| 1 | /* |
| 2 | * Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "gc/shared/blockOffsetTable.inline.hpp" |
| 27 | #include "gc/shared/collectedHeap.inline.hpp" |
| 28 | #include "gc/shared/space.inline.hpp" |
| 29 | #include "memory/iterator.hpp" |
| 30 | #include "memory/universe.hpp" |
| 31 | #include "logging/log.hpp" |
| 32 | #include "oops/oop.inline.hpp" |
| 33 | #include "runtime/java.hpp" |
| 34 | #include "services/memTracker.hpp" |
| 35 | |
| 36 | ////////////////////////////////////////////////////////////////////// |
| 37 | // BlockOffsetSharedArray |
| 38 | ////////////////////////////////////////////////////////////////////// |
| 39 | |
| 40 | BlockOffsetSharedArray::BlockOffsetSharedArray(MemRegion reserved, |
| 41 | size_t init_word_size): |
| 42 | _reserved(reserved), _end(NULL) |
| 43 | { |
| 44 | size_t size = compute_size(reserved.word_size()); |
| 45 | ReservedSpace rs(size); |
| 46 | if (!rs.is_reserved()) { |
| 47 | vm_exit_during_initialization("Could not reserve enough space for heap offset array" ); |
| 48 | } |
| 49 | |
| 50 | MemTracker::record_virtual_memory_type((address)rs.base(), mtGC); |
| 51 | |
| 52 | if (!_vs.initialize(rs, 0)) { |
| 53 | vm_exit_during_initialization("Could not reserve enough space for heap offset array" ); |
| 54 | } |
| 55 | _offset_array = (u_char*)_vs.low_boundary(); |
| 56 | resize(init_word_size); |
| 57 | log_trace(gc, bot)("BlockOffsetSharedArray::BlockOffsetSharedArray: " ); |
| 58 | log_trace(gc, bot)(" rs.base(): " INTPTR_FORMAT " rs.size(): " INTPTR_FORMAT " rs end(): " INTPTR_FORMAT, |
| 59 | p2i(rs.base()), rs.size(), p2i(rs.base() + rs.size())); |
| 60 | log_trace(gc, bot)(" _vs.low_boundary(): " INTPTR_FORMAT " _vs.high_boundary(): " INTPTR_FORMAT, |
| 61 | p2i(_vs.low_boundary()), p2i(_vs.high_boundary())); |
| 62 | } |
| 63 | |
| 64 | void BlockOffsetSharedArray::resize(size_t new_word_size) { |
| 65 | assert(new_word_size <= _reserved.word_size(), "Resize larger than reserved" ); |
| 66 | size_t new_size = compute_size(new_word_size); |
| 67 | size_t old_size = _vs.committed_size(); |
| 68 | size_t delta; |
| 69 | char* high = _vs.high(); |
| 70 | _end = _reserved.start() + new_word_size; |
| 71 | if (new_size > old_size) { |
| 72 | delta = ReservedSpace::page_align_size_up(new_size - old_size); |
| 73 | assert(delta > 0, "just checking" ); |
| 74 | if (!_vs.expand_by(delta)) { |
| 75 | // Do better than this for Merlin |
| 76 | vm_exit_out_of_memory(delta, OOM_MMAP_ERROR, "offset table expansion" ); |
| 77 | } |
| 78 | assert(_vs.high() == high + delta, "invalid expansion" ); |
| 79 | } else { |
| 80 | delta = ReservedSpace::page_align_size_down(old_size - new_size); |
| 81 | if (delta == 0) return; |
| 82 | _vs.shrink_by(delta); |
| 83 | assert(_vs.high() == high - delta, "invalid expansion" ); |
| 84 | } |
| 85 | } |
| 86 | |
| 87 | bool BlockOffsetSharedArray::is_card_boundary(HeapWord* p) const { |
| 88 | assert(p >= _reserved.start(), "just checking" ); |
| 89 | size_t delta = pointer_delta(p, _reserved.start()); |
| 90 | return (delta & right_n_bits((int)BOTConstants::LogN_words)) == (size_t)NoBits; |
| 91 | } |
| 92 | |
| 93 | |
| 94 | ////////////////////////////////////////////////////////////////////// |
| 95 | // BlockOffsetArray |
| 96 | ////////////////////////////////////////////////////////////////////// |
| 97 | |
| 98 | BlockOffsetArray::BlockOffsetArray(BlockOffsetSharedArray* array, |
| 99 | MemRegion mr, bool init_to_zero_) : |
| 100 | BlockOffsetTable(mr.start(), mr.end()), |
| 101 | _array(array) |
| 102 | { |
| 103 | assert(_bottom <= _end, "arguments out of order" ); |
| 104 | set_init_to_zero(init_to_zero_); |
| 105 | if (!init_to_zero_) { |
| 106 | // initialize cards to point back to mr.start() |
| 107 | set_remainder_to_point_to_start(mr.start() + BOTConstants::N_words, mr.end()); |
| 108 | _array->set_offset_array(0, 0); // set first card to 0 |
| 109 | } |
| 110 | } |
| 111 | |
| 112 | |
| 113 | // The arguments follow the normal convention of denoting |
| 114 | // a right-open interval: [start, end) |
| 115 | void |
| 116 | BlockOffsetArray:: |
| 117 | set_remainder_to_point_to_start(HeapWord* start, HeapWord* end, bool reducing) { |
| 118 | |
| 119 | check_reducing_assertion(reducing); |
| 120 | if (start >= end) { |
| 121 | // The start address is equal to the end address (or to |
