| 1 | /* |
| 2 | * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "classfile/systemDictionary.hpp" |
| 27 | #include "classfile/vmSymbols.hpp" |
| 28 | #include "gc/shared/blockOffsetTable.inline.hpp" |
| 29 | #include "gc/shared/collectedHeap.inline.hpp" |
| 30 | #include "gc/shared/genCollectedHeap.hpp" |
| 31 | #include "gc/shared/genOopClosures.inline.hpp" |
| 32 | #include "gc/shared/space.hpp" |
| 33 | #include "gc/shared/space.inline.hpp" |
| 34 | #include "gc/shared/spaceDecorator.hpp" |
| 35 | #include "memory/iterator.inline.hpp" |
| 36 | #include "memory/universe.hpp" |
| 37 | #include "oops/oop.inline.hpp" |
| 38 | #include "runtime/atomic.hpp" |
| 39 | #include "runtime/java.hpp" |
| 40 | #include "runtime/orderAccess.hpp" |
| 41 | #include "runtime/prefetch.inline.hpp" |
| 42 | #include "runtime/safepoint.hpp" |
| 43 | #include "utilities/align.hpp" |
| 44 | #include "utilities/copy.hpp" |
| 45 | #include "utilities/globalDefinitions.hpp" |
| 46 | #include "utilities/macros.hpp" |
| 47 | #if INCLUDE_SERIALGC |
| 48 | #include "gc/serial/defNewGeneration.hpp" |
| 49 | #endif |
| 50 | |
| 51 | HeapWord* DirtyCardToOopClosure::get_actual_top(HeapWord* top, |
| 52 | HeapWord* top_obj) { |
| 53 | if (top_obj != NULL) { |
| 54 | if (_sp->block_is_obj(top_obj)) { |
| 55 | if (_precision == CardTable::ObjHeadPreciseArray) { |
| 56 | if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) { |
| 57 | // An arrayOop is starting on the dirty card - since we do exact |
| 58 | // store checks for objArrays we are done. |
| 59 | } else { |
| 60 | // Otherwise, it is possible that the object starting on the dirty |
| 61 | // card spans the entire card, and that the store happened on a |
| 62 | // later card. Figure out where the object ends. |
| 63 | // Use the block_size() method of the space over which |
| 64 | // the iteration is being done. That space (e.g. CMS) may have |
| 65 | // specific requirements on object sizes which will |
| 66 | // be reflected in the block_size() method. |
| 67 | top = top_obj + oop(top_obj)->size(); |
| 68 | } |
| 69 | } |
| 70 | } else { |
| 71 | top = top_obj; |
| 72 | } |
| 73 | } else { |
| 74 | assert(top == _sp->end(), "only case where top_obj == NULL" ); |
| 75 | } |
| 76 | return top; |
| 77 | } |
| 78 | |
| 79 | void DirtyCardToOopClosure::walk_mem_region(MemRegion mr, |
| 80 | HeapWord* bottom, |
| 81 | HeapWord* top) { |
| 82 | // 1. Blocks may or may not be objects. |
| 83 | // 2. Even when a block_is_obj(), it may not entirely |
| 84 | // occupy the block if the block quantum is larger than |
| 85 | // the object size. |
| 86 | // We can and should try to optimize by calling the non-MemRegion |
| 87 | // version of oop_iterate() for all but the extremal objects |
| 88 | // (for which we need to call the MemRegion version of |
| 89 | // oop_iterate()) To be done post-beta XXX |
| 90 | for (; bottom < top; bottom += _sp->block_size(bottom)) { |
| 91 | // As in the case of contiguous space above, we'd like to |
| 92 | // just use the value returned by oop_iterate to increment the |
| 93 | // current pointer; unfortunately, that won't work in CMS because |
| 94 | // we'd need an interface change (it seems) to have the space |
| 95 | // "adjust the object size" (for instance pad it up to its |
| 96 | // block alignment or minimum block size restrictions. XXX |
| 97 | if (_sp->block_is_obj(bottom) && |
| 98 | !_sp->obj_allocated_since_save_marks(oop(bottom))) { |
