1 | /* |
2 | * Copyright (c) 2017, 2018, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #ifndef SHARE_OOPS_ACCESS_HPP |
26 | #define SHARE_OOPS_ACCESS_HPP |
27 | |
28 | #include "memory/allocation.hpp" |
29 | #include "oops/accessBackend.hpp" |
30 | #include "oops/accessDecorators.hpp" |
31 | #include "oops/oopsHierarchy.hpp" |
32 | #include "utilities/debug.hpp" |
33 | #include "utilities/globalDefinitions.hpp" |
34 | |
35 | |
36 | // = GENERAL = |
37 | // Access is an API for performing accesses with declarative semantics. Each access can have a number of "decorators". |
38 | // A decorator is an attribute or property that affects the way a memory access is performed in some way. |
39 | // There are different groups of decorators. Some have to do with memory ordering, others to do with, |
40 | // e.g. strength of references, strength of GC barriers, or whether compression should be applied or not. |
41 | // Some decorators are set at buildtime, such as whether primitives require GC barriers or not, others |
42 | // at callsites such as whether an access is in the heap or not, and others are resolved at runtime |
43 | // such as GC-specific barriers and encoding/decoding compressed oops. For more information about what |
44 | // decorators are available, cf. oops/accessDecorators.hpp. |
45 | // By pipelining handling of these decorators, the design of the Access API allows separation of concern |
46 | // over the different orthogonal concerns of decorators, while providing a powerful way of |
47 | // expressing these orthogonal semantic properties in a unified way. |
48 | // |
49 | // == OPERATIONS == |
50 | // * load: Load a value from an address. |
51 | // * load_at: Load a value from an internal pointer relative to a base object. |
52 | // * store: Store a value at an address. |
53 | // * store_at: Store a value in an internal pointer relative to a base object. |
54 | // * atomic_cmpxchg: Atomically compare-and-swap a new value at an address if previous value matched the compared value. |
55 | // * atomic_cmpxchg_at: Atomically compare-and-swap a new value at an internal pointer address if previous value matched the compared value. |
56 | // * atomic_xchg: Atomically swap a new value at an address if previous value matched the compared value. |
57 | // * atomic_xchg_at: Atomically swap a new value at an internal pointer address if previous value matched the compared value. |
58 | // * arraycopy: Copy data from one heap array to another heap array. The ArrayAccess class has convenience functions for this. |
59 | // * clone: Clone the contents of an object to a newly allocated object. |
60 | // * resolve: Resolve a stable to-space invariant oop that is guaranteed not to relocate its payload until a subsequent thread transition. |
61 | // * equals: Object equality, e.g. when different copies of the same objects are in use (from-space vs. to-space) |
62 | // |
63 | // == IMPLEMENTATION == |
64 | // Each access goes through the following steps in a template pipeline. |
65 | // There are essentially 5 steps for each access: |
66 | // * Step 1: Set default decorators and decay types. This step gets rid of CV qualifiers |
67 | // and sets default decorators to sensible values. |
68 | // * Step 2: Reduce types. This step makes sure there is only a single T type and not |
69 | // multiple types. The P type of the address and T type of the value must |
70 | // match. |
71 | // * Step 3: Pre-runtime dispatch. This step checks whether a runtime call can be |
72 | // avoided, and in that case avoids it (calling raw accesses or |
73 | // primitive accesses in a build that does not require primitive GC barriers) |
74 | // * Step 4: Runtime-dispatch. This step performs a runtime dispatch to the corresponding |
75 | // BarrierSet::AccessBarrier accessor that attaches GC-required barriers |
76 | // to the access. |