| 122 | // the right of the end address) so there are not cards |
| 123 | // that need to be updated.. |
| 124 | return; |
| 125 | } |
| 126 | |
| 127 | // Write the backskip value for each region. |
| 128 | // |
| 129 | // offset |
| 130 | // card 2nd 3rd |
| 131 | // | +- 1st | | |
| 132 | // v v v v |
| 133 | // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+- |
| 134 | // |x|0|0|0|0|0|0|0|1|1|1|1|1|1| ... |1|1|1|1|2|2|2|2|2|2| ... |
| 135 | // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+- |
| 136 | // 11 19 75 |
| 137 | // 12 |
| 138 | // |
| 139 | // offset card is the card that points to the start of an object |
| 140 | // x - offset value of offset card |
| 141 | // 1st - start of first logarithmic region |
| 142 | // 0 corresponds to logarithmic value N_words + 0 and 2**(3 * 0) = 1 |
| 143 | // 2nd - start of second logarithmic region |
| 144 | // 1 corresponds to logarithmic value N_words + 1 and 2**(3 * 1) = 8 |
| 145 | // 3rd - start of third logarithmic region |
| 146 | // 2 corresponds to logarithmic value N_words + 2 and 2**(3 * 2) = 64 |
| 147 | // |
| 148 | // integer below the block offset entry is an example of |
| 149 | // the index of the entry |
| 150 | // |
| 151 | // Given an address, |
| 152 | // Find the index for the address |
| 153 | // Find the block offset table entry |
| 154 | // Convert the entry to a back slide |
| 155 | // (e.g., with today's, offset = 0x81 => |
| 156 | // back slip = 2**(3*(0x81 - N_words)) = 2**3) = 8 |
| 157 | // Move back N (e.g., 8) entries and repeat with the |
| 158 | // value of the new entry |
| 159 | // |
| 160 | size_t start_card = _array->index_for(start); |
| 161 | size_t end_card = _array->index_for(end-1); |
| 162 | assert(start ==_array->address_for_index(start_card), "Precondition" ); |
| 163 | assert(end ==_array->address_for_index(end_card)+BOTConstants::N_words, "Precondition" ); |
| 164 | set_remainder_to_point_to_start_incl(start_card, end_card, reducing); // closed interval |
| 165 | } |
| 166 | |
| 167 | |
| 168 | // Unlike the normal convention in this code, the argument here denotes |
| 169 | // a closed, inclusive interval: [start_card, end_card], cf set_remainder_to_point_to_start() |
| 170 | // above. |
| 171 | void |
| 172 | BlockOffsetArray::set_remainder_to_point_to_start_incl(size_t start_card, size_t end_card, bool reducing) { |
| 173 | |
| 174 | check_reducing_assertion(reducing); |
| 175 | if (start_card > end_card) { |
| 176 | return; |
| 177 | } |
| 178 | assert(start_card > _array->index_for(_bottom), "Cannot be first card" ); |
| 179 | assert(_array->offset_array(start_card-1) <= BOTConstants::N_words, |
| 180 | "Offset card has an unexpected value" ); |
| 181 | size_t start_card_for_region = start_card; |
| 182 | u_char offset = max_jubyte; |
| 183 | for (uint i = 0; i < BOTConstants::N_powers; i++) { |
| 184 | // -1 so that the the card with the actual offset is counted. Another -1 |
| 185 | // so that the reach ends in this region and not at the start |
| 186 | // of the next. |
| 187 | size_t reach = start_card - 1 + (BOTConstants::power_to_cards_back(i+1) - 1); |
| 188 | offset = BOTConstants::N_words + i; |
| 189 | if (reach >= end_card) { |
| 190 | _array->set_offset_array(start_card_for_region, end_card, offset, reducing); |
| 191 | start_card_for_region = reach + 1; |
| 192 | break; |
| 193 | } |
| 194 | _array->set_offset_array(start_card_for_region, reach, offset, reducing); |
| 195 | start_card_for_region = reach + 1; |
| 196 | } |
| 197 | assert(start_card_for_region > end_card, "Sanity check" ); |
| 198 | DEBUG_ONLY(check_all_cards(start_card, end_card);) |
| 199 | } |
| 200 | |
| 201 | // The card-interval [start_card, end_card] is a closed interval; this |
| 202 | // is an expensive check -- use with care and only under protection of |
| 203 | // suitable flag. |
| 204 | void BlockOffsetArray::check_all_cards(size_t start_card, size_t end_card) const { |
| 205 | |
| 206 | if (end_card < start_card) { |
| 207 | return; |
| 208 | } |
| 209 | guarantee(_array->offset_array(start_card) == BOTConstants::N_words, "Wrong value in second card" ); |
| 210 | u_char last_entry = BOTConstants::N_words; |
| 211 | for (size_t c = start_card + 1; c <= end_card; c++ /* yeah! */) { |
| 212 | u_char entry = _array->offset_array(c); |
| 213 | guarantee(entry >= last_entry, "Monotonicity" ); |
| 214 | if (c - start_card > BOTConstants::power_to_cards_back(1)) { |