| 99 | oop(bottom)->oop_iterate(_cl, mr); |
| 100 | } |
| 101 | } |
| 102 | } |
| 103 | |
| 104 | // We get called with "mr" representing the dirty region |
| 105 | // that we want to process. Because of imprecise marking, |
| 106 | // we may need to extend the incoming "mr" to the right, |
| 107 | // and scan more. However, because we may already have |
| 108 | // scanned some of that extended region, we may need to |
| 109 | // trim its right-end back some so we do not scan what |
| 110 | // we (or another worker thread) may already have scanned |
| 111 | // or planning to scan. |
| 112 | void DirtyCardToOopClosure::do_MemRegion(MemRegion mr) { |
| 113 | |
| 114 | // Some collectors need to do special things whenever their dirty |
| 115 | // cards are processed. For instance, CMS must remember mutator updates |
| 116 | // (i.e. dirty cards) so as to re-scan mutated objects. |
| 117 | // Such work can be piggy-backed here on dirty card scanning, so as to make |
| 118 | // it slightly more efficient than doing a complete non-destructive pre-scan |
| 119 | // of the card table. |
| 120 | MemRegionClosure* pCl = _sp->preconsumptionDirtyCardClosure(); |
| 121 | if (pCl != NULL) { |
| 122 | pCl->do_MemRegion(mr); |
| 123 | } |
| 124 | |
| 125 | HeapWord* bottom = mr.start(); |
| 126 | HeapWord* last = mr.last(); |
| 127 | HeapWord* top = mr.end(); |
| 128 | HeapWord* bottom_obj; |
| 129 | HeapWord* top_obj; |
| 130 | |
| 131 | assert(_precision == CardTable::ObjHeadPreciseArray || |
| 132 | _precision == CardTable::Precise, |
| 133 | "Only ones we deal with for now." ); |
| 134 | |
| 135 | assert(_precision != CardTable::ObjHeadPreciseArray || |
| 136 | _last_bottom == NULL || top <= _last_bottom, |
| 137 | "Not decreasing" ); |
| 138 | NOT_PRODUCT(_last_bottom = mr.start()); |
| 139 | |
| 140 | bottom_obj = _sp->block_start(bottom); |
| 141 | top_obj = _sp->block_start(last); |
| 142 | |
| 143 | assert(bottom_obj <= bottom, "just checking" ); |
| 144 | assert(top_obj <= top, "just checking" ); |
| 145 | |
| 146 | // Given what we think is the top of the memory region and |
| 147 | // the start of the object at the top, get the actual |
| 148 | // value of the top. |
| 149 | top = get_actual_top(top, top_obj); |
| 150 | |
| 151 | // If the previous call did some part of this region, don't redo. |
| 152 | if (_precision == CardTable::ObjHeadPreciseArray && |
| 153 | _min_done != NULL && |
| 154 | _min_done < top) { |
| 155 | top = _min_done; |
| 156 | } |
| 157 | |
| 158 | // Top may have been reset, and in fact may be below bottom, |
| 159 | // e.g. the dirty card region is entirely in a now free object |
| 160 | // -- something that could happen with a concurrent sweeper. |
| 161 | bottom = MIN2(bottom, top); |
| 162 | MemRegion extended_mr = MemRegion(bottom, top); |
| 163 | assert(bottom <= top && |
| 164 | (_precision != CardTable::ObjHeadPreciseArray || |
| 165 | _min_done == NULL || |
| 166 | top <= _min_done), |
| 167 | "overlap!" ); |
| 168 | |
| 169 | // Walk the region if it is not empty; otherwise there is nothing to do. |
| 170 | if (!extended_mr.is_empty()) { |
| 171 | walk_mem_region(extended_mr, bottom_obj, top); |
| 172 | } |
| 173 | |
| 174 | _min_done = bottom; |
| 175 | } |
| 176 | |
| 177 | DirtyCardToOopClosure* Space::new_dcto_cl(OopIterateClosure* cl, |
| 178 | CardTable::PrecisionStyle precision, |
| 179 | HeapWord* boundary, |
| 180 | bool parallel) { |
| 181 | return new DirtyCardToOopClosure(this, cl, precision, boundary); |
