1 | /* |
2 | * Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "gc/shared/blockOffsetTable.inline.hpp" |
27 | #include "gc/shared/collectedHeap.inline.hpp" |
28 | #include "gc/shared/space.inline.hpp" |
29 | #include "memory/iterator.hpp" |
30 | #include "memory/universe.hpp" |
31 | #include "logging/log.hpp" |
32 | #include "oops/oop.inline.hpp" |
33 | #include "runtime/java.hpp" |
34 | #include "services/memTracker.hpp" |
35 | |
36 | ////////////////////////////////////////////////////////////////////// |
37 | // BlockOffsetSharedArray |
38 | ////////////////////////////////////////////////////////////////////// |
39 | |
40 | BlockOffsetSharedArray::BlockOffsetSharedArray(MemRegion reserved, |
41 | size_t init_word_size): |
42 | _reserved(reserved), _end(NULL) |
43 | { |
44 | size_t size = compute_size(reserved.word_size()); |
45 | ReservedSpace rs(size); |
46 | if (!rs.is_reserved()) { |
47 | vm_exit_during_initialization("Could not reserve enough space for heap offset array" ); |
48 | } |
49 | |
50 | MemTracker::record_virtual_memory_type((address)rs.base(), mtGC); |
51 | |
52 | if (!_vs.initialize(rs, 0)) { |
53 | vm_exit_during_initialization("Could not reserve enough space for heap offset array" ); |
54 | } |
55 | _offset_array = (u_char*)_vs.low_boundary(); |
56 | resize(init_word_size); |
57 | log_trace(gc, bot)("BlockOffsetSharedArray::BlockOffsetSharedArray: " ); |
58 | log_trace(gc, bot)(" rs.base(): " INTPTR_FORMAT " rs.size(): " INTPTR_FORMAT " rs end(): " INTPTR_FORMAT, |
59 | p2i(rs.base()), rs.size(), p2i(rs.base() + rs.size())); |
60 | log_trace(gc, bot)(" _vs.low_boundary(): " INTPTR_FORMAT " _vs.high_boundary(): " INTPTR_FORMAT, |
61 | p2i(_vs.low_boundary()), p2i(_vs.high_boundary())); |
62 | } |
63 | |
64 | void BlockOffsetSharedArray::resize(size_t new_word_size) { |
65 | assert(new_word_size <= _reserved.word_size(), "Resize larger than reserved" ); |
66 | size_t new_size = compute_size(new_word_size); |
67 | size_t old_size = _vs.committed_size(); |
68 | size_t delta; |
69 | char* high = _vs.high(); |
70 | _end = _reserved.start() + new_word_size; |
71 | if (new_size > old_size) { |
72 | delta = ReservedSpace::page_align_size_up(new_size - old_size); |
73 | assert(delta > 0, "just checking" ); |
74 | if (!_vs.expand_by(delta)) { |
75 | // Do better than this for Merlin |
76 | vm_exit_out_of_memory(delta, OOM_MMAP_ERROR, "offset table expansion" ); |
77 | } |
78 | assert(_vs.high() == high + delta, "invalid expansion" ); |
79 | } else { |
80 | delta = ReservedSpace::page_align_size_down(old_size - new_size); |
81 | if (delta == 0) return; |
82 | _vs.shrink_by(delta); |
83 | assert(_vs.high() == high - delta, "invalid expansion" ); |
84 | } |
85 | } |
86 | |
87 | bool BlockOffsetSharedArray::is_card_boundary(HeapWord* p) const { |
88 | assert(p >= _reserved.start(), "just checking" ); |
89 | size_t delta = pointer_delta(p, _reserved.start()); |
90 | return (delta & right_n_bits((int)BOTConstants::LogN_words)) == (size_t)NoBits; |
91 | } |
92 | |
93 | |
94 | ////////////////////////////////////////////////////////////////////// |
95 | // BlockOffsetArray |
96 | ////////////////////////////////////////////////////////////////////// |
97 | |
98 | BlockOffsetArray::BlockOffsetArray(BlockOffsetSharedArray* array, |
99 | MemRegion mr, bool init_to_zero_) : |
100 | BlockOffsetTable(mr.start(), mr.end()), |
101 | _array(array) |
102 | { |
103 | assert(_bottom <= _end, "arguments out of order" ); |
104 | set_init_to_zero(init_to_zero_); |
105 | if (!init_to_zero_) { |
106 | // initialize cards to point back to mr.start() |
107 | set_remainder_to_point_to_start(mr.start() + BOTConstants::N_words, mr.end()); |
108 | _array->set_offset_array(0, 0); // set first card to 0 |
109 | } |
110 | } |
111 | |
112 | |
113 | // The arguments follow the normal convention of denoting |
114 | // a right-open interval: [start, end) |
115 | void |
116 | BlockOffsetArray:: |
117 | set_remainder_to_point_to_start(HeapWord* start, HeapWord* end, bool reducing) { |
118 | |
119 | check_reducing_assertion(reducing); |
120 | if (start >= end) { |
121 | // The start address is equal to the end address (or to |
