| 1 | /* |
| 2 | * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "gc/g1/g1CollectedHeap.inline.hpp" |
| 27 | #include "gc/g1/g1ConcurrentRefine.hpp" |
| 28 | #include "gc/g1/heapRegion.hpp" |
| 29 | #include "gc/g1/heapRegionManager.inline.hpp" |
| 30 | #include "gc/g1/heapRegionSet.inline.hpp" |
| 31 | #include "gc/g1/heterogeneousHeapRegionManager.hpp" |
| 32 | #include "memory/allocation.hpp" |
| 33 | |
| 34 | |
| 35 | HeterogeneousHeapRegionManager* HeterogeneousHeapRegionManager::manager() { |
| 36 | G1CollectedHeap* g1h = G1CollectedHeap::heap(); |
| 37 | assert(g1h != NULL, "Uninitialized access to HeterogeneousHeapRegionManager::manager()" ); |
| 38 | |
| 39 | HeapRegionManager* hrm = g1h->hrm(); |
| 40 | assert(hrm != NULL, "Uninitialized access to HeterogeneousHeapRegionManager::manager()" ); |
| 41 | return (HeterogeneousHeapRegionManager*)hrm; |
| 42 | } |
| 43 | |
| 44 | void HeterogeneousHeapRegionManager::initialize(G1RegionToSpaceMapper* heap_storage, |
| 45 | G1RegionToSpaceMapper* prev_bitmap, |
| 46 | G1RegionToSpaceMapper* next_bitmap, |
| 47 | G1RegionToSpaceMapper* bot, |
| 48 | G1RegionToSpaceMapper* cardtable, |
| 49 | G1RegionToSpaceMapper* card_counts) { |
| 50 | HeapRegionManager::initialize(heap_storage, prev_bitmap, next_bitmap, bot, cardtable, card_counts); |
| 51 | |
| 52 | // We commit bitmap for all regions during initialization and mark the bitmap space as special. |
| 53 | // This allows regions to be un-committed while concurrent-marking threads are accessing the bitmap concurrently. |
| 54 | _prev_bitmap_mapper->commit_and_set_special(); |
| 55 | _next_bitmap_mapper->commit_and_set_special(); |
| 56 | } |
| 57 | |
| 58 | // expand_by() is called to grow the heap. We grow into nvdimm now. |
| 59 | // Dram regions are committed later as needed during mutator region allocation or |
| 60 | // when young list target length is determined after gc cycle. |
| 61 | uint HeterogeneousHeapRegionManager::expand_by(uint num_regions, WorkGang* pretouch_workers) { |
| 62 | uint num_regions_possible = total_regions_committed() >= max_expandable_length() ? 0 : max_expandable_length() - total_regions_committed(); |
| 63 | uint num_expanded = expand_nvdimm(MIN2(num_regions, num_regions_possible), pretouch_workers); |
| 64 | return num_expanded; |
| 65 | } |
| 66 | |
| 67 | // Expands heap starting from 'start' index. The question is should we expand from one memory (e.g. nvdimm) to another (e.g. dram). |
| 68 | // Looking at the code, expand_at() is called for humongous allocation where 'start' is in nv-dimm. |
| 69 | // So we only allocate regions in the same kind of memory as 'start'. |
| 70 | uint HeterogeneousHeapRegionManager::expand_at(uint start, uint num_regions, WorkGang* pretouch_workers) { |
| 71 | if (num_regions == 0) { |
| 72 | return 0; |
| 73 | } |
| 74 | uint target_num_regions = MIN2(num_regions, max_expandable_length() - total_regions_committed()); |
| 75 | uint end = is_in_nvdimm(start) ? end_index_of_nvdimm() : end_index_of_dram(); |
| 76 | |
| 77 | uint num_expanded = expand_in_range(start, end, target_num_regions, pretouch_workers); |
| 78 | assert(total_regions_committed() <= max_expandable_length(), "must be" ); |
| 79 | return num_expanded; |
| 80 | } |
| 81 | |
| 82 | // This function ensures that there are 'expected_num_regions' committed regions in dram. |
