| 1 | /* |
| 2 | * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #ifndef SHARE_ASM_ASSEMBLER_HPP |
| 26 | #define SHARE_ASM_ASSEMBLER_HPP |
| 27 | |
| 28 | #include "asm/codeBuffer.hpp" |
| 29 | #include "asm/register.hpp" |
| 30 | #include "code/oopRecorder.hpp" |
| 31 | #include "code/relocInfo.hpp" |
| 32 | #include "memory/allocation.hpp" |
| 33 | #include "runtime/vm_version.hpp" |
| 34 | #include "utilities/debug.hpp" |
| 35 | #include "utilities/growableArray.hpp" |
| 36 | #include "utilities/macros.hpp" |
| 37 | |
| 38 | // This file contains platform-independent assembler declarations. |
| 39 | |
| 40 | class MacroAssembler; |
| 41 | class AbstractAssembler; |
| 42 | class Label; |
| 43 | |
| 44 | /** |
| 45 | * Labels represent destinations for control transfer instructions. Such |
| 46 | * instructions can accept a Label as their target argument. A Label is |
| 47 | * bound to the current location in the code stream by calling the |
| 48 | * MacroAssembler's 'bind' method, which in turn calls the Label's 'bind' |
| 49 | * method. A Label may be referenced by an instruction before it's bound |
| 50 | * (i.e., 'forward referenced'). 'bind' stores the current code offset |
| 51 | * in the Label object. |
| 52 | * |
| 53 | * If an instruction references a bound Label, the offset field(s) within |
| 54 | * the instruction are immediately filled in based on the Label's code |
| 55 | * offset. If an instruction references an unbound label, that |
| 56 | * instruction is put on a list of instructions that must be patched |
| 57 | * (i.e., 'resolved') when the Label is bound. |
| 58 | * |
| 59 | * 'bind' will call the platform-specific 'patch_instruction' method to |
| 60 | * fill in the offset field(s) for each unresolved instruction (if there |
| 61 | * are any). 'patch_instruction' lives in one of the |
| 62 | * cpu/<arch>/vm/assembler_<arch>* files. |
| 63 | * |
| 64 | * Instead of using a linked list of unresolved instructions, a Label has |
| 65 | * an array of unresolved instruction code offsets. _patch_index |
| 66 | * contains the total number of forward references. If the Label's array |
| 67 | * overflows (i.e., _patch_index grows larger than the array size), a |
| 68 | * GrowableArray is allocated to hold the remaining offsets. (The cache |
| 69 | * size is 4 for now, which handles over 99.5% of the cases) |
| 70 | * |
| 71 | * Labels may only be used within a single CodeSection. If you need |
| 72 | * to create references between code sections, use explicit relocations. |
| 73 | */ |
| 74 | class Label { |
| 75 | private: |
| 76 | enum { PatchCacheSize = 4 debug_only( +4 ) }; |
| 77 | |
| 78 | // _loc encodes both the binding state (via its sign) |
| 79 | // and the binding locator (via its value) of a label. |
| 80 | // |
| 81 | // _loc >= 0 bound label, loc() encodes the target (jump) position |
| 82 | // _loc == -1 unbound label |
| 83 | int _loc; |
| 84 | |
| 85 | // References to instructions that jump to this unresolved label. |
| 86 | // These instructions need to be patched when the label is bound |
| 87 | // using the platform-specific patchInstruction() method. |
| 88 | // |
| 89 | // To avoid having to allocate from the C-heap each time, we provide |
| 90 | // a local cache and use the overflow only if we exceed the local cache |
| 91 | int _patches[PatchCacheSize]; |
| 92 | int _patch_index; |
| 93 | GrowableArray<int>* _patch_overflow; |
| 94 | |
| 95 | Label(const Label&) { ShouldNotReachHere(); } |
| 96 | protected: |
| 97 | |
| 98 | // The label will be bound to a location near its users. |
| 99 | bool _is_near; |
| 100 | |
| 101 | #ifdef ASSERT |
| 102 | // Sourcre file and line location of jump instruction |
| 103 | int _lines[PatchCacheSize]; |
| 104 | const char* _files[PatchCacheSize]; |
