| 1 | /* |
| 2 | * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "gc/g1/g1BlockOffsetTable.inline.hpp" |
| 27 | #include "gc/g1/g1CollectedHeap.inline.hpp" |
| 28 | #include "gc/g1/heapRegion.hpp" |
| 29 | #include "gc/shared/space.hpp" |
| 30 | #include "logging/log.hpp" |
| 31 | #include "oops/oop.inline.hpp" |
| 32 | #include "runtime/java.hpp" |
| 33 | #include "services/memTracker.hpp" |
| 34 | |
| 35 | |
| 36 | |
| 37 | ////////////////////////////////////////////////////////////////////// |
| 38 | // G1BlockOffsetTable |
| 39 | ////////////////////////////////////////////////////////////////////// |
| 40 | |
| 41 | G1BlockOffsetTable::G1BlockOffsetTable(MemRegion heap, G1RegionToSpaceMapper* storage) : |
| 42 | _reserved(heap), _offset_array(NULL) { |
| 43 | |
| 44 | MemRegion bot_reserved = storage->reserved(); |
| 45 | |
| 46 | _offset_array = (u_char*)bot_reserved.start(); |
| 47 | |
| 48 | log_trace(gc, bot)("G1BlockOffsetTable::G1BlockOffsetTable: " ); |
| 49 | log_trace(gc, bot)(" rs.base(): " PTR_FORMAT " rs.size(): " SIZE_FORMAT " rs end(): " PTR_FORMAT, |
| 50 | p2i(bot_reserved.start()), bot_reserved.byte_size(), p2i(bot_reserved.end())); |
| 51 | } |
| 52 | |
| 53 | bool G1BlockOffsetTable::is_card_boundary(HeapWord* p) const { |
| 54 | assert(p >= _reserved.start(), "just checking" ); |
| 55 | size_t delta = pointer_delta(p, _reserved.start()); |
| 56 | return (delta & right_n_bits((int)BOTConstants::LogN_words)) == (size_t)NoBits; |
| 57 | } |
| 58 | |
| 59 | #ifdef ASSERT |
| 60 | void G1BlockOffsetTable::check_index(size_t index, const char* msg) const { |
| 61 | assert((index) < (_reserved.word_size() >> BOTConstants::LogN_words), |
| 62 | "%s - index: " SIZE_FORMAT ", _vs.committed_size: " SIZE_FORMAT, |
| 63 | msg, (index), (_reserved.word_size() >> BOTConstants::LogN_words)); |
| 64 | assert(G1CollectedHeap::heap()->is_in_exact(address_for_index_raw(index)), |
| 65 | "Index " SIZE_FORMAT " corresponding to " PTR_FORMAT |
| 66 | " (%u) is not in committed area." , |
| 67 | (index), |
| 68 | p2i(address_for_index_raw(index)), |
| 69 | G1CollectedHeap::heap()->addr_to_region(address_for_index_raw(index))); |
| 70 | } |
| 71 | #endif // ASSERT |
| 72 | |
| 73 | ////////////////////////////////////////////////////////////////////// |
| 74 | // G1BlockOffsetTablePart |
| 75 | ////////////////////////////////////////////////////////////////////// |
| 76 | |
| 77 | G1BlockOffsetTablePart::G1BlockOffsetTablePart(G1BlockOffsetTable* array, G1ContiguousSpace* gsp) : |
| 78 | _next_offset_threshold(NULL), |
| 79 | _next_offset_index(0), |
| 80 | DEBUG_ONLY(_object_can_span(false) COMMA) |
| 81 | _bot(array), |
| 82 | _space(gsp) |
| 83 | { |
| 84 | } |
| 85 | |
| 86 | // The arguments follow the normal convention of denoting |
| 87 | // a right-open interval: [start, end) |
| 88 | void G1BlockOffsetTablePart:: set_remainder_to_point_to_start(HeapWord* start, HeapWord* end) { |
| 89 | |
| 90 | if (start >= end) { |
| 91 | // The start address is equal to the end address (or to |
| 92 | // the right of the end address) so there are not cards |
| 93 | // that need to be updated.. |
| 94 | return; |
| 95 | } |
| 96 | |
