1 | /* |
2 | * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "gc/g1/g1CollectedHeap.inline.hpp" |
27 | #include "gc/g1/g1ConcurrentRefine.hpp" |
28 | #include "gc/g1/heapRegion.hpp" |
29 | #include "gc/g1/heapRegionManager.inline.hpp" |
30 | #include "gc/g1/heapRegionSet.inline.hpp" |
31 | #include "gc/g1/heterogeneousHeapRegionManager.hpp" |
32 | #include "memory/allocation.hpp" |
33 | |
34 | |
35 | HeterogeneousHeapRegionManager* HeterogeneousHeapRegionManager::manager() { |
36 | G1CollectedHeap* g1h = G1CollectedHeap::heap(); |
37 | assert(g1h != NULL, "Uninitialized access to HeterogeneousHeapRegionManager::manager()" ); |
38 | |
39 | HeapRegionManager* hrm = g1h->hrm(); |
40 | assert(hrm != NULL, "Uninitialized access to HeterogeneousHeapRegionManager::manager()" ); |
41 | return (HeterogeneousHeapRegionManager*)hrm; |
42 | } |
43 | |
44 | void HeterogeneousHeapRegionManager::initialize(G1RegionToSpaceMapper* heap_storage, |
45 | G1RegionToSpaceMapper* prev_bitmap, |
46 | G1RegionToSpaceMapper* next_bitmap, |
47 | G1RegionToSpaceMapper* bot, |
48 | G1RegionToSpaceMapper* cardtable, |
49 | G1RegionToSpaceMapper* card_counts) { |
50 | HeapRegionManager::initialize(heap_storage, prev_bitmap, next_bitmap, bot, cardtable, card_counts); |
51 | |
52 | // We commit bitmap for all regions during initialization and mark the bitmap space as special. |
53 | // This allows regions to be un-committed while concurrent-marking threads are accessing the bitmap concurrently. |
54 | _prev_bitmap_mapper->commit_and_set_special(); |
55 | _next_bitmap_mapper->commit_and_set_special(); |
56 | } |
57 | |
58 | // expand_by() is called to grow the heap. We grow into nvdimm now. |
59 | // Dram regions are committed later as needed during mutator region allocation or |
60 | // when young list target length is determined after gc cycle. |
61 | uint HeterogeneousHeapRegionManager::expand_by(uint num_regions, WorkGang* pretouch_workers) { |
62 | uint num_regions_possible = total_regions_committed() >= max_expandable_length() ? 0 : max_expandable_length() - total_regions_committed(); |
63 | uint num_expanded = expand_nvdimm(MIN2(num_regions, num_regions_possible), pretouch_workers); |
64 | return num_expanded; |
65 | } |
66 | |
67 | // Expands heap starting from 'start' index. The question is should we expand from one memory (e.g. nvdimm) to another (e.g. dram). |
68 | // Looking at the code, expand_at() is called for humongous allocation where 'start' is in nv-dimm. |
69 | // So we only allocate regions in the same kind of memory as 'start'. |
70 | uint HeterogeneousHeapRegionManager::expand_at(uint start, uint num_regions, WorkGang* pretouch_workers) { |
71 | if (num_regions == 0) { |
72 | return 0; |
73 | } |
74 | uint target_num_regions = MIN2(num_regions, max_expandable_length() - total_regions_committed()); |
75 | uint end = is_in_nvdimm(start) ? end_index_of_nvdimm() : end_index_of_dram(); |
76 | |
77 | uint num_expanded = expand_in_range(start, end, target_num_regions, pretouch_workers); |
78 | assert(total_regions_committed() <= max_expandable_length(), "must be" ); |
79 | return num_expanded; |
80 | } |
81 | |
82 | // This function ensures that there are 'expected_num_regions' committed regions in dram. |
83 | // If new regions are committed, it un-commits that many regions from nv-dimm. |
84 | // If there are already more regions committed in dram, extra regions are un-committed. |
85 | void HeterogeneousHeapRegionManager::adjust_dram_regions(uint expected_num_regions, WorkGang* pretouch_workers) { |
86 | |
87 | // Release back the extra regions allocated in evacuation failure scenario. |
88 | if(_no_borrowed_regions > 0) { |
89 | _no_borrowed_regions -= shrink_dram(_no_borrowed_regions); |
90 | _no_borrowed_regions -= shrink_nvdimm(_no_borrowed_regions); |