| 83 | // If new regions are committed, it un-commits that many regions from nv-dimm. |
| 84 | // If there are already more regions committed in dram, extra regions are un-committed. |
| 85 | void HeterogeneousHeapRegionManager::adjust_dram_regions(uint expected_num_regions, WorkGang* pretouch_workers) { |
| 86 | |
| 87 | // Release back the extra regions allocated in evacuation failure scenario. |
| 88 | if(_no_borrowed_regions > 0) { |
| 89 | _no_borrowed_regions -= shrink_dram(_no_borrowed_regions); |
| 90 | _no_borrowed_regions -= shrink_nvdimm(_no_borrowed_regions); |
| 91 | } |
| 92 | |
| 93 | if(expected_num_regions > free_list_dram_length()) { |
| 94 | // If we are going to expand DRAM, we expand a little more so that we can absorb small variations in Young gen sizing. |
| 95 | uint targeted_dram_regions = expected_num_regions * (1 + (double)G1YoungExpansionBufferPercent / 100); |
| 96 | uint to_be_made_available = targeted_dram_regions - free_list_dram_length(); |
| 97 | |
| 98 | #ifdef ASSERT |
| 99 | uint total_committed_before = total_regions_committed(); |
| 100 | #endif |
| 101 | uint can_be_made_available = shrink_nvdimm(to_be_made_available); |
| 102 | uint ret = expand_dram(can_be_made_available, pretouch_workers); |
| 103 | #ifdef ASSERT |
| 104 | assert(ret == can_be_made_available, "should be equal" ); |
| 105 | assert(total_committed_before == total_regions_committed(), "invariant not met" ); |
| 106 | #endif |
| 107 | } else { |
| 108 | uint to_be_released = free_list_dram_length() - expected_num_regions; |
| 109 | // if number of extra DRAM regions is small, do not shrink. |
| 110 | if (to_be_released < expected_num_regions * G1YoungExpansionBufferPercent / 100) { |
| 111 | return; |
| 112 | } |
| 113 | |
| 114 | #ifdef ASSERT |
| 115 | uint total_committed_before = total_regions_committed(); |
| 116 | #endif |
| 117 | uint ret = shrink_dram(to_be_released); |
| 118 | assert(ret == to_be_released, "Should be able to shrink by given amount" ); |
| 119 | ret = expand_nvdimm(to_be_released, pretouch_workers); |
| 120 | #ifdef ASSERT |
| 121 | assert(ret == to_be_released, "Should be able to expand by given amount" ); |
| 122 | assert(total_committed_before == total_regions_committed(), "invariant not met" ); |
| 123 | #endif |
| 124 | } |
| 125 | } |
| 126 | |
| 127 | uint HeterogeneousHeapRegionManager::total_regions_committed() const { |
| 128 | return num_committed_dram() + num_committed_nvdimm(); |
| 129 | } |
| 130 | |
| 131 | uint HeterogeneousHeapRegionManager::num_committed_dram() const { |
| 132 | // This class does not keep count of committed regions in dram and nv-dimm. |
| 133 | // G1RegionToHeteroSpaceMapper keeps this information. |
| 134 | return static_cast<G1RegionToHeteroSpaceMapper*>(_heap_mapper)->num_committed_dram(); |
| 135 | } |
| 136 | |
| 137 | uint HeterogeneousHeapRegionManager::num_committed_nvdimm() const { |
| 138 | // See comment for num_committed_dram() |
| 139 | return static_cast<G1RegionToHeteroSpaceMapper*>(_heap_mapper)->num_committed_nvdimm(); |
| 140 | } |
| 141 | |
| 142 | // Return maximum number of regions that heap can expand to. |
| 143 | uint HeterogeneousHeapRegionManager::max_expandable_length() const { |
| 144 | return _max_regions; |
| 145 | } |
| 146 | |
| 147 | uint HeterogeneousHeapRegionManager::find_unavailable_in_range(uint start_idx, uint end_idx, uint* res_idx) const { |