| 97 | // Write the backskip value for each region. |
| 98 | // |
| 99 | // offset |
| 100 | // card 2nd 3rd |
| 101 | // | +- 1st | | |
| 102 | // v v v v |
| 103 | // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+- |
| 104 | // |x|0|0|0|0|0|0|0|1|1|1|1|1|1| ... |1|1|1|1|2|2|2|2|2|2| ... |
| 105 | // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+- |
| 106 | // 11 19 75 |
| 107 | // 12 |
| 108 | // |
| 109 | // offset card is the card that points to the start of an object |
| 110 | // x - offset value of offset card |
| 111 | // 1st - start of first logarithmic region |
| 112 | // 0 corresponds to logarithmic value N_words + 0 and 2**(3 * 0) = 1 |
| 113 | // 2nd - start of second logarithmic region |
| 114 | // 1 corresponds to logarithmic value N_words + 1 and 2**(3 * 1) = 8 |
| 115 | // 3rd - start of third logarithmic region |
| 116 | // 2 corresponds to logarithmic value N_words + 2 and 2**(3 * 2) = 64 |
| 117 | // |
| 118 | // integer below the block offset entry is an example of |
| 119 | // the index of the entry |
| 120 | // |
| 121 | // Given an address, |
| 122 | // Find the index for the address |
| 123 | // Find the block offset table entry |
| 124 | // Convert the entry to a back slide |
| 125 | // (e.g., with today's, offset = 0x81 => |
| 126 | // back slip = 2**(3*(0x81 - N_words)) = 2**3) = 8 |
| 127 | // Move back N (e.g., 8) entries and repeat with the |
| 128 | // value of the new entry |
| 129 | // |
| 130 | size_t start_card = _bot->index_for(start); |
| 131 | size_t end_card = _bot->index_for(end-1); |
| 132 | assert(start ==_bot->address_for_index(start_card), "Precondition" ); |
| 133 | assert(end ==_bot->address_for_index(end_card)+BOTConstants::N_words, "Precondition" ); |
| 134 | set_remainder_to_point_to_start_incl(start_card, end_card); // closed interval |
| 135 | } |
| 136 | |
| 137 | // Unlike the normal convention in this code, the argument here denotes |
| 138 | // a closed, inclusive interval: [start_card, end_card], cf set_remainder_to_point_to_start() |
| 139 | // above. |
| 140 | void G1BlockOffsetTablePart::set_remainder_to_point_to_start_incl(size_t start_card, size_t end_card) { |
| 141 | if (start_card > end_card) { |
| 142 | return; |
| 143 | } |
| 144 | assert(start_card > _bot->index_for(_space->bottom()), "Cannot be first card" ); |
| 145 | assert(_bot->offset_array(start_card-1) <= BOTConstants::N_words, |
| 146 | "Offset card has an unexpected value" ); |
| 147 | size_t start_card_for_region = start_card; |
| 148 | u_char offset = max_jubyte; |
| 149 | for (uint i = 0; i < BOTConstants::N_powers; i++) { |
| 150 | // -1 so that the the card with the actual offset is counted. Another -1 |
| 151 | // so that the reach ends in this region and not at the start |
| 152 | // of the next. |
| 153 | size_t reach = start_card - 1 + (BOTConstants::power_to_cards_back(i+1) - 1); |
| 154 | offset = BOTConstants::N_words + i; |
| 155 | if (reach >= end_card) { |
| 156 | _bot->set_offset_array(start_card_for_region, end_card, offset); |
| 157 | start_card_for_region = reach + 1; |
| 158 | break; |
| 159 | } |
| 160 | _bot->set_offset_array(start_card_for_region, reach, offset); |