91 | } |
92 | |
93 | if(expected_num_regions > free_list_dram_length()) { |
94 | // If we are going to expand DRAM, we expand a little more so that we can absorb small variations in Young gen sizing. |
95 | uint targeted_dram_regions = expected_num_regions * (1 + (double)G1YoungExpansionBufferPercent / 100); |
96 | uint to_be_made_available = targeted_dram_regions - free_list_dram_length(); |
97 | |
98 | #ifdef ASSERT |
99 | uint total_committed_before = total_regions_committed(); |
100 | #endif |
101 | uint can_be_made_available = shrink_nvdimm(to_be_made_available); |
102 | uint ret = expand_dram(can_be_made_available, pretouch_workers); |
103 | #ifdef ASSERT |
104 | assert(ret == can_be_made_available, "should be equal" ); |
105 | assert(total_committed_before == total_regions_committed(), "invariant not met" ); |
106 | #endif |
107 | } else { |
108 | uint to_be_released = free_list_dram_length() - expected_num_regions; |
109 | // if number of extra DRAM regions is small, do not shrink. |
110 | if (to_be_released < expected_num_regions * G1YoungExpansionBufferPercent / 100) { |
111 | return; |
112 | } |
113 | |
114 | #ifdef ASSERT |
115 | uint total_committed_before = total_regions_committed(); |
116 | #endif |
117 | uint ret = shrink_dram(to_be_released); |
118 | assert(ret == to_be_released, "Should be able to shrink by given amount" ); |
119 | ret = expand_nvdimm(to_be_released, pretouch_workers); |
120 | #ifdef ASSERT |
121 | assert(ret == to_be_released, "Should be able to expand by given amount" ); |
122 | assert(total_committed_before == total_regions_committed(), "invariant not met" ); |
123 | #endif |
124 | } |
125 | } |
126 | |
127 | uint HeterogeneousHeapRegionManager::total_regions_committed() const { |
128 | return num_committed_dram() + num_committed_nvdimm(); |
129 | } |
130 | |
131 | uint HeterogeneousHeapRegionManager::num_committed_dram() const { |
132 | // This class does not keep count of committed regions in dram and nv-dimm. |
133 | // G1RegionToHeteroSpaceMapper keeps this information. |
134 | return static_cast<G1RegionToHeteroSpaceMapper*>(_heap_mapper)->num_committed_dram(); |
135 | } |
136 | |
137 | uint HeterogeneousHeapRegionManager::num_committed_nvdimm() const { |
138 | // See comment for num_committed_dram() |
139 | return static_cast<G1RegionToHeteroSpaceMapper*>(_heap_mapper)->num_committed_nvdimm(); |
140 | } |
141 | |
142 | // Return maximum number of regions that heap can expand to. |
143 | uint HeterogeneousHeapRegionManager::max_expandable_length() const { |
144 | return _max_regions; |
145 | } |
146 | |
147 | uint HeterogeneousHeapRegionManager::find_unavailable_in_range(uint start_idx, uint end_idx, uint* res_idx) const { |
148 | guarantee(res_idx != NULL, "checking" ); |
149 | guarantee(start_idx <= (max_length() + 1), "checking" ); |
150 | |
151 | uint num_regions = 0; |
152 | |
153 | uint cur = start_idx; |
154 | while (cur <= end_idx && is_available(cur)) { |
155 | cur++; |
156 | } |
157 | if (cur == end_idx + 1) { |
158 | return num_regions; |
159 | } |
160 | *res_idx = cur; |
161 | while (cur <= end_idx && !is_available(cur)) { |
162 | cur++; |
163 | } |
164 | num_regions = cur - *res_idx; |
165 | |
166 | #ifdef ASSERT |
167 | for (uint i = *res_idx; i < (*res_idx + num_regions); i++) { |
168 | assert(!is_available(i), "just checking" ); |
169 | } |
170 | assert(cur == end_idx + 1 || num_regions == 0 || is_available(cur), |
171 | "The region at the current position %u must be available or at the end" , cur); |
172 | #endif |
173 | return num_regions; |
174 | } |
175 | |
176 | uint HeterogeneousHeapRegionManager::expand_dram(uint num_regions, WorkGang* pretouch_workers) { |
177 | return expand_in_range(start_index_of_dram(), end_index_of_dram(), num_regions, pretouch_workers); |
