| 1 | /* |
| 2 | * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #ifndef SHARE_GC_CMS_CONCURRENTMARKSWEEPGENERATION_INLINE_HPP |
| 26 | #define SHARE_GC_CMS_CONCURRENTMARKSWEEPGENERATION_INLINE_HPP |
| 27 | |
| 28 | #include "gc/cms/cmsHeap.hpp" |
| 29 | #include "gc/cms/cmsLockVerifier.hpp" |
| 30 | #include "gc/cms/compactibleFreeListSpace.inline.hpp" |
| 31 | #include "gc/cms/concurrentMarkSweepGeneration.hpp" |
| 32 | #include "gc/cms/concurrentMarkSweepThread.hpp" |
| 33 | #include "gc/cms/parNewGeneration.hpp" |
| 34 | #include "gc/shared/gcUtil.hpp" |
| 35 | #include "utilities/align.hpp" |
| 36 | #include "utilities/bitMap.inline.hpp" |
| 37 | |
| 38 | inline void CMSBitMap::clear_all() { |
| 39 | assert_locked(); |
| 40 | // CMS bitmaps are usually cover large memory regions |
| 41 | _bm.clear_large(); |
| 42 | return; |
| 43 | } |
| 44 | |
| 45 | inline size_t CMSBitMap::heapWordToOffset(HeapWord* addr) const { |
| 46 | return (pointer_delta(addr, _bmStartWord)) >> _shifter; |
| 47 | } |
| 48 | |
| 49 | inline HeapWord* CMSBitMap::offsetToHeapWord(size_t offset) const { |
| 50 | return _bmStartWord + (offset << _shifter); |
| 51 | } |
| 52 | |
| 53 | inline size_t CMSBitMap::heapWordDiffToOffsetDiff(size_t diff) const { |
| 54 | assert((diff & ((1 << _shifter) - 1)) == 0, "argument check" ); |
| 55 | return diff >> _shifter; |
| 56 | } |
| 57 | |
| 58 | inline void CMSBitMap::mark(HeapWord* addr) { |
| 59 | assert_locked(); |
| 60 | assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize), |
| 61 | "outside underlying space?" ); |
| 62 | _bm.set_bit(heapWordToOffset(addr)); |
| 63 | } |
| 64 | |
| 65 | inline bool CMSBitMap::par_mark(HeapWord* addr) { |
| 66 | assert_locked(); |
| 67 | assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize), |
| 68 | "outside underlying space?" ); |
| 69 | return _bm.par_at_put(heapWordToOffset(addr), true); |
| 70 | } |
| 71 | |
| 72 | inline void CMSBitMap::par_clear(HeapWord* addr) { |
| 73 | assert_locked(); |
| 74 | assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize), |
| 75 | "outside underlying space?" ); |
| 76 | _bm.par_at_put(heapWordToOffset(addr), false); |
| 77 | } |
| 78 | |
| 79 | inline void CMSBitMap::mark_range(MemRegion mr) { |
| 80 | NOT_PRODUCT(region_invariant(mr)); |
| 81 | // Range size is usually just 1 bit. |
| 82 | _bm.set_range(heapWordToOffset(mr.start()), heapWordToOffset(mr.end()), |
| 83 | BitMap::small_range); |
| 84 | } |
| 85 | |
| 86 | inline void CMSBitMap::clear_range(MemRegion mr) { |
| 87 | NOT_PRODUCT(region_invariant(mr)); |
| 88 | // Range size is usually just 1 bit. |
| 89 | _bm.clear_range(heapWordToOffset(mr.start()), heapWordToOffset(mr.end()), |
| 90 | BitMap::small_range); |
| 91 | } |
| 92 | |
| 93 | inline void CMSBitMap::par_mark_range(MemRegion mr) { |
| 94 | NOT_PRODUCT(region_invariant(mr)); |
| 95 | // Range size is usually just 1 bit. |
| 96 | _bm.par_set_range(heapWordToOffset(mr.start()), heapWordToOffset(mr.end()), |
