| 1 | /* |
| 2 | * Copyright (c) 2006, 2018, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "gc/parallel/mutableNUMASpace.hpp" |
| 27 | #include "gc/shared/collectedHeap.hpp" |
| 28 | #include "gc/shared/spaceDecorator.hpp" |
| 29 | #include "memory/allocation.inline.hpp" |
| 30 | #include "oops/oop.inline.hpp" |
| 31 | #include "runtime/atomic.hpp" |
| 32 | #include "runtime/thread.inline.hpp" |
| 33 | #include "runtime/threadSMR.hpp" |
| 34 | #include "utilities/align.hpp" |
| 35 | |
| 36 | MutableNUMASpace::MutableNUMASpace(size_t alignment) : MutableSpace(alignment), _must_use_large_pages(false) { |
| 37 | _lgrp_spaces = new (ResourceObj::C_HEAP, mtGC) GrowableArray<LGRPSpace*>(0, true); |
| 38 | _page_size = os::vm_page_size(); |
| 39 | _adaptation_cycles = 0; |
| 40 | _samples_count = 0; |
| 41 | |
| 42 | #ifdef LINUX |
| 43 | // Changing the page size can lead to freeing of memory. When using large pages |
| 44 | // and the memory has been both reserved and committed, Linux does not support |
| 45 | // freeing parts of it. |
| 46 | if (UseLargePages && !os::can_commit_large_page_memory()) { |
| 47 | _must_use_large_pages = true; |
| 48 | } |
| 49 | #endif // LINUX |
| 50 | |
| 51 | update_layout(true); |
| 52 | } |
| 53 | |
| 54 | MutableNUMASpace::~MutableNUMASpace() { |
| 55 | for (int i = 0; i < lgrp_spaces()->length(); i++) { |
| 56 | delete lgrp_spaces()->at(i); |
| 57 | } |
| 58 | delete lgrp_spaces(); |
| 59 | } |
| 60 | |
| 61 | #ifndef PRODUCT |
| 62 | void MutableNUMASpace::mangle_unused_area() { |
| 63 | // This method should do nothing. |
| 64 | // It can be called on a numa space during a full compaction. |
| 65 | } |
| 66 | void MutableNUMASpace::mangle_unused_area_complete() { |
| 67 | // This method should do nothing. |
| 68 | // It can be called on a numa space during a full compaction. |
| 69 | } |
| 70 | void MutableNUMASpace::mangle_region(MemRegion mr) { |
| 71 | // This method should do nothing because numa spaces are not mangled. |
| 72 | } |
| 73 | void MutableNUMASpace::set_top_for_allocations(HeapWord* v) { |
| 74 | assert(false, "Do not mangle MutableNUMASpace's" ); |
| 75 | } |
| 76 | void MutableNUMASpace::set_top_for_allocations() { |
| 77 | // This method should do nothing. |
| 78 | } |
| 79 | void MutableNUMASpace::check_mangled_unused_area(HeapWord* limit) { |
| 80 | // This method should do nothing. |
| 81 | } |
| 82 | void MutableNUMASpace::check_mangled_unused_area_complete() { |
| 83 | // This method should do nothing. |
| 84 | } |
| 85 | #endif // NOT_PRODUCT |
| 86 | |
| 87 | // There may be unallocated holes in the middle chunks |
| 88 | // that should be filled with dead objects to ensure parsability. |
| 89 | void MutableNUMASpace::ensure_parsability() { |
| 90 | for (int i = 0; i < lgrp_spaces()->length(); i++) { |
| 91 | LGRPSpace *ls = lgrp_spaces()->at(i); |
| 92 | MutableSpace *s = ls->space(); |
| 93 | if (s->top() < top()) { // For all spaces preceding the one containing top() |
| 94 | if (s->free_in_words() > 0) { |
| 95 | HeapWord* cur_top = s->top(); |
| 96 | size_t words_left_to_fill = pointer_delta(s->end(), s->top());; |
| 97 | while (words_left_to_fill > 0) { |
| 98 | size_t words_to_fill = MIN2(words_left_to_fill, CollectedHeap::filler_array_max_size()); |
| 99 | assert(words_to_fill >= CollectedHeap::min_fill_size(), |
| 100 | "Remaining size (" SIZE_FORMAT ") is too small to fill (based on " SIZE_FORMAT " and " SIZE_FORMAT ")" , |
| 101 | words_to_fill, words_left_to_fill, CollectedHeap::filler_array_max_size()); |
| 102 | CollectedHeap::fill_with_object(cur_top, words_to_fill); |
| 103 | if (!os::numa_has_static_binding()) { |
| 104 | size_t touched_words = words_to_fill; |
| 105 | #ifndef ASSERT |
| 106 | if (!ZapUnusedHeapArea) { |
| 107 | touched_words = MIN2((size_t)align_object_size(typeArrayOopDesc::header_size(T_INT)), |
| 108 | touched_words); |
| 109 | } |
| 110 | #endif |
| 111 | MemRegion invalid; |
| 112 | HeapWord *crossing_start = align_up(cur_top, os::vm_page_size()); |
| 113 | HeapWord *crossing_end = align_down(cur_top + touched_words, os::vm_page_size()); |
| 114 | if (crossing_start != crossing_end) { |
| 115 | // If object header crossed a small page boundary we mark the area |
| 116 | // as invalid rounding it to a page_size(). |
| 117 | HeapWord *start = MAX2(align_down(cur_top, page_size()), s->bottom()); |
| 118 | HeapWord *end = MIN2(align_up(cur_top + touched_words, page_size()), s->end()); |
| 119 | invalid = MemRegion(start, end); |
| 120 | } |
| 121 | |
| 122 | ls->add_invalid_region(invalid); |
| 123 | } |
| 124 | cur_top += words_to_fill; |
| 125 | words_left_to_fill -= words_to_fill; |
| 126 | } |
| 127 | } |
| 128 | } else { |
| 129 | if (!os::numa_has_static_binding()) { |
| 130 | #ifdef ASSERT |
| 131 | MemRegion invalid(s->top(), s->end()); |
| 132 | ls->add_invalid_region(invalid); |
| 133 | #else |
| 134 | if (ZapUnusedHeapArea) { |
| 135 | MemRegion invalid(s->top(), s->end()); |
| 136 | ls->add_invalid_region(invalid); |
| 137 | } else { |
| 138 | return; |
| 139 | } |
| 140 | #endif |
| 141 | } else { |
| 142 | return; |
| 143 | } |
| 144 | } |
| 145 | } |
| 146 | } |