| 148 | guarantee(res_idx != NULL, "checking" ); |
| 149 | guarantee(start_idx <= (max_length() + 1), "checking" ); |
| 150 | |
| 151 | uint num_regions = 0; |
| 152 | |
| 153 | uint cur = start_idx; |
| 154 | while (cur <= end_idx && is_available(cur)) { |
| 155 | cur++; |
| 156 | } |
| 157 | if (cur == end_idx + 1) { |
| 158 | return num_regions; |
| 159 | } |
| 160 | *res_idx = cur; |
| 161 | while (cur <= end_idx && !is_available(cur)) { |
| 162 | cur++; |
| 163 | } |
| 164 | num_regions = cur - *res_idx; |
| 165 | |
| 166 | #ifdef ASSERT |
| 167 | for (uint i = *res_idx; i < (*res_idx + num_regions); i++) { |
| 168 | assert(!is_available(i), "just checking" ); |
| 169 | } |
| 170 | assert(cur == end_idx + 1 || num_regions == 0 || is_available(cur), |
| 171 | "The region at the current position %u must be available or at the end" , cur); |
| 172 | #endif |
| 173 | return num_regions; |
| 174 | } |
| 175 | |
| 176 | uint HeterogeneousHeapRegionManager::expand_dram(uint num_regions, WorkGang* pretouch_workers) { |
| 177 | return expand_in_range(start_index_of_dram(), end_index_of_dram(), num_regions, pretouch_workers); |
| 178 | } |
| 179 | |
| 180 | uint HeterogeneousHeapRegionManager::expand_nvdimm(uint num_regions, WorkGang* pretouch_workers) { |
| 181 | return expand_in_range(start_index_of_nvdimm(), end_index_of_nvdimm(), num_regions, pretouch_workers); |
| 182 | } |
| 183 | |
| 184 | // Follows same logic as expand_at() form HeapRegionManager. |
| 185 | uint HeterogeneousHeapRegionManager::expand_in_range(uint start, uint end, uint num_regions, WorkGang* pretouch_gang) { |
| 186 | |
| 187 | uint so_far = 0; |
| 188 | uint chunk_start = 0; |
| 189 | uint num_last_found = 0; |
| 190 | while (so_far < num_regions && |
| 191 | (num_last_found = find_unavailable_in_range(start, end, &chunk_start)) > 0) { |
| 192 | uint to_commit = MIN2(num_regions - so_far, num_last_found); |
| 193 | make_regions_available(chunk_start, to_commit, pretouch_gang); |
| 194 | so_far += to_commit; |
| 195 | start = chunk_start + to_commit + 1; |
| 196 | } |
| 197 | |
| 198 | return so_far; |
| 199 | } |
| 200 | |
| 201 | // Shrink in the range of indexes which are reserved for dram. |
| 202 | uint HeterogeneousHeapRegionManager::shrink_dram(uint num_regions, bool update_free_list) { |
| 203 | return shrink_in_range(start_index_of_dram(), end_index_of_dram(), num_regions, update_free_list); |
| 204 | } |
| 205 | |
| 206 | // Shrink in the range of indexes which are reserved for nv-dimm. |
| 207 | uint HeterogeneousHeapRegionManager::shrink_nvdimm(uint num_regions, bool update_free_list) { |
| 208 | return shrink_in_range(start_index_of_nvdimm(), end_index_of_nvdimm(), num_regions, update_free_list); |
| 209 | } |
| 210 | |
| 211 | // Find empty regions in given range, un-commit them and return the count. |
| 212 | uint HeterogeneousHeapRegionManager::shrink_in_range(uint start, uint end, uint num_regions, bool update_free_list) { |
| 213 | |
| 214 | if (num_regions == 0) { |
| 215 | return 0; |
| 216 | } |
| 217 | uint so_far = 0; |
| 218 | uint idx_last_found = 0; |
| 219 | uint num_last_found; |
| 220 | while (so_far < num_regions && |
| 221 | (num_last_found = find_empty_in_range_reverse(start, end, &idx_last_found)) > 0) { |
| 222 | uint to_uncommit = MIN2(num_regions - so_far, num_last_found); |
| 223 | if(update_free_list) { |