| 97 | BitMap::small_range); |
| 98 | } |
| 99 | |
| 100 | inline void CMSBitMap::par_clear_range(MemRegion mr) { |
| 101 | NOT_PRODUCT(region_invariant(mr)); |
| 102 | // Range size is usually just 1 bit. |
| 103 | _bm.par_clear_range(heapWordToOffset(mr.start()), heapWordToOffset(mr.end()), |
| 104 | BitMap::small_range); |
| 105 | } |
| 106 | |
| 107 | inline void CMSBitMap::mark_large_range(MemRegion mr) { |
| 108 | NOT_PRODUCT(region_invariant(mr)); |
| 109 | // Range size must be greater than 32 bytes. |
| 110 | _bm.set_range(heapWordToOffset(mr.start()), heapWordToOffset(mr.end()), |
| 111 | BitMap::large_range); |
| 112 | } |
| 113 | |
| 114 | inline void CMSBitMap::clear_large_range(MemRegion mr) { |
| 115 | NOT_PRODUCT(region_invariant(mr)); |
| 116 | // Range size must be greater than 32 bytes. |
| 117 | _bm.clear_range(heapWordToOffset(mr.start()), heapWordToOffset(mr.end()), |
| 118 | BitMap::large_range); |
| 119 | } |
| 120 | |
| 121 | inline void CMSBitMap::par_mark_large_range(MemRegion mr) { |
| 122 | NOT_PRODUCT(region_invariant(mr)); |
| 123 | // Range size must be greater than 32 bytes. |
| 124 | _bm.par_set_range(heapWordToOffset(mr.start()), heapWordToOffset(mr.end()), |
| 125 | BitMap::large_range); |
| 126 | } |
| 127 | |
| 128 | inline void CMSBitMap::par_clear_large_range(MemRegion mr) { |
| 129 | NOT_PRODUCT(region_invariant(mr)); |
| 130 | // Range size must be greater than 32 bytes. |
| 131 | _bm.par_clear_range(heapWordToOffset(mr.start()), heapWordToOffset(mr.end()), |
| 132 | BitMap::large_range); |
| 133 | } |
| 134 | |
| 135 | // Starting at "addr" (inclusive) return a memory region |
| 136 | // corresponding to the first maximally contiguous marked ("1") region. |
| 137 | inline MemRegion CMSBitMap::getAndClearMarkedRegion(HeapWord* addr) { |
| 138 | return getAndClearMarkedRegion(addr, endWord()); |
| 139 | } |
| 140 | |
| 141 | // Starting at "start_addr" (inclusive) return a memory region |
| 142 | // corresponding to the first maximal contiguous marked ("1") region |
| 143 | // strictly less than end_addr. |
| 144 | inline MemRegion CMSBitMap::getAndClearMarkedRegion(HeapWord* start_addr, |
| 145 | HeapWord* end_addr) { |
| 146 | HeapWord *start, *end; |
| 147 | assert_locked(); |
| 148 | start = getNextMarkedWordAddress (start_addr, end_addr); |
| 149 | end = getNextUnmarkedWordAddress(start, end_addr); |
| 150 | assert(start <= end, "Consistency check" ); |
| 151 | MemRegion mr(start, end); |
| 152 | if (!mr.is_empty()) { |
| 153 | clear_range(mr); |
| 154 | } |
| 155 | return mr; |
| 156 | } |
| 157 | |
| 158 | inline bool CMSBitMap::isMarked(HeapWord* addr) const { |
| 159 | assert_locked(); |
| 160 | assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize), |
| 161 | "outside underlying space?" ); |
| 162 | return _bm.at(heapWordToOffset(addr)); |
| 163 | } |
| 164 | |
| 165 | // The same as isMarked() but without a lock check. |
| 166 | inline bool CMSBitMap::par_isMarked(HeapWord* addr) const { |