122 | // the right of the end address) so there are not cards |
123 | // that need to be updated.. |
124 | return; |
125 | } |
126 | |
127 | // Write the backskip value for each region. |
128 | // |
129 | // offset |
130 | // card 2nd 3rd |
131 | // | +- 1st | | |
132 | // v v v v |
133 | // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+- |
134 | // |x|0|0|0|0|0|0|0|1|1|1|1|1|1| ... |1|1|1|1|2|2|2|2|2|2| ... |
135 | // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+- |
136 | // 11 19 75 |
137 | // 12 |
138 | // |
139 | // offset card is the card that points to the start of an object |
140 | // x - offset value of offset card |
141 | // 1st - start of first logarithmic region |
142 | // 0 corresponds to logarithmic value N_words + 0 and 2**(3 * 0) = 1 |
143 | // 2nd - start of second logarithmic region |
144 | // 1 corresponds to logarithmic value N_words + 1 and 2**(3 * 1) = 8 |
145 | // 3rd - start of third logarithmic region |
146 | // 2 corresponds to logarithmic value N_words + 2 and 2**(3 * 2) = 64 |
147 | // |
148 | // integer below the block offset entry is an example of |
149 | // the index of the entry |
150 | // |
151 | // Given an address, |
152 | // Find the index for the address |
153 | // Find the block offset table entry |
154 | // Convert the entry to a back slide |
155 | // (e.g., with today's, offset = 0x81 => |
156 | // back slip = 2**(3*(0x81 - N_words)) = 2**3) = 8 |
157 | // Move back N (e.g., 8) entries and repeat with the |
158 | // value of the new entry |
159 | // |
160 | size_t start_card = _array->index_for(start); |
161 | size_t end_card = _array->index_for(end-1); |
162 | assert(start ==_array->address_for_index(start_card), "Precondition" ); |
163 | assert(end ==_array->address_for_index(end_card)+BOTConstants::N_words, "Precondition" ); |
164 | set_remainder_to_point_to_start_incl(start_card, end_card, reducing); // closed interval |
165 | } |
166 | |
167 | |
168 | // Unlike the normal convention in this code, the argument here denotes |
169 | // a closed, inclusive interval: [start_card, end_card], cf set_remainder_to_point_to_start() |
170 | // above. |
171 | void |
172 | BlockOffsetArray::set_remainder_to_point_to_start_incl(size_t start_card, size_t end_card, bool reducing) { |
173 | |
174 | check_reducing_assertion(reducing); |
175 | if (start_card > end_card) { |
176 | return; |
177 | } |
178 | assert(start_card > _array->index_for(_bottom), "Cannot be first card" ); |
179 | assert(_array->offset_array(start_card-1) <= BOTConstants::N_words, |
180 | "Offset card has an unexpected value" ); |
181 | size_t start_card_for_region = start_card; |
182 | u_char offset = max_jubyte; |
183 | for (uint i = 0; i < BOTConstants::N_powers; i++) { |
184 | // -1 so that the the card with the actual offset is counted. Another -1 |
185 | // so that the reach ends in this region and not at the start |
186 | // of the next. |
187 | size_t reach = start_card - 1 + (BOTConstants::power_to_cards_back(i+1) - 1); |
188 | offset = BOTConstants::N_words + i; |
189 | if (reach >= end_card) { |
190 | _array->set_offset_array(start_card_for_region, end_card, offset, reducing); |
191 | start_card_for_region = reach + 1; |
192 | break; |
193 | } |
194 | _array->set_offset_array(start_card_for_region, reach, offset, reducing); |
195 | start_card_for_region = reach + 1; |
196 | } |
197 | assert(start_card_for_region > end_card, "Sanity check" ); |
198 | DEBUG_ONLY(check_all_cards(start_card, end_card);) |
199 | } |
200 | |
201 | // The card-interval [start_card, end_card] is a closed interval; this |
202 | // is an expensive check -- use with care and only under protection of |
203 | // suitable flag. |
204 | void BlockOffsetArray::check_all_cards(size_t start_card, size_t end_card) const { |
205 | |
206 | if (end_card < start_card) { |
207 | return; |
208 | } |
209 | guarantee(_array->offset_array(start_card) == BOTConstants::N_words, "Wrong value in second card" ); |
210 | u_char last_entry = BOTConstants::N_words; |
211 | for (size_t c = start_card + 1; c <= end_card; c++ /* yeah! */) { |
212 | u_char entry = _array->offset_array(c); |
213 | guarantee(entry >= last_entry, "Monotonicity" ); |