| 147 | |
| 148 | size_t MutableNUMASpace::used_in_words() const { |
| 149 | size_t s = 0; |
| 150 | for (int i = 0; i < lgrp_spaces()->length(); i++) { |
| 151 | s += lgrp_spaces()->at(i)->space()->used_in_words(); |
| 152 | } |
| 153 | return s; |
| 154 | } |
| 155 | |
| 156 | size_t MutableNUMASpace::free_in_words() const { |
| 157 | size_t s = 0; |
| 158 | for (int i = 0; i < lgrp_spaces()->length(); i++) { |
| 159 | s += lgrp_spaces()->at(i)->space()->free_in_words(); |
| 160 | } |
| 161 | return s; |
| 162 | } |
| 163 | |
| 164 | |
| 165 | size_t MutableNUMASpace::tlab_capacity(Thread *thr) const { |
| 166 | guarantee(thr != NULL, "No thread" ); |
| 167 | int lgrp_id = thr->lgrp_id(); |
| 168 | if (lgrp_id == -1) { |
| 169 | // This case can occur after the topology of the system has |
| 170 | // changed. Thread can change their location, the new home |
| 171 | // group will be determined during the first allocation |
| 172 | // attempt. For now we can safely assume that all spaces |
| 173 | // have equal size because the whole space will be reinitialized. |
| 174 | if (lgrp_spaces()->length() > 0) { |
| 175 | return capacity_in_bytes() / lgrp_spaces()->length(); |
| 176 | } else { |
| 177 | assert(false, "There should be at least one locality group" ); |
| 178 | return 0; |
| 179 | } |
| 180 | } |
| 181 | // That's the normal case, where we know the locality group of the thread. |
| 182 | int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals); |
| 183 | if (i == -1) { |
| 184 | return 0; |
| 185 | } |
| 186 | return lgrp_spaces()->at(i)->space()->capacity_in_bytes(); |
| 187 | } |
| 188 | |
| 189 | size_t MutableNUMASpace::tlab_used(Thread *thr) const { |
| 190 | // Please see the comments for tlab_capacity(). |
| 191 | guarantee(thr != NULL, "No thread" ); |
| 192 | int lgrp_id = thr->lgrp_id(); |
| 193 | if (lgrp_id == -1) { |
| 194 | if (lgrp_spaces()->length() > 0) { |
| 195 | return (used_in_bytes()) / lgrp_spaces()->length(); |
| 196 | } else { |
| 197 | assert(false, "There should be at least one locality group" ); |
| 198 | return 0; |
| 199 | } |
| 200 | } |
| 201 | int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals); |
| 202 | if (i == -1) { |
| 203 | return 0; |
| 204 | } |
| 205 | return lgrp_spaces()->at(i)->space()->used_in_bytes(); |
| 206 | } |
| 207 | |
| 208 | |
| 209 | size_t MutableNUMASpace::unsafe_max_tlab_alloc(Thread *thr) const { |
| 210 | // Please see the comments for tlab_capacity(). |
| 211 | guarantee(thr != NULL, "No thread" ); |
| 212 | int lgrp_id = thr->lgrp_id(); |
| 213 | if (lgrp_id == -1) { |
| 214 | if (lgrp_spaces()->length() > 0) { |
| 215 | return free_in_bytes() / lgrp_spaces()->length(); |
| 216 | } else { |
| 217 | assert(false, "There should be at least one locality group" ); |
| 218 | return 0; |
| 219 | } |
| 220 | } |
| 221 | int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals); |
| 222 | if (i == -1) { |
| 223 | return 0; |
| 224 | } |
| 225 | return lgrp_spaces()->at(i)->space()->free_in_bytes(); |
| 226 | } |
| 227 | |
| 228 | |
| 229 | size_t MutableNUMASpace::capacity_in_words(Thread* thr) const { |
| 230 | guarantee(thr != NULL, "No thread" ); |
| 231 | int lgrp_id = thr->lgrp_id(); |
| 232 | if (lgrp_id == -1) { |
| 233 | if (lgrp_spaces()->length() > 0) { |
| 234 | return capacity_in_words() / lgrp_spaces()->length(); |
| 235 | } else { |
| 236 | assert(false, "There should be at least one locality group" ); |
| 237 | return 0; |
| 238 | } |
| 239 | } |
| 240 | int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals); |
| 241 | if (i == -1) { |
| 242 | return 0; |
| 243 | } |
| 244 | return lgrp_spaces()->at(i)->space()->capacity_in_words(); |
| 245 | } |
| 246 | |
| 247 | // Check if the NUMA topology has changed. Add and remove spaces if needed. |
| 248 | // The update can be forced by setting the force parameter equal to true. |
| 249 | bool MutableNUMASpace::update_layout(bool force) { |
| 250 | // Check if the topology had changed. |
| 251 | bool changed = os::numa_topology_changed(); |
| 252 | if (force || changed) { |
| 253 | // Compute lgrp intersection. Add/remove spaces. |
| 254 | int lgrp_limit = (int)os::numa_get_groups_num(); |
| 255 | int *lgrp_ids = NEW_C_HEAP_ARRAY(int, lgrp_limit, mtGC); |
| 256 | int lgrp_num = (int)os::numa_get_leaf_groups(lgrp_ids, lgrp_limit); |
| 257 | assert(lgrp_num > 0, "There should be at least one locality group" ); |
| 258 | // Add new spaces for the new nodes |
| 259 | for (int i = 0; i < lgrp_num; i++) { |
| 260 | bool found = false; |
| 261 | for (int j = 0; j < lgrp_spaces()->length(); j++) { |
| 262 | if (lgrp_spaces()->at(j)->lgrp_id() == lgrp_ids[i]) { |
| 263 | found = true; |
| 264 | break; |
| 265 | } |
| 266 | } |
| 267 | if (!found) { |
| 268 | lgrp_spaces()->append(new LGRPSpace(lgrp_ids[i], alignment())); |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | // Remove spaces for the removed nodes. |
| 273 | for (int i = 0; i < lgrp_spaces()->length();) { |
| 274 | bool found = false; |
| 275 | for (int j = 0; j < lgrp_num; j++) { |
| 276 | if (lgrp_spaces()->at(i)->lgrp_id() == lgrp_ids[j]) { |
| 277 | found = true; |
| 278 | break; |
