| 1 | /* |
| 2 | * Copyright (c) 2017, 2018, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #ifndef SHARE_OOPS_ACCESS_HPP |
| 26 | #define SHARE_OOPS_ACCESS_HPP |
| 27 | |
| 28 | #include "memory/allocation.hpp" |
| 29 | #include "oops/accessBackend.hpp" |
| 30 | #include "oops/accessDecorators.hpp" |
| 31 | #include "oops/oopsHierarchy.hpp" |
| 32 | #include "utilities/debug.hpp" |
| 33 | #include "utilities/globalDefinitions.hpp" |
| 34 | |
| 35 | |
| 36 | // = GENERAL = |
| 37 | // Access is an API for performing accesses with declarative semantics. Each access can have a number of "decorators". |
| 38 | // A decorator is an attribute or property that affects the way a memory access is performed in some way. |
| 39 | // There are different groups of decorators. Some have to do with memory ordering, others to do with, |
| 40 | // e.g. strength of references, strength of GC barriers, or whether compression should be applied or not. |
| 41 | // Some decorators are set at buildtime, such as whether primitives require GC barriers or not, others |
| 42 | // at callsites such as whether an access is in the heap or not, and others are resolved at runtime |
| 43 | // such as GC-specific barriers and encoding/decoding compressed oops. For more information about what |
| 44 | // decorators are available, cf. oops/accessDecorators.hpp. |
| 45 | // By pipelining handling of these decorators, the design of the Access API allows separation of concern |
| 46 | // over the different orthogonal concerns of decorators, while providing a powerful way of |
| 47 | // expressing these orthogonal semantic properties in a unified way. |
| 48 | // |
| 49 | // == OPERATIONS == |
| 50 | // * load: Load a value from an address. |
| 51 | // * load_at: Load a value from an internal pointer relative to a base object. |
| 52 | // * store: Store a value at an address. |
| 53 | // * store_at: Store a value in an internal pointer relative to a base object. |
| 54 | // * atomic_cmpxchg: Atomically compare-and-swap a new value at an address if previous value matched the compared value. |
| 55 | // * atomic_cmpxchg_at: Atomically compare-and-swap a new value at an internal pointer address if previous value matched the compared value. |
| 56 | // * atomic_xchg: Atomically swap a new value at an address if previous value matched the compared value. |
| 57 | // * atomic_xchg_at: Atomically swap a new value at an internal pointer address if previous value matched the compared value. |
| 58 | // * arraycopy: Copy data from one heap array to another heap array. The ArrayAccess class has convenience functions for this. |
| 59 | // * clone: Clone the contents of an object to a newly allocated object. |
| 60 | // * resolve: Resolve a stable to-space invariant oop that is guaranteed not to relocate its payload until a subsequent thread transition. |
| 61 | // * equals: Object equality, e.g. when different copies of the same objects are in use (from-space vs. to-space) |
| 62 | // |
| 63 | // == IMPLEMENTATION == |
| 64 | // Each access goes through the following steps in a template pipeline. |
| 65 | // There are essentially 5 steps for each access: |
| 66 | // * Step 1: Set default decorators and decay types. This step gets rid of CV qualifiers |
| 67 | // and sets default decorators to sensible values. |
| 68 | // * Step 2: Reduce types. This step makes sure there is only a single T type and not |
| 69 | // multiple types. The P type of the address and T type of the value must |
| 70 | // match. |
| 71 | // * Step 3: Pre-runtime dispatch. This step checks whether a runtime call can be |
| 72 | // avoided, and in that case avoids it (calling raw accesses or |
| 73 | // primitive accesses in a build that does not require primitive GC barriers) |
| 74 | // * Step 4: Runtime-dispatch. This step performs a runtime dispatch to the corresponding |
| 75 | // BarrierSet::AccessBarrier accessor that attaches GC-required barriers |