178 | } |
179 | |
180 | uint HeterogeneousHeapRegionManager::expand_nvdimm(uint num_regions, WorkGang* pretouch_workers) { |
181 | return expand_in_range(start_index_of_nvdimm(), end_index_of_nvdimm(), num_regions, pretouch_workers); |
182 | } |
183 | |
184 | // Follows same logic as expand_at() form HeapRegionManager. |
185 | uint HeterogeneousHeapRegionManager::expand_in_range(uint start, uint end, uint num_regions, WorkGang* pretouch_gang) { |
186 | |
187 | uint so_far = 0; |
188 | uint chunk_start = 0; |
189 | uint num_last_found = 0; |
190 | while (so_far < num_regions && |
191 | (num_last_found = find_unavailable_in_range(start, end, &chunk_start)) > 0) { |
192 | uint to_commit = MIN2(num_regions - so_far, num_last_found); |
193 | make_regions_available(chunk_start, to_commit, pretouch_gang); |
194 | so_far += to_commit; |
195 | start = chunk_start + to_commit + 1; |
196 | } |
197 | |
198 | return so_far; |
199 | } |
200 | |
201 | // Shrink in the range of indexes which are reserved for dram. |
202 | uint HeterogeneousHeapRegionManager::shrink_dram(uint num_regions, bool update_free_list) { |
203 | return shrink_in_range(start_index_of_dram(), end_index_of_dram(), num_regions, update_free_list); |
204 | } |
205 | |
206 | // Shrink in the range of indexes which are reserved for nv-dimm. |
207 | uint HeterogeneousHeapRegionManager::shrink_nvdimm(uint num_regions, bool update_free_list) { |
208 | return shrink_in_range(start_index_of_nvdimm(), end_index_of_nvdimm(), num_regions, update_free_list); |
209 | } |
210 | |
211 | // Find empty regions in given range, un-commit them and return the count. |
212 | uint HeterogeneousHeapRegionManager::shrink_in_range(uint start, uint end, uint num_regions, bool update_free_list) { |
213 | |
214 | if (num_regions == 0) { |
215 | return 0; |
216 | } |
217 | uint so_far = 0; |
218 | uint idx_last_found = 0; |
219 | uint num_last_found; |
220 | while (so_far < num_regions && |
221 | (num_last_found = find_empty_in_range_reverse(start, end, &idx_last_found)) > 0) { |
222 | uint to_uncommit = MIN2(num_regions - so_far, num_last_found); |
223 | if(update_free_list) { |
224 | _free_list.remove_starting_at(at(idx_last_found + num_last_found - to_uncommit), to_uncommit); |
225 | } |
226 | uncommit_regions(idx_last_found + num_last_found - to_uncommit, to_uncommit); |
227 | so_far += to_uncommit; |
228 | end = idx_last_found; |
229 | } |
230 | return so_far; |
231 | } |
232 | |
233 | uint HeterogeneousHeapRegionManager::find_empty_in_range_reverse(uint start_idx, uint end_idx, uint* res_idx) { |
234 | guarantee(res_idx != NULL, "checking" ); |
235 | guarantee(start_idx < max_length(), "checking" ); |
236 | guarantee(end_idx < max_length(), "checking" ); |
237 | if(start_idx > end_idx) { |
238 | return 0; |
239 | } |
240 | |
241 | uint num_regions_found = 0; |
242 | |
243 | jlong cur = end_idx; |
244 | while (cur >= start_idx && !(is_available(cur) && at(cur)->is_empty())) { |
245 | cur--; |
246 | } |
247 | if (cur == start_idx - 1) { |
248 | return num_regions_found; |
249 | } |
250 | jlong old_cur = cur; |
251 | // cur indexes the first empty region |
252 | while (cur >= start_idx && is_available(cur) && at(cur)->is_empty()) { |
253 | cur--; |
254 | } |
255 | *res_idx = cur + 1; |
256 | num_regions_found = old_cur - cur; |
257 | |
258 | #ifdef ASSERT |
259 | for (uint i = *res_idx; i < (*res_idx + num_regions_found); i++) { |
260 | assert(at(i)->is_empty(), "just checking" ); |
261 | } |
262 | #endif |
263 | return num_regions_found; |
264 | } |
265 | |
266 | HeapRegion* HeterogeneousHeapRegionManager::allocate_free_region(HeapRegionType type) { |
267 | |
268 | // We want to prevent mutators from proceeding when we have borrowed regions from the last collection. This |