214 | if (c - start_card > BOTConstants::power_to_cards_back(1)) { |
215 | guarantee(entry > BOTConstants::N_words, "Should be in logarithmic region" ); |
216 | } |
217 | size_t backskip = BOTConstants::entry_to_cards_back(entry); |
218 | size_t landing_card = c - backskip; |
219 | guarantee(landing_card >= (start_card - 1), "Inv" ); |
220 | if (landing_card >= start_card) { |
221 | guarantee(_array->offset_array(landing_card) <= entry, "Monotonicity" ); |
222 | } else { |
223 | guarantee(landing_card == (start_card - 1), "Tautology" ); |
224 | // Note that N_words is the maximum offset value |
225 | guarantee(_array->offset_array(landing_card) <= BOTConstants::N_words, "Offset value" ); |
226 | } |
227 | last_entry = entry; // remember for monotonicity test |
228 | } |
229 | } |
230 | |
231 | |
232 | void |
233 | BlockOffsetArray::alloc_block(HeapWord* blk_start, HeapWord* blk_end) { |
234 | assert(blk_start != NULL && blk_end > blk_start, |
235 | "phantom block" ); |
236 | single_block(blk_start, blk_end); |
237 | } |
238 | |
239 | // Action_mark - update the BOT for the block [blk_start, blk_end). |
240 | // Current typical use is for splitting a block. |
241 | // Action_single - udpate the BOT for an allocation. |
242 | // Action_verify - BOT verification. |
243 | void |
244 | BlockOffsetArray::do_block_internal(HeapWord* blk_start, |
245 | HeapWord* blk_end, |
246 | Action action, bool reducing) { |
247 | assert(Universe::heap()->is_in_reserved(blk_start), |
248 | "reference must be into the heap" ); |
249 | assert(Universe::heap()->is_in_reserved(blk_end-1), |
250 | "limit must be within the heap" ); |
251 | // This is optimized to make the test fast, assuming we only rarely |
252 | // cross boundaries. |
253 | uintptr_t end_ui = (uintptr_t)(blk_end - 1); |
254 | uintptr_t start_ui = (uintptr_t)blk_start; |
255 | // Calculate the last card boundary preceding end of blk |
256 | intptr_t boundary_before_end = (intptr_t)end_ui; |
257 | clear_bits(boundary_before_end, right_n_bits((int)BOTConstants::LogN)); |
258 | if (start_ui <= (uintptr_t)boundary_before_end) { |
259 | // blk starts at or crosses a boundary |
260 | // Calculate index of card on which blk begins |
261 | size_t start_index = _array->index_for(blk_start); |
262 | // Index of card on which blk ends |
263 | size_t end_index = _array->index_for(blk_end - 1); |
264 | // Start address of card on which blk begins |
265 | HeapWord* boundary = _array->address_for_index(start_index); |
266 | assert(boundary <= blk_start, "blk should start at or after boundary" ); |
267 | if (blk_start != boundary) { |
268 | // blk starts strictly after boundary |
269 | // adjust card boundary and start_index forward to next card |
270 | boundary += BOTConstants::N_words; |
271 | start_index++; |
272 | } |
273 | assert(start_index <= end_index, "monotonicity of index_for()" ); |
274 | assert(boundary <= (HeapWord*)boundary_before_end, "tautology" ); |
275 | switch (action) { |
276 | case Action_mark: { |
277 | if (init_to_zero()) { |
278 | _array->set_offset_array(start_index, boundary, blk_start, reducing); |
279 | break; |
280 | } // Else fall through to the next case |
281 | } |
282 | case Action_single: { |
283 | _array->set_offset_array(start_index, boundary, blk_start, reducing); |
284 | // We have finished marking the "offset card". We need to now |
285 | // mark the subsequent cards that this blk spans. |
286 | if (start_index < end_index) { |
287 | HeapWord* rem_st = _array->address_for_index(start_index) + BOTConstants::N_words; |
288 | HeapWord* rem_end = _array->address_for_index(end_index) + BOTConstants::N_words; |
289 | set_remainder_to_point_to_start(rem_st, rem_end, reducing); |
290 | } |
291 | break; |
292 | } |
293 | case Action_check: { |
294 | _array->check_offset_array(start_index, boundary, blk_start); |
295 | // We have finished checking the "offset card". We need to now |
296 | // check the subsequent cards that this blk spans. |
297 | check_all_cards(start_index + 1, end_index); |
298 | break; |
299 | } |
300 | default: |
301 | ShouldNotReachHere(); |
302 | } |
303 | } |
304 | } |
305 | |
306 | // The range [blk_start, blk_end) represents a single contiguous block |