| 167 | assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize), |
| 168 | "outside underlying space?" ); |
| 169 | return _bm.at(heapWordToOffset(addr)); |
| 170 | } |
| 171 | |
| 172 | |
| 173 | inline bool CMSBitMap::isUnmarked(HeapWord* addr) const { |
| 174 | assert_locked(); |
| 175 | assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize), |
| 176 | "outside underlying space?" ); |
| 177 | return !_bm.at(heapWordToOffset(addr)); |
| 178 | } |
| 179 | |
| 180 | // Return the HeapWord address corresponding to next "1" bit |
| 181 | // (inclusive). |
| 182 | inline HeapWord* CMSBitMap::getNextMarkedWordAddress(HeapWord* addr) const { |
| 183 | return getNextMarkedWordAddress(addr, endWord()); |
| 184 | } |
| 185 | |
| 186 | // Return the least HeapWord address corresponding to next "1" bit |
| 187 | // starting at start_addr (inclusive) but strictly less than end_addr. |
| 188 | inline HeapWord* CMSBitMap::getNextMarkedWordAddress( |
| 189 | HeapWord* start_addr, HeapWord* end_addr) const { |
| 190 | assert_locked(); |
| 191 | size_t nextOffset = _bm.get_next_one_offset( |
| 192 | heapWordToOffset(start_addr), |
| 193 | heapWordToOffset(end_addr)); |
| 194 | HeapWord* nextAddr = offsetToHeapWord(nextOffset); |
| 195 | assert(nextAddr >= start_addr && |
| 196 | nextAddr <= end_addr, "get_next_one postcondition" ); |
| 197 | assert((nextAddr == end_addr) || |
| 198 | isMarked(nextAddr), "get_next_one postcondition" ); |
| 199 | return nextAddr; |
| 200 | } |
| 201 | |
| 202 | |
| 203 | // Return the HeapWord address corresponding to the next "0" bit |
| 204 | // (inclusive). |
| 205 | inline HeapWord* CMSBitMap::getNextUnmarkedWordAddress(HeapWord* addr) const { |
| 206 | return getNextUnmarkedWordAddress(addr, endWord()); |
| 207 | } |
| 208 | |
| 209 | // Return the HeapWord address corresponding to the next "0" bit |
| 210 | // (inclusive). |
| 211 | inline HeapWord* CMSBitMap::getNextUnmarkedWordAddress( |
| 212 | HeapWord* start_addr, HeapWord* end_addr) const { |
| 213 | assert_locked(); |
| 214 | size_t nextOffset = _bm.get_next_zero_offset( |
| 215 | heapWordToOffset(start_addr), |
| 216 | heapWordToOffset(end_addr)); |
| 217 | HeapWord* nextAddr = offsetToHeapWord(nextOffset); |
| 218 | assert(nextAddr >= start_addr && |
| 219 | nextAddr <= end_addr, "get_next_zero postcondition" ); |
| 220 | assert((nextAddr == end_addr) || |
| 221 | isUnmarked(nextAddr), "get_next_zero postcondition" ); |
| 222 | return nextAddr; |
| 223 | } |
| 224 | |
| 225 | inline bool CMSBitMap::isAllClear() const { |
| 226 | assert_locked(); |
| 227 | return getNextMarkedWordAddress(startWord()) >= endWord(); |
| 228 | } |
| 229 | |
| 230 | inline void CMSBitMap::iterate(BitMapClosure* cl, HeapWord* left, |
| 231 | HeapWord* right) { |
| 232 | assert_locked(); |
| 233 | left = MAX2(_bmStartWord, left); |
| 234 | right = MIN2(_bmStartWord + _bmWordSize, right); |
| 235 | if (right > left) { |
| 236 | _bm.iterate(cl, heapWordToOffset(left), heapWordToOffset(right)); |