| 224 | _free_list.remove_starting_at(at(idx_last_found + num_last_found - to_uncommit), to_uncommit); |
| 225 | } |
| 226 | uncommit_regions(idx_last_found + num_last_found - to_uncommit, to_uncommit); |
| 227 | so_far += to_uncommit; |
| 228 | end = idx_last_found; |
| 229 | } |
| 230 | return so_far; |
| 231 | } |
| 232 | |
| 233 | uint HeterogeneousHeapRegionManager::find_empty_in_range_reverse(uint start_idx, uint end_idx, uint* res_idx) { |
| 234 | guarantee(res_idx != NULL, "checking" ); |
| 235 | guarantee(start_idx < max_length(), "checking" ); |
| 236 | guarantee(end_idx < max_length(), "checking" ); |
| 237 | if(start_idx > end_idx) { |
| 238 | return 0; |
| 239 | } |
| 240 | |
| 241 | uint num_regions_found = 0; |
| 242 | |
| 243 | jlong cur = end_idx; |
| 244 | while (cur >= start_idx && !(is_available(cur) && at(cur)->is_empty())) { |
| 245 | cur--; |
| 246 | } |
| 247 | if (cur == start_idx - 1) { |
| 248 | return num_regions_found; |
| 249 | } |
| 250 | jlong old_cur = cur; |
| 251 | // cur indexes the first empty region |
| 252 | while (cur >= start_idx && is_available(cur) && at(cur)->is_empty()) { |
| 253 | cur--; |
| 254 | } |
| 255 | *res_idx = cur + 1; |
| 256 | num_regions_found = old_cur - cur; |
| 257 | |
| 258 | #ifdef ASSERT |
| 259 | for (uint i = *res_idx; i < (*res_idx + num_regions_found); i++) { |
| 260 | assert(at(i)->is_empty(), "just checking" ); |
| 261 | } |
| 262 | #endif |
| 263 | return num_regions_found; |
| 264 | } |
| 265 | |
| 266 | HeapRegion* HeterogeneousHeapRegionManager::allocate_free_region(HeapRegionType type) { |
| 267 | |
| 268 | // We want to prevent mutators from proceeding when we have borrowed regions from the last collection. This |
| 269 | // will force a full collection to remedy the situation. |
| 270 | // Free region requests from GC threads can proceed. |
| 271 | if(type.is_eden() || type.is_humongous()) { |
| 272 | if(has_borrowed_regions()) { |
| 273 | return NULL; |
| 274 | } |
| 275 | } |
| 276 | |
| 277 | // old and humongous regions are allocated from nv-dimm; eden and survivor regions are allocated from dram |
| 278 | // assumption: dram regions take higher indexes |
| 279 | bool from_nvdimm = (type.is_old() || type.is_humongous()) ? true : false; |
| 280 | bool from_head = from_nvdimm; |
| 281 | HeapRegion* hr = _free_list.remove_region(from_head); |
| 282 | |
| 283 | if (hr != NULL && ( (from_nvdimm && !is_in_nvdimm(hr->hrm_index())) || (!from_nvdimm && !is_in_dram(hr->hrm_index())) ) ) { |
| 284 | _free_list.add_ordered(hr); |
| 285 | hr = NULL; |
| 286 | } |
| 287 | |
| 288 | #ifdef ASSERT |
| 289 | uint total_committed_before = total_regions_committed(); |
| 290 | #endif |
| 291 | |
| 292 | if (hr == NULL) { |
| 293 | if (!from_nvdimm) { |
| 294 | uint ret = shrink_nvdimm(1); |
| 295 | if (ret == 1) { |
| 296 | ret = expand_dram(1, NULL); |
| 297 | assert(ret == 1, "We should be able to commit one region" ); |
| 298 | hr = _free_list.remove_region(from_head); |
| 299 | } |
| 300 | } |
| 301 | else { /*is_old*/ |
| 302 | uint ret = shrink_dram(1); |
| 303 | if (ret == 1) { |
| 304 | ret = expand_nvdimm(1, NULL); |
| 305 | assert(ret == 1, "We should be able to commit one region" ); |
| 306 | hr = _free_list.remove_region(from_head); |
| 307 | } |
| 308 | } |
| 309 | } |
| 310 | #ifdef ASSERT |
| 311 | assert(total_committed_before == total_regions_committed(), "invariant not met" ); |