269 | // will force a full collection to remedy the situation. |
270 | // Free region requests from GC threads can proceed. |
271 | if(type.is_eden() || type.is_humongous()) { |
272 | if(has_borrowed_regions()) { |
273 | return NULL; |
274 | } |
275 | } |
276 | |
277 | // old and humongous regions are allocated from nv-dimm; eden and survivor regions are allocated from dram |
278 | // assumption: dram regions take higher indexes |
279 | bool from_nvdimm = (type.is_old() || type.is_humongous()) ? true : false; |
280 | bool from_head = from_nvdimm; |
281 | HeapRegion* hr = _free_list.remove_region(from_head); |
282 | |
283 | if (hr != NULL && ( (from_nvdimm && !is_in_nvdimm(hr->hrm_index())) || (!from_nvdimm && !is_in_dram(hr->hrm_index())) ) ) { |
284 | _free_list.add_ordered(hr); |
285 | hr = NULL; |
286 | } |
287 | |
288 | #ifdef ASSERT |
289 | uint total_committed_before = total_regions_committed(); |
290 | #endif |
291 | |
292 | if (hr == NULL) { |
293 | if (!from_nvdimm) { |
294 | uint ret = shrink_nvdimm(1); |
295 | if (ret == 1) { |
296 | ret = expand_dram(1, NULL); |
297 | assert(ret == 1, "We should be able to commit one region" ); |
298 | hr = _free_list.remove_region(from_head); |
299 | } |
300 | } |
301 | else { /*is_old*/ |
302 | uint ret = shrink_dram(1); |
303 | if (ret == 1) { |
304 | ret = expand_nvdimm(1, NULL); |
305 | assert(ret == 1, "We should be able to commit one region" ); |
306 | hr = _free_list.remove_region(from_head); |
307 | } |
308 | } |
309 | } |
310 | #ifdef ASSERT |
311 | assert(total_committed_before == total_regions_committed(), "invariant not met" ); |
312 | #endif |
313 | |
314 | // When an old region is requested (which happens during collection pause) and we can't find any empty region |
315 | // in the set of available regions (which is an evacuation failure scenario), we borrow (or pre-allocate) an unavailable region |
316 | // from nv-dimm. This region is used to evacuate surviving objects from eden, survivor or old. |
317 | if(hr == NULL && type.is_old()) { |
318 | hr = borrow_old_region_for_gc(); |
319 | } |
320 | |
321 | if (hr != NULL) { |
322 | assert(hr->next() == NULL, "Single region should not have next" ); |
323 | assert(is_available(hr->hrm_index()), "Must be committed" ); |
324 | } |
325 | return hr; |
326 | } |
327 | |
328 | uint HeterogeneousHeapRegionManager::find_contiguous_only_empty(size_t num) { |
329 | if (has_borrowed_regions()) { |
330 | return G1_NO_HRM_INDEX; |
331 | } |
332 | return find_contiguous(start_index_of_nvdimm(), end_index_of_nvdimm(), num, true); |
333 | } |
334 | |
335 | uint HeterogeneousHeapRegionManager::find_contiguous_empty_or_unavailable(size_t num) { |
336 | if (has_borrowed_regions()) { |
337 | return G1_NO_HRM_INDEX; |
338 | } |
339 | return find_contiguous(start_index_of_nvdimm(), end_index_of_nvdimm(), num, false); |
340 | } |
341 | |
342 | uint HeterogeneousHeapRegionManager::find_contiguous(size_t start, size_t end, size_t num, bool empty_only) { |
343 | uint found = 0; |
344 | size_t length_found = 0; |
345 | uint cur = (uint)start; |
346 | uint length_unavailable = 0; |
347 | |
348 | while (length_found < num && cur <= end) { |
349 | HeapRegion* hr = _regions.get_by_index(cur); |
350 | if ((!empty_only && !is_available(cur)) || (is_available(cur) && hr != NULL && hr->is_empty())) { |
351 | // This region is a potential candidate for allocation into. |
352 | if (!is_available(cur)) { |
353 | if(shrink_dram(1) == 1) { |
354 | uint ret = expand_in_range(cur, cur, 1, NULL); |
355 | assert(ret == 1, "We should be able to expand at this index" ); |
356 | } else { |
357 | length_unavailable++; |
358 | } |
359 | } |
360 | length_found++; |
361 | } |
362 | else { |
363 | // This region is not a candidate. The next region is the next possible one. |