| 279 | } |
| 280 | } |
| 281 | if (!found) { |
| 282 | delete lgrp_spaces()->at(i); |
| 283 | lgrp_spaces()->remove_at(i); |
| 284 | } else { |
| 285 | i++; |
| 286 | } |
| 287 | } |
| 288 | |
| 289 | FREE_C_HEAP_ARRAY(int, lgrp_ids); |
| 290 | |
| 291 | if (changed) { |
| 292 | for (JavaThreadIteratorWithHandle jtiwh; JavaThread *thread = jtiwh.next(); ) { |
| 293 | thread->set_lgrp_id(-1); |
| 294 | } |
| 295 | } |
| 296 | return true; |
| 297 | } |
| 298 | return false; |
| 299 | } |
| 300 | |
| 301 | // Bias region towards the first-touching lgrp. Set the right page sizes. |
| 302 | void MutableNUMASpace::bias_region(MemRegion mr, int lgrp_id) { |
| 303 | HeapWord *start = align_up(mr.start(), page_size()); |
| 304 | HeapWord *end = align_down(mr.end(), page_size()); |
| 305 | if (end > start) { |
| 306 | MemRegion aligned_region(start, end); |
| 307 | assert((intptr_t)aligned_region.start() % page_size() == 0 && |
| 308 | (intptr_t)aligned_region.byte_size() % page_size() == 0, "Bad alignment" ); |
| 309 | assert(region().contains(aligned_region), "Sanity" ); |
| 310 | // First we tell the OS which page size we want in the given range. The underlying |
| 311 | // large page can be broken down if we require small pages. |
| 312 | os::realign_memory((char*)aligned_region.start(), aligned_region.byte_size(), page_size()); |
| 313 | // Then we uncommit the pages in the range. |
| 314 | os::free_memory((char*)aligned_region.start(), aligned_region.byte_size(), page_size()); |
| 315 | // And make them local/first-touch biased. |
| 316 | os::numa_make_local((char*)aligned_region.start(), aligned_region.byte_size(), lgrp_id); |
| 317 | } |
| 318 | } |
| 319 | |
| 320 | // Free all pages in the region. |
| 321 | void MutableNUMASpace::free_region(MemRegion mr) { |
| 322 | HeapWord *start = align_up(mr.start(), page_size()); |
| 323 | HeapWord *end = align_down(mr.end(), page_size()); |
| 324 | if (end > start) { |
| 325 | MemRegion aligned_region(start, end); |
| 326 | assert((intptr_t)aligned_region.start() % page_size() == 0 && |
| 327 | (intptr_t)aligned_region.byte_size() % page_size() == 0, "Bad alignment" ); |
| 328 | assert(region().contains(aligned_region), "Sanity" ); |
| 329 | os::free_memory((char*)aligned_region.start(), aligned_region.byte_size(), page_size()); |
| 330 | } |
| 331 | } |
| 332 | |
| 333 | // Update space layout. Perform adaptation. |
| 334 | void MutableNUMASpace::update() { |
| 335 | if (update_layout(false)) { |
| 336 | // If the topology has changed, make all chunks zero-sized. |
| 337 | // And clear the alloc-rate statistics. |
| 338 | // In future we may want to handle this more gracefully in order |
| 339 | // to avoid the reallocation of the pages as much as possible. |
| 340 | for (int i = 0; i < lgrp_spaces()->length(); i++) { |
| 341 | LGRPSpace *ls = lgrp_spaces()->at(i); |
| 342 | MutableSpace *s = ls->space(); |
| 343 | s->set_end(s->bottom()); |
| 344 | s->set_top(s->bottom()); |
| 345 | ls->clear_alloc_rate(); |
| 346 | } |
| 347 | // A NUMA space is never mangled |
| 348 | initialize(region(), |
| 349 | SpaceDecorator::Clear, |
| 350 | SpaceDecorator::DontMangle); |
| 351 | } else { |
| 352 | bool should_initialize = false; |
| 353 | if (!os::numa_has_static_binding()) { |
| 354 | for (int i = 0; i < lgrp_spaces()->length(); i++) { |
| 355 | if (!lgrp_spaces()->at(i)->invalid_region().is_empty()) { |
| 356 | should_initialize = true; |
| 357 | break; |
| 358 | } |
| 359 | } |
| 360 | } |
| 361 | |
| 362 | if (should_initialize || |
| 363 | (UseAdaptiveNUMAChunkSizing && adaptation_cycles() < samples_count())) { |
| 364 | // A NUMA space is never mangled |
| 365 | initialize(region(), |
| 366 | SpaceDecorator::Clear, |
| 367 | SpaceDecorator::DontMangle); |
| 368 | } |
| 369 | } |
| 370 | |
| 371 | if (NUMAStats) { |
| 372 | for (int i = 0; i < lgrp_spaces()->length(); i++) { |
| 373 | lgrp_spaces()->at(i)->accumulate_statistics(page_size()); |
| 374 | } |
| 375 | } |
| 376 | |
| 377 | scan_pages(NUMAPageScanRate); |
| 378 | } |
| 379 | |
| 380 | // Scan pages. Free pages that have smaller size or wrong placement. |
| 381 | void MutableNUMASpace::scan_pages(size_t page_count) |
| 382 | { |
| 383 | size_t pages_per_chunk = page_count / lgrp_spaces()->length(); |
| 384 | if (pages_per_chunk > 0) { |
| 385 | for (int i = 0; i < lgrp_spaces()->length(); i++) { |
| 386 | LGRPSpace *ls = lgrp_spaces()->at(i); |
| 387 | ls->scan_pages(page_size(), pages_per_chunk); |
| 388 | } |
| 389 | } |
| 390 | } |
| 391 | |
| 392 | // Accumulate statistics about the allocation rate of each lgrp. |
| 393 | void MutableNUMASpace::accumulate_statistics() { |
| 394 | if (UseAdaptiveNUMAChunkSizing) { |
| 395 | for (int i = 0; i < lgrp_spaces()->length(); i++) { |
| 396 | lgrp_spaces()->at(i)->sample(); |
| 397 | } |
| 398 | increment_samples_count(); |
| 399 | } |
| 400 | |
| 401 | if (NUMAStats) { |
| 402 | for (int i = 0; i < lgrp_spaces()->length(); i++) { |
| 403 | lgrp_spaces()->at(i)->accumulate_statistics(page_size()); |
| 404 | } |
| 405 | } |
| 406 | } |
| 407 | |
| 408 | // Get the current size of a chunk. |
| 409 | // This function computes the size of the chunk based on the |