| 182 | } |
| 183 | |
| 184 | HeapWord* ContiguousSpaceDCTOC::get_actual_top(HeapWord* top, |
| 185 | HeapWord* top_obj) { |
| 186 | if (top_obj != NULL && top_obj < (_sp->toContiguousSpace())->top()) { |
| 187 | if (_precision == CardTable::ObjHeadPreciseArray) { |
| 188 | if (oop(top_obj)->is_objArray() || oop(top_obj)->is_typeArray()) { |
| 189 | // An arrayOop is starting on the dirty card - since we do exact |
| 190 | // store checks for objArrays we are done. |
| 191 | } else { |
| 192 | // Otherwise, it is possible that the object starting on the dirty |
| 193 | // card spans the entire card, and that the store happened on a |
| 194 | // later card. Figure out where the object ends. |
| 195 | assert(_sp->block_size(top_obj) == (size_t) oop(top_obj)->size(), |
| 196 | "Block size and object size mismatch" ); |
| 197 | top = top_obj + oop(top_obj)->size(); |
| 198 | } |
| 199 | } |
| 200 | } else { |
| 201 | top = (_sp->toContiguousSpace())->top(); |
| 202 | } |
| 203 | return top; |
| 204 | } |
| 205 | |
| 206 | void FilteringDCTOC::walk_mem_region(MemRegion mr, |
| 207 | HeapWord* bottom, |
| 208 | HeapWord* top) { |
| 209 | // Note that this assumption won't hold if we have a concurrent |
| 210 | // collector in this space, which may have freed up objects after |
| 211 | // they were dirtied and before the stop-the-world GC that is |
| 212 | // examining cards here. |
| 213 | assert(bottom < top, "ought to be at least one obj on a dirty card." ); |
| 214 | |
| 215 | if (_boundary != NULL) { |
| 216 | // We have a boundary outside of which we don't want to look |
| 217 | // at objects, so create a filtering closure around the |
| 218 | // oop closure before walking the region. |
| 219 | FilteringClosure filter(_boundary, _cl); |
| 220 | walk_mem_region_with_cl(mr, bottom, top, &filter); |
| 221 | } else { |
| 222 | // No boundary, simply walk the heap with the oop closure. |
| 223 | walk_mem_region_with_cl(mr, bottom, top, _cl); |
| 224 | } |
| 225 | |
| 226 | } |
| 227 | |
| 228 | // We must replicate this so that the static type of "FilteringClosure" |
| 229 | // (see above) is apparent at the oop_iterate calls. |
| 230 | #define ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(ClosureType) \ |
| 231 | void ContiguousSpaceDCTOC::walk_mem_region_with_cl(MemRegion mr, \ |
| 232 | HeapWord* bottom, \ |
| 233 | HeapWord* top, \ |
| 234 | ClosureType* cl) { \ |
| 235 | bottom += oop(bottom)->oop_iterate_size(cl, mr); \ |
| 236 | if (bottom < top) { \ |
| 237 | HeapWord* next_obj = bottom + oop(bottom)->size(); \ |
| 238 | while (next_obj < top) { \ |
| 239 | /* Bottom lies entirely below top, so we can call the */ \ |
| 240 | /* non-memRegion version of oop_iterate below. */ \ |
| 241 | oop(bottom)->oop_iterate(cl); \ |
| 242 | bottom = next_obj; \ |
| 243 | next_obj = bottom + oop(bottom)->size(); \ |
| 244 | } \ |
| 245 | /* Last object. */ \ |
| 246 | oop(bottom)->oop_iterate(cl, mr); \ |
| 247 | } \ |
| 248 | } |
| 249 | |
| 250 | // (There are only two of these, rather than N, because the split is due |
| 251 | // only to the introduction of the FilteringClosure, a local part of the |
| 252 | // impl of this abstraction.) |
| 253 | ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(OopIterateClosure) |
| 254 | ContiguousSpaceDCTOC__walk_mem_region_with_cl_DEFN(FilteringClosure) |
| 255 | |
| 256 | DirtyCardToOopClosure* |
| 257 | ContiguousSpace::new_dcto_cl(OopIterateClosure* cl, |
| 258 | CardTable::PrecisionStyle precision, |