364 | found = cur + 1; |
365 | length_found = 0; |
366 | } |
367 | cur++; |
368 | } |
369 | |
370 | if (length_found == num) { |
371 | for (uint i = found; i < (found + num); i++) { |
372 | HeapRegion* hr = _regions.get_by_index(i); |
373 | // sanity check |
374 | guarantee((!empty_only && !is_available(i)) || (is_available(i) && hr != NULL && hr->is_empty()), |
375 | "Found region sequence starting at " UINT32_FORMAT ", length " SIZE_FORMAT |
376 | " that is not empty at " UINT32_FORMAT ". Hr is " PTR_FORMAT, found, num, i, p2i(hr)); |
377 | } |
378 | if (!empty_only && length_unavailable > (max_expandable_length() - total_regions_committed())) { |
379 | // if 'length_unavailable' number of regions will be made available, we will exceed max regions. |
380 | return G1_NO_HRM_INDEX; |
381 | } |
382 | return found; |
383 | } |
384 | else { |
385 | return G1_NO_HRM_INDEX; |
386 | } |
387 | } |
388 | |
389 | uint HeterogeneousHeapRegionManager::find_highest_free(bool* expanded) { |
390 | // Loop downwards from the highest dram region index, looking for an |
391 | // entry which is either free or not yet committed. If not yet |
392 | // committed, expand_at that index. |
393 | uint curr = end_index_of_dram(); |
394 | while (true) { |
395 | HeapRegion *hr = _regions.get_by_index(curr); |
396 | if (hr == NULL && !(total_regions_committed() < _max_regions)) { |
397 | uint res = shrink_nvdimm(1); |
398 | if (res == 1) { |
399 | res = expand_in_range(curr, curr, 1, NULL); |
400 | assert(res == 1, "We should be able to expand since shrink was successful" ); |
401 | *expanded = true; |
402 | return curr; |
403 | } |
404 | } |
405 | else { |
406 | if (hr->is_free()) { |
407 | *expanded = false; |
408 | return curr; |
409 | } |
410 | } |
411 | if (curr == start_index_of_dram()) { |
412 | return G1_NO_HRM_INDEX; |
413 | } |
414 | curr--; |
415 | } |
416 | } |
417 | |
418 | // We need to override this since region 0 which serves are dummy region in base class may not be available here. |
419 | // This is a corner condition when either number of regions is small. When adaptive sizing is used, initial heap size |
420 | // could be just one region. This region is commited in dram to be used for young generation, leaving region 0 (which is in nvdimm) |
421 | // unavailable. |
422 | HeapRegion* HeterogeneousHeapRegionManager::get_dummy_region() { |
423 | uint curr = 0; |
424 | |
425 | while (curr < _regions.length()) { |
426 | if (is_available(curr)) { |
427 | return new_heap_region(curr); |
428 | } |
429 | curr++; |
430 | } |
431 | assert(false, "We should always find a region available for dummy region" ); |
432 | return NULL; |
433 | } |
434 | |
435 | // First shrink in dram, then in nv-dimm. |
436 | uint HeterogeneousHeapRegionManager::shrink_by(uint num_regions) { |
437 | // This call is made at end of full collection. Before making this call the region sets are tore down (tear_down_region_sets()). |
438 | // So shrink() calls below do not need to remove uncomitted regions from free list. |
439 | uint ret = shrink_dram(num_regions, false /* update_free_list */); |
440 | ret += shrink_nvdimm(num_regions - ret, false /* update_free_list */); |
441 | return ret; |
442 | } |
443 | |
444 | void HeterogeneousHeapRegionManager::verify() { |
445 | HeapRegionManager::verify(); |
446 | } |
447 | |
448 | uint HeterogeneousHeapRegionManager::free_list_dram_length() const { |
449 | return _free_list.num_of_regions_in_range(start_index_of_dram(), end_index_of_dram()); |
450 | } |
451 | |
452 | uint HeterogeneousHeapRegionManager::free_list_nvdimm_length() const { |
453 | return _free_list.num_of_regions_in_range(start_index_of_nvdimm(), end_index_of_nvdimm()); |
454 | } |
455 | |