| 215 | guarantee(entry > BOTConstants::N_words, "Should be in logarithmic region" ); |
| 216 | } |
| 217 | size_t backskip = BOTConstants::entry_to_cards_back(entry); |
| 218 | size_t landing_card = c - backskip; |
| 219 | guarantee(landing_card >= (start_card - 1), "Inv" ); |
| 220 | if (landing_card >= start_card) { |
| 221 | guarantee(_array->offset_array(landing_card) <= entry, "Monotonicity" ); |
| 222 | } else { |
| 223 | guarantee(landing_card == (start_card - 1), "Tautology" ); |
| 224 | // Note that N_words is the maximum offset value |
| 225 | guarantee(_array->offset_array(landing_card) <= BOTConstants::N_words, "Offset value" ); |
| 226 | } |
| 227 | last_entry = entry; // remember for monotonicity test |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | |
| 232 | void |
| 233 | BlockOffsetArray::alloc_block(HeapWord* blk_start, HeapWord* blk_end) { |
| 234 | assert(blk_start != NULL && blk_end > blk_start, |
| 235 | "phantom block" ); |
| 236 | single_block(blk_start, blk_end); |
| 237 | } |
| 238 | |
| 239 | // Action_mark - update the BOT for the block [blk_start, blk_end). |
| 240 | // Current typical use is for splitting a block. |
| 241 | // Action_single - udpate the BOT for an allocation. |
| 242 | // Action_verify - BOT verification. |
| 243 | void |
| 244 | BlockOffsetArray::do_block_internal(HeapWord* blk_start, |
| 245 | HeapWord* blk_end, |
| 246 | Action action, bool reducing) { |
| 247 | assert(Universe::heap()->is_in_reserved(blk_start), |
| 248 | "reference must be into the heap" ); |
| 249 | assert(Universe::heap()->is_in_reserved(blk_end-1), |
| 250 | "limit must be within the heap" ); |
| 251 | // This is optimized to make the test fast, assuming we only rarely |
| 252 | // cross boundaries. |
| 253 | uintptr_t end_ui = (uintptr_t)(blk_end - 1); |
| 254 | uintptr_t start_ui = (uintptr_t)blk_start; |
| 255 | // Calculate the last card boundary preceding end of blk |
| 256 | intptr_t boundary_before_end = (intptr_t)end_ui; |
| 257 | clear_bits(boundary_before_end, right_n_bits((int)BOTConstants::LogN)); |
| 258 | if (start_ui <= (uintptr_t)boundary_before_end) { |
| 259 | // blk starts at or crosses a boundary |
| 260 | // Calculate index of card on which blk begins |
| 261 | size_t start_index = _array->index_for(blk_start); |
| 262 | // Index of card on which blk ends |
| 263 | size_t end_index = _array->index_for(blk_end - 1); |
| 264 | // Start address of card on which blk begins |
| 265 | HeapWord* boundary = _array->address_for_index(start_index); |
| 266 | assert(boundary <= blk_start, "blk should start at or after boundary" ); |
| 267 | if (blk_start != boundary) { |
| 268 | // blk starts strictly after boundary |
| 269 | // adjust card boundary and start_index forward to next card |
| 270 | boundary += BOTConstants::N_words; |
| 271 | start_index++; |
| 272 | } |
| 273 | assert(start_index <= end_index, "monotonicity of index_for()" ); |
| 274 | assert(boundary <= (HeapWord*)boundary_before_end, "tautology" ); |
| 275 | switch (action) { |
| 276 | case Action_mark: { |
| 277 | if (init_to_zero()) { |
| 278 | _array->set_offset_array(start_index, boundary, blk_start, reducing); |
| 279 | break; |
| 280 | } // Else fall through to the next case |
| 281 | } |
| 282 | case Action_single: { |
| 283 | _array->set_offset_array(start_index, boundary, blk_start, reducing); |
| 284 | // We have finished marking the "offset card". We need to now |
| 285 | // mark the subsequent cards that this blk spans. |
| 286 | if (start_index < end_index) { |
| 287 | HeapWord* rem_st = _array->address_for_index(start_index) + BOTConstants::N_words; |
| 288 | HeapWord* rem_end = _array->address_for_index(end_index) + BOTConstants::N_words; |
| 289 | set_remainder_to_point_to_start(rem_st, rem_end, reducing); |
| 290 | } |
| 291 | break; |
| 292 | } |
| 293 | case Action_check: { |
| 294 | _array->check_offset_array(start_index, boundary, blk_start); |
| 295 | // We have finished checking the "offset card". We need to now |
| 296 | // check the subsequent cards that this blk spans. |
| 297 | check_all_cards(start_index + 1, end_index); |
| 298 | break; |
| 299 | } |
| 300 | default: |
| 301 | ShouldNotReachHere(); |
| 302 | } |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | // The range [blk_start, blk_end) represents a single contiguous block |