307 | // of storage; modify the block offset table to represent this |
308 | // information; Right-open interval: [blk_start, blk_end) |
309 | // NOTE: this method does _not_ adjust _unallocated_block. |
310 | void |
311 | BlockOffsetArray::single_block(HeapWord* blk_start, |
312 | HeapWord* blk_end) { |
313 | do_block_internal(blk_start, blk_end, Action_single); |
314 | } |
315 | |
316 | void BlockOffsetArray::verify() const { |
317 | // For each entry in the block offset table, verify that |
318 | // the entry correctly finds the start of an object at the |
319 | // first address covered by the block or to the left of that |
320 | // first address. |
321 | |
322 | size_t next_index = 1; |
323 | size_t last_index = last_active_index(); |
324 | |
325 | // Use for debugging. Initialize to NULL to distinguish the |
326 | // first iteration through the while loop. |
327 | HeapWord* last_p = NULL; |
328 | HeapWord* last_start = NULL; |
329 | oop last_o = NULL; |
330 | |
331 | while (next_index <= last_index) { |
332 | // Use an address past the start of the address for |
333 | // the entry. |
334 | HeapWord* p = _array->address_for_index(next_index) + 1; |
335 | if (p >= _end) { |
336 | // That's all of the allocated block table. |
337 | return; |
338 | } |
339 | // block_start() asserts that start <= p. |
340 | HeapWord* start = block_start(p); |
341 | // First check if the start is an allocated block and only |
342 | // then if it is a valid object. |
343 | oop o = oop(start); |
344 | assert(!Universe::is_fully_initialized() || |
345 | _sp->is_free_block(start) || |
346 | oopDesc::is_oop_or_null(o), "Bad object was found" ); |
347 | next_index++; |
348 | last_p = p; |
349 | last_start = start; |
350 | last_o = o; |
351 | } |
352 | } |
353 | |
354 | ////////////////////////////////////////////////////////////////////// |
355 | // BlockOffsetArrayNonContigSpace |
356 | ////////////////////////////////////////////////////////////////////// |
357 | |
358 | // The block [blk_start, blk_end) has been allocated; |
359 | // adjust the block offset table to represent this information; |
360 | // NOTE: Clients of BlockOffsetArrayNonContigSpace: consider using |
361 | // the somewhat more lightweight split_block() or |
362 | // (when init_to_zero()) mark_block() wherever possible. |
363 | // right-open interval: [blk_start, blk_end) |
364 | void |
365 | BlockOffsetArrayNonContigSpace::alloc_block(HeapWord* blk_start, |
366 | HeapWord* blk_end) { |
367 | assert(blk_start != NULL && blk_end > blk_start, |
368 | "phantom block" ); |
369 | single_block(blk_start, blk_end); |
370 | allocated(blk_start, blk_end); |
371 | } |
372 | |
373 | // Adjust BOT to show that a previously whole block has been split |
374 | // into two. We verify the BOT for the first part (prefix) and |
375 | // update the BOT for the second part (suffix). |
376 | // blk is the start of the block |
377 | // blk_size is the size of the original block |
378 | // left_blk_size is the size of the first part of the split |
379 | void BlockOffsetArrayNonContigSpace::split_block(HeapWord* blk, |
380 | size_t blk_size, |
381 | size_t left_blk_size) { |
382 | // Verify that the BOT shows [blk, blk + blk_size) to be one block. |
383 | verify_single_block(blk, blk_size); |
384 | // Update the BOT to indicate that [blk + left_blk_size, blk + blk_size) |
385 | // is one single block. |
386 | assert(blk_size > 0, "Should be positive" ); |
387 | assert(left_blk_size > 0, "Should be positive" ); |
388 | assert(left_blk_size < blk_size, "Not a split" ); |
389 | |
390 | // Start addresses of prefix block and suffix block. |
391 | HeapWord* pref_addr = blk; |
392 | HeapWord* suff_addr = blk + left_blk_size; |
393 | HeapWord* end_addr = blk + blk_size; |
394 | |
395 | // Indices for starts of prefix block and suffix block. |
396 | size_t pref_index = _array->index_for(pref_addr); |
397 | if (_array->address_for_index(pref_index) != pref_addr) { |
398 | // pref_addr does not begin pref_index |
399 | pref_index++; |
400 | } |
401 | |
402 | size_t suff_index = _array->index_for(suff_addr); |
403 | if (_array->address_for_index(suff_index) != suff_addr) { |
404 | // suff_addr does not begin suff_index |