| 105 | #endif |
| 106 | public: |
| 107 | |
| 108 | /** |
| 109 | * After binding, be sure 'patch_instructions' is called later to link |
| 110 | */ |
| 111 | void bind_loc(int loc) { |
| 112 | assert(loc >= 0, "illegal locator" ); |
| 113 | assert(_loc == -1, "already bound" ); |
| 114 | _loc = loc; |
| 115 | } |
| 116 | void bind_loc(int pos, int sect) { bind_loc(CodeBuffer::locator(pos, sect)); } |
| 117 | |
| 118 | #ifndef PRODUCT |
| 119 | // Iterates over all unresolved instructions for printing |
| 120 | void print_instructions(MacroAssembler* masm) const; |
| 121 | #endif // PRODUCT |
| 122 | |
| 123 | /** |
| 124 | * Returns the position of the the Label in the code buffer |
| 125 | * The position is a 'locator', which encodes both offset and section. |
| 126 | */ |
| 127 | int loc() const { |
| 128 | assert(_loc >= 0, "unbound label" ); |
| 129 | return _loc; |
| 130 | } |
| 131 | int loc_pos() const { return CodeBuffer::locator_pos(loc()); } |
| 132 | int loc_sect() const { return CodeBuffer::locator_sect(loc()); } |
| 133 | |
| 134 | bool is_bound() const { return _loc >= 0; } |
| 135 | bool is_unbound() const { return _loc == -1 && _patch_index > 0; } |
| 136 | bool is_unused() const { return _loc == -1 && _patch_index == 0; } |
| 137 | |
| 138 | // The label will be bound to a location near its users. Users can |
| 139 | // optimize on this information, e.g. generate short branches. |
| 140 | bool is_near() { return _is_near; } |
| 141 | |
| 142 | /** |
| 143 | * Adds a reference to an unresolved displacement instruction to |
| 144 | * this unbound label |
| 145 | * |
| 146 | * @param cb the code buffer being patched |
| 147 | * @param branch_loc the locator of the branch instruction in the code buffer |
| 148 | */ |
| 149 | void add_patch_at(CodeBuffer* cb, int branch_loc, const char* file = NULL, int line = 0); |
| 150 | |
| 151 | /** |
| 152 | * Iterate over the list of patches, resolving the instructions |
| 153 | * Call patch_instruction on each 'branch_loc' value |
| 154 | */ |
| 155 | void patch_instructions(MacroAssembler* masm); |
| 156 | |
| 157 | void init() { |
| 158 | _loc = -1; |
| 159 | _patch_index = 0; |
| 160 | _patch_overflow = NULL; |
| 161 | _is_near = false; |
| 162 | } |
| 163 | |
| 164 | Label() { |
| 165 | init(); |
| 166 | } |
| 167 | |
| 168 | ~Label() { |
| 169 | assert(is_bound() || is_unused(), "Label was never bound to a location, but it was used as a jmp target" ); |
| 170 | } |
| 171 | |
| 172 | void reset() { |
| 173 | init(); //leave _patch_overflow because it points to CodeBuffer. |
| 174 | } |
| 175 | }; |
| 176 | |
| 177 | // A NearLabel must be bound to a location near its users. Users can |
| 178 | // optimize on this information, e.g. generate short branches. |
| 179 | class NearLabel : public Label { |
| 180 | public: |
| 181 | NearLabel() : Label() { _is_near = true; } |
| 182 | }; |
| 183 | |
| 184 | // A union type for code which has to assemble both constant and |
| 185 | // non-constant operands, when the distinction cannot be made |
| 186 | // statically. |
| 187 | class RegisterOrConstant { |
| 188 | private: |
| 189 | Register _r; |
| 190 | intptr_t _c; |
| 191 | |
| 192 | public: |
| 193 | RegisterOrConstant(): _r(noreg), _c(0) {} |
| 194 | RegisterOrConstant(Register r): _r(r), _c(0) {} |
| 195 | RegisterOrConstant(intptr_t c): _r(noreg), _c(c) {} |
| 196 | |
| 197 | Register as_register() const { assert(is_register(),"" ); return _r; } |
| 198 | intptr_t as_constant() const { assert(is_constant(),"" ); return _c; } |
| 199 | |
| 200 | Register register_or_noreg() const { return _r; } |
| 201 | intptr_t constant_or_zero() const { return _c; } |
| 202 | |
| 203 | bool is_register() const { return _r != noreg; } |
| 204 | bool is_constant() const { return _r == noreg; } |