| 307 | // of storage; modify the block offset table to represent this |
| 308 | // information; Right-open interval: [blk_start, blk_end) |
| 309 | // NOTE: this method does _not_ adjust _unallocated_block. |
| 310 | void |
| 311 | BlockOffsetArray::single_block(HeapWord* blk_start, |
| 312 | HeapWord* blk_end) { |
| 313 | do_block_internal(blk_start, blk_end, Action_single); |
| 314 | } |
| 315 | |
| 316 | void BlockOffsetArray::verify() const { |
| 317 | // For each entry in the block offset table, verify that |
| 318 | // the entry correctly finds the start of an object at the |
| 319 | // first address covered by the block or to the left of that |
| 320 | // first address. |
| 321 | |
| 322 | size_t next_index = 1; |
| 323 | size_t last_index = last_active_index(); |
| 324 | |
| 325 | // Use for debugging. Initialize to NULL to distinguish the |
| 326 | // first iteration through the while loop. |
| 327 | HeapWord* last_p = NULL; |
| 328 | HeapWord* last_start = NULL; |
| 329 | oop last_o = NULL; |
| 330 | |
| 331 | while (next_index <= last_index) { |
| 332 | // Use an address past the start of the address for |
| 333 | // the entry. |
| 334 | HeapWord* p = _array->address_for_index(next_index) + 1; |
| 335 | if (p >= _end) { |
| 336 | // That's all of the allocated block table. |
| 337 | return; |
| 338 | } |
| 339 | // block_start() asserts that start <= p. |
| 340 | HeapWord* start = block_start(p); |
| 341 | // First check if the start is an allocated block and only |
| 342 | // then if it is a valid object. |
| 343 | oop o = oop(start); |
| 344 | assert(!Universe::is_fully_initialized() || |
| 345 | _sp->is_free_block(start) || |
| 346 | oopDesc::is_oop_or_null(o), "Bad object was found" ); |
| 347 | next_index++; |
| 348 | last_p = p; |
| 349 | last_start = start; |
| 350 | last_o = o; |
| 351 | } |
| 352 | } |
| 353 | |
| 354 | ////////////////////////////////////////////////////////////////////// |
| 355 | // BlockOffsetArrayNonContigSpace |
| 356 | ////////////////////////////////////////////////////////////////////// |
| 357 | |
| 358 | // The block [blk_start, blk_end) has been allocated; |
| 359 | // adjust the block offset table to represent this information; |
| 360 | // NOTE: Clients of BlockOffsetArrayNonContigSpace: consider using |
| 361 | // the somewhat more lightweight split_block() or |
| 362 | // (when init_to_zero()) mark_block() wherever possible. |
| 363 | // right-open interval: [blk_start, blk_end) |
| 364 | void |
| 365 | BlockOffsetArrayNonContigSpace::alloc_block(HeapWord* blk_start, |
| 366 | HeapWord* blk_end) { |
| 367 | assert(blk_start != NULL && blk_end > blk_start, |
| 368 | "phantom block" ); |
| 369 | single_block(blk_start, blk_end); |
| 370 | allocated(blk_start, blk_end); |
| 371 | } |
| 372 | |
| 373 | // Adjust BOT to show that a previously whole block has been split |
| 374 | // into two. We verify the BOT for the first part (prefix) and |
| 375 | // update the BOT for the second part (suffix). |
| 376 | // blk is the start of the block |
| 377 | // blk_size is the size of the original block |
| 378 | // left_blk_size is the size of the first part of the split |
| 379 | void BlockOffsetArrayNonContigSpace::split_block(HeapWord* blk, |
| 380 | size_t blk_size, |
| 381 | size_t left_blk_size) { |
| 382 | // Verify that the BOT shows [blk, blk + blk_size) to be one block. |
| 383 | verify_single_block(blk, blk_size); |
| 384 | // Update the BOT to indicate that [blk + left_blk_size, blk + blk_size) |
| 385 | // is one single block. |
| 386 | assert(blk_size > 0, "Should be positive" ); |
| 387 | assert(left_blk_size > 0, "Should be positive" ); |
| 388 | assert(left_blk_size < blk_size, "Not a split" ); |
| 389 | |
| 390 | // Start addresses of prefix block and suffix block. |
| 391 | HeapWord* pref_addr = blk; |
| 392 | HeapWord* suff_addr = blk + left_blk_size; |
| 393 | HeapWord* end_addr = blk + blk_size; |
| 394 | |
| 395 | // Indices for starts of prefix block and suffix block. |
| 396 | size_t pref_index = _array->index_for(pref_addr); |
| 397 | if (_array->address_for_index(pref_index) != pref_addr) { |
| 398 | // pref_addr does not begin pref_index |
| 399 | pref_index++; |
| 400 | } |
| 401 | |
| 402 | size_t suff_index = _array->index_for(suff_addr); |
| 403 | if (_array->address_for_index(suff_index) != suff_addr) { |
| 404 | // suff_addr does not begin suff_index |