| 410 | // difference between chunk ends. This allows it to work correctly in |
| 411 | // case the whole space is resized and during the process of adaptive |
| 412 | // chunk resizing. |
| 413 | size_t MutableNUMASpace::current_chunk_size(int i) { |
| 414 | HeapWord *cur_end, *prev_end; |
| 415 | if (i == 0) { |
| 416 | prev_end = bottom(); |
| 417 | } else { |
| 418 | prev_end = lgrp_spaces()->at(i - 1)->space()->end(); |
| 419 | } |
| 420 | if (i == lgrp_spaces()->length() - 1) { |
| 421 | cur_end = end(); |
| 422 | } else { |
| 423 | cur_end = lgrp_spaces()->at(i)->space()->end(); |
| 424 | } |
| 425 | if (cur_end > prev_end) { |
| 426 | return pointer_delta(cur_end, prev_end, sizeof(char)); |
| 427 | } |
| 428 | return 0; |
| 429 | } |
| 430 | |
| 431 | // Return the default chunk size by equally diving the space. |
| 432 | // page_size() aligned. |
| 433 | size_t MutableNUMASpace::default_chunk_size() { |
| 434 | return base_space_size() / lgrp_spaces()->length() * page_size(); |
| 435 | } |
| 436 | |
| 437 | // Produce a new chunk size. page_size() aligned. |
| 438 | // This function is expected to be called on sequence of i's from 0 to |
| 439 | // lgrp_spaces()->length(). |
| 440 | size_t MutableNUMASpace::adaptive_chunk_size(int i, size_t limit) { |
| 441 | size_t pages_available = base_space_size(); |
| 442 | for (int j = 0; j < i; j++) { |
| 443 | pages_available -= align_down(current_chunk_size(j), page_size()) / page_size(); |
| 444 | } |
| 445 | pages_available -= lgrp_spaces()->length() - i - 1; |
| 446 | assert(pages_available > 0, "No pages left" ); |
| 447 | float alloc_rate = 0; |
| 448 | for (int j = i; j < lgrp_spaces()->length(); j++) { |
| 449 | alloc_rate += lgrp_spaces()->at(j)->alloc_rate()->average(); |
| 450 | } |
| 451 | size_t chunk_size = 0; |
| 452 | if (alloc_rate > 0) { |
| 453 | LGRPSpace *ls = lgrp_spaces()->at(i); |
| 454 | chunk_size = (size_t)(ls->alloc_rate()->average() / alloc_rate * pages_available) * page_size(); |
| 455 | } |
| 456 | chunk_size = MAX2(chunk_size, page_size()); |
| 457 | |
| 458 | if (limit > 0) { |
| 459 | limit = align_down(limit, page_size()); |
| 460 | if (chunk_size > current_chunk_size(i)) { |
| 461 | size_t upper_bound = pages_available * page_size(); |
| 462 | if (upper_bound > limit && |
| 463 | current_chunk_size(i) < upper_bound - limit) { |
| 464 | // The resulting upper bound should not exceed the available |
| 465 | // amount of memory (pages_available * page_size()). |
| 466 | upper_bound = current_chunk_size(i) + limit; |
| 467 | } |
| 468 | chunk_size = MIN2(chunk_size, upper_bound); |
| 469 | } else { |
| 470 | size_t lower_bound = page_size(); |
| 471 | if (current_chunk_size(i) > limit) { // lower_bound shouldn't underflow. |
| 472 | lower_bound = current_chunk_size(i) - limit; |
| 473 | } |
| 474 | chunk_size = MAX2(chunk_size, lower_bound); |
| 475 | } |
| 476 | } |
| 477 | assert(chunk_size <= pages_available * page_size(), "Chunk size out of range" ); |
| 478 | return chunk_size; |
| 479 | } |
| 480 | |
| 481 | |
| 482 | // Return the bottom_region and the top_region. Align them to page_size() boundary. |
| 483 | // |------------------new_region---------------------------------| |
| 484 | // |----bottom_region--|---intersection---|------top_region------| |
| 485 | void MutableNUMASpace::select_tails(MemRegion new_region, MemRegion intersection, |
| 486 | MemRegion* bottom_region, MemRegion *top_region) { |
| 487 | // Is there bottom? |
| 488 | if (new_region.start() < intersection.start()) { // Yes |
| 489 | // Try to coalesce small pages into a large one. |
| 490 | if (UseLargePages && page_size() >= alignment()) { |
| 491 | HeapWord* p = align_up(intersection.start(), alignment()); |
| 492 | if (new_region.contains(p) |
| 493 | && pointer_delta(p, new_region.start(), sizeof(char)) >= alignment()) { |
| 494 | if (intersection.contains(p)) { |
| 495 | intersection = MemRegion(p, intersection.end()); |
| 496 | } else { |
| 497 | intersection = MemRegion(p, p); |
| 498 | } |
| 499 | } |
| 500 | } |
| 501 | *bottom_region = MemRegion(new_region.start(), intersection.start()); |
| 502 | } else { |
| 503 | *bottom_region = MemRegion(); |
| 504 | } |
| 505 | |
| 506 | // Is there top? |
| 507 | if (intersection.end() < new_region.end()) { // Yes |
| 508 | // Try to coalesce small pages into a large one. |
| 509 | if (UseLargePages && page_size() >= alignment()) { |
| 510 | HeapWord* p = align_down(intersection.end(), alignment()); |
| 511 | if (new_region.contains(p) |
| 512 | && pointer_delta(new_region.end(), p, sizeof(char)) >= alignment()) { |
| 513 | if (intersection.contains(p)) { |
| 514 | intersection = MemRegion(intersection.start(), p); |
| 515 | } else { |
| 516 | intersection = MemRegion(p, p); |
| 517 | } |
| 518 | } |
| 519 | } |
| 520 | *top_region = MemRegion(intersection.end(), new_region.end()); |
| 521 | } else { |
| 522 | *top_region = MemRegion(); |
| 523 | } |
| 524 | } |
| 525 | |
| 526 | // Try to merge the invalid region with the bottom or top region by decreasing |
| 527 | // the intersection area. Return the invalid_region aligned to the page_size() |