| 237 | } |
| 238 | } |
| 239 | |
| 240 | inline void CMSCollector::save_sweep_limits() { |
| 241 | _cmsGen->save_sweep_limit(); |
| 242 | } |
| 243 | |
| 244 | inline bool CMSCollector::is_dead_obj(oop obj) const { |
| 245 | HeapWord* addr = (HeapWord*)obj; |
| 246 | assert((_cmsGen->cmsSpace()->is_in_reserved(addr) |
| 247 | && _cmsGen->cmsSpace()->block_is_obj(addr)), |
| 248 | "must be object" ); |
| 249 | return should_unload_classes() && |
| 250 | _collectorState == Sweeping && |
| 251 | !_markBitMap.isMarked(addr); |
| 252 | } |
| 253 | |
| 254 | inline bool CMSCollector::should_abort_preclean() const { |
| 255 | // We are in the midst of an "abortable preclean" and either |
| 256 | // scavenge is done or foreground GC wants to take over collection |
| 257 | return _collectorState == AbortablePreclean && |
| 258 | (_abort_preclean || _foregroundGCIsActive || |
| 259 | CMSHeap::heap()->incremental_collection_will_fail(true /* consult_young */)); |
| 260 | } |
| 261 | |
| 262 | inline size_t CMSCollector::get_eden_used() const { |
| 263 | return _young_gen->eden()->used(); |
| 264 | } |
| 265 | |
| 266 | inline size_t CMSCollector::get_eden_capacity() const { |
| 267 | return _young_gen->eden()->capacity(); |
| 268 | } |
| 269 | |
| 270 | inline bool CMSStats::valid() const { |
| 271 | return _valid_bits == _ALL_VALID; |
| 272 | } |
| 273 | |
| 274 | inline void CMSStats::record_gc0_begin() { |
| 275 | if (_gc0_begin_time.is_updated()) { |
| 276 | float last_gc0_period = _gc0_begin_time.seconds(); |
| 277 | _gc0_period = AdaptiveWeightedAverage::exp_avg(_gc0_period, |
| 278 | last_gc0_period, _gc0_alpha); |
| 279 | _gc0_alpha = _saved_alpha; |
| 280 | _valid_bits |= _GC0_VALID; |
| 281 | } |
| 282 | _cms_used_at_gc0_begin = _cms_gen->cmsSpace()->used(); |
| 283 | |
| 284 | _gc0_begin_time.update(); |
| 285 | } |
| 286 | |
| 287 | inline void CMSStats::record_gc0_end(size_t cms_gen_bytes_used) { |
| 288 | float last_gc0_duration = _gc0_begin_time.seconds(); |
| 289 | _gc0_duration = AdaptiveWeightedAverage::exp_avg(_gc0_duration, |
| 290 | last_gc0_duration, _gc0_alpha); |
| 291 | |
| 292 | // Amount promoted. |
| 293 | _cms_used_at_gc0_end = cms_gen_bytes_used; |
| 294 | |
| 295 | size_t promoted_bytes = 0; |
| 296 | if (_cms_used_at_gc0_end >= _cms_used_at_gc0_begin) { |
| 297 | promoted_bytes = _cms_used_at_gc0_end - _cms_used_at_gc0_begin; |
| 298 | } |
| 299 | |
| 300 | // If the young gen collection was skipped, then the |
| 301 | // number of promoted bytes will be 0 and adding it to the |
| 302 | // average will incorrectly lessen the average. It is, however, |
| 303 | // also possible that no promotion was needed. |
| 304 | // |
| 305 | // _gc0_promoted used to be calculated as |
| 306 | // _gc0_promoted = AdaptiveWeightedAverage::exp_avg(_gc0_promoted, |
| 307 | // promoted_bytes, _gc0_alpha); |
| 308 | _cms_gen->gc_stats()->avg_promoted()->sample(promoted_bytes); |
| 309 | _gc0_promoted = (size_t) _cms_gen->gc_stats()->avg_promoted()->average(); |