| 259 | HeapWord* boundary, |
| 260 | bool parallel) { |
| 261 | return new ContiguousSpaceDCTOC(this, cl, precision, boundary); |
| 262 | } |
| 263 | |
| 264 | void Space::initialize(MemRegion mr, |
| 265 | bool clear_space, |
| 266 | bool mangle_space) { |
| 267 | HeapWord* bottom = mr.start(); |
| 268 | HeapWord* end = mr.end(); |
| 269 | assert(Universe::on_page_boundary(bottom) && Universe::on_page_boundary(end), |
| 270 | "invalid space boundaries" ); |
| 271 | set_bottom(bottom); |
| 272 | set_end(end); |
| 273 | if (clear_space) clear(mangle_space); |
| 274 | } |
| 275 | |
| 276 | void Space::clear(bool mangle_space) { |
| 277 | if (ZapUnusedHeapArea && mangle_space) { |
| 278 | mangle_unused_area(); |
| 279 | } |
| 280 | } |
| 281 | |
| 282 | ContiguousSpace::ContiguousSpace(): CompactibleSpace(), _top(NULL), |
| 283 | _concurrent_iteration_safe_limit(NULL) { |
| 284 | _mangler = new GenSpaceMangler(this); |
| 285 | } |
| 286 | |
| 287 | ContiguousSpace::~ContiguousSpace() { |
| 288 | delete _mangler; |
| 289 | } |
| 290 | |
| 291 | void ContiguousSpace::initialize(MemRegion mr, |
| 292 | bool clear_space, |
| 293 | bool mangle_space) |
| 294 | { |
| 295 | CompactibleSpace::initialize(mr, clear_space, mangle_space); |
| 296 | set_concurrent_iteration_safe_limit(top()); |
| 297 | } |
| 298 | |
| 299 | void ContiguousSpace::clear(bool mangle_space) { |
| 300 | set_top(bottom()); |
| 301 | set_saved_mark(); |
| 302 | CompactibleSpace::clear(mangle_space); |
| 303 | } |
| 304 | |
| 305 | bool ContiguousSpace::is_free_block(const HeapWord* p) const { |
| 306 | return p >= _top; |
| 307 | } |
| 308 | |
| 309 | void OffsetTableContigSpace::clear(bool mangle_space) { |
| 310 | ContiguousSpace::clear(mangle_space); |
| 311 | _offsets.initialize_threshold(); |
| 312 | } |
| 313 | |
| 314 | void OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) { |
| 315 | Space::set_bottom(new_bottom); |
| 316 | _offsets.set_bottom(new_bottom); |
| 317 | } |
| 318 | |
| 319 | void OffsetTableContigSpace::set_end(HeapWord* new_end) { |
| 320 | // Space should not advertise an increase in size |
| 321 | // until after the underlying offset table has been enlarged. |
| 322 | _offsets.resize(pointer_delta(new_end, bottom())); |
| 323 | Space::set_end(new_end); |
| 324 | } |
| 325 | |
| 326 | #ifndef PRODUCT |
| 327 | |
| 328 | void ContiguousSpace::set_top_for_allocations(HeapWord* v) { |
| 329 | mangler()->set_top_for_allocations(v); |
| 330 | } |
| 331 | void ContiguousSpace::set_top_for_allocations() { |
| 332 | mangler()->set_top_for_allocations(top()); |
| 333 | } |
| 334 | void ContiguousSpace::check_mangled_unused_area(HeapWord* limit) { |
| 335 | mangler()->check_mangled_unused_area(limit); |
| 336 | } |
| 337 | |
| 338 | void ContiguousSpace::check_mangled_unused_area_complete() { |
| 339 | mangler()->check_mangled_unused_area_complete(); |
| 340 | } |
| 341 | |
| 342 | // Mangled only the unused space that has not previously |
| 343 | // been mangled and that has not been allocated since being |
| 344 | // mangled. |
| 345 | void ContiguousSpace::mangle_unused_area() { |
| 346 | mangler()->mangle_unused_area(); |
| 347 | } |
| 348 | void ContiguousSpace::mangle_unused_area_complete() { |
| 349 | mangler()->mangle_unused_area_complete(); |
| 350 | } |
| 351 | #endif // NOT_PRODUCT |
| 352 | |
| 353 | void CompactibleSpace::initialize(MemRegion mr, |
| 354 | bool clear_space, |
| 355 | bool mangle_space) { |