456 | bool HeterogeneousHeapRegionManager::is_in_nvdimm(uint index) const { |
457 | return index >= start_index_of_nvdimm() && index <= end_index_of_nvdimm(); |
458 | } |
459 | |
460 | bool HeterogeneousHeapRegionManager::is_in_dram(uint index) const { |
461 | return index >= start_index_of_dram() && index <= end_index_of_dram(); |
462 | } |
463 | |
464 | // We have to make sure full collection copies all surviving objects to NV-DIMM. |
465 | // We might not have enough regions in nvdimm_set, so we need to make more regions on NV-DIMM available for full collection. |
466 | // Note: by doing this we are breaking the in-variant that total number of committed regions is equal to current heap size. |
467 | // After full collection ends, we will re-establish this in-variant by freeing DRAM regions. |
468 | void HeterogeneousHeapRegionManager::prepare_for_full_collection_start() { |
469 | _total_commited_before_full_gc = total_regions_committed() - _no_borrowed_regions; |
470 | _no_borrowed_regions = 0; |
471 | expand_nvdimm(num_committed_dram(), NULL); |
472 | remove_all_free_regions(); |
473 | } |
474 | |
475 | // We need to bring back the total committed regions to before full collection start. |
476 | // Unless we are close to OOM, all regular (not pinned) regions in DRAM should be free. |
477 | // We shrink all free regions in DRAM and if needed from NV-DIMM (when there are pinned DRAM regions) |
478 | // If we can't bring back committed regions count to _total_commited_before_full_gc, we keep the extra count in _no_borrowed_regions. |
479 | // When this GC finishes, new regions won't be allocated since has_borrowed_regions() is true. VM will be forced to re-try GC |
480 | // with clear soft references followed by OOM error in worst case. |
481 | void HeterogeneousHeapRegionManager::prepare_for_full_collection_end() { |
482 | uint shrink_size = total_regions_committed() - _total_commited_before_full_gc; |
483 | uint so_far = 0; |
484 | uint idx_last_found = 0; |
485 | uint num_last_found; |
486 | uint end = (uint)_regions.length() - 1; |
487 | while (so_far < shrink_size && |
488 | (num_last_found = find_empty_in_range_reverse(0, end, &idx_last_found)) > 0) { |
489 | uint to_uncommit = MIN2(shrink_size - so_far, num_last_found); |
490 | uncommit_regions(idx_last_found + num_last_found - to_uncommit, to_uncommit); |
491 | so_far += to_uncommit; |
492 | end = idx_last_found; |
493 | } |
494 | // See comment above the function. |
495 | _no_borrowed_regions = shrink_size - so_far; |
496 | } |
497 | |
498 | uint HeterogeneousHeapRegionManager::start_index_of_dram() const { return _max_regions;} |
499 | |
500 | uint HeterogeneousHeapRegionManager::end_index_of_dram() const { return 2*_max_regions - 1; } |
501 | |
502 | uint HeterogeneousHeapRegionManager::start_index_of_nvdimm() const { return 0; } |
503 | |
504 | uint HeterogeneousHeapRegionManager::end_index_of_nvdimm() const { return _max_regions - 1; } |
505 | |
506 | // This function is called when there are no free nv-dimm regions. |
507 | // It borrows a region from the set of unavailable regions in nv-dimm for GC purpose. |
508 | HeapRegion* HeterogeneousHeapRegionManager::borrow_old_region_for_gc() { |
509 | assert(free_list_nvdimm_length() == 0, "this function should be called only when there are no nv-dimm regions in free list" ); |
510 | |
511 | uint ret = expand_nvdimm(1, NULL); |
512 | if(ret != 1) { |
513 | return NULL; |
514 | } |
515 | HeapRegion* hr = _free_list.remove_region(true /*from_head*/); |
516 | assert(is_in_nvdimm(hr->hrm_index()), "allocated region should be in nv-dimm" ); |
517 | _no_borrowed_regions++; |
518 | return hr; |
519 | } |
520 | |
521 | bool HeterogeneousHeapRegionManager::has_borrowed_regions() const { |
522 | return _no_borrowed_regions > 0; |
523 | } |
524 | |