405 | suff_index++; |
406 | } |
407 | |
408 | // Definition: A block B, denoted [B_start, B_end) __starts__ |
409 | // a card C, denoted [C_start, C_end), where C_start and C_end |
410 | // are the heap addresses that card C covers, iff |
411 | // B_start <= C_start < B_end. |
412 | // |
413 | // We say that a card C "is started by" a block B, iff |
414 | // B "starts" C. |
415 | // |
416 | // Note that the cardinality of the set of cards {C} |
417 | // started by a block B can be 0, 1, or more. |
418 | // |
419 | // Below, pref_index and suff_index are, respectively, the |
420 | // first (least) card indices that the prefix and suffix of |
421 | // the split start; end_index is one more than the index of |
422 | // the last (greatest) card that blk starts. |
423 | size_t end_index = _array->index_for(end_addr - 1) + 1; |
424 | |
425 | // Calculate the # cards that the prefix and suffix affect. |
426 | size_t num_pref_cards = suff_index - pref_index; |
427 | |
428 | size_t num_suff_cards = end_index - suff_index; |
429 | // Change the cards that need changing |
430 | if (num_suff_cards > 0) { |
431 | HeapWord* boundary = _array->address_for_index(suff_index); |
432 | // Set the offset card for suffix block |
433 | _array->set_offset_array(suff_index, boundary, suff_addr, true /* reducing */); |
434 | // Change any further cards that need changing in the suffix |
435 | if (num_pref_cards > 0) { |
436 | if (num_pref_cards >= num_suff_cards) { |
437 | // Unilaterally fix all of the suffix cards: closed card |
438 | // index interval in args below. |
439 | set_remainder_to_point_to_start_incl(suff_index + 1, end_index - 1, true /* reducing */); |
440 | } else { |
441 | // Unilaterally fix the first (num_pref_cards - 1) following |
442 | // the "offset card" in the suffix block. |
443 | const size_t right_most_fixed_index = suff_index + num_pref_cards - 1; |
444 | set_remainder_to_point_to_start_incl(suff_index + 1, |
445 | right_most_fixed_index, true /* reducing */); |
446 | // Fix the appropriate cards in the remainder of the |
447 | // suffix block -- these are the last num_pref_cards |
448 | // cards in each power block of the "new" range plumbed |
449 | // from suff_addr. |
450 | bool more = true; |
451 | uint i = 1; |
452 | // Fix the first power block with back_by > num_pref_cards. |
453 | while (more && (i < BOTConstants::N_powers)) { |
454 | size_t back_by = BOTConstants::power_to_cards_back(i); |
455 | size_t right_index = suff_index + back_by - 1; |
456 | size_t left_index = right_index - num_pref_cards + 1; |
457 | if (right_index >= end_index - 1) { // last iteration |
458 | right_index = end_index - 1; |
459 | more = false; |
460 | } |
461 | if (left_index <= right_most_fixed_index) { |
462 | left_index = right_most_fixed_index + 1; |
463 | } |
464 | if (back_by > num_pref_cards) { |
465 | // Fill in the remainder of this "power block", if it |
466 | // is non-null. |
467 | if (left_index <= right_index) { |
468 | _array->set_offset_array(left_index, right_index, |
469 | BOTConstants::N_words + i - 1, true /* reducing */); |
470 | } else { |
471 | more = false; // we are done |
472 | assert((end_index - 1) == right_index, "Must be at the end." ); |
473 | } |
474 | i++; |
475 | break; |
476 | } |
477 | i++; |
478 | } |
479 | // Fix the rest of the power blocks. |
480 | while (more && (i < BOTConstants::N_powers)) { |
481 | size_t back_by = BOTConstants::power_to_cards_back(i); |
482 | size_t right_index = suff_index + back_by - 1; |
483 | size_t left_index = right_index - num_pref_cards + 1; |
484 | if (right_index >= end_index - 1) { // last iteration |
485 | right_index = end_index - 1; |
486 | if (left_index > right_index) { |
487 | break; |
488 | } |
489 | more = false; |
490 | } |
491 | assert(left_index <= right_index, "Error" ); |
492 | _array->set_offset_array(left_index, right_index, BOTConstants::N_words + i - 1, true /* reducing */); |
493 | i++; |
494 | } |
495 | } |
496 | } // else no more cards to fix in suffix |
497 | } // else nothing needs to be done |
498 | // Verify that we did the right thing |
499 | verify_single_block(pref_addr, left_blk_size); |
500 | verify_single_block(suff_addr, blk_size - left_blk_size); |