| 76 | // to the access. |
| 77 | // * Step 5.a: Barrier resolution. This step is invoked the first time a runtime-dispatch |
| 78 | // happens for an access. The appropriate BarrierSet::AccessBarrier accessor |
| 79 | // is resolved, then the function pointer is updated to that accessor for |
| 80 | // future invocations. |
| 81 | // * Step 5.b: Post-runtime dispatch. This step now casts previously unknown types such |
| 82 | // as the address type of an oop on the heap (is it oop* or narrowOop*) to |
| 83 | // the appropriate type. It also splits sufficiently orthogonal accesses into |
| 84 | // different functions, such as whether the access involves oops or primitives |
| 85 | // and whether the access is performed on the heap or outside. Then the |
| 86 | // appropriate BarrierSet::AccessBarrier is called to perform the access. |
| 87 | // |
| 88 | // The implementation of step 1-4 resides in in accessBackend.hpp, to allow selected |
| 89 | // accesses to be accessible from only access.hpp, as opposed to access.inline.hpp. |
| 90 | // Steps 5.a and 5.b require knowledge about the GC backends, and therefore needs to |
| 91 | // include the various GC backend .inline.hpp headers. Their implementation resides in |
| 92 | // access.inline.hpp. The accesses that are allowed through the access.hpp file |
| 93 | // must be instantiated in access.cpp using the INSTANTIATE_HPP_ACCESS macro. |
| 94 | |
| 95 | template <DecoratorSet decorators = DECORATORS_NONE> |
| 96 | class Access: public AllStatic { |
| 97 | // This function asserts that if an access gets passed in a decorator outside |
| 98 | // of the expected_decorators, then something is wrong. It additionally checks |
| 99 | // the consistency of the decorators so that supposedly disjoint decorators are indeed |
| 100 | // disjoint. For example, an access can not be both in heap and on root at the |
| 101 | // same time. |
| 102 | template <DecoratorSet expected_decorators> |
| 103 | static void verify_decorators(); |
| 104 | |
| 105 | template <DecoratorSet expected_mo_decorators> |
| 106 | static void verify_primitive_decorators() { |
| 107 | const DecoratorSet primitive_decorators = (AS_DECORATOR_MASK ^ AS_NO_KEEPALIVE) | |
| 108 | IN_HEAP | IS_ARRAY; |
| 109 | verify_decorators<expected_mo_decorators | primitive_decorators>(); |
| 110 | } |
| 111 | |
| 112 | template <DecoratorSet expected_mo_decorators> |
| 113 | static void verify_oop_decorators() { |
| 114 | const DecoratorSet oop_decorators = AS_DECORATOR_MASK | IN_DECORATOR_MASK | |
| 115 | (ON_DECORATOR_MASK ^ ON_UNKNOWN_OOP_REF) | // no unknown oop refs outside of the heap |
| 116 | IS_ARRAY | IS_NOT_NULL | IS_DEST_UNINITIALIZED; |
| 117 | verify_decorators<expected_mo_decorators | oop_decorators>(); |
| 118 | } |
| 119 | |
| 120 | template <DecoratorSet expected_mo_decorators> |
| 121 | static void verify_heap_oop_decorators() { |
| 122 | const DecoratorSet heap_oop_decorators = AS_DECORATOR_MASK | ON_DECORATOR_MASK | |
| 123 | IN_HEAP | IS_ARRAY | IS_NOT_NULL; |
| 124 | verify_decorators<expected_mo_decorators | heap_oop_decorators>(); |
| 125 | } |
| 126 | |
| 127 | static const DecoratorSet load_mo_decorators = MO_UNORDERED | MO_VOLATILE | MO_RELAXED | MO_ACQUIRE | MO_SEQ_CST; |
| 128 | static const DecoratorSet store_mo_decorators = MO_UNORDERED | MO_VOLATILE | MO_RELAXED | MO_RELEASE | MO_SEQ_CST; |
| 129 | static const DecoratorSet atomic_xchg_mo_decorators = MO_SEQ_CST; |
| 130 | static const DecoratorSet atomic_cmpxchg_mo_decorators = MO_RELAXED | MO_SEQ_CST; |
| 131 | |
| 132 | protected: |
| 133 | template <typename T> |
| 134 | static inline bool oop_arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, const T* src_raw, |
| 135 | arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw, |
| 136 | size_t length) { |
| 137 | verify_decorators<ARRAYCOPY_DECORATOR_MASK | IN_HEAP | |