| 405 | suff_index++; |
| 406 | } |
| 407 | |
| 408 | // Definition: A block B, denoted [B_start, B_end) __starts__ |
| 409 | // a card C, denoted [C_start, C_end), where C_start and C_end |
| 410 | // are the heap addresses that card C covers, iff |
| 411 | // B_start <= C_start < B_end. |
| 412 | // |
| 413 | // We say that a card C "is started by" a block B, iff |
| 414 | // B "starts" C. |
| 415 | // |
| 416 | // Note that the cardinality of the set of cards {C} |
| 417 | // started by a block B can be 0, 1, or more. |
| 418 | // |
| 419 | // Below, pref_index and suff_index are, respectively, the |
| 420 | // first (least) card indices that the prefix and suffix of |
| 421 | // the split start; end_index is one more than the index of |
| 422 | // the last (greatest) card that blk starts. |
| 423 | size_t end_index = _array->index_for(end_addr - 1) + 1; |
| 424 | |
| 425 | // Calculate the # cards that the prefix and suffix affect. |
| 426 | size_t num_pref_cards = suff_index - pref_index; |
| 427 | |
| 428 | size_t num_suff_cards = end_index - suff_index; |
| 429 | // Change the cards that need changing |
| 430 | if (num_suff_cards > 0) { |
| 431 | HeapWord* boundary = _array->address_for_index(suff_index); |
| 432 | // Set the offset card for suffix block |
| 433 | _array->set_offset_array(suff_index, boundary, suff_addr, true /* reducing */); |
| 434 | // Change any further cards that need changing in the suffix |
| 435 | if (num_pref_cards > 0) { |
| 436 | if (num_pref_cards >= num_suff_cards) { |
| 437 | // Unilaterally fix all of the suffix cards: closed card |
| 438 | // index interval in args below. |
| 439 | set_remainder_to_point_to_start_incl(suff_index + 1, end_index - 1, true /* reducing */); |
| 440 | } else { |
| 441 | // Unilaterally fix the first (num_pref_cards - 1) following |
| 442 | // the "offset card" in the suffix block. |
| 443 | const size_t right_most_fixed_index = suff_index + num_pref_cards - 1; |
| 444 | set_remainder_to_point_to_start_incl(suff_index + 1, |
| 445 | right_most_fixed_index, true /* reducing */); |
| 446 | // Fix the appropriate cards in the remainder of the |
| 447 | // suffix block -- these are the last num_pref_cards |
| 448 | // cards in each power block of the "new" range plumbed |
| 449 | // from suff_addr. |
| 450 | bool more = true; |
| 451 | uint i = 1; |
| 452 | // Fix the first power block with back_by > num_pref_cards. |
| 453 | while (more && (i < BOTConstants::N_powers)) { |
| 454 | size_t back_by = BOTConstants::power_to_cards_back(i); |
| 455 | size_t right_index = suff_index + back_by - 1; |
| 456 | size_t left_index = right_index - num_pref_cards + 1; |
| 457 | if (right_index >= end_index - 1) { // last iteration |
| 458 | right_index = end_index - 1; |
| 459 | more = false; |
| 460 | } |
| 461 | if (left_index <= right_most_fixed_index) { |
| 462 | left_index = right_most_fixed_index + 1; |
| 463 | } |
| 464 | if (back_by > num_pref_cards) { |
| 465 | // Fill in the remainder of this "power block", if it |
| 466 | // is non-null. |
| 467 | if (left_index <= right_index) { |
| 468 | _array->set_offset_array(left_index, right_index, |
| 469 | BOTConstants::N_words + i - 1, true /* reducing */); |
| 470 | } else { |
| 471 | more = false; // we are done |
| 472 | assert((end_index - 1) == right_index, "Must be at the end." ); |
| 473 | } |
| 474 | i++; |
| 475 | break; |
| 476 | } |
| 477 | i++; |
| 478 | } |
| 479 | // Fix the rest of the power blocks. |
| 480 | while (more && (i < BOTConstants::N_powers)) { |
| 481 | size_t back_by = BOTConstants::power_to_cards_back(i); |
| 482 | size_t right_index = suff_index + back_by - 1; |
| 483 | size_t left_index = right_index - num_pref_cards + 1; |
| 484 | if (right_index >= end_index - 1) { // last iteration |
| 485 | right_index = end_index - 1; |
| 486 | if (left_index > right_index) { |
| 487 | break; |
| 488 | } |
| 489 | more = false; |
| 490 | } |
| 491 | assert(left_index <= right_index, "Error" ); |
| 492 | _array->set_offset_array(left_index, right_index, BOTConstants::N_words + i - 1, true /* reducing */); |
| 493 | i++; |
| 494 | } |
| 495 | } |
| 496 | } // else no more cards to fix in suffix |
| 497 | } // else nothing needs to be done |
| 498 | // Verify that we did the right thing |
| 499 | verify_single_block(pref_addr, left_blk_size); |
| 500 | verify_single_block(suff_addr, blk_size - left_blk_size); |