| 356 | Space::initialize(mr, clear_space, mangle_space); |
| 357 | set_compaction_top(bottom()); |
| 358 | _next_compaction_space = NULL; |
| 359 | } |
| 360 | |
| 361 | void CompactibleSpace::clear(bool mangle_space) { |
| 362 | Space::clear(mangle_space); |
| 363 | _compaction_top = bottom(); |
| 364 | } |
| 365 | |
| 366 | HeapWord* CompactibleSpace::forward(oop q, size_t size, |
| 367 | CompactPoint* cp, HeapWord* compact_top) { |
| 368 | // q is alive |
| 369 | // First check if we should switch compaction space |
| 370 | assert(this == cp->space, "'this' should be current compaction space." ); |
| 371 | size_t compaction_max_size = pointer_delta(end(), compact_top); |
| 372 | while (size > compaction_max_size) { |
| 373 | // switch to next compaction space |
| 374 | cp->space->set_compaction_top(compact_top); |
| 375 | cp->space = cp->space->next_compaction_space(); |
| 376 | if (cp->space == NULL) { |
| 377 | cp->gen = GenCollectedHeap::heap()->young_gen(); |
| 378 | assert(cp->gen != NULL, "compaction must succeed" ); |
| 379 | cp->space = cp->gen->first_compaction_space(); |
| 380 | assert(cp->space != NULL, "generation must have a first compaction space" ); |
| 381 | } |
| 382 | compact_top = cp->space->bottom(); |
| 383 | cp->space->set_compaction_top(compact_top); |
| 384 | cp->threshold = cp->space->initialize_threshold(); |
| 385 | compaction_max_size = pointer_delta(cp->space->end(), compact_top); |
| 386 | } |
| 387 | |
| 388 | // store the forwarding pointer into the mark word |
| 389 | if ((HeapWord*)q != compact_top) { |
| 390 | q->forward_to(oop(compact_top)); |
| 391 | assert(q->is_gc_marked(), "encoding the pointer should preserve the mark" ); |
| 392 | } else { |
| 393 | // if the object isn't moving we can just set the mark to the default |
| 394 | // mark and handle it specially later on. |
| 395 | q->init_mark_raw(); |
| 396 | assert(q->forwardee() == NULL, "should be forwarded to NULL" ); |
| 397 | } |
| 398 | |
| 399 | compact_top += size; |
| 400 | |
| 401 | // we need to update the offset table so that the beginnings of objects can be |
| 402 | // found during scavenge. Note that we are updating the offset table based on |
| 403 | // where the object will be once the compaction phase finishes. |
| 404 | if (compact_top > cp->threshold) |
| 405 | cp->threshold = |
| 406 | cp->space->cross_threshold(compact_top - size, compact_top); |
| 407 | return compact_top; |
| 408 | } |
| 409 | |
| 410 | #if INCLUDE_SERIALGC |
| 411 | |
| 412 | void ContiguousSpace::prepare_for_compaction(CompactPoint* cp) { |
| 413 | scan_and_forward(this, cp); |
| 414 | } |
| 415 | |
| 416 | void CompactibleSpace::adjust_pointers() { |
| 417 | // Check first is there is any work to do. |
| 418 | if (used() == 0) { |
| 419 | return; // Nothing to do. |
| 420 | } |
| 421 | |
| 422 | scan_and_adjust_pointers(this); |
| 423 | } |
| 424 | |
| 425 | void CompactibleSpace::compact() { |
| 426 | scan_and_compact(this); |
| 427 | } |
| 428 | |
| 429 | #endif // INCLUDE_SERIALGC |
| 430 | |
| 431 | void Space::print_short() const { print_short_on(tty); } |
| 432 | |
| 433 | void Space::print_short_on(outputStream* st) const { |
| 434 | st->print(" space " SIZE_FORMAT "K, %3d%% used" , capacity() / K, |
| 435 | (int) ((double) used() * 100 / capacity())); |
| 436 | } |
| 437 | |
| 438 | void Space::print() const { print_on(tty); } |
| 439 | |
| 440 | void Space::print_on(outputStream* st) const { |
| 441 | print_short_on(st); |