77 | // * Step 5.a: Barrier resolution. This step is invoked the first time a runtime-dispatch |
78 | // happens for an access. The appropriate BarrierSet::AccessBarrier accessor |
79 | // is resolved, then the function pointer is updated to that accessor for |
80 | // future invocations. |
81 | // * Step 5.b: Post-runtime dispatch. This step now casts previously unknown types such |
82 | // as the address type of an oop on the heap (is it oop* or narrowOop*) to |
83 | // the appropriate type. It also splits sufficiently orthogonal accesses into |
84 | // different functions, such as whether the access involves oops or primitives |
85 | // and whether the access is performed on the heap or outside. Then the |
86 | // appropriate BarrierSet::AccessBarrier is called to perform the access. |
87 | // |
88 | // The implementation of step 1-4 resides in in accessBackend.hpp, to allow selected |
89 | // accesses to be accessible from only access.hpp, as opposed to access.inline.hpp. |
90 | // Steps 5.a and 5.b require knowledge about the GC backends, and therefore needs to |
91 | // include the various GC backend .inline.hpp headers. Their implementation resides in |
92 | // access.inline.hpp. The accesses that are allowed through the access.hpp file |
93 | // must be instantiated in access.cpp using the INSTANTIATE_HPP_ACCESS macro. |
94 | |
95 | template <DecoratorSet decorators = DECORATORS_NONE> |
96 | class Access: public AllStatic { |
97 | // This function asserts that if an access gets passed in a decorator outside |
98 | // of the expected_decorators, then something is wrong. It additionally checks |
99 | // the consistency of the decorators so that supposedly disjoint decorators are indeed |
100 | // disjoint. For example, an access can not be both in heap and on root at the |
101 | // same time. |
102 | template <DecoratorSet expected_decorators> |
103 | static void verify_decorators(); |
104 | |
105 | template <DecoratorSet expected_mo_decorators> |
106 | static void verify_primitive_decorators() { |
107 | const DecoratorSet primitive_decorators = (AS_DECORATOR_MASK ^ AS_NO_KEEPALIVE) | |
108 | IN_HEAP | IS_ARRAY; |
109 | verify_decorators<expected_mo_decorators | primitive_decorators>(); |
110 | } |
111 | |
112 | template <DecoratorSet expected_mo_decorators> |
113 | static void verify_oop_decorators() { |
114 | const DecoratorSet oop_decorators = AS_DECORATOR_MASK | IN_DECORATOR_MASK | |
115 | (ON_DECORATOR_MASK ^ ON_UNKNOWN_OOP_REF) | // no unknown oop refs outside of the heap |
116 | IS_ARRAY | IS_NOT_NULL | IS_DEST_UNINITIALIZED; |
117 | verify_decorators<expected_mo_decorators | oop_decorators>(); |
118 | } |
119 | |
120 | template <DecoratorSet expected_mo_decorators> |
121 | static void verify_heap_oop_decorators() { |
122 | const DecoratorSet heap_oop_decorators = AS_DECORATOR_MASK | ON_DECORATOR_MASK | |
123 | IN_HEAP | IS_ARRAY | IS_NOT_NULL; |
124 | verify_decorators<expected_mo_decorators | heap_oop_decorators>(); |
125 | } |
126 | |
127 | static const DecoratorSet load_mo_decorators = MO_UNORDERED | MO_VOLATILE | MO_RELAXED | MO_ACQUIRE | MO_SEQ_CST; |
128 | static const DecoratorSet store_mo_decorators = MO_UNORDERED | MO_VOLATILE | MO_RELAXED | MO_RELEASE | MO_SEQ_CST; |
129 | static const DecoratorSet atomic_xchg_mo_decorators = MO_SEQ_CST; |
130 | static const DecoratorSet atomic_cmpxchg_mo_decorators = MO_RELAXED | MO_SEQ_CST; |
131 | |
132 | protected: |
133 | template <typename T> |
134 | static inline bool oop_arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, const T* src_raw, |
135 | arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw, |
136 | size_t length) { |
137 | verify_decorators<ARRAYCOPY_DECORATOR_MASK | IN_HEAP | |
138 | AS_DECORATOR_MASK | IS_ARRAY | IS_DEST_UNINITIALIZED>(); |
139 | return AccessInternal::arraycopy<decorators | INTERNAL_VALUE_IS_OOP>(src_obj, src_offset_in_bytes, src_raw, |
140 | dst_obj, dst_offset_in_bytes, dst_raw, |
141 | length); |