| 528 | // boundary if it's inside the intersection. Return non-empty invalid_region |
| 529 | // if it lies inside the intersection (also page-aligned). |
| 530 | // |------------------new_region---------------------------------| |
| 531 | // |----------------|-------invalid---|--------------------------| |
| 532 | // |----bottom_region--|---intersection---|------top_region------| |
| 533 | void MutableNUMASpace::merge_regions(MemRegion new_region, MemRegion* intersection, |
| 534 | MemRegion *invalid_region) { |
| 535 | if (intersection->start() >= invalid_region->start() && intersection->contains(invalid_region->end())) { |
| 536 | *intersection = MemRegion(invalid_region->end(), intersection->end()); |
| 537 | *invalid_region = MemRegion(); |
| 538 | } else |
| 539 | if (intersection->end() <= invalid_region->end() && intersection->contains(invalid_region->start())) { |
| 540 | *intersection = MemRegion(intersection->start(), invalid_region->start()); |
| 541 | *invalid_region = MemRegion(); |
| 542 | } else |
| 543 | if (intersection->equals(*invalid_region) || invalid_region->contains(*intersection)) { |
| 544 | *intersection = MemRegion(new_region.start(), new_region.start()); |
| 545 | *invalid_region = MemRegion(); |
| 546 | } else |
| 547 | if (intersection->contains(invalid_region)) { |
| 548 | // That's the only case we have to make an additional bias_region() call. |
| 549 | HeapWord* start = invalid_region->start(); |
| 550 | HeapWord* end = invalid_region->end(); |
| 551 | if (UseLargePages && page_size() >= alignment()) { |
| 552 | HeapWord *p = align_down(start, alignment()); |
| 553 | if (new_region.contains(p)) { |
| 554 | start = p; |
| 555 | } |
| 556 | p = align_up(end, alignment()); |
| 557 | if (new_region.contains(end)) { |
| 558 | end = p; |
| 559 | } |
| 560 | } |
| 561 | if (intersection->start() > start) { |
| 562 | *intersection = MemRegion(start, intersection->end()); |
| 563 | } |
| 564 | if (intersection->end() < end) { |
| 565 | *intersection = MemRegion(intersection->start(), end); |
| 566 | } |
| 567 | *invalid_region = MemRegion(start, end); |
| 568 | } |
| 569 | } |
| 570 | |
| 571 | void MutableNUMASpace::initialize(MemRegion mr, |
| 572 | bool clear_space, |
| 573 | bool mangle_space, |
| 574 | bool setup_pages) { |
| 575 | assert(clear_space, "Reallocation will destroy data!" ); |
| 576 | assert(lgrp_spaces()->length() > 0, "There should be at least one space" ); |
| 577 | |
| 578 | MemRegion old_region = region(), new_region; |
| 579 | set_bottom(mr.start()); |
| 580 | set_end(mr.end()); |
| 581 | // Must always clear the space |
| 582 | clear(SpaceDecorator::DontMangle); |
| 583 | |
| 584 | // Compute chunk sizes |
| 585 | size_t prev_page_size = page_size(); |
| 586 | set_page_size(UseLargePages ? alignment() : os::vm_page_size()); |
| 587 | HeapWord* rounded_bottom = align_up(bottom(), page_size()); |
| 588 | HeapWord* rounded_end = align_down(end(), page_size()); |
| 589 | size_t base_space_size_pages = pointer_delta(rounded_end, rounded_bottom, sizeof(char)) / page_size(); |
| 590 | |
| 591 | // Try small pages if the chunk size is too small |
| 592 | if (base_space_size_pages / lgrp_spaces()->length() == 0 |
| 593 | && page_size() > (size_t)os::vm_page_size()) { |
| 594 | // Changing the page size below can lead to freeing of memory. So we fail initialization. |
| 595 | if (_must_use_large_pages) { |
| 596 | vm_exit_during_initialization("Failed initializing NUMA with large pages. Too small heap size" ); |
| 597 | } |
| 598 | set_page_size(os::vm_page_size()); |
| 599 | rounded_bottom = align_up(bottom(), page_size()); |
| 600 | rounded_end = align_down(end(), page_size()); |
| 601 | base_space_size_pages = pointer_delta(rounded_end, rounded_bottom, sizeof(char)) / page_size(); |
| 602 | } |
| 603 | guarantee(base_space_size_pages / lgrp_spaces()->length() > 0, "Space too small" ); |
| 604 | set_base_space_size(base_space_size_pages); |
| 605 | |
| 606 | // Handle space resize |
| 607 | MemRegion top_region, bottom_region; |
| 608 | if (!old_region.equals(region())) { |
| 609 | new_region = MemRegion(rounded_bottom, rounded_end); |
| 610 | MemRegion intersection = new_region.intersection(old_region); |
| 611 | if (intersection.start() == NULL || |
| 612 | intersection.end() == NULL || |
| 613 | prev_page_size > page_size()) { // If the page size got smaller we have to change |
| 614 | // the page size preference for the whole space. |
| 615 | intersection = MemRegion(new_region.start(), new_region.start()); |
| 616 | } |
| 617 | select_tails(new_region, intersection, &bottom_region, &top_region); |
| 618 | bias_region(bottom_region, lgrp_spaces()->at(0)->lgrp_id()); |
| 619 | bias_region(top_region, lgrp_spaces()->at(lgrp_spaces()->length() - 1)->lgrp_id()); |
| 620 | } |
| 621 | |
| 622 | // Check if the space layout has changed significantly? |
| 623 | // This happens when the space has been resized so that either head or tail |
| 624 | // chunk became less than a page. |
| 625 | bool layout_valid = UseAdaptiveNUMAChunkSizing && |
| 626 | current_chunk_size(0) > page_size() && |
| 627 | current_chunk_size(lgrp_spaces()->length() - 1) > page_size(); |