| 205 | }; |
| 206 | |
| 207 | // The Abstract Assembler: Pure assembler doing NO optimizations on the |
| 208 | // instruction level; i.e., what you write is what you get. |
| 209 | // The Assembler is generating code into a CodeBuffer. |
| 210 | class AbstractAssembler : public ResourceObj { |
| 211 | friend class Label; |
| 212 | |
| 213 | protected: |
| 214 | CodeSection* _code_section; // section within the code buffer |
| 215 | OopRecorder* _oop_recorder; // support for relocInfo::oop_type |
| 216 | |
| 217 | public: |
| 218 | // Code emission & accessing |
| 219 | address addr_at(int pos) const { return code_section()->start() + pos; } |
| 220 | |
| 221 | protected: |
| 222 | // This routine is called with a label is used for an address. |
| 223 | // Labels and displacements truck in offsets, but target must return a PC. |
| 224 | address target(Label& L) { return code_section()->target(L, pc()); } |
| 225 | |
| 226 | bool is8bit(int x) const { return -0x80 <= x && x < 0x80; } |
| 227 | bool isByte(int x) const { return 0 <= x && x < 0x100; } |
| 228 | bool isShiftCount(int x) const { return 0 <= x && x < 32; } |
| 229 | |
| 230 | // Instruction boundaries (required when emitting relocatable values). |
| 231 | class InstructionMark: public StackObj { |
| 232 | private: |
| 233 | AbstractAssembler* _assm; |
| 234 | |
| 235 | public: |
| 236 | InstructionMark(AbstractAssembler* assm) : _assm(assm) { |
| 237 | assert(assm->inst_mark() == NULL, "overlapping instructions" ); |
| 238 | _assm->set_inst_mark(); |
| 239 | } |
| 240 | ~InstructionMark() { |
| 241 | _assm->clear_inst_mark(); |
| 242 | } |
| 243 | }; |
| 244 | friend class InstructionMark; |
| 245 | #ifdef ASSERT |
| 246 | // Make it return true on platforms which need to verify |
| 247 | // instruction boundaries for some operations. |
| 248 | static bool pd_check_instruction_mark(); |
| 249 | |
| 250 | // Add delta to short branch distance to verify that it still fit into imm8. |
| 251 | int _short_branch_delta; |
| 252 | |
| 253 | int short_branch_delta() const { return _short_branch_delta; } |
| 254 | void set_short_branch_delta() { _short_branch_delta = 32; } |
| 255 | void clear_short_branch_delta() { _short_branch_delta = 0; } |
| 256 | |
| 257 | class ShortBranchVerifier: public StackObj { |
| 258 | private: |
| 259 | AbstractAssembler* _assm; |
| 260 | |
| 261 | public: |
| 262 | ShortBranchVerifier(AbstractAssembler* assm) : _assm(assm) { |
| 263 | assert(assm->short_branch_delta() == 0, "overlapping instructions" ); |
| 264 | _assm->set_short_branch_delta(); |
| 265 | } |
| 266 | ~ShortBranchVerifier() { |
| 267 | _assm->clear_short_branch_delta(); |
| 268 | } |
| 269 | }; |
| 270 | #else |
| 271 | // Dummy in product. |
| 272 | class ShortBranchVerifier: public StackObj { |
| 273 | public: |
| 274 | ShortBranchVerifier(AbstractAssembler* assm) {} |
| 275 | }; |
| 276 | #endif |
| 277 | |
| 278 | public: |
| 279 | |
| 280 | // Creation |
| 281 | AbstractAssembler(CodeBuffer* code); |
| 282 | |
| 283 | // ensure buf contains all code (call this before using/copying the code) |
| 284 | void flush(); |
| 285 | |
| 286 | void emit_int8( int8_t x) { code_section()->emit_int8( x); } |
| 287 | void emit_int16( int16_t x) { code_section()->emit_int16( x); } |
| 288 | void emit_int32( int32_t x) { code_section()->emit_int32( x); } |
| 289 | void emit_int64( int64_t x) { code_section()->emit_int64( x); } |
| 290 | |
| 291 | void emit_float( jfloat x) { code_section()->emit_float( x); } |
| 292 | void emit_double( jdouble x) { code_section()->emit_double( x); } |
| 293 | void emit_address(address x) { code_section()->emit_address(x); } |
| 294 | |
| 295 | // min and max values for signed immediate ranges |