| 312 | #endif |
| 313 | |
| 314 | // When an old region is requested (which happens during collection pause) and we can't find any empty region |
| 315 | // in the set of available regions (which is an evacuation failure scenario), we borrow (or pre-allocate) an unavailable region |
| 316 | // from nv-dimm. This region is used to evacuate surviving objects from eden, survivor or old. |
| 317 | if(hr == NULL && type.is_old()) { |
| 318 | hr = borrow_old_region_for_gc(); |
| 319 | } |
| 320 | |
| 321 | if (hr != NULL) { |
| 322 | assert(hr->next() == NULL, "Single region should not have next" ); |
| 323 | assert(is_available(hr->hrm_index()), "Must be committed" ); |
| 324 | } |
| 325 | return hr; |
| 326 | } |
| 327 | |
| 328 | uint HeterogeneousHeapRegionManager::find_contiguous_only_empty(size_t num) { |
| 329 | if (has_borrowed_regions()) { |
| 330 | return G1_NO_HRM_INDEX; |
| 331 | } |
| 332 | return find_contiguous(start_index_of_nvdimm(), end_index_of_nvdimm(), num, true); |
| 333 | } |
| 334 | |
| 335 | uint HeterogeneousHeapRegionManager::find_contiguous_empty_or_unavailable(size_t num) { |
| 336 | if (has_borrowed_regions()) { |
| 337 | return G1_NO_HRM_INDEX; |
| 338 | } |
| 339 | return find_contiguous(start_index_of_nvdimm(), end_index_of_nvdimm(), num, false); |
| 340 | } |
| 341 | |
| 342 | uint HeterogeneousHeapRegionManager::find_contiguous(size_t start, size_t end, size_t num, bool empty_only) { |
| 343 | uint found = 0; |
| 344 | size_t length_found = 0; |
| 345 | uint cur = (uint)start; |
| 346 | uint length_unavailable = 0; |
| 347 | |
| 348 | while (length_found < num && cur <= end) { |
| 349 | HeapRegion* hr = _regions.get_by_index(cur); |
| 350 | if ((!empty_only && !is_available(cur)) || (is_available(cur) && hr != NULL && hr->is_empty())) { |
| 351 | // This region is a potential candidate for allocation into. |
| 352 | if (!is_available(cur)) { |
| 353 | if(shrink_dram(1) == 1) { |
| 354 | uint ret = expand_in_range(cur, cur, 1, NULL); |
| 355 | assert(ret == 1, "We should be able to expand at this index" ); |
| 356 | } else { |
| 357 | length_unavailable++; |
| 358 | } |
| 359 | } |
| 360 | length_found++; |
| 361 | } |
| 362 | else { |
| 363 | // This region is not a candidate. The next region is the next possible one. |
| 364 | found = cur + 1; |
| 365 | length_found = 0; |
| 366 | } |
| 367 | cur++; |
| 368 | } |
| 369 | |
| 370 | if (length_found == num) { |
| 371 | for (uint i = found; i < (found + num); i++) { |
| 372 | HeapRegion* hr = _regions.get_by_index(i); |
| 373 | // sanity check |
| 374 | guarantee((!empty_only && !is_available(i)) || (is_available(i) && hr != NULL && hr->is_empty()), |
| 375 | "Found region sequence starting at " UINT32_FORMAT ", length " SIZE_FORMAT |
| 376 | " that is not empty at " UINT32_FORMAT ". Hr is " PTR_FORMAT, found, num, i, p2i(hr)); |
| 377 | } |
| 378 | if (!empty_only && length_unavailable > (max_expandable_length() - total_regions_committed())) { |
| 379 | // if 'length_unavailable' number of regions will be made available, we will exceed max regions. |
| 380 | return G1_NO_HRM_INDEX; |
| 381 | } |
| 382 | return found; |
| 383 | } |
| 384 | else { |
| 385 | return G1_NO_HRM_INDEX; |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | uint HeterogeneousHeapRegionManager::find_highest_free(bool* expanded) { |