| 138 | AS_DECORATOR_MASK | IS_ARRAY | IS_DEST_UNINITIALIZED>(); |
| 139 | return AccessInternal::arraycopy<decorators | INTERNAL_VALUE_IS_OOP>(src_obj, src_offset_in_bytes, src_raw, |
| 140 | dst_obj, dst_offset_in_bytes, dst_raw, |
| 141 | length); |
| 142 | } |
| 143 | |
| 144 | template <typename T> |
| 145 | static inline void arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, const T* src_raw, |
| 146 | arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw, |
| 147 | size_t length) { |
| 148 | verify_decorators<ARRAYCOPY_DECORATOR_MASK | IN_HEAP | |
| 149 | AS_DECORATOR_MASK | IS_ARRAY>(); |
| 150 | AccessInternal::arraycopy<decorators>(src_obj, src_offset_in_bytes, src_raw, |
| 151 | dst_obj, dst_offset_in_bytes, dst_raw, |
| 152 | length); |
| 153 | } |
| 154 | |
| 155 | public: |
| 156 | // Primitive heap accesses |
| 157 | static inline AccessInternal::LoadAtProxy<decorators> load_at(oop base, ptrdiff_t offset) { |
| 158 | verify_primitive_decorators<load_mo_decorators>(); |
| 159 | return AccessInternal::LoadAtProxy<decorators>(base, offset); |
| 160 | } |
| 161 | |
| 162 | template <typename T> |
| 163 | static inline void store_at(oop base, ptrdiff_t offset, T value) { |
| 164 | verify_primitive_decorators<store_mo_decorators>(); |
| 165 | AccessInternal::store_at<decorators>(base, offset, value); |
| 166 | } |
| 167 | |
| 168 | template <typename T> |
| 169 | static inline T atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value) { |
| 170 | verify_primitive_decorators<atomic_cmpxchg_mo_decorators>(); |
| 171 | return AccessInternal::atomic_cmpxchg_at<decorators>(new_value, base, offset, compare_value); |
| 172 | } |
| 173 | |
| 174 | template <typename T> |
| 175 | static inline T atomic_xchg_at(T new_value, oop base, ptrdiff_t offset) { |
| 176 | verify_primitive_decorators<atomic_xchg_mo_decorators>(); |
| 177 | return AccessInternal::atomic_xchg_at<decorators>(new_value, base, offset); |
| 178 | } |
| 179 | |
| 180 | // Oop heap accesses |
| 181 | static inline AccessInternal::OopLoadAtProxy<decorators> oop_load_at(oop base, ptrdiff_t offset) { |
| 182 | verify_heap_oop_decorators<load_mo_decorators>(); |
| 183 | return AccessInternal::OopLoadAtProxy<decorators>(base, offset); |
| 184 | } |
| 185 | |
| 186 | template <typename T> |
| 187 | static inline void oop_store_at(oop base, ptrdiff_t offset, T value) { |
| 188 | verify_heap_oop_decorators<store_mo_decorators>(); |
| 189 | typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType; |
| 190 | OopType oop_value = value; |
| 191 | AccessInternal::store_at<decorators | INTERNAL_VALUE_IS_OOP>(base, offset, oop_value); |
| 192 | } |
| 193 | |
| 194 | template <typename T> |
| 195 | static inline T oop_atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value) { |
| 196 | verify_heap_oop_decorators<atomic_cmpxchg_mo_decorators>(); |
| 197 | typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType; |
| 198 | OopType new_oop_value = new_value; |
| 199 | OopType compare_oop_value = compare_value; |
| 200 | return AccessInternal::atomic_cmpxchg_at<decorators | INTERNAL_VALUE_IS_OOP>(new_oop_value, base, offset, compare_oop_value); |
| 201 | } |
| 202 | |
| 203 | template <typename T> |
| 204 | static inline T oop_atomic_xchg_at(T new_value, oop base, ptrdiff_t offset) { |
| 205 | verify_heap_oop_decorators<atomic_xchg_mo_decorators>(); |
| 206 | typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType; |
| 207 | OopType new_oop_value = new_value; |
| 208 | return AccessInternal::atomic_xchg_at<decorators | INTERNAL_VALUE_IS_OOP>(new_oop_value, base, offset); |
| 209 | } |
| 210 | |
| 211 | // Clone an object from src to dst |
| 212 | static inline void clone(oop src, oop dst, size_t size) { |
| 213 | verify_decorators<IN_HEAP>(); |
| 214 | AccessInternal::clone<decorators>(src, dst, size); |
| 215 | } |
| 216 | |
| 217 | // Primitive accesses |
| 218 | template <typename P> |