| 501 | } |
| 502 | |
| 503 | |
| 504 | // Mark the BOT such that if [blk_start, blk_end) straddles a card |
| 505 | // boundary, the card following the first such boundary is marked |
| 506 | // with the appropriate offset. |
| 507 | // NOTE: this method does _not_ adjust _unallocated_block or |
| 508 | // any cards subsequent to the first one. |
| 509 | void |
| 510 | BlockOffsetArrayNonContigSpace::mark_block(HeapWord* blk_start, |
| 511 | HeapWord* blk_end, bool reducing) { |
| 512 | do_block_internal(blk_start, blk_end, Action_mark, reducing); |
| 513 | } |
| 514 | |
| 515 | HeapWord* BlockOffsetArrayNonContigSpace::block_start_unsafe( |
| 516 | const void* addr) const { |
| 517 | assert(_array->offset_array(0) == 0, "objects can't cross covered areas" ); |
| 518 | assert(_bottom <= addr && addr < _end, |
| 519 | "addr must be covered by this Array" ); |
| 520 | // Must read this exactly once because it can be modified by parallel |
| 521 | // allocation. |
| 522 | HeapWord* ub = _unallocated_block; |
| 523 | if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) { |
| 524 | assert(ub < _end, "tautology (see above)" ); |
| 525 | return ub; |
| 526 | } |
| 527 | |
| 528 | // Otherwise, find the block start using the table. |
| 529 | size_t index = _array->index_for(addr); |
| 530 | HeapWord* q = _array->address_for_index(index); |
| 531 | |
| 532 | uint offset = _array->offset_array(index); // Extend u_char to uint. |
| 533 | while (offset >= BOTConstants::N_words) { |
| 534 | // The excess of the offset from N_words indicates a power of Base |
| 535 | // to go back by. |
| 536 | size_t n_cards_back = BOTConstants::entry_to_cards_back(offset); |
| 537 | q -= (BOTConstants::N_words * n_cards_back); |
| 538 | assert(q >= _sp->bottom(), |
| 539 | "q = " PTR_FORMAT " crossed below bottom = " PTR_FORMAT, |
| 540 | p2i(q), p2i(_sp->bottom())); |
| 541 | assert(q < _sp->end(), |
| 542 | "q = " PTR_FORMAT " crossed above end = " PTR_FORMAT, |
| 543 | p2i(q), p2i(_sp->end())); |
| 544 | index -= n_cards_back; |
| 545 | offset = _array->offset_array(index); |
| 546 | } |
| 547 | assert(offset < BOTConstants::N_words, "offset too large" ); |
| 548 | index--; |
| 549 | q -= offset; |
| 550 | assert(q >= _sp->bottom(), |
| 551 | "q = " PTR_FORMAT " crossed below bottom = " PTR_FORMAT, |
| 552 | p2i(q), p2i(_sp->bottom())); |
| 553 | assert(q < _sp->end(), |
| 554 | "q = " PTR_FORMAT " crossed above end = " PTR_FORMAT, |
| 555 | p2i(q), p2i(_sp->end())); |
| 556 | HeapWord* n = q; |
| 557 | |
| 558 | while (n <= addr) { |
| 559 | debug_only(HeapWord* last = q); // for debugging |
| 560 | q = n; |
| 561 | n += _sp->block_size(n); |
| 562 | assert(n > q, |
| 563 | "Looping at n = " PTR_FORMAT " with last = " PTR_FORMAT "," |
| 564 | " while querying blk_start(" PTR_FORMAT ")" |
| 565 | " on _sp = [" PTR_FORMAT "," PTR_FORMAT ")" , |
| 566 | p2i(n), p2i(last), p2i(addr), p2i(_sp->bottom()), p2i(_sp->end())); |
| 567 | } |
| 568 | assert(q <= addr, |
| 569 | "wrong order for current (" INTPTR_FORMAT ")" " <= arg (" INTPTR_FORMAT ")" , |
| 570 | p2i(q), p2i(addr)); |
| 571 | assert(addr <= n, |
| 572 | "wrong order for arg (" INTPTR_FORMAT ") <= next (" INTPTR_FORMAT ")" , |
| 573 | p2i(addr), p2i(n)); |
| 574 | return q; |
| 575 | } |
| 576 | |
| 577 | HeapWord* BlockOffsetArrayNonContigSpace::block_start_careful( |
| 578 | const void* addr) const { |
| 579 | assert(_array->offset_array(0) == 0, "objects can't cross covered areas" ); |
| 580 | |
| 581 | assert(_bottom <= addr && addr < _end, |
| 582 | "addr must be covered by this Array" ); |
| 583 | // Must read this exactly once because it can be modified by parallel |
| 584 | // allocation. |
| 585 | HeapWord* ub = _unallocated_block; |
| 586 | if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) { |
| 587 | assert(ub < _end, "tautology (see above)" ); |
| 588 | return ub; |
| 589 | } |
| 590 | |
| 591 | // Otherwise, find the block start using the table, but taking |
| 592 | // care (cf block_start_unsafe() above) not to parse any objects/blocks |
| 593 | // on the cards themselves. |
| 594 | size_t index = _array->index_for(addr); |
| 595 | assert(_array->address_for_index(index) == addr, |
| 596 | "arg should be start of card" ); |
| 597 | |
| 598 | HeapWord* q = (HeapWord*)addr; |
| 599 | uint offset; |
| 600 | do { |
| 601 | offset = _array->offset_array(index); |