| 442 | st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ")" , |
| 443 | p2i(bottom()), p2i(end())); |
| 444 | } |
| 445 | |
| 446 | void ContiguousSpace::print_on(outputStream* st) const { |
| 447 | print_short_on(st); |
| 448 | st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")" , |
| 449 | p2i(bottom()), p2i(top()), p2i(end())); |
| 450 | } |
| 451 | |
| 452 | void OffsetTableContigSpace::print_on(outputStream* st) const { |
| 453 | print_short_on(st); |
| 454 | st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " |
| 455 | INTPTR_FORMAT ", " INTPTR_FORMAT ")" , |
| 456 | p2i(bottom()), p2i(top()), p2i(_offsets.threshold()), p2i(end())); |
| 457 | } |
| 458 | |
| 459 | void ContiguousSpace::verify() const { |
| 460 | HeapWord* p = bottom(); |
| 461 | HeapWord* t = top(); |
| 462 | HeapWord* prev_p = NULL; |
| 463 | while (p < t) { |
| 464 | oopDesc::verify(oop(p)); |
| 465 | prev_p = p; |
| 466 | p += oop(p)->size(); |
| 467 | } |
| 468 | guarantee(p == top(), "end of last object must match end of space" ); |
| 469 | if (top() != end()) { |
| 470 | guarantee(top() == block_start_const(end()-1) && |
| 471 | top() == block_start_const(top()), |
| 472 | "top should be start of unallocated block, if it exists" ); |
| 473 | } |
| 474 | } |
| 475 | |
| 476 | void Space::oop_iterate(OopIterateClosure* blk) { |
| 477 | ObjectToOopClosure blk2(blk); |
| 478 | object_iterate(&blk2); |
| 479 | } |
| 480 | |
| 481 | bool Space::obj_is_alive(const HeapWord* p) const { |
| 482 | assert (block_is_obj(p), "The address should point to an object" ); |
| 483 | return true; |
| 484 | } |
| 485 | |
| 486 | void ContiguousSpace::oop_iterate(OopIterateClosure* blk) { |
| 487 | if (is_empty()) return; |
| 488 | HeapWord* obj_addr = bottom(); |
| 489 | HeapWord* t = top(); |
| 490 | // Could call objects iterate, but this is easier. |
| 491 | while (obj_addr < t) { |
| 492 | obj_addr += oop(obj_addr)->oop_iterate_size(blk); |
| 493 | } |
| 494 | } |
| 495 | |
| 496 | void ContiguousSpace::object_iterate(ObjectClosure* blk) { |
| 497 | if (is_empty()) return; |
| 498 | object_iterate_from(bottom(), blk); |
| 499 | } |
| 500 | |
| 501 | // For a ContiguousSpace object_iterate() and safe_object_iterate() |
| 502 | // are the same. |
| 503 | void ContiguousSpace::safe_object_iterate(ObjectClosure* blk) { |
| 504 | object_iterate(blk); |
| 505 | } |
| 506 | |
| 507 | void ContiguousSpace::object_iterate_from(HeapWord* mark, ObjectClosure* blk) { |
| 508 | while (mark < top()) { |
| 509 | blk->do_object(oop(mark)); |
| 510 | mark += oop(mark)->size(); |
| 511 | } |
| 512 | } |
| 513 | |
| 514 | HeapWord* |
| 515 | ContiguousSpace::object_iterate_careful(ObjectClosureCareful* blk) { |
| 516 | HeapWord * limit = concurrent_iteration_safe_limit(); |
| 517 | assert(limit <= top(), "sanity check" ); |
| 518 | for (HeapWord* p = bottom(); p < limit;) { |
| 519 | size_t size = blk->do_object_careful(oop(p)); |
| 520 | if (size == 0) { |
| 521 | return p; // failed at p |
| 522 | } else { |
| 523 | p += size; |
| 524 | } |
| 525 | } |
| 526 | return NULL; // all done |
| 527 | } |
| 528 | |
| 529 | // Very general, slow implementation. |
| 530 | HeapWord* ContiguousSpace::block_start_const(const void* p) const { |
| 531 | assert(MemRegion(bottom(), end()).contains(p), |
| 532 | "p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")" , |
| 533 | p2i(p), p2i(bottom()), p2i(end())); |
| 534 | if (p >= top()) { |
| 535 | return top(); |
| 536 | } else { |