| 628 | |
| 629 | |
| 630 | for (int i = 0; i < lgrp_spaces()->length(); i++) { |
| 631 | LGRPSpace *ls = lgrp_spaces()->at(i); |
| 632 | MutableSpace *s = ls->space(); |
| 633 | old_region = s->region(); |
| 634 | |
| 635 | size_t chunk_byte_size = 0, old_chunk_byte_size = 0; |
| 636 | if (i < lgrp_spaces()->length() - 1) { |
| 637 | if (!UseAdaptiveNUMAChunkSizing || |
| 638 | (UseAdaptiveNUMAChunkSizing && NUMAChunkResizeWeight == 0) || |
| 639 | samples_count() < AdaptiveSizePolicyReadyThreshold) { |
| 640 | // No adaptation. Divide the space equally. |
| 641 | chunk_byte_size = default_chunk_size(); |
| 642 | } else |
| 643 | if (!layout_valid || NUMASpaceResizeRate == 0) { |
| 644 | // Fast adaptation. If no space resize rate is set, resize |
| 645 | // the chunks instantly. |
| 646 | chunk_byte_size = adaptive_chunk_size(i, 0); |
| 647 | } else { |
| 648 | // Slow adaptation. Resize the chunks moving no more than |
| 649 | // NUMASpaceResizeRate bytes per collection. |
| 650 | size_t limit = NUMASpaceResizeRate / |
| 651 | (lgrp_spaces()->length() * (lgrp_spaces()->length() + 1) / 2); |
| 652 | chunk_byte_size = adaptive_chunk_size(i, MAX2(limit * (i + 1), page_size())); |
| 653 | } |
| 654 | |
| 655 | assert(chunk_byte_size >= page_size(), "Chunk size too small" ); |
| 656 | assert(chunk_byte_size <= capacity_in_bytes(), "Sanity check" ); |
| 657 | } |
| 658 | |
| 659 | if (i == 0) { // Bottom chunk |
| 660 | if (i != lgrp_spaces()->length() - 1) { |
| 661 | new_region = MemRegion(bottom(), rounded_bottom + (chunk_byte_size >> LogHeapWordSize)); |
| 662 | } else { |
| 663 | new_region = MemRegion(bottom(), end()); |
| 664 | } |
| 665 | } else |
| 666 | if (i < lgrp_spaces()->length() - 1) { // Middle chunks |
| 667 | MutableSpace *ps = lgrp_spaces()->at(i - 1)->space(); |
| 668 | new_region = MemRegion(ps->end(), |
| 669 | ps->end() + (chunk_byte_size >> LogHeapWordSize)); |
| 670 | } else { // Top chunk |
| 671 | MutableSpace *ps = lgrp_spaces()->at(i - 1)->space(); |
| 672 | new_region = MemRegion(ps->end(), end()); |
| 673 | } |
| 674 | guarantee(region().contains(new_region), "Region invariant" ); |
| 675 | |
| 676 | |
| 677 | // The general case: |
| 678 | // |---------------------|--invalid---|--------------------------| |
| 679 | // |------------------new_region---------------------------------| |
| 680 | // |----bottom_region--|---intersection---|------top_region------| |
| 681 | // |----old_region----| |
| 682 | // The intersection part has all pages in place we don't need to migrate them. |
| 683 | // Pages for the top and bottom part should be freed and then reallocated. |
| 684 | |
| 685 | MemRegion intersection = old_region.intersection(new_region); |
| 686 | |
| 687 | if (intersection.start() == NULL || intersection.end() == NULL) { |
| 688 | intersection = MemRegion(new_region.start(), new_region.start()); |
| 689 | } |
| 690 | |
| 691 | if (!os::numa_has_static_binding()) { |
| 692 | MemRegion invalid_region = ls->invalid_region().intersection(new_region); |
| 693 | // Invalid region is a range of memory that could've possibly |
| 694 | // been allocated on the other node. That's relevant only on Solaris where |
| 695 | // there is no static memory binding. |
| 696 | if (!invalid_region.is_empty()) { |
| 697 | merge_regions(new_region, &intersection, &invalid_region); |
| 698 | free_region(invalid_region); |
| 699 | ls->set_invalid_region(MemRegion()); |
| 700 | } |
| 701 | } |
| 702 | |
| 703 | select_tails(new_region, intersection, &bottom_region, &top_region); |
| 704 | |
| 705 | if (!os::numa_has_static_binding()) { |
| 706 | // If that's a system with the first-touch policy then it's enough |
| 707 | // to free the pages. |
| 708 | free_region(bottom_region); |
| 709 | free_region(top_region); |
| 710 | } else { |
| 711 | // In a system with static binding we have to change the bias whenever |
| 712 | // we reshape the heap. |
| 713 | bias_region(bottom_region, ls->lgrp_id()); |
| 714 | bias_region(top_region, ls->lgrp_id()); |
| 715 | } |
| 716 | |
| 717 | // Clear space (set top = bottom) but never mangle. |
| 718 | s->initialize(new_region, SpaceDecorator::Clear, SpaceDecorator::DontMangle, MutableSpace::DontSetupPages); |
| 719 | |
| 720 | set_adaptation_cycles(samples_count()); |
| 721 | } |
| 722 | } |
| 723 | |
| 724 | // Set the top of the whole space. |
| 725 | // Mark the the holes in chunks below the top() as invalid. |
| 726 | void MutableNUMASpace::set_top(HeapWord* value) { |
| 727 | bool found_top = false; |
| 728 | for (int i = 0; i < lgrp_spaces()->length();) { |
| 729 | LGRPSpace *ls = lgrp_spaces()->at(i); |
| 730 | MutableSpace *s = ls->space(); |
| 731 | HeapWord *top = MAX2(align_down(s->top(), page_size()), s->bottom()); |
| 732 | |
| 733 | if (s->contains(value)) { |
| 734 | // Check if setting the chunk's top to a given value would create a hole less than |
| 735 | // a minimal object; assuming that's not the last chunk in which case we don't care. |
| 736 | if (i < lgrp_spaces()->length() - 1) { |
| 737 | size_t remainder = pointer_delta(s->end(), value); |
| 738 | const size_t min_fill_size = CollectedHeap::min_fill_size(); |