| 390 | // Loop downwards from the highest dram region index, looking for an |
| 391 | // entry which is either free or not yet committed. If not yet |
| 392 | // committed, expand_at that index. |
| 393 | uint curr = end_index_of_dram(); |
| 394 | while (true) { |
| 395 | HeapRegion *hr = _regions.get_by_index(curr); |
| 396 | if (hr == NULL && !(total_regions_committed() < _max_regions)) { |
| 397 | uint res = shrink_nvdimm(1); |
| 398 | if (res == 1) { |
| 399 | res = expand_in_range(curr, curr, 1, NULL); |
| 400 | assert(res == 1, "We should be able to expand since shrink was successful" ); |
| 401 | *expanded = true; |
| 402 | return curr; |
| 403 | } |
| 404 | } |
| 405 | else { |
| 406 | if (hr->is_free()) { |
| 407 | *expanded = false; |
| 408 | return curr; |
| 409 | } |
| 410 | } |
| 411 | if (curr == start_index_of_dram()) { |
| 412 | return G1_NO_HRM_INDEX; |
| 413 | } |
| 414 | curr--; |
| 415 | } |
| 416 | } |
| 417 | |
| 418 | // We need to override this since region 0 which serves are dummy region in base class may not be available here. |
| 419 | // This is a corner condition when either number of regions is small. When adaptive sizing is used, initial heap size |
| 420 | // could be just one region. This region is commited in dram to be used for young generation, leaving region 0 (which is in nvdimm) |
| 421 | // unavailable. |
| 422 | HeapRegion* HeterogeneousHeapRegionManager::get_dummy_region() { |
| 423 | uint curr = 0; |
| 424 | |
| 425 | while (curr < _regions.length()) { |
| 426 | if (is_available(curr)) { |
| 427 | return new_heap_region(curr); |
| 428 | } |
| 429 | curr++; |
| 430 | } |
| 431 | assert(false, "We should always find a region available for dummy region" ); |
| 432 | return NULL; |
| 433 | } |
| 434 | |
| 435 | // First shrink in dram, then in nv-dimm. |
| 436 | uint HeterogeneousHeapRegionManager::shrink_by(uint num_regions) { |
| 437 | // This call is made at end of full collection. Before making this call the region sets are tore down (tear_down_region_sets()). |
| 438 | // So shrink() calls below do not need to remove uncomitted regions from free list. |
| 439 | uint ret = shrink_dram(num_regions, false /* update_free_list */); |
| 440 | ret += shrink_nvdimm(num_regions - ret, false /* update_free_list */); |
| 441 | return ret; |
| 442 | } |
| 443 | |
| 444 | void HeterogeneousHeapRegionManager::verify() { |
| 445 | HeapRegionManager::verify(); |
| 446 | } |
| 447 | |
| 448 | uint HeterogeneousHeapRegionManager::free_list_dram_length() const { |
| 449 | return _free_list.num_of_regions_in_range(start_index_of_dram(), end_index_of_dram()); |
| 450 | } |
| 451 | |
| 452 | uint HeterogeneousHeapRegionManager::free_list_nvdimm_length() const { |
| 453 | return _free_list.num_of_regions_in_range(start_index_of_nvdimm(), end_index_of_nvdimm()); |
| 454 | } |
| 455 | |
| 456 | bool HeterogeneousHeapRegionManager::is_in_nvdimm(uint index) const { |
| 457 | return index >= start_index_of_nvdimm() && index <= end_index_of_nvdimm(); |
| 458 | } |
| 459 | |
| 460 | bool HeterogeneousHeapRegionManager::is_in_dram(uint index) const { |
| 461 | return index >= start_index_of_dram() && index <= end_index_of_dram(); |
| 462 | } |
| 463 | |
| 464 | // We have to make sure full collection copies all surviving objects to NV-DIMM. |
| 465 | // We might not have enough regions in nvdimm_set, so we need to make more regions on NV-DIMM available for full collection. |