| 161 | start_card_for_region = reach + 1; |
| 162 | } |
| 163 | assert(start_card_for_region > end_card, "Sanity check" ); |
| 164 | DEBUG_ONLY(check_all_cards(start_card, end_card);) |
| 165 | } |
| 166 | |
| 167 | // The card-interval [start_card, end_card] is a closed interval; this |
| 168 | // is an expensive check -- use with care and only under protection of |
| 169 | // suitable flag. |
| 170 | void G1BlockOffsetTablePart::check_all_cards(size_t start_card, size_t end_card) const { |
| 171 | |
| 172 | if (end_card < start_card) { |
| 173 | return; |
| 174 | } |
| 175 | guarantee(_bot->offset_array(start_card) == BOTConstants::N_words, "Wrong value in second card" ); |
| 176 | for (size_t c = start_card + 1; c <= end_card; c++ /* yeah! */) { |
| 177 | u_char entry = _bot->offset_array(c); |
| 178 | if (c - start_card > BOTConstants::power_to_cards_back(1)) { |
| 179 | guarantee(entry > BOTConstants::N_words, |
| 180 | "Should be in logarithmic region - " |
| 181 | "entry: %u, " |
| 182 | "_array->offset_array(c): %u, " |
| 183 | "N_words: %u" , |
| 184 | (uint)entry, (uint)_bot->offset_array(c), BOTConstants::N_words); |
| 185 | } |
| 186 | size_t backskip = BOTConstants::entry_to_cards_back(entry); |
| 187 | size_t landing_card = c - backskip; |
| 188 | guarantee(landing_card >= (start_card - 1), "Inv" ); |
| 189 | if (landing_card >= start_card) { |
| 190 | guarantee(_bot->offset_array(landing_card) <= entry, |
| 191 | "Monotonicity - landing_card offset: %u, " |
| 192 | "entry: %u" , |
| 193 | (uint)_bot->offset_array(landing_card), (uint)entry); |
| 194 | } else { |
| 195 | guarantee(landing_card == start_card - 1, "Tautology" ); |
| 196 | // Note that N_words is the maximum offset value |
| 197 | guarantee(_bot->offset_array(landing_card) <= BOTConstants::N_words, |
| 198 | "landing card offset: %u, " |
| 199 | "N_words: %u" , |
| 200 | (uint)_bot->offset_array(landing_card), (uint)BOTConstants::N_words); |
| 201 | } |
| 202 | } |
| 203 | } |
| 204 | |
| 205 | HeapWord* G1BlockOffsetTablePart::forward_to_block_containing_addr_slow(HeapWord* q, |
| 206 | HeapWord* n, |
| 207 | const void* addr) { |
| 208 | // We're not in the normal case. We need to handle an important subcase |
| 209 | // here: LAB allocation. An allocation previously recorded in the |
| 210 | // offset table was actually a lab allocation, and was divided into |
| 211 | // several objects subsequently. Fix this situation as we answer the |
| 212 | // query, by updating entries as we cross them. |
| 213 | |
| 214 | // If the fist object's end q is at the card boundary. Start refining |
| 215 | // with the corresponding card (the value of the entry will be basically |
| 216 | // set to 0). If the object crosses the boundary -- start from the next card. |
| 217 | size_t n_index = _bot->index_for(n); |
| 218 | size_t next_index = _bot->index_for(n) + !_bot->is_card_boundary(n); |
| 219 | // Calculate a consistent next boundary. If "n" is not at the boundary |
| 220 | // already, step to the boundary. |
| 221 | HeapWord* next_boundary = _bot->address_for_index(n_index) + |
| 222 | (n_index == next_index ? 0 : BOTConstants::N_words); |