501 | } |
502 | |
503 | |
504 | // Mark the BOT such that if [blk_start, blk_end) straddles a card |
505 | // boundary, the card following the first such boundary is marked |
506 | // with the appropriate offset. |
507 | // NOTE: this method does _not_ adjust _unallocated_block or |
508 | // any cards subsequent to the first one. |
509 | void |
510 | BlockOffsetArrayNonContigSpace::mark_block(HeapWord* blk_start, |
511 | HeapWord* blk_end, bool reducing) { |
512 | do_block_internal(blk_start, blk_end, Action_mark, reducing); |
513 | } |
514 | |
515 | HeapWord* BlockOffsetArrayNonContigSpace::block_start_unsafe( |
516 | const void* addr) const { |
517 | assert(_array->offset_array(0) == 0, "objects can't cross covered areas" ); |
518 | assert(_bottom <= addr && addr < _end, |
519 | "addr must be covered by this Array" ); |
520 | // Must read this exactly once because it can be modified by parallel |
521 | // allocation. |
522 | HeapWord* ub = _unallocated_block; |
523 | if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) { |
524 | assert(ub < _end, "tautology (see above)" ); |
525 | return ub; |
526 | } |
527 | |
528 | // Otherwise, find the block start using the table. |
529 | size_t index = _array->index_for(addr); |
530 | HeapWord* q = _array->address_for_index(index); |
531 | |
532 | uint offset = _array->offset_array(index); // Extend u_char to uint. |
533 | while (offset >= BOTConstants::N_words) { |
534 | // The excess of the offset from N_words indicates a power of Base |
535 | // to go back by. |
536 | size_t n_cards_back = BOTConstants::entry_to_cards_back(offset); |
537 | q -= (BOTConstants::N_words * n_cards_back); |
538 | assert(q >= _sp->bottom(), |
539 | "q = " PTR_FORMAT " crossed below bottom = " PTR_FORMAT, |
540 | p2i(q), p2i(_sp->bottom())); |
541 | assert(q < _sp->end(), |
542 | "q = " PTR_FORMAT " crossed above end = " PTR_FORMAT, |
543 | p2i(q), p2i(_sp->end())); |
544 | index -= n_cards_back; |
545 | offset = _array->offset_array(index); |
546 | } |
547 | assert(offset < BOTConstants::N_words, "offset too large" ); |
548 | index--; |
549 | q -= offset; |
550 | assert(q >= _sp->bottom(), |
551 | "q = " PTR_FORMAT " crossed below bottom = " PTR_FORMAT, |
552 | p2i(q), p2i(_sp->bottom())); |
553 | assert(q < _sp->end(), |
554 | "q = " PTR_FORMAT " crossed above end = " PTR_FORMAT, |
555 | p2i(q), p2i(_sp->end())); |
556 | HeapWord* n = q; |
557 | |
558 | while (n <= addr) { |
559 | debug_only(HeapWord* last = q); // for debugging |
560 | q = n; |
561 | n += _sp->block_size(n); |
562 | assert(n > q, |
563 | "Looping at n = " PTR_FORMAT " with last = " PTR_FORMAT "," |
564 | " while querying blk_start(" PTR_FORMAT ")" |
565 | " on _sp = [" PTR_FORMAT "," PTR_FORMAT ")" , |
566 | p2i(n), p2i(last), p2i(addr), p2i(_sp->bottom()), p2i(_sp->end())); |
567 | } |
568 | assert(q <= addr, |
569 | "wrong order for current (" INTPTR_FORMAT ")" " <= arg (" INTPTR_FORMAT ")" , |
570 | p2i(q), p2i(addr)); |
571 | assert(addr <= n, |
572 | "wrong order for arg (" INTPTR_FORMAT ") <= next (" INTPTR_FORMAT ")" , |
573 | p2i(addr), p2i(n)); |
574 | return q; |
575 | } |
576 | |
577 | HeapWord* BlockOffsetArrayNonContigSpace::block_start_careful( |
578 | const void* addr) const { |
579 | assert(_array->offset_array(0) == 0, "objects can't cross covered areas" ); |
580 | |
581 | assert(_bottom <= addr && addr < _end, |
582 | "addr must be covered by this Array" ); |
583 | // Must read this exactly once because it can be modified by parallel |
584 | // allocation. |
585 | HeapWord* ub = _unallocated_block; |
586 | if (BlockOffsetArrayUseUnallocatedBlock && addr >= ub) { |
587 | assert(ub < _end, "tautology (see above)" ); |
588 | return ub; |
589 | } |
590 | |
591 | // Otherwise, find the block start using the table, but taking |
592 | // care (cf block_start_unsafe() above) not to parse any objects/blocks |
593 | // on the cards themselves. |
594 | size_t index = _array->index_for(addr); |
595 | assert(_array->address_for_index(index) == addr, |
596 | "arg should be start of card" ); |
597 | |
598 | HeapWord* q = (HeapWord*)addr; |
599 | uint offset; |
600 | do { |
601 | offset = _array->offset_array(index); |