| 219 | static inline P load(P* addr) { |
| 220 | verify_primitive_decorators<load_mo_decorators>(); |
| 221 | return AccessInternal::load<decorators, P, P>(addr); |
| 222 | } |
| 223 | |
| 224 | template <typename P, typename T> |
| 225 | static inline void store(P* addr, T value) { |
| 226 | verify_primitive_decorators<store_mo_decorators>(); |
| 227 | AccessInternal::store<decorators>(addr, value); |
| 228 | } |
| 229 | |
| 230 | template <typename P, typename T> |
| 231 | static inline T atomic_cmpxchg(T new_value, P* addr, T compare_value) { |
| 232 | verify_primitive_decorators<atomic_cmpxchg_mo_decorators>(); |
| 233 | return AccessInternal::atomic_cmpxchg<decorators>(new_value, addr, compare_value); |
| 234 | } |
| 235 | |
| 236 | template <typename P, typename T> |
| 237 | static inline T atomic_xchg(T new_value, P* addr) { |
| 238 | verify_primitive_decorators<atomic_xchg_mo_decorators>(); |
| 239 | return AccessInternal::atomic_xchg<decorators>(new_value, addr); |
| 240 | } |
| 241 | |
| 242 | // Oop accesses |
| 243 | template <typename P> |
| 244 | static inline AccessInternal::OopLoadProxy<P, decorators> oop_load(P* addr) { |
| 245 | verify_oop_decorators<load_mo_decorators>(); |
| 246 | return AccessInternal::OopLoadProxy<P, decorators>(addr); |
| 247 | } |
| 248 | |
| 249 | template <typename P, typename T> |
| 250 | static inline void oop_store(P* addr, T value) { |
| 251 | verify_oop_decorators<store_mo_decorators>(); |
| 252 | typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType; |
| 253 | OopType oop_value = value; |
| 254 | AccessInternal::store<decorators | INTERNAL_VALUE_IS_OOP>(addr, oop_value); |
| 255 | } |
| 256 | |
| 257 | template <typename P, typename T> |
| 258 | static inline T oop_atomic_cmpxchg(T new_value, P* addr, T compare_value) { |
| 259 | verify_oop_decorators<atomic_cmpxchg_mo_decorators>(); |
| 260 | typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType; |
| 261 | OopType new_oop_value = new_value; |
| 262 | OopType compare_oop_value = compare_value; |
| 263 | return AccessInternal::atomic_cmpxchg<decorators | INTERNAL_VALUE_IS_OOP>(new_oop_value, addr, compare_oop_value); |
| 264 | } |
| 265 | |
| 266 | template <typename P, typename T> |
| 267 | static inline T oop_atomic_xchg(T new_value, P* addr) { |
| 268 | verify_oop_decorators<atomic_xchg_mo_decorators>(); |
| 269 | typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType; |
| 270 | OopType new_oop_value = new_value; |
| 271 | return AccessInternal::atomic_xchg<decorators | INTERNAL_VALUE_IS_OOP>(new_oop_value, addr); |
| 272 | } |
| 273 | |
| 274 | static oop resolve(oop obj) { |
| 275 | verify_decorators<DECORATORS_NONE>(); |
| 276 | return AccessInternal::resolve<decorators>(obj); |
| 277 | } |
| 278 | |
| 279 | static bool equals(oop o1, oop o2) { |
| 280 | verify_decorators<AS_RAW>(); |
| 281 | return AccessInternal::equals<decorators>(o1, o2); |
| 282 | } |
| 283 | }; |
| 284 | |
| 285 | // Helper for performing raw accesses (knows only of memory ordering |
| 286 | // atomicity decorators as well as compressed oops) |
| 287 | template <DecoratorSet decorators = DECORATORS_NONE> |
| 288 | class RawAccess: public Access<AS_RAW | decorators> {}; |
| 289 | |
| 290 | // Helper for performing normal accesses on the heap. These accesses |
| 291 | // may resolve an accessor on a GC barrier set |
| 292 | template <DecoratorSet decorators = DECORATORS_NONE> |
| 293 | class HeapAccess: public Access<IN_HEAP | decorators> {}; |
| 294 | |
| 295 | // Helper for performing normal accesses in roots. These accesses |
| 296 | // may resolve an accessor on a GC barrier set |
| 297 | template <DecoratorSet decorators = DECORATORS_NONE> |
| 298 | class NativeAccess: public Access<IN_NATIVE | decorators> {}; |
| 299 | |
| 300 | // Helper for array access. |
| 301 | template <DecoratorSet decorators = DECORATORS_NONE> |