| 223 | assert(next_boundary <= _bot->_reserved.end(), |
| 224 | "next_boundary is beyond the end of the covered region " |
| 225 | " next_boundary " PTR_FORMAT " _array->_end " PTR_FORMAT, |
| 226 | p2i(next_boundary), p2i(_bot->_reserved.end())); |
| 227 | if (addr >= _space->top()) return _space->top(); |
| 228 | while (next_boundary < addr) { |
| 229 | while (n <= next_boundary) { |
| 230 | q = n; |
| 231 | oop obj = oop(q); |
| 232 | if (obj->klass_or_null_acquire() == NULL) return q; |
| 233 | n += block_size(q); |
| 234 | } |
| 235 | assert(q <= next_boundary && n > next_boundary, "Consequence of loop" ); |
| 236 | // [q, n) is the block that crosses the boundary. |
| 237 | alloc_block_work(&next_boundary, &next_index, q, n); |
| 238 | } |
| 239 | return forward_to_block_containing_addr_const(q, n, addr); |
| 240 | } |
| 241 | |
| 242 | // |
| 243 | // threshold_ |
| 244 | // | _index_ |
| 245 | // v v |
| 246 | // +-------+-------+-------+-------+-------+ |
| 247 | // | i-1 | i | i+1 | i+2 | i+3 | |
| 248 | // +-------+-------+-------+-------+-------+ |
| 249 | // ( ^ ] |
| 250 | // block-start |
| 251 | // |
| 252 | void G1BlockOffsetTablePart::alloc_block_work(HeapWord** threshold_, size_t* index_, |
| 253 | HeapWord* blk_start, HeapWord* blk_end) { |
| 254 | // For efficiency, do copy-in/copy-out. |
| 255 | HeapWord* threshold = *threshold_; |
| 256 | size_t index = *index_; |
| 257 | |
| 258 | assert(blk_start != NULL && blk_end > blk_start, |
| 259 | "phantom block" ); |
| 260 | assert(blk_end > threshold, "should be past threshold" ); |
| 261 | assert(blk_start <= threshold, "blk_start should be at or before threshold" ); |
| 262 | assert(pointer_delta(threshold, blk_start) <= BOTConstants::N_words, |
| 263 | "offset should be <= BlockOffsetSharedArray::N" ); |
| 264 | assert(G1CollectedHeap::heap()->is_in_reserved(blk_start), |
| 265 | "reference must be into the heap" ); |
| 266 | assert(G1CollectedHeap::heap()->is_in_reserved(blk_end-1), |
| 267 | "limit must be within the heap" ); |
| 268 | assert(threshold == _bot->_reserved.start() + index*BOTConstants::N_words, |
| 269 | "index must agree with threshold" ); |
| 270 | |
| 271 | DEBUG_ONLY(size_t orig_index = index;) |
| 272 | |
| 273 | // Mark the card that holds the offset into the block. Note |
| 274 | // that _next_offset_index and _next_offset_threshold are not |
| 275 | // updated until the end of this method. |
| 276 | _bot->set_offset_array(index, threshold, blk_start); |
| 277 | |
| 278 | // We need to now mark the subsequent cards that this blk spans. |
| 279 | |
| 280 | // Index of card on which blk ends. |
| 281 | size_t end_index = _bot->index_for(blk_end - 1); |
| 282 | |
| 283 | // Are there more cards left to be updated? |
| 284 | if (index + 1 <= end_index) { |
| 285 | HeapWord* rem_st = _bot->address_for_index(index + 1); |
| 286 | // Calculate rem_end this way because end_index |
| 287 | // may be the last valid index in the covered region. |
| 288 | HeapWord* rem_end = _bot->address_for_index(end_index) + BOTConstants::N_words; |
| 289 | set_remainder_to_point_to_start(rem_st, rem_end); |
| 290 | } |
| 291 | |
| 292 | index = end_index + 1; |
