpgatherdd(XMMRegister dst, KRegister k1, Address src, int vector_len); |
2208 | |
2209 | // Carry-Less Multiplication Quadword |
2210 | void pclmulqdq(XMMRegister dst, XMMRegister src, int mask); |
2211 | void vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask); |
2212 | void evpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask, int vector_len); |
2213 | // AVX instruction which is used to clear upper 128 bits of YMM registers and |
2214 | // to avoid transaction penalty between AVX and SSE states. There is no |
2215 | // penalty if legacy SSE instructions are encoded using VEX prefix because |
2216 | // they always clear upper 128 bits. It should be used before calling |
2217 | // runtime code and native libraries. |
2218 | void vzeroupper(); |
2219 | |
2220 | // AVX support for vectorized conditional move (float/double). The following two instructions used only coupled. |
2221 | void cmppd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len); |
2222 | void blendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len); |
2223 | void cmpps(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len); |
2224 | void blendvps(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len); |
2225 | void vpblendd(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len); |
2226 | |
2227 | protected: |
2228 | // Next instructions require address alignment 16 bytes SSE mode. |
2229 | // They should be called only from corresponding MacroAssembler instructions. |
2230 | void andpd(XMMRegister dst, Address src); |
2231 | void andps(XMMRegister dst, Address src); |
2232 | void xorpd(XMMRegister dst, Address src); |
2233 | void xorps(XMMRegister dst, Address src); |
2234 | |
2235 | }; |
2236 | |
2237 | // The Intel x86/Amd64 Assembler attributes: All fields enclosed here are to guide encoding level decisions. |
2238 | // Specific set functions are for specialized use, else defaults or whatever was supplied to object construction |
2239 | // are applied. |
2240 | class InstructionAttr { |
2241 | public: |
2242 | InstructionAttr( |
2243 | int vector_len, // The length of vector to be applied in encoding - for both AVX and EVEX |
2244 | bool rex_vex_w, // Width of data: if 32-bits or less, false, else if 64-bit or specially defined, true |
2245 | bool legacy_mode, // Details if either this instruction is conditionally encoded to AVX or earlier if true else possibly EVEX |
2246 | bool no_reg_mask, // when true, k0 is used when EVEX encoding is chosen, else embedded_opmask_register_specifier is used |
2247 | bool uses_vl) // This instruction may have legacy constraints based on vector length for EVEX |
2248 | : |
2249 | _avx_vector_len(vector_len), |
2250 | _rex_vex_w(rex_vex_w), |
2251 | _rex_vex_w_reverted(false), |
2252 | _legacy_mode(legacy_mode), |
2253 | _no_reg_mask(no_reg_mask), |
2254 | _uses_vl(uses_vl), |
2255 | _tuple_type(Assembler::EVEX_ETUP), |
2256 | _input_size_in_bits(Assembler::EVEX_NObit), |
2257 | _is_evex_instruction(false), |
2258 | _evex_encoding(0), |
2259 | _is_clear_context(true), |
2260 | _is_extended_context(false), |
2261 | _embedded_opmask_register_specifier(0), // hard code k0 |
2262 | _current_assembler(NULL) { |
2263 | if (UseAVX < 3) _legacy_mode = true; |
2264 | } |
2265 | |
2266 | ~InstructionAttr() { |
2267 | if (_current_assembler != NULL) { |
2268 | _current_assembler->clear_attributes(); |
2269 | } |
2270 | _current_assembler = NULL; |
2271 | } |
2272 | |
2273 | private: |
2274 | int _avx_vector_len; |
2275 | bool _rex_vex_w; |
2276 | bool _rex_vex_w_reverted; |
2277 | bool _legacy_mode; |
2278 | bool _no_reg_mask; |
2279 | bool _uses_vl; |
2280 | int _tuple_type; |
2281 | int _input_size_in_bits; |
2282 | bool _is_evex_instruction; |
2283 | int _evex_encoding; |
2284 | bool _is_clear_context; |
2285 | bool _is_extended_context; |
2286 | int _embedded_opmask_register_specifier; |
2287 | |
2288 | Assembler *_current_assembler; |
2289 | |
2290 | public: |
2291 | // query functions for field accessors |
2292 | int get_vector_len(void) const { return _avx_vector_len; } |
2293 | bool is_rex_vex_w(void) const { return _rex_vex_w; } |
2294 | bool is_rex_vex_w_reverted(void) { return _rex_vex_w_reverted; } |
2295 | bool is_legacy_mode(void) const { return _legacy_mode; } |
2296 | bool is_no_reg_mask(void) const { return _no_reg_mask; } |
2297 | bool uses_vl(void) const { return _uses_vl; } |
2298 | int get_tuple_type(void) const { return _tuple_type; } |
2299 | int get_input_size(void) const { return _input_size_in_bits; } |
2300 | int is_evex_instruction(void) const { return _is_evex_instruction; } |
2301 | int get_evex_encoding(void) const { return _evex_encoding; } |
2302 | bool is_clear_context(void) const { return _is_clear_context; } |
2303 | bool is_extended_context(void) const { return _is_extended_context; } |
2304 | int get_embedded_opmask_register_specifier(void) const { return _embedded_opmask_register_specifier; } |
2305 | |
2306 | // Set the vector len manually |
2307 | void set_vector_len(int vector_len) { _avx_vector_len = vector_len; } |
2308 | |
2309 | // Set revert rex_vex_w for avx encoding |
2310 | void set_rex_vex_w_reverted(void) { _rex_vex_w_reverted = true; } |
2311 | |
2312 | // Set rex_vex_w based on state |
2313 | void set_rex_vex_w(bool state) { _rex_vex_w = state; } |
2314 | |
2315 | // Set the instruction to be encoded in AVX mode |
2316 | void set_is_legacy_mode(void) { _legacy_mode = true; } |
2317 | |
2318 | // Set the current instuction to be encoded as an EVEX instuction |
2319 | void set_is_evex_instruction(void) { _is_evex_instruction = true; } |
2320 | |
2321 | // Internal encoding data used in compressed immediate offset programming |
2322 | void set_evex_encoding(int value) { _evex_encoding = value; } |
2323 | |
2324 | // Set the Evex.Z field to be used to clear all non directed XMM/YMM/ZMM components |
2325 | void reset_is_clear_context(void) { _is_clear_context = false; } |
2326 | |
2327 | // Map back to current asembler so that we can manage object level assocation |
2328 | void set_current_assembler(Assembler *current_assembler) { _current_assembler = current_assembler; } |
2329 | |
2330 | // Address modifiers used for compressed displacement calculation |
2331 | void set_address_attributes(int tuple_type, int input_size_in_bits) { |
2332 | if (VM_Version::supports_evex()) { |
2333 | _tuple_type = tuple_type; |
2334 | _input_size_in_bits = input_size_in_bits; |
2335 | } |
2336 | } |
2337 | |
2338 | // Set embedded opmask register specifier. |
2339 | void set_embedded_opmask_register_specifier(KRegister mask) { |
2340 | _embedded_opmask_register_specifier = (*mask).encoding() & 0x7; |
2341 | } |
2342 | |
2343 | }; |
2344 | |
2345 | #endif // CPU_X86_ASSEMBLER_X86_HPP |
2346 | |