| 302 | class ArrayAccess: public HeapAccess<IS_ARRAY | decorators> { |
| 303 | typedef HeapAccess<IS_ARRAY | decorators> AccessT; |
| 304 | public: |
| 305 | template <typename T> |
| 306 | static inline void arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, |
| 307 | arrayOop dst_obj, size_t dst_offset_in_bytes, |
| 308 | size_t length) { |
| 309 | AccessT::arraycopy(src_obj, src_offset_in_bytes, reinterpret_cast<const T*>(NULL), |
| 310 | dst_obj, dst_offset_in_bytes, reinterpret_cast<T*>(NULL), |
| 311 | length); |
| 312 | } |
| 313 | |
| 314 | template <typename T> |
| 315 | static inline void arraycopy_to_native(arrayOop src_obj, size_t src_offset_in_bytes, |
| 316 | T* dst, |
| 317 | size_t length) { |
| 318 | AccessT::arraycopy(src_obj, src_offset_in_bytes, reinterpret_cast<const T*>(NULL), |
| 319 | NULL, 0, dst, |
| 320 | length); |
| 321 | } |
| 322 | |
| 323 | template <typename T> |
| 324 | static inline void arraycopy_from_native(const T* src, |
| 325 | arrayOop dst_obj, size_t dst_offset_in_bytes, |
| 326 | size_t length) { |
| 327 | AccessT::arraycopy(NULL, 0, src, |
| 328 | dst_obj, dst_offset_in_bytes, reinterpret_cast<T*>(NULL), |
| 329 | length); |
| 330 | } |
| 331 | |
| 332 | static inline bool oop_arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, |
| 333 | arrayOop dst_obj, size_t dst_offset_in_bytes, |
| 334 | size_t length) { |
| 335 | return AccessT::oop_arraycopy(src_obj, src_offset_in_bytes, reinterpret_cast<const HeapWord*>(NULL), |
| 336 | dst_obj, dst_offset_in_bytes, reinterpret_cast<HeapWord*>(NULL), |
| 337 | length); |
| 338 | } |
| 339 | |
| 340 | template <typename T> |
| 341 | static inline bool oop_arraycopy_raw(T* src, T* dst, size_t length) { |
| 342 | return AccessT::oop_arraycopy(NULL, 0, src, |
| 343 | NULL, 0, dst, |
| 344 | length); |
| 345 | } |
| 346 | |
| 347 | }; |
| 348 | |
| 349 | template <DecoratorSet decorators> |
| 350 | template <DecoratorSet expected_decorators> |
| 351 | void Access<decorators>::verify_decorators() { |
| 352 | STATIC_ASSERT((~expected_decorators & decorators) == 0); // unexpected decorator used |
| 353 | const DecoratorSet barrier_strength_decorators = decorators & AS_DECORATOR_MASK; |
| 354 | STATIC_ASSERT(barrier_strength_decorators == 0 || ( // make sure barrier strength decorators are disjoint if set |
| 355 | (barrier_strength_decorators ^ AS_NO_KEEPALIVE) == 0 || |
| 356 | (barrier_strength_decorators ^ AS_RAW) == 0 || |
| 357 | (barrier_strength_decorators ^ AS_NORMAL) == 0 |
| 358 | )); |
| 359 | const DecoratorSet ref_strength_decorators = decorators & ON_DECORATOR_MASK; |
| 360 | STATIC_ASSERT(ref_strength_decorators == 0 || ( // make sure ref strength decorators are disjoint if set |
| 361 | (ref_strength_decorators ^ ON_STRONG_OOP_REF) == 0 || |
| 362 | (ref_strength_decorators ^ ON_WEAK_OOP_REF) == 0 || |
| 363 | (ref_strength_decorators ^ ON_PHANTOM_OOP_REF) == 0 || |
| 364 | (ref_strength_decorators ^ ON_UNKNOWN_OOP_REF) == 0 |
| 365 | )); |
| 366 | const DecoratorSet memory_ordering_decorators = decorators & MO_DECORATOR_MASK; |
| 367 | STATIC_ASSERT(memory_ordering_decorators == 0 || ( // make sure memory ordering decorators are disjoint if set |
| 368 | (memory_ordering_decorators ^ MO_UNORDERED) == 0 || |
| 369 | (memory_ordering_decorators ^ MO_VOLATILE) == 0 || |
| 370 | (memory_ordering_decorators ^ MO_RELAXED) == 0 || |
| 371 | (memory_ordering_decorators ^ MO_ACQUIRE) == 0 || |
| 372 | (memory_ordering_decorators ^ MO_RELEASE) == 0 || |
| 373 | (memory_ordering_decorators ^ MO_SEQ_CST) == 0 |
| 374 | )); |
| 375 | const DecoratorSet location_decorators = decorators & IN_DECORATOR_MASK; |
| 376 | STATIC_ASSERT(location_decorators == 0 || ( // make sure location decorators are disjoint if set |
| 377 | (location_decorators ^ IN_NATIVE) == 0 || |
| 378 | (location_decorators ^ IN_HEAP) == 0 |
| 379 | )); |
| 380 | } |
| 381 | |
| 382 | #endif // SHARE_OOPS_ACCESS_HPP |
| 383 | |