| 296 | static int min_simm(int nbits) { return -(intptr_t(1) << (nbits - 1)) ; } |
| 297 | static int max_simm(int nbits) { return (intptr_t(1) << (nbits - 1)) - 1; } |
| 298 | |
| 299 | // Define some: |
| 300 | static int min_simm10() { return min_simm(10); } |
| 301 | static int min_simm13() { return min_simm(13); } |
| 302 | static int min_simm16() { return min_simm(16); } |
| 303 | |
| 304 | // Test if x is within signed immediate range for nbits |
| 305 | static bool is_simm(intptr_t x, int nbits) { return min_simm(nbits) <= x && x <= max_simm(nbits); } |
| 306 | |
| 307 | // Define some: |
| 308 | static bool is_simm5( intptr_t x) { return is_simm(x, 5 ); } |
| 309 | static bool is_simm8( intptr_t x) { return is_simm(x, 8 ); } |
| 310 | static bool is_simm10(intptr_t x) { return is_simm(x, 10); } |
| 311 | static bool is_simm11(intptr_t x) { return is_simm(x, 11); } |
| 312 | static bool is_simm12(intptr_t x) { return is_simm(x, 12); } |
| 313 | static bool is_simm13(intptr_t x) { return is_simm(x, 13); } |
| 314 | static bool is_simm16(intptr_t x) { return is_simm(x, 16); } |
| 315 | static bool is_simm26(intptr_t x) { return is_simm(x, 26); } |
| 316 | static bool is_simm32(intptr_t x) { return is_simm(x, 32); } |
| 317 | |
| 318 | // Accessors |
| 319 | CodeSection* code_section() const { return _code_section; } |
| 320 | CodeBuffer* code() const { return code_section()->outer(); } |
| 321 | int sect() const { return code_section()->index(); } |
| 322 | address pc() const { return code_section()->end(); } |
| 323 | int offset() const { return code_section()->size(); } |
| 324 | int locator() const { return CodeBuffer::locator(offset(), sect()); } |
| 325 | |
| 326 | OopRecorder* oop_recorder() const { return _oop_recorder; } |
| 327 | void set_oop_recorder(OopRecorder* r) { _oop_recorder = r; } |
| 328 | |
| 329 | address inst_mark() const { return code_section()->mark(); } |
| 330 | void set_inst_mark() { code_section()->set_mark(); } |
| 331 | void clear_inst_mark() { code_section()->clear_mark(); } |
| 332 | |
| 333 | // Constants in code |
| 334 | void relocate(RelocationHolder const& rspec, int format = 0) { |
| 335 | assert(!pd_check_instruction_mark() |
| 336 | || inst_mark() == NULL || inst_mark() == code_section()->end(), |
| 337 | "call relocate() between instructions" ); |
| 338 | code_section()->relocate(code_section()->end(), rspec, format); |
| 339 | } |
| 340 | void relocate( relocInfo::relocType rtype, int format = 0) { |
| 341 | code_section()->relocate(code_section()->end(), rtype, format); |
| 342 | } |
| 343 | |
| 344 | static int code_fill_byte(); // used to pad out odd-sized code buffers |
| 345 | |
| 346 | // Associate a comment with the current offset. It will be printed |
| 347 | // along with the disassembly when printing nmethods. Currently |
| 348 | // only supported in the instruction section of the code buffer. |
| 349 | void (const char* ); |
| 350 | // Copy str to a buffer that has the same lifetime as the CodeBuffer |
| 351 | const char* code_string(const char* str); |
| 352 | |
| 353 | // Label functions |
| 354 | void bind(Label& L); // binds an unbound label L to the current code position |
| 355 | |
| 356 | // Move to a different section in the same code buffer. |
| 357 | void set_code_section(CodeSection* cs); |
| 358 | |
| 359 | // Inform assembler when generating stub code and relocation info |
| 360 | address start_a_stub(int required_space); |
| 361 | void end_a_stub(); |
| 362 | // Ditto for constants. |
| 363 | address start_a_const(int required_space, int required_align = sizeof(double)); |
| 364 | void end_a_const(CodeSection* cs); // Pass the codesection to continue in (insts or stubs?). |
| 365 | |
| 366 | // constants support |
| 367 | // |
| 368 | // We must remember the code section (insts or stubs) in c1 |