142 | } |
143 | |
144 | template <typename T> |
145 | static inline void arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, const T* src_raw, |
146 | arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw, |
147 | size_t length) { |
148 | verify_decorators<ARRAYCOPY_DECORATOR_MASK | IN_HEAP | |
149 | AS_DECORATOR_MASK | IS_ARRAY>(); |
150 | AccessInternal::arraycopy<decorators>(src_obj, src_offset_in_bytes, src_raw, |
151 | dst_obj, dst_offset_in_bytes, dst_raw, |
152 | length); |
153 | } |
154 | |
155 | public: |
156 | // Primitive heap accesses |
157 | static inline AccessInternal::LoadAtProxy<decorators> load_at(oop base, ptrdiff_t offset) { |
158 | verify_primitive_decorators<load_mo_decorators>(); |
159 | return AccessInternal::LoadAtProxy<decorators>(base, offset); |
160 | } |
161 | |
162 | template <typename T> |
163 | static inline void store_at(oop base, ptrdiff_t offset, T value) { |
164 | verify_primitive_decorators<store_mo_decorators>(); |
165 | AccessInternal::store_at<decorators>(base, offset, value); |
166 | } |
167 | |
168 | template <typename T> |
169 | static inline T atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value) { |
170 | verify_primitive_decorators<atomic_cmpxchg_mo_decorators>(); |
171 | return AccessInternal::atomic_cmpxchg_at<decorators>(new_value, base, offset, compare_value); |
172 | } |
173 | |
174 | template <typename T> |
175 | static inline T atomic_xchg_at(T new_value, oop base, ptrdiff_t offset) { |
176 | verify_primitive_decorators<atomic_xchg_mo_decorators>(); |
177 | return AccessInternal::atomic_xchg_at<decorators>(new_value, base, offset); |
178 | } |
179 | |
180 | // Oop heap accesses |
181 | static inline AccessInternal::OopLoadAtProxy<decorators> oop_load_at(oop base, ptrdiff_t offset) { |
182 | verify_heap_oop_decorators<load_mo_decorators>(); |
183 | return AccessInternal::OopLoadAtProxy<decorators>(base, offset); |
184 | } |
185 | |
186 | template <typename T> |
187 | static inline void oop_store_at(oop base, ptrdiff_t offset, T value) { |
188 | verify_heap_oop_decorators<store_mo_decorators>(); |
189 | typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType; |
190 | OopType oop_value = value; |
191 | AccessInternal::store_at<decorators | INTERNAL_VALUE_IS_OOP>(base, offset, oop_value); |
192 | } |
193 | |
194 | template <typename T> |
195 | static inline T oop_atomic_cmpxchg_at(T new_value, oop base, ptrdiff_t offset, T compare_value) { |
196 | verify_heap_oop_decorators<atomic_cmpxchg_mo_decorators>(); |
197 | typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType; |
198 | OopType new_oop_value = new_value; |
199 | OopType compare_oop_value = compare_value; |
200 | return AccessInternal::atomic_cmpxchg_at<decorators | INTERNAL_VALUE_IS_OOP>(new_oop_value, base, offset, compare_oop_value); |
201 | } |
202 | |
203 | template <typename T> |
204 | static inline T oop_atomic_xchg_at(T new_value, oop base, ptrdiff_t offset) { |
205 | verify_heap_oop_decorators<atomic_xchg_mo_decorators>(); |
206 | typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType; |
207 | OopType new_oop_value = new_value; |
208 | return AccessInternal::atomic_xchg_at<decorators | INTERNAL_VALUE_IS_OOP>(new_oop_value, base, offset); |
209 | } |
210 | |
211 | // Clone an object from src to dst |
212 | static inline void clone(oop src, oop dst, size_t size) { |
213 | verify_decorators<IN_HEAP>(); |
214 | AccessInternal::clone<decorators>(src, dst, size); |
215 | } |
216 | |
217 | // Primitive accesses |
218 | template <typename P> |
219 | static inline P load(P* addr) { |
220 | verify_primitive_decorators<load_mo_decorators>(); |
221 | return AccessInternal::load<decorators, P, P>(addr); |
222 | } |
223 | |
224 | template <typename P, typename T> |
225 | static inline void store(P* addr, T value) { |
226 | verify_primitive_decorators<store_mo_decorators>(); |
227 | AccessInternal::store<decorators