| 602 | if (offset < BOTConstants::N_words) { |
| 603 | q -= offset; |
| 604 | } else { |
| 605 | size_t n_cards_back = BOTConstants::entry_to_cards_back(offset); |
| 606 | q -= (n_cards_back * BOTConstants::N_words); |
| 607 | index -= n_cards_back; |
| 608 | } |
| 609 | } while (offset >= BOTConstants::N_words); |
| 610 | assert(q <= addr, "block start should be to left of arg" ); |
| 611 | return q; |
| 612 | } |
| 613 | |
| 614 | #ifndef PRODUCT |
| 615 | // Verification & debugging - ensure that the offset table reflects the fact |
| 616 | // that the block [blk_start, blk_end) or [blk, blk + size) is a |
| 617 | // single block of storage. NOTE: can't const this because of |
| 618 | // call to non-const do_block_internal() below. |
| 619 | void BlockOffsetArrayNonContigSpace::verify_single_block( |
| 620 | HeapWord* blk_start, HeapWord* blk_end) { |
| 621 | if (VerifyBlockOffsetArray) { |
| 622 | do_block_internal(blk_start, blk_end, Action_check); |
| 623 | } |
| 624 | } |
| 625 | |
| 626 | void BlockOffsetArrayNonContigSpace::verify_single_block( |
| 627 | HeapWord* blk, size_t size) { |
| 628 | verify_single_block(blk, blk + size); |
| 629 | } |
| 630 | |
| 631 | // Verify that the given block is before _unallocated_block |
| 632 | void BlockOffsetArrayNonContigSpace::verify_not_unallocated( |
| 633 | HeapWord* blk_start, HeapWord* blk_end) const { |
| 634 | if (BlockOffsetArrayUseUnallocatedBlock) { |
| 635 | assert(blk_start < blk_end, "Block inconsistency?" ); |
| 636 | assert(blk_end <= _unallocated_block, "_unallocated_block problem" ); |
| 637 | } |
| 638 | } |
| 639 | |
| 640 | void BlockOffsetArrayNonContigSpace::verify_not_unallocated( |
| 641 | HeapWord* blk, size_t size) const { |
| 642 | verify_not_unallocated(blk, blk + size); |
| 643 | } |
| 644 | #endif // PRODUCT |
| 645 | |
| 646 | size_t BlockOffsetArrayNonContigSpace::last_active_index() const { |
| 647 | if (_unallocated_block == _bottom) { |
| 648 | return 0; |
| 649 | } else { |
| 650 | return _array->index_for(_unallocated_block - 1); |
| 651 | } |
| 652 | } |
| 653 | |
| 654 | ////////////////////////////////////////////////////////////////////// |
| 655 | // BlockOffsetArrayContigSpace |
| 656 | ////////////////////////////////////////////////////////////////////// |
| 657 | |
| 658 | HeapWord* BlockOffsetArrayContigSpace::block_start_unsafe(const void* addr) const { |
| 659 | assert(_array->offset_array(0) == 0, "objects can't cross covered areas" ); |
| 660 | |
| 661 | // Otherwise, find the block start using the table. |
| 662 | assert(_bottom <= addr && addr < _end, |
| 663 | "addr must be covered by this Array" ); |
| 664 | size_t index = _array->index_for(addr); |
| 665 | // We must make sure that the offset table entry we use is valid. If |
| 666 | // "addr" is past the end, start at the last known one and go forward. |
| 667 | index = MIN2(index, _next_offset_index-1); |
| 668 | HeapWord* q = _array->address_for_index(index); |
| 669 | |
| 670 | uint offset = _array->offset_array(index); // Extend u_char to uint. |
| 671 | while (offset > BOTConstants::N_words) { |
| 672 | // The excess of the offset from N_words indicates a power of Base |
| 673 | // to go back by. |
| 674 | size_t n_cards_back = BOTConstants::entry_to_cards_back(offset); |
| 675 | q -= (BOTConstants::N_words * n_cards_back); |
| 676 | assert(q >= _sp->bottom(), "Went below bottom!" ); |
| 677 | index -= n_cards_back; |
| 678 | offset = _array->offset_array(index); |
| 679 | } |
| 680 | while (offset == BOTConstants::N_words) { |
| 681 | assert(q >= _sp->bottom(), "Went below bottom!" ); |
| 682 | q -= BOTConstants::N_words; |
| 683 | index--; |
| 684 | offset = _array->offset_array(index); |
| 685 | } |
| 686 | assert(offset < BOTConstants::N_words, "offset too large" ); |
| 687 | q -= offset; |
| 688 | HeapWord* n = q; |
| 689 | |
| 690 | while (n <= addr) { |
| 691 | debug_only(HeapWord* last = q); // for debugging |
| 692 | q = n; |
| 693 | n += _sp->block_size(n); |
| 694 | } |
| 695 | assert(q <= addr, "wrong order for current and arg" ); |
| 696 | assert(addr <= n, "wrong order for arg and next" ); |
| 697 | return q; |
| 698 | } |
| 699 | |
| 700 | // |
| 701 | // _next_offset_threshold |
| 702 | // | _next_offset_index |
| 703 | // v v |
| 704 | // +-------+-------+-------+-------+-------+ |
| 705 | // | i-1 | i | i+1 | i+2 | i+3 | |