| 537 | HeapWord* last = bottom(); |
| 538 | HeapWord* cur = last; |
| 539 | while (cur <= p) { |
| 540 | last = cur; |
| 541 | cur += oop(cur)->size(); |
| 542 | } |
| 543 | assert(oopDesc::is_oop(oop(last)), PTR_FORMAT " should be an object start" , p2i(last)); |
| 544 | return last; |
| 545 | } |
| 546 | } |
| 547 | |
| 548 | size_t ContiguousSpace::block_size(const HeapWord* p) const { |
| 549 | assert(MemRegion(bottom(), end()).contains(p), |
| 550 | "p (" PTR_FORMAT ") not in space [" PTR_FORMAT ", " PTR_FORMAT ")" , |
| 551 | p2i(p), p2i(bottom()), p2i(end())); |
| 552 | HeapWord* current_top = top(); |
| 553 | assert(p <= current_top, |
| 554 | "p > current top - p: " PTR_FORMAT ", current top: " PTR_FORMAT, |
| 555 | p2i(p), p2i(current_top)); |
| 556 | assert(p == current_top || oopDesc::is_oop(oop(p)), |
| 557 | "p (" PTR_FORMAT ") is not a block start - " |
| 558 | "current_top: " PTR_FORMAT ", is_oop: %s" , |
| 559 | p2i(p), p2i(current_top), BOOL_TO_STR(oopDesc::is_oop(oop(p)))); |
| 560 | if (p < current_top) { |
| 561 | return oop(p)->size(); |
| 562 | } else { |
| 563 | assert(p == current_top, "just checking" ); |
| 564 | return pointer_delta(end(), (HeapWord*) p); |
| 565 | } |
| 566 | } |
| 567 | |
| 568 | // This version requires locking. |
| 569 | inline HeapWord* ContiguousSpace::allocate_impl(size_t size) { |
| 570 | assert(Heap_lock->owned_by_self() || |
| 571 | (SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread()), |
| 572 | "not locked" ); |
| 573 | HeapWord* obj = top(); |
| 574 | if (pointer_delta(end(), obj) >= size) { |
| 575 | HeapWord* new_top = obj + size; |
| 576 | set_top(new_top); |
| 577 | assert(is_aligned(obj) && is_aligned(new_top), "checking alignment" ); |
| 578 | return obj; |
| 579 | } else { |
| 580 | return NULL; |
| 581 | } |
| 582 | } |
| 583 | |
| 584 | // This version is lock-free. |
| 585 | inline HeapWord* ContiguousSpace::par_allocate_impl(size_t size) { |
| 586 | do { |
| 587 | HeapWord* obj = top(); |
| 588 | if (pointer_delta(end(), obj) >= size) { |
| 589 | HeapWord* new_top = obj + size; |
| 590 | HeapWord* result = Atomic::cmpxchg(new_top, top_addr(), obj); |
| 591 | // result can be one of two: |
| 592 | // the old top value: the exchange succeeded |
| 593 | // otherwise: the new value of the top is returned. |
| 594 | if (result == obj) { |
| 595 | assert(is_aligned(obj) && is_aligned(new_top), "checking alignment" ); |
| 596 | return obj; |
| 597 | } |
| 598 | } else { |
| 599 | return NULL; |
| 600 | } |
| 601 | } while (true); |
| 602 | } |
| 603 | |
| 604 | HeapWord* ContiguousSpace::allocate_aligned(size_t size) { |
| 605 | assert(Heap_lock->owned_by_self() || (SafepointSynchronize::is_at_safepoint() && Thread::current()->is_VM_thread()), "not locked" ); |
| 606 | HeapWord* end_value = end(); |
| 607 | |
| 608 | HeapWord* obj = CollectedHeap::align_allocation_or_fail(top(), end_value, SurvivorAlignmentInBytes); |
| 609 | if (obj == NULL) { |
| 610 | return NULL; |
| 611 | } |
| 612 | |
| 613 | if (pointer_delta(end_value, obj) >= size) { |
| 614 | HeapWord* new_top = obj + size; |
| 615 | set_top(new_top); |
| 616 | assert(::is_aligned(obj, SurvivorAlignmentInBytes) && is_aligned(new_top), |
| 617 | "checking alignment" ); |
| 618 | return obj; |
| 619 | } else { |
| 620 | set_top(obj); |
| 621 | return NULL; |
| 622 | } |
| 623 | } |
| 624 | |
| 625 | // Requires locking. |
| 626 | HeapWord* ContiguousSpace::allocate(size_t size) { |
| 627 | return allocate_impl(size); |