602 | if (offset < BOTConstants::N_words) { |
603 | q -= offset; |
604 | } else { |
605 | size_t n_cards_back = BOTConstants::entry_to_cards_back(offset); |
606 | q -= (n_cards_back * BOTConstants::N_words); |
607 | index -= n_cards_back; |
608 | } |
609 | } while (offset >= BOTConstants::N_words); |
610 | assert(q <= addr, "block start should be to left of arg" ); |
611 | return q; |
612 | } |
613 | |
614 | #ifndef PRODUCT |
615 | // Verification & debugging - ensure that the offset table reflects the fact |
616 | // that the block [blk_start, blk_end) or [blk, blk + size) is a |
617 | // single block of storage. NOTE: can't const this because of |
618 | // call to non-const do_block_internal() below. |
619 | void BlockOffsetArrayNonContigSpace::verify_single_block( |
620 | HeapWord* blk_start, HeapWord* blk_end) { |
621 | if (VerifyBlockOffsetArray) { |
622 | do_block_internal(blk_start, blk_end, Action_check); |
623 | } |
624 | } |
625 | |
626 | void BlockOffsetArrayNonContigSpace::verify_single_block( |
627 | HeapWord* blk, size_t size) { |
628 | verify_single_block(blk, blk + size); |
629 | } |
630 | |
631 | // Verify that the given block is before _unallocated_block |
632 | void BlockOffsetArrayNonContigSpace::verify_not_unallocated( |
633 | HeapWord* blk_start, HeapWord* blk_end) const { |
634 | if (BlockOffsetArrayUseUnallocatedBlock) { |
635 | assert(blk_start < blk_end, "Block inconsistency?" ); |
636 | assert(blk_end <= _unallocated_block, "_unallocated_block problem" ); |
637 | } |
638 | } |
639 | |
640 | void BlockOffsetArrayNonContigSpace::verify_not_unallocated( |
641 | HeapWord* blk, size_t size) const { |
642 | verify_not_unallocated(blk, blk + size); |
643 | } |
644 | #endif // PRODUCT |
645 | |
646 | size_t BlockOffsetArrayNonContigSpace::last_active_index() const { |
647 | if (_unallocated_block == _bottom) { |
648 | return 0; |
649 | } else { |
650 | return _array->index_for(_unallocated_block - 1); |
651 | } |
652 | } |
653 | |
654 | ////////////////////////////////////////////////////////////////////// |
655 | // BlockOffsetArrayContigSpace |
656 | ////////////////////////////////////////////////////////////////////// |
657 | |
658 | HeapWord* BlockOffsetArrayContigSpace::block_start_unsafe(const void* addr) const { |
659 | assert(_array->offset_array(0) == 0, "objects can't cross covered areas" ); |
660 | |
661 | // Otherwise, find the block start using the table. |
662 | assert(_bottom <= addr && addr < _end, |
663 | "addr must be covered by this Array" ); |
664 | size_t index = _array->index_for(addr); |
665 | // We must make sure that the offset table entry we use is valid. If |
666 | // "addr" is past the end, start at the last known one and go forward. |
667 | index = MIN2(index, _next_offset_index-1); |
668 | HeapWord* q = _array->address_for_index(index); |
669 | |
670 | uint offset = _array->offset_array(index); // Extend u_char to uint. |
671 | while (offset > BOTConstants::N_words) { |
672 | // The excess of the offset from N_words indicates a power of Base |
673 | // to go back by. |
674 | size_t n_cards_back = BOTConstants::entry_to_cards_back(offset); |
675 | q -= (BOTConstants::N_words * n_cards_back); |
676 | assert(q >= _sp->bottom(), "Went below bottom!" ); |
677 | index -= n_cards_back; |
678 | offset = _array->offset_array(index); |
679 | } |
680 | while (offset == BOTConstants::N_words) { |
681 | assert(q >= _sp->bottom(), "Went below bottom!" ); |
682 | q -= BOTConstants::N_words; |
683 | index--; |
684 | offset = _array->offset_array(index); |
685 | } |
686 | assert(offset < BOTConstants::N_words, "offset too large" ); |
687 | q -= offset; |
688 | HeapWord* n = q; |
689 | |
690 | while (n <= addr) { |
691 | debug_only(HeapWord* last = q); // for debugging |
692 | q = n; |
693 | n += _sp->block_size(n); |
694 | } |
695 | assert(q <= addr, "wrong order for current and arg" ); |
696 | assert(addr <= n, "wrong order for arg and next" ); |
697 | return q; |
698 | } |
699 | |
700 | // |
701 | // _next_offset_threshold |
702 | // | _next_offset_index |
703 | // v v |
704 | // +-------+-------+-------+-------+-------+ |
705 | // | i-1 | i | i+1 | i+2 | i+3 | |