| 310 | |
| 311 | // Amount directly allocated. |
| 312 | size_t allocated_bytes = _cms_gen->direct_allocated_words() * HeapWordSize; |
| 313 | _cms_gen->reset_direct_allocated_words(); |
| 314 | _cms_allocated = AdaptiveWeightedAverage::exp_avg(_cms_allocated, |
| 315 | allocated_bytes, _gc0_alpha); |
| 316 | } |
| 317 | |
| 318 | inline void CMSStats::record_cms_begin() { |
| 319 | _cms_timer.stop(); |
| 320 | |
| 321 | // This is just an approximate value, but is good enough. |
| 322 | _cms_used_at_cms_begin = _cms_used_at_gc0_end; |
| 323 | |
| 324 | _cms_period = AdaptiveWeightedAverage::exp_avg((float)_cms_period, |
| 325 | (float) _cms_timer.seconds(), _cms_alpha); |
| 326 | _cms_begin_time.update(); |
| 327 | |
| 328 | _cms_timer.reset(); |
| 329 | _cms_timer.start(); |
| 330 | } |
| 331 | |
| 332 | inline void CMSStats::record_cms_end() { |
| 333 | _cms_timer.stop(); |
| 334 | |
| 335 | float cur_duration = _cms_timer.seconds(); |
| 336 | _cms_duration = AdaptiveWeightedAverage::exp_avg(_cms_duration, |
| 337 | cur_duration, _cms_alpha); |
| 338 | |
| 339 | _cms_end_time.update(); |
| 340 | _cms_alpha = _saved_alpha; |
| 341 | _allow_duty_cycle_reduction = true; |
| 342 | _valid_bits |= _CMS_VALID; |
| 343 | |
| 344 | _cms_timer.start(); |
| 345 | } |
| 346 | |
| 347 | inline double CMSStats::cms_time_since_begin() const { |
| 348 | return _cms_begin_time.seconds(); |
| 349 | } |
| 350 | |
| 351 | inline double CMSStats::cms_time_since_end() const { |
| 352 | return _cms_end_time.seconds(); |
| 353 | } |
| 354 | |
| 355 | inline double CMSStats::promotion_rate() const { |
| 356 | assert(valid(), "statistics not valid yet" ); |
| 357 | return gc0_promoted() / gc0_period(); |
| 358 | } |
| 359 | |
| 360 | inline double CMSStats::cms_allocation_rate() const { |
| 361 | assert(valid(), "statistics not valid yet" ); |
| 362 | return cms_allocated() / gc0_period(); |
| 363 | } |
| 364 | |
| 365 | inline double CMSStats::cms_consumption_rate() const { |
| 366 | assert(valid(), "statistics not valid yet" ); |
| 367 | return (gc0_promoted() + cms_allocated()) / gc0_period(); |
| 368 | } |
| 369 | |
| 370 | inline void ConcurrentMarkSweepGeneration::save_sweep_limit() { |
| 371 | cmsSpace()->save_sweep_limit(); |
| 372 | } |
| 373 | |
| 374 | inline MemRegion ConcurrentMarkSweepGeneration::used_region_at_save_marks() const { |
| 375 | return _cmsSpace->used_region_at_save_marks(); |
| 376 | } |
| 377 | |
| 378 | template <typename OopClosureType> |
| 379 | void ConcurrentMarkSweepGeneration::oop_since_save_marks_iterate(OopClosureType* cl) { |
| 380 | cl->set_generation(this); |
| 381 | cmsSpace()->oop_since_save_marks_iterate(cl); |
| 382 | cl->reset_generation(); |
| 383 | save_marks(); |
| 384 | } |
| 385 | |
| 386 | inline void MarkFromRootsClosure::do_yield_check() { |
| 387 | if (ConcurrentMarkSweepThread::should_yield() && |
| 388 | !_collector->foregroundGCIsActive() && |
| 389 | _yield) { |
| 390 | do_yield_work(); |