| 706 | // +-------+-------+-------+-------+-------+ |
| 707 | // ( ^ ] |
| 708 | // block-start |
| 709 | // |
| 710 | |
| 711 | void BlockOffsetArrayContigSpace::alloc_block_work(HeapWord* blk_start, |
| 712 | HeapWord* blk_end) { |
| 713 | assert(blk_start != NULL && blk_end > blk_start, |
| 714 | "phantom block" ); |
| 715 | assert(blk_end > _next_offset_threshold, |
| 716 | "should be past threshold" ); |
| 717 | assert(blk_start <= _next_offset_threshold, |
| 718 | "blk_start should be at or before threshold" ); |
| 719 | assert(pointer_delta(_next_offset_threshold, blk_start) <= BOTConstants::N_words, |
| 720 | "offset should be <= BlockOffsetSharedArray::N" ); |
| 721 | assert(Universe::heap()->is_in_reserved(blk_start), |
| 722 | "reference must be into the heap" ); |
| 723 | assert(Universe::heap()->is_in_reserved(blk_end-1), |
| 724 | "limit must be within the heap" ); |
| 725 | assert(_next_offset_threshold == |
| 726 | _array->_reserved.start() + _next_offset_index*BOTConstants::N_words, |
| 727 | "index must agree with threshold" ); |
| 728 | |
| 729 | debug_only(size_t orig_next_offset_index = _next_offset_index;) |
| 730 | |
| 731 | // Mark the card that holds the offset into the block. Note |
| 732 | // that _next_offset_index and _next_offset_threshold are not |
| 733 | // updated until the end of this method. |
| 734 | _array->set_offset_array(_next_offset_index, |
| 735 | _next_offset_threshold, |
| 736 | blk_start); |
| 737 | |
| 738 | // We need to now mark the subsequent cards that this blk spans. |
| 739 | |
| 740 | // Index of card on which blk ends. |
| 741 | size_t end_index = _array->index_for(blk_end - 1); |
| 742 | |
| 743 | // Are there more cards left to be updated? |
| 744 | if (_next_offset_index + 1 <= end_index) { |
| 745 | HeapWord* rem_st = _array->address_for_index(_next_offset_index + 1); |
| 746 | // Calculate rem_end this way because end_index |
| 747 | // may be the last valid index in the covered region. |
| 748 | HeapWord* rem_end = _array->address_for_index(end_index) + BOTConstants::N_words; |
| 749 | set_remainder_to_point_to_start(rem_st, rem_end); |
| 750 | } |
| 751 | |
| 752 | // _next_offset_index and _next_offset_threshold updated here. |
| 753 | _next_offset_index = end_index + 1; |
| 754 | // Calculate _next_offset_threshold this way because end_index |
| 755 | // may be the last valid index in the covered region. |
| 756 | _next_offset_threshold = _array->address_for_index(end_index) + BOTConstants::N_words; |
| 757 | assert(_next_offset_threshold >= blk_end, "Incorrect offset threshold" ); |
| 758 | |
| 759 | #ifdef ASSERT |
| 760 | // The offset can be 0 if the block starts on a boundary. That |
| 761 | // is checked by an assertion above. |
| 762 | size_t start_index = _array->index_for(blk_start); |
| 763 | HeapWord* boundary = _array->address_for_index(start_index); |
| 764 | assert((_array->offset_array(orig_next_offset_index) == 0 && |
| 765 | blk_start == boundary) || |
| 766 | (_array->offset_array(orig_next_offset_index) > 0 && |
| 767 | _array->offset_array(orig_next_offset_index) <= BOTConstants::N_words), |
| 768 | "offset array should have been set" ); |
| 769 | for (size_t j = orig_next_offset_index + 1; j <= end_index; j++) { |
| 770 | assert(_array->offset_array(j) > 0 && |
| 771 | _array->offset_array(j) <= (u_char) (BOTConstants::N_words+BOTConstants::N_powers-1), |
| 772 | "offset array should have been set" ); |
| 773 | } |
| 774 | #endif |
| 775 | } |
| 776 | |
| 777 | HeapWord* BlockOffsetArrayContigSpace::initialize_threshold() { |
| 778 | assert(!Universe::heap()->is_in_reserved(_array->_offset_array), |
| 779 | "just checking" ); |
| 780 | _next_offset_index = _array->index_for(_bottom); |
| 781 | _next_offset_index++; |
| 782 | _next_offset_threshold = |
| 783 | _array->address_for_index(_next_offset_index); |
| 784 | return _next_offset_threshold; |
| 785 | } |
| 786 | |
| 787 | void BlockOffsetArrayContigSpace::zero_bottom_entry() { |
| 788 | assert(!Universe::heap()->is_in_reserved(_array->_offset_array), |
| 789 | "just checking" ); |
| 790 | size_t bottom_index = _array->index_for(_bottom); |
| 791 | _array->set_offset_array(bottom_index, 0); |
| 792 | } |
| 793 | |
| 794 | size_t BlockOffsetArrayContigSpace::last_active_index() const { |
| 795 | return _next_offset_index == 0 ? 0 : _next_offset_index - 1; |
| 796 | } |
| 797 | |