| 628 | } |
| 629 | |
| 630 | // Lock-free. |
| 631 | HeapWord* ContiguousSpace::par_allocate(size_t size) { |
| 632 | return par_allocate_impl(size); |
| 633 | } |
| 634 | |
| 635 | void ContiguousSpace::allocate_temporary_filler(int factor) { |
| 636 | // allocate temporary type array decreasing free size with factor 'factor' |
| 637 | assert(factor >= 0, "just checking" ); |
| 638 | size_t size = pointer_delta(end(), top()); |
| 639 | |
| 640 | // if space is full, return |
| 641 | if (size == 0) return; |
| 642 | |
| 643 | if (factor > 0) { |
| 644 | size -= size/factor; |
| 645 | } |
| 646 | size = align_object_size(size); |
| 647 | |
| 648 | const size_t = typeArrayOopDesc::header_size(T_INT); |
| 649 | if (size >= align_object_size(array_header_size)) { |
| 650 | size_t length = (size - array_header_size) * (HeapWordSize / sizeof(jint)); |
| 651 | // allocate uninitialized int array |
| 652 | typeArrayOop t = (typeArrayOop) allocate(size); |
| 653 | assert(t != NULL, "allocation should succeed" ); |
| 654 | t->set_mark_raw(markOopDesc::prototype()); |
| 655 | t->set_klass(Universe::intArrayKlassObj()); |
| 656 | t->set_length((int)length); |
| 657 | } else { |
| 658 | assert(size == CollectedHeap::min_fill_size(), |
| 659 | "size for smallest fake object doesn't match" ); |
| 660 | instanceOop obj = (instanceOop) allocate(size); |
| 661 | obj->set_mark_raw(markOopDesc::prototype()); |
| 662 | obj->set_klass_gap(0); |
| 663 | obj->set_klass(SystemDictionary::Object_klass()); |
| 664 | } |
| 665 | } |
| 666 | |
| 667 | HeapWord* OffsetTableContigSpace::initialize_threshold() { |
| 668 | return _offsets.initialize_threshold(); |
| 669 | } |
| 670 | |
| 671 | HeapWord* OffsetTableContigSpace::cross_threshold(HeapWord* start, HeapWord* end) { |
| 672 | _offsets.alloc_block(start, end); |
| 673 | return _offsets.threshold(); |
| 674 | } |
| 675 | |
| 676 | OffsetTableContigSpace::OffsetTableContigSpace(BlockOffsetSharedArray* sharedOffsetArray, |
| 677 | MemRegion mr) : |
| 678 | _offsets(sharedOffsetArray, mr), |
| 679 | _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock" , true) |
| 680 | { |
| 681 | _offsets.set_contig_space(this); |
| 682 | initialize(mr, SpaceDecorator::Clear, SpaceDecorator::Mangle); |
| 683 | } |
| 684 | |
| 685 | #define OBJ_SAMPLE_INTERVAL 0 |
| 686 | #define BLOCK_SAMPLE_INTERVAL 100 |
| 687 | |
| 688 | void OffsetTableContigSpace::verify() const { |
| 689 | HeapWord* p = bottom(); |
| 690 | HeapWord* prev_p = NULL; |
| 691 | int objs = 0; |
| 692 | int blocks = 0; |
| 693 | |
| 694 | if (VerifyObjectStartArray) { |
| 695 | _offsets.verify(); |
| 696 | } |
| 697 | |
| 698 | while (p < top()) { |
| 699 | size_t size = oop(p)->size(); |
| 700 | // For a sampling of objects in the space, find it using the |
| 701 | // block offset table. |
| 702 | if (blocks == BLOCK_SAMPLE_INTERVAL) { |
| 703 | guarantee(p == block_start_const(p + (size/2)), |
| 704 | "check offset computation" ); |
| 705 | blocks = 0; |
| 706 | } else { |
| 707 | blocks++; |
| 708 | } |
| 709 | |
| 710 | if (objs == OBJ_SAMPLE_INTERVAL) { |
| 711 | oopDesc::verify(oop(p)); |
| 712 | objs = 0; |
| 713 | } else { |
| 714 | objs++; |
| 715 | } |
| 716 | prev_p = p; |
| 717 | p += size; |
| 718 | } |
| 719 | guarantee(p == top(), "end of last object must match end of space" ); |
| 720 | } |
| 721 | |
| 722 | |
| 723 | size_t TenuredSpace::allowed_dead_ratio() const { |
| 724 | return MarkSweepDeadRatio; |
| 725 | } |
| 726 | |