| 391 | } |
| 392 | } |
| 393 | |
| 394 | inline void ParMarkFromRootsClosure::do_yield_check() { |
| 395 | if (ConcurrentMarkSweepThread::should_yield() && |
| 396 | !_collector->foregroundGCIsActive()) { |
| 397 | do_yield_work(); |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | inline void PushOrMarkClosure::do_yield_check() { |
| 402 | _parent->do_yield_check(); |
| 403 | } |
| 404 | |
| 405 | inline void ParPushOrMarkClosure::do_yield_check() { |
| 406 | _parent->do_yield_check(); |
| 407 | } |
| 408 | |
| 409 | // Return value of "true" indicates that the on-going preclean |
| 410 | // should be aborted. |
| 411 | inline bool ScanMarkedObjectsAgainCarefullyClosure::do_yield_check() { |
| 412 | if (ConcurrentMarkSweepThread::should_yield() && |
| 413 | !_collector->foregroundGCIsActive() && |
| 414 | _yield) { |
| 415 | // Sample young gen size before and after yield |
| 416 | _collector->sample_eden(); |
| 417 | do_yield_work(); |
| 418 | _collector->sample_eden(); |
| 419 | return _collector->should_abort_preclean(); |
| 420 | } |
| 421 | return false; |
| 422 | } |
| 423 | |
| 424 | inline void SurvivorSpacePrecleanClosure::do_yield_check() { |
| 425 | if (ConcurrentMarkSweepThread::should_yield() && |
| 426 | !_collector->foregroundGCIsActive() && |
| 427 | _yield) { |
| 428 | // Sample young gen size before and after yield |
| 429 | _collector->sample_eden(); |
| 430 | do_yield_work(); |
| 431 | _collector->sample_eden(); |
| 432 | } |
| 433 | } |
| 434 | |
| 435 | inline void SweepClosure::do_yield_check(HeapWord* addr) { |
| 436 | if (ConcurrentMarkSweepThread::should_yield() && |
| 437 | !_collector->foregroundGCIsActive() && |
| 438 | _yield) { |
| 439 | do_yield_work(addr); |
| 440 | } |
| 441 | } |
| 442 | |
| 443 | inline void MarkRefsIntoAndScanClosure::do_yield_check() { |
| 444 | // The conditions are ordered for the remarking phase |
| 445 | // when _yield is false. |
| 446 | if (_yield && |
| 447 | !_collector->foregroundGCIsActive() && |
| 448 | ConcurrentMarkSweepThread::should_yield()) { |
| 449 | do_yield_work(); |
| 450 | } |
| 451 | } |
| 452 | |
| 453 | |
| 454 | inline void ModUnionClosure::do_MemRegion(MemRegion mr) { |
| 455 | // Align the end of mr so it's at a card boundary. |
| 456 | // This is superfluous except at the end of the space; |
| 457 | // we should do better than this XXX |
| 458 | MemRegion mr2(mr.start(), align_up(mr.end(), |
| 459 | CardTable::card_size /* bytes */)); |
| 460 | _t->mark_range(mr2); |
| 461 | } |
| 462 | |
| 463 | inline void ModUnionClosurePar::do_MemRegion(MemRegion mr) { |
| 464 | // Align the end of mr so it's at a card boundary. |
| 465 | // This is superfluous except at the end of the space; |
| 466 | // we should do better than this XXX |
| 467 | MemRegion mr2(mr.start(), align_up(mr.end(), |
| 468 | CardTable::card_size /* bytes */)); |
| 469 | _t->par_mark_range(mr2); |
| 470 | } |
| 471 | |
| 472 | #endif // SHARE_GC_CMS_CONCURRENTMARKSWEEPGENERATION_INLINE_HPP |
| 473 | |