| 293 | // Calculate threshold_ this way because end_index |
| 294 | // may be the last valid index in the covered region. |
| 295 | threshold = _bot->address_for_index(end_index) + BOTConstants::N_words; |
| 296 | assert(threshold >= blk_end, "Incorrect offset threshold" ); |
| 297 | |
| 298 | // index_ and threshold_ updated here. |
| 299 | *threshold_ = threshold; |
| 300 | *index_ = index; |
| 301 | |
| 302 | #ifdef ASSERT |
| 303 | // The offset can be 0 if the block starts on a boundary. That |
| 304 | // is checked by an assertion above. |
| 305 | size_t start_index = _bot->index_for(blk_start); |
| 306 | HeapWord* boundary = _bot->address_for_index(start_index); |
| 307 | assert((_bot->offset_array(orig_index) == 0 && blk_start == boundary) || |
| 308 | (_bot->offset_array(orig_index) > 0 && _bot->offset_array(orig_index) <= BOTConstants::N_words), |
| 309 | "offset array should have been set - " |
| 310 | "orig_index offset: %u, " |
| 311 | "blk_start: " PTR_FORMAT ", " |
| 312 | "boundary: " PTR_FORMAT, |
| 313 | (uint)_bot->offset_array(orig_index), |
| 314 | p2i(blk_start), p2i(boundary)); |
| 315 | for (size_t j = orig_index + 1; j <= end_index; j++) { |
| 316 | assert(_bot->offset_array(j) > 0 && |
| 317 | _bot->offset_array(j) <= |
| 318 | (u_char) (BOTConstants::N_words+BOTConstants::N_powers-1), |
| 319 | "offset array should have been set - " |
| 320 | "%u not > 0 OR %u not <= %u" , |
| 321 | (uint) _bot->offset_array(j), |
| 322 | (uint) _bot->offset_array(j), |
| 323 | (uint) (BOTConstants::N_words+BOTConstants::N_powers-1)); |
| 324 | } |
| 325 | #endif |
| 326 | } |
| 327 | |
| 328 | void G1BlockOffsetTablePart::verify() const { |
| 329 | assert(_space->bottom() < _space->top(), "Only non-empty regions should be verified." ); |
| 330 | size_t start_card = _bot->index_for(_space->bottom()); |
| 331 | size_t end_card = _bot->index_for(_space->top() - 1); |
| 332 | |
| 333 | for (size_t current_card = start_card; current_card < end_card; current_card++) { |
| 334 | u_char entry = _bot->offset_array(current_card); |
| 335 | if (entry < BOTConstants::N_words) { |
| 336 | // The entry should point to an object before the current card. Verify that |
| 337 | // it is possible to walk from that object in to the current card by just |
| 338 | // iterating over the objects following it. |
| 339 | HeapWord* card_address = _bot->address_for_index(current_card); |
| 340 | HeapWord* obj_end = card_address - entry; |
| 341 | while (obj_end < card_address) { |
| 342 | HeapWord* obj = obj_end; |
| 343 | size_t obj_size = block_size(obj); |
| 344 | obj_end = obj + obj_size; |
| 345 | guarantee(obj_end > obj && obj_end <= _space->top(), |
| 346 | "Invalid object end. obj: " PTR_FORMAT " obj_size: " SIZE_FORMAT " obj_end: " PTR_FORMAT " top: " PTR_FORMAT, |
| 347 | p2i(obj), obj_size, p2i(obj_end), p2i(_space->top())); |
| 348 | } |
| 349 | } else { |
| 350 | // Because we refine the BOT based on which cards are dirty there is not much we can verify here. |
| 351 | // We need to make sure that we are going backwards and that we don't pass the start of the |
| 352 | // corresponding heap region. But that is about all we can verify. |