706 | // +-------+-------+-------+-------+-------+ |
707 | // ( ^ ] |
708 | // block-start |
709 | // |
710 | |
711 | void BlockOffsetArrayContigSpace::alloc_block_work(HeapWord* blk_start, |
712 | HeapWord* blk_end) { |
713 | assert(blk_start != NULL && blk_end > blk_start, |
714 | "phantom block" ); |
715 | assert(blk_end > _next_offset_threshold, |
716 | "should be past threshold" ); |
717 | assert(blk_start <= _next_offset_threshold, |
718 | "blk_start should be at or before threshold" ); |
719 | assert(pointer_delta(_next_offset_threshold, blk_start) <= BOTConstants::N_words, |
720 | "offset should be <= BlockOffsetSharedArray::N" ); |
721 | assert(Universe::heap()->is_in_reserved(blk_start), |
722 | "reference must be into the heap" ); |
723 | assert(Universe::heap()->is_in_reserved(blk_end-1), |
724 | "limit must be within the heap" ); |
725 | assert(_next_offset_threshold == |
726 | _array->_reserved.start() + _next_offset_index*BOTConstants::N_words, |
727 | "index must agree with threshold" ); |
728 | |
729 | debug_only(size_t orig_next_offset_index = _next_offset_index;) |
730 | |
731 | // Mark the card that holds the offset into the block. Note |
732 | // that _next_offset_index and _next_offset_threshold are not |
733 | // updated until the end of this method. |
734 | _array->set_offset_array(_next_offset_index, |
735 | _next_offset_threshold, |
736 | blk_start); |
737 | |
738 | // We need to now mark the subsequent cards that this blk spans. |
739 | |
740 | // Index of card on which blk ends. |
741 | size_t end_index = _array->index_for(blk_end - 1); |
742 | |
743 | // Are there more cards left to be updated? |
744 | if (_next_offset_index + 1 <= end_index) { |
745 | HeapWord* rem_st = _array->address_for_index(_next_offset_index + 1); |
746 | // Calculate rem_end this way because end_index |
747 | // may be the last valid index in the covered region. |
748 | HeapWord* rem_end = _array->address_for_index(end_index) + BOTConstants::N_words; |
749 | set_remainder_to_point_to_start(rem_st, rem_end); |
750 | } |
751 | |
752 | // _next_offset_index and _next_offset_threshold updated here. |
753 | _next_offset_index = end_index + 1; |
754 | // Calculate _next_offset_threshold this way because end_index |
755 | // may be the last valid index in the covered region. |
756 | _next_offset_threshold = _array->address_for_index(end_index) + BOTConstants::N_words; |
757 | assert(_next_offset_threshold >= blk_end, "Incorrect offset threshold" ); |
758 | |
759 | #ifdef ASSERT |
760 | // The offset can be 0 if the block starts on a boundary. That |
761 | // is checked by an assertion above. |
762 | size_t start_index = _array->index_for(blk_start); |
763 | HeapWord* boundary = _array->address_for_index(start_index); |
764 | assert((_array->offset_array(orig_next_offset_index) == 0 && |
765 | blk_start == boundary) || |
766 | (_array->offset_array(orig_next_offset_index) > 0 && |
767 | _array->offset_array(orig_next_offset_index) <= BOTConstants::N_words), |
768 | "offset array should have been set" ); |
769 | for (size_t j = orig_next_offset_index + 1; j <= end_index; j++) { |
770 | assert(_array->offset_array(j) > 0 && |
771 | _array->offset_array(j) <= (u_char) (BOTConstants::N_words+BOTConstants::N_powers-1), |
772 | "offset array should have been set" ); |
773 | } |
774 | #endif |
775 | } |
776 | |
777 | HeapWord* BlockOffsetArrayContigSpace::initialize_threshold() { |
778 | assert(!Universe::heap()->is_in_reserved(_array->_offset_array), |
779 | "just checking" ); |
780 | _next_offset_index = _array->index_for(_bottom); |
781 | _next_offset_index++; |
782 | _next_offset_threshold = |
783 | _array->address_for_index(_next_offset_index); |
784 | return _next_offset_threshold; |
785 | } |
786 | |
787 | void BlockOffsetArrayContigSpace::zero_bottom_entry() { |
788 | assert(!Universe::heap()->is_in_reserved(_array->_offset_array), |
789 | "just checking" ); |
790 | size_t bottom_index = _array->index_for(_bottom); |
791 | _array->set_offset_array(bottom_index, 0); |
792 | } |
793 | |
794 | size_t BlockOffsetArrayContigSpace::last_active_index() const { |
795 | return _next_offset_index == 0 ? 0 : _next_offset_index - 1; |
796 | } |
797 | |