| 739 | if (remainder < min_fill_size && remainder > 0) { |
| 740 | // Add a minimum size filler object; it will cross the chunk boundary. |
| 741 | CollectedHeap::fill_with_object(value, min_fill_size); |
| 742 | value += min_fill_size; |
| 743 | assert(!s->contains(value), "Should be in the next chunk" ); |
| 744 | // Restart the loop from the same chunk, since the value has moved |
| 745 | // to the next one. |
| 746 | continue; |
| 747 | } |
| 748 | } |
| 749 | |
| 750 | if (!os::numa_has_static_binding() && top < value && top < s->end()) { |
| 751 | ls->add_invalid_region(MemRegion(top, value)); |
| 752 | } |
| 753 | s->set_top(value); |
| 754 | found_top = true; |
| 755 | } else { |
| 756 | if (found_top) { |
| 757 | s->set_top(s->bottom()); |
| 758 | } else { |
| 759 | if (!os::numa_has_static_binding() && top < s->end()) { |
| 760 | ls->add_invalid_region(MemRegion(top, s->end())); |
| 761 | } |
| 762 | s->set_top(s->end()); |
| 763 | } |
| 764 | } |
| 765 | i++; |
| 766 | } |
| 767 | MutableSpace::set_top(value); |
| 768 | } |
| 769 | |
| 770 | void MutableNUMASpace::clear(bool mangle_space) { |
| 771 | MutableSpace::set_top(bottom()); |
| 772 | for (int i = 0; i < lgrp_spaces()->length(); i++) { |
| 773 | // Never mangle NUMA spaces because the mangling will |
| 774 | // bind the memory to a possibly unwanted lgroup. |
| 775 | lgrp_spaces()->at(i)->space()->clear(SpaceDecorator::DontMangle); |
| 776 | } |
| 777 | } |
| 778 | |
| 779 | /* |
| 780 | Linux supports static memory binding, therefore the most part of the |
| 781 | logic dealing with the possible invalid page allocation is effectively |
| 782 | disabled. Besides there is no notion of the home node in Linux. A |
| 783 | thread is allowed to migrate freely. Although the scheduler is rather |
| 784 | reluctant to move threads between the nodes. We check for the current |
| 785 | node every allocation. And with a high probability a thread stays on |
| 786 | the same node for some time allowing local access to recently allocated |
| 787 | objects. |
| 788 | */ |
| 789 | |
| 790 | HeapWord* MutableNUMASpace::allocate(size_t size) { |
| 791 | Thread* thr = Thread::current(); |
| 792 | int lgrp_id = thr->lgrp_id(); |
| 793 | if (lgrp_id == -1 || !os::numa_has_group_homing()) { |
| 794 | lgrp_id = os::numa_get_group_id(); |
| 795 | thr->set_lgrp_id(lgrp_id); |
| 796 | } |
| 797 | |
| 798 | int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals); |
| 799 | |
| 800 | // It is possible that a new CPU has been hotplugged and |
| 801 | // we haven't reshaped the space accordingly. |
| 802 | if (i == -1) { |
| 803 | i = os::random() % lgrp_spaces()->length(); |
| 804 | } |
| 805 | |
| 806 | LGRPSpace* ls = lgrp_spaces()->at(i); |
| 807 | MutableSpace *s = ls->space(); |
| 808 | HeapWord *p = s->allocate(size); |
| 809 | |
| 810 | if (p != NULL) { |
| 811 | size_t remainder = s->free_in_words(); |
| 812 | if (remainder < CollectedHeap::min_fill_size() && remainder > 0) { |
| 813 | s->set_top(s->top() - size); |
| 814 | p = NULL; |
| 815 | } |
| 816 | } |
| 817 | if (p != NULL) { |
| 818 | if (top() < s->top()) { // Keep _top updated. |
| 819 | MutableSpace::set_top(s->top()); |
| 820 | } |
| 821 | } |
| 822 | // Make the page allocation happen here if there is no static binding.. |
| 823 | if (p != NULL && !os::numa_has_static_binding()) { |
| 824 | for (HeapWord *i = p; i < p + size; i += os::vm_page_size() >> LogHeapWordSize) { |
| 825 | *(int*)i = 0; |
| 826 | } |
| 827 | } |
| 828 | if (p == NULL) { |
| 829 | ls->set_allocation_failed(); |
| 830 | } |
| 831 | return p; |
| 832 | } |
| 833 | |
| 834 | // This version is lock-free. |
| 835 | HeapWord* MutableNUMASpace::cas_allocate(size_t size) { |
| 836 | Thread* thr = Thread::current(); |
| 837 | int lgrp_id = thr->lgrp_id(); |
| 838 | if (lgrp_id == -1 || !os::numa_has_group_homing()) { |
| 839 | lgrp_id = os::numa_get_group_id(); |
| 840 | thr->set_lgrp_id(lgrp_id); |
| 841 | } |
| 842 | |
| 843 | int i = lgrp_spaces()->find(&lgrp_id, LGRPSpace::equals); |
| 844 | // It is possible that a new CPU has been hotplugged and |
| 845 | // we haven't reshaped the space accordingly. |
| 846 | if (i == -1) { |
| 847 | i = os::random() % lgrp_spaces()->length(); |
| 848 | } |
| 849 | LGRPSpace *ls = lgrp_spaces()->at(i); |
| 850 | MutableSpace *s = ls->space(); |
| 851 | HeapWord *p = s->cas_allocate(size); |
| 852 | if (p != NULL) { |
| 853 | size_t remainder = pointer_delta(s->end(), p + size); |
| 854 | if (remainder < CollectedHeap::min_fill_size() && remainder > 0) { |
| 855 | if (s->cas_deallocate(p, size)) { |
| 856 | // We were the last to allocate and created a fragment less than |
| 857 | // a minimal object. |
| 858 | p = NULL; |
| 859 | } else { |
| 860 | guarantee(false, "Deallocation should always succeed" ); |
| 861 | } |
| 862 | } |
| 863 | } |
| 864 | if (p != NULL) { |
| 865 | HeapWord* cur_top, *cur_chunk_top = p + size; |
| 866 | while ((cur_top = top()) < cur_chunk_top) { // Keep _top updated. |
| 867 | if (Atomic::cmpxchg(cur_chunk_top, top_addr(), cur_top) == cur_top) { |
| 868 | break; |
| 869 | } |
| 870 | } |
| 871 | } |
| 872 | |