| 369 | // so we can reset to the proper section in end_a_const(). |
| 370 | address int_constant(jint c) { |
| 371 | CodeSection* c1 = _code_section; |
| 372 | address ptr = start_a_const(sizeof(c), sizeof(c)); |
| 373 | if (ptr != NULL) { |
| 374 | emit_int32(c); |
| 375 | end_a_const(c1); |
| 376 | } |
| 377 | return ptr; |
| 378 | } |
| 379 | address long_constant(jlong c) { |
| 380 | CodeSection* c1 = _code_section; |
| 381 | address ptr = start_a_const(sizeof(c), sizeof(c)); |
| 382 | if (ptr != NULL) { |
| 383 | emit_int64(c); |
| 384 | end_a_const(c1); |
| 385 | } |
| 386 | return ptr; |
| 387 | } |
| 388 | address double_constant(jdouble c) { |
| 389 | CodeSection* c1 = _code_section; |
| 390 | address ptr = start_a_const(sizeof(c), sizeof(c)); |
| 391 | if (ptr != NULL) { |
| 392 | emit_double(c); |
| 393 | end_a_const(c1); |
| 394 | } |
| 395 | return ptr; |
| 396 | } |
| 397 | address float_constant(jfloat c) { |
| 398 | CodeSection* c1 = _code_section; |
| 399 | address ptr = start_a_const(sizeof(c), sizeof(c)); |
| 400 | if (ptr != NULL) { |
| 401 | emit_float(c); |
| 402 | end_a_const(c1); |
| 403 | } |
| 404 | return ptr; |
| 405 | } |
| 406 | address address_constant(address c) { |
| 407 | CodeSection* c1 = _code_section; |
| 408 | address ptr = start_a_const(sizeof(c), sizeof(c)); |
| 409 | if (ptr != NULL) { |
| 410 | emit_address(c); |
| 411 | end_a_const(c1); |
| 412 | } |
| 413 | return ptr; |
| 414 | } |
| 415 | address address_constant(address c, RelocationHolder const& rspec) { |
| 416 | CodeSection* c1 = _code_section; |
| 417 | address ptr = start_a_const(sizeof(c), sizeof(c)); |
| 418 | if (ptr != NULL) { |
| 419 | relocate(rspec); |
| 420 | emit_address(c); |
| 421 | end_a_const(c1); |
| 422 | } |
| 423 | return ptr; |
| 424 | } |
| 425 | |
| 426 | // Bootstrapping aid to cope with delayed determination of constants. |
| 427 | // Returns a static address which will eventually contain the constant. |
| 428 | // The value zero (NULL) stands instead of a constant which is still uncomputed. |
| 429 | // Thus, the eventual value of the constant must not be zero. |
| 430 | // This is fine, since this is designed for embedding object field |
| 431 | // offsets in code which must be generated before the object class is loaded. |
| 432 | // Field offsets are never zero, since an object's header (mark word) |
| 433 | // is located at offset zero. |
| 434 | RegisterOrConstant delayed_value(int(*value_fn)(), Register tmp, int offset = 0); |
| 435 | RegisterOrConstant delayed_value(address(*value_fn)(), Register tmp, int offset = 0); |
| 436 | virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset) = 0; |
| 437 | // Last overloading is platform-dependent; look in assembler_<arch>.cpp. |
| 438 | static intptr_t* delayed_value_addr(int(*constant_fn)()); |
| 439 | static intptr_t* delayed_value_addr(address(*constant_fn)()); |
| 440 | static void update_delayed_values(); |
| 441 | |
| 442 | // Bang stack to trigger StackOverflowError at a safe location |
| 443 | // implementation delegates to machine-specific bang_stack_with_offset |
| 444 | void generate_stack_overflow_check( int frame_size_in_bytes ); |
| 445 | virtual void bang_stack_with_offset(int offset) = 0; |
| 446 | |
| 447 | |
| 448 | /** |
| 449 | * A platform-dependent method to patch a jump instruction that refers |
| 450 | * to this label. |
| 451 | * |
| 452 | * @param branch the location of the instruction to patch |
| 453 | * @param masm the assembler which generated the branch |
| 454 | */ |
| 455 | void pd_patch_instruction(address branch, address target, const char* file, int line); |
| 456 | |
| 457 | }; |
| 458 | |
| 459 | #include CPU_HEADER(assembler) |
| 460 | |
| 461 | #endif // SHARE_ASM_ASSEMBLER_HPP |
| 462 | |