| 466 | // Note: by doing this we are breaking the in-variant that total number of committed regions is equal to current heap size. |
| 467 | // After full collection ends, we will re-establish this in-variant by freeing DRAM regions. |
| 468 | void HeterogeneousHeapRegionManager::prepare_for_full_collection_start() { |
| 469 | _total_commited_before_full_gc = total_regions_committed() - _no_borrowed_regions; |
| 470 | _no_borrowed_regions = 0; |
| 471 | expand_nvdimm(num_committed_dram(), NULL); |
| 472 | remove_all_free_regions(); |
| 473 | } |
| 474 | |
| 475 | // We need to bring back the total committed regions to before full collection start. |
| 476 | // Unless we are close to OOM, all regular (not pinned) regions in DRAM should be free. |
| 477 | // We shrink all free regions in DRAM and if needed from NV-DIMM (when there are pinned DRAM regions) |
| 478 | // If we can't bring back committed regions count to _total_commited_before_full_gc, we keep the extra count in _no_borrowed_regions. |
| 479 | // When this GC finishes, new regions won't be allocated since has_borrowed_regions() is true. VM will be forced to re-try GC |
| 480 | // with clear soft references followed by OOM error in worst case. |
| 481 | void HeterogeneousHeapRegionManager::prepare_for_full_collection_end() { |
| 482 | uint shrink_size = total_regions_committed() - _total_commited_before_full_gc; |
| 483 | uint so_far = 0; |
| 484 | uint idx_last_found = 0; |
| 485 | uint num_last_found; |
| 486 | uint end = (uint)_regions.length() - 1; |
| 487 | while (so_far < shrink_size && |
| 488 | (num_last_found = find_empty_in_range_reverse(0, end, &idx_last_found)) > 0) { |
| 489 | uint to_uncommit = MIN2(shrink_size - so_far, num_last_found); |
| 490 | uncommit_regions(idx_last_found + num_last_found - to_uncommit, to_uncommit); |
| 491 | so_far += to_uncommit; |
| 492 | end = idx_last_found; |
| 493 | } |
| 494 | // See comment above the function. |
| 495 | _no_borrowed_regions = shrink_size - so_far; |
| 496 | } |
| 497 | |
| 498 | uint HeterogeneousHeapRegionManager::start_index_of_dram() const { return _max_regions;} |
| 499 | |
| 500 | uint HeterogeneousHeapRegionManager::end_index_of_dram() const { return 2*_max_regions - 1; } |
| 501 | |
| 502 | uint HeterogeneousHeapRegionManager::start_index_of_nvdimm() const { return 0; } |
| 503 | |
| 504 | uint HeterogeneousHeapRegionManager::end_index_of_nvdimm() const { return _max_regions - 1; } |
| 505 | |
| 506 | // This function is called when there are no free nv-dimm regions. |
| 507 | // It borrows a region from the set of unavailable regions in nv-dimm for GC purpose. |
| 508 | HeapRegion* HeterogeneousHeapRegionManager::borrow_old_region_for_gc() { |
| 509 | assert(free_list_nvdimm_length() == 0, "this function should be called only when there are no nv-dimm regions in free list" ); |
| 510 | |
| 511 | uint ret = expand_nvdimm(1, NULL); |
| 512 | if(ret != 1) { |
| 513 | return NULL; |
| 514 | } |
| 515 | HeapRegion* hr = _free_list.remove_region(true /*from_head*/); |
| 516 | assert(is_in_nvdimm(hr->hrm_index()), "allocated region should be in nv-dimm" ); |
| 517 | _no_borrowed_regions++; |
| 518 | return hr; |
| 519 | } |
| 520 | |
| 521 | bool HeterogeneousHeapRegionManager::has_borrowed_regions() const { |
| 522 | return _no_borrowed_regions > 0; |
| 523 | } |
| 524 | |