| 873 | // Make the page allocation happen here if there is no static binding. |
| 874 | if (p != NULL && !os::numa_has_static_binding() ) { |
| 875 | for (HeapWord *i = p; i < p + size; i += os::vm_page_size() >> LogHeapWordSize) { |
| 876 | *(int*)i = 0; |
| 877 | } |
| 878 | } |
| 879 | if (p == NULL) { |
| 880 | ls->set_allocation_failed(); |
| 881 | } |
| 882 | return p; |
| 883 | } |
| 884 | |
| 885 | void MutableNUMASpace::print_short_on(outputStream* st) const { |
| 886 | MutableSpace::print_short_on(st); |
| 887 | st->print(" (" ); |
| 888 | for (int i = 0; i < lgrp_spaces()->length(); i++) { |
| 889 | st->print("lgrp %d: " , lgrp_spaces()->at(i)->lgrp_id()); |
| 890 | lgrp_spaces()->at(i)->space()->print_short_on(st); |
| 891 | if (i < lgrp_spaces()->length() - 1) { |
| 892 | st->print(", " ); |
| 893 | } |
| 894 | } |
| 895 | st->print(")" ); |
| 896 | } |
| 897 | |
| 898 | void MutableNUMASpace::print_on(outputStream* st) const { |
| 899 | MutableSpace::print_on(st); |
| 900 | for (int i = 0; i < lgrp_spaces()->length(); i++) { |
| 901 | LGRPSpace *ls = lgrp_spaces()->at(i); |
| 902 | st->print(" lgrp %d" , ls->lgrp_id()); |
| 903 | ls->space()->print_on(st); |
| 904 | if (NUMAStats) { |
| 905 | for (int i = 0; i < lgrp_spaces()->length(); i++) { |
| 906 | lgrp_spaces()->at(i)->accumulate_statistics(page_size()); |
| 907 | } |
| 908 | st->print(" local/remote/unbiased/uncommitted: " SIZE_FORMAT "K/" |
| 909 | SIZE_FORMAT "K/" SIZE_FORMAT "K/" SIZE_FORMAT |
| 910 | "K, large/small pages: " SIZE_FORMAT "/" SIZE_FORMAT "\n" , |
| 911 | ls->space_stats()->_local_space / K, |
| 912 | ls->space_stats()->_remote_space / K, |
| 913 | ls->space_stats()->_unbiased_space / K, |
| 914 | ls->space_stats()->_uncommited_space / K, |
| 915 | ls->space_stats()->_large_pages, |
| 916 | ls->space_stats()->_small_pages); |
| 917 | } |
| 918 | } |
| 919 | } |
| 920 | |
| 921 | void MutableNUMASpace::verify() { |
| 922 | // This can be called after setting an arbitrary value to the space's top, |
| 923 | // so an object can cross the chunk boundary. We ensure the parsability |
| 924 | // of the space and just walk the objects in linear fashion. |
| 925 | ensure_parsability(); |
| 926 | MutableSpace::verify(); |
| 927 | } |
| 928 | |
| 929 | // Scan pages and gather stats about page placement and size. |
| 930 | void MutableNUMASpace::LGRPSpace::accumulate_statistics(size_t page_size) { |
| 931 | clear_space_stats(); |
| 932 | char *start = (char*)align_up(space()->bottom(), page_size); |
| 933 | char* end = (char*)align_down(space()->end(), page_size); |
| 934 | if (start < end) { |
| 935 | for (char *p = start; p < end;) { |
| 936 | os::page_info info; |
| 937 | if (os::get_page_info(p, &info)) { |
| 938 | if (info.size > 0) { |
| 939 | if (info.size > (size_t)os::vm_page_size()) { |
| 940 | space_stats()->_large_pages++; |
| 941 | } else { |
| 942 | space_stats()->_small_pages++; |
| 943 | } |
| 944 | if (info.lgrp_id == lgrp_id()) { |
| 945 | space_stats()->_local_space += info.size; |
| 946 | } else { |
| 947 | space_stats()->_remote_space += info.size; |
| 948 | } |
| 949 | p += info.size; |
| 950 | } else { |
| 951 | p += os::vm_page_size(); |
| 952 | space_stats()->_uncommited_space += os::vm_page_size(); |
| 953 | } |
| 954 | } else { |
| 955 | return; |
| 956 | } |
| 957 | } |
| 958 | } |
| 959 | space_stats()->_unbiased_space = pointer_delta(start, space()->bottom(), sizeof(char)) + |
| 960 | pointer_delta(space()->end(), end, sizeof(char)); |
| 961 | |
| 962 | } |
| 963 | |
| 964 | // Scan page_count pages and verify if they have the right size and right placement. |
| 965 | // If invalid pages are found they are freed in hope that subsequent reallocation |
| 966 | // will be more successful. |
| 967 | void MutableNUMASpace::LGRPSpace::scan_pages(size_t page_size, size_t page_count) |
| 968 | { |
| 969 | char* range_start = (char*)align_up(space()->bottom(), page_size); |
| 970 | char* range_end = (char*)align_down(space()->end(), page_size); |
| 971 | |
| 972 | if (range_start > last_page_scanned() || last_page_scanned() >= range_end) { |
| 973 | set_last_page_scanned(range_start); |
| 974 | } |
| 975 | |
| 976 | char *scan_start = last_page_scanned(); |
| 977 | char* scan_end = MIN2(scan_start + page_size * page_count, range_end); |
| 978 | |
| 979 | os::page_info page_expected, page_found; |
| 980 | page_expected.size = page_size; |
| 981 | page_expected.lgrp_id = lgrp_id(); |
| 982 | |
| 983 | char *s = scan_start; |
| 984 | while (s < scan_end) { |
| 985 | char *e = os::scan_pages(s, (char*)scan_end, &page_expected, &page_found); |
| 986 | if (e == NULL) { |
| 987 | break; |
| 988 | } |
| 989 | if (e != scan_end) { |
| 990 | assert(e < scan_end, "e: " PTR_FORMAT " scan_end: " PTR_FORMAT, p2i(e), p2i(scan_end)); |
| 991 | |
| 992 | if ((page_expected.size != page_size || page_expected.lgrp_id != lgrp_id()) |
| 993 | && page_expected.size != 0) { |
| 994 | os::free_memory(s, pointer_delta(e, s, sizeof(char)), page_size); |
| 995 | } |
| 996 | page_expected = page_found; |
| 997 | } |
| 998 | s = e; |
| 999 | } |
| 1000 | |
| 1001 | set_last_page_scanned(scan_end); |
| 1002 | } |
| 1003 | |