| 353 | size_t backskip = BOTConstants::entry_to_cards_back(entry); |
| 354 | guarantee(backskip >= 1, "Must be going back at least one card." ); |
| 355 | |
| 356 | size_t max_backskip = current_card - start_card; |
| 357 | guarantee(backskip <= max_backskip, |
| 358 | "Going backwards beyond the start_card. start_card: " SIZE_FORMAT " current_card: " SIZE_FORMAT " backskip: " SIZE_FORMAT, |
| 359 | start_card, current_card, backskip); |
| 360 | |
| 361 | HeapWord* backskip_address = _bot->address_for_index(current_card - backskip); |
| 362 | guarantee(backskip_address >= _space->bottom(), |
| 363 | "Going backwards beyond bottom of the region: bottom: " PTR_FORMAT ", backskip_address: " PTR_FORMAT, |
| 364 | p2i(_space->bottom()), p2i(backskip_address)); |
| 365 | } |
| 366 | } |
| 367 | } |
| 368 | |
| 369 | #ifdef ASSERT |
| 370 | void G1BlockOffsetTablePart::set_object_can_span(bool can_span) { |
| 371 | _object_can_span = can_span; |
| 372 | } |
| 373 | #endif |
| 374 | |
| 375 | #ifndef PRODUCT |
| 376 | void |
| 377 | G1BlockOffsetTablePart::print_on(outputStream* out) { |
| 378 | size_t from_index = _bot->index_for(_space->bottom()); |
| 379 | size_t to_index = _bot->index_for(_space->end()); |
| 380 | out->print_cr(">> BOT for area [" PTR_FORMAT "," PTR_FORMAT ") " |
| 381 | "cards [" SIZE_FORMAT "," SIZE_FORMAT ")" , |
| 382 | p2i(_space->bottom()), p2i(_space->end()), from_index, to_index); |
| 383 | for (size_t i = from_index; i < to_index; ++i) { |
| 384 | out->print_cr(" entry " SIZE_FORMAT_W(8) " | " PTR_FORMAT " : %3u" , |
| 385 | i, p2i(_bot->address_for_index(i)), |
| 386 | (uint) _bot->offset_array(i)); |
| 387 | } |
| 388 | out->print_cr(" next offset threshold: " PTR_FORMAT, p2i(_next_offset_threshold)); |
| 389 | out->print_cr(" next offset index: " SIZE_FORMAT, _next_offset_index); |
| 390 | } |
| 391 | #endif // !PRODUCT |
| 392 | |
| 393 | HeapWord* G1BlockOffsetTablePart::initialize_threshold_raw() { |
| 394 | _next_offset_index = _bot->index_for_raw(_space->bottom()); |
| 395 | _next_offset_index++; |
| 396 | _next_offset_threshold = |
| 397 | _bot->address_for_index_raw(_next_offset_index); |
| 398 | return _next_offset_threshold; |
| 399 | } |
| 400 | |
| 401 | void G1BlockOffsetTablePart::zero_bottom_entry_raw() { |
| 402 | size_t bottom_index = _bot->index_for_raw(_space->bottom()); |
| 403 | assert(_bot->address_for_index_raw(bottom_index) == _space->bottom(), |
| 404 | "Precondition of call" ); |
| 405 | _bot->set_offset_array_raw(bottom_index, 0); |
| 406 | } |
| 407 | |
| 408 | HeapWord* G1BlockOffsetTablePart::initialize_threshold() { |
| 409 | _next_offset_index = _bot->index_for(_space->bottom()); |
| 410 | _next_offset_index++; |
| 411 | _next_offset_threshold = |
| 412 | _bot->address_for_index(_next_offset_index); |
| 413 | return _next_offset_threshold; |
| 414 | } |
| 415 | |
| 416 | void G1BlockOffsetTablePart::set_for_starts_humongous(HeapWord* obj_top, size_t fill_size) { |
| 417 | // The first BOT entry should have offset 0. |
| 418 | reset_bot(); |
| 419 | alloc_block(_space->bottom(), obj_top); |
| 420 | if (fill_size > 0) { |
| 421 | alloc_block(obj_top, fill_size); |
| 422 | } |
| 423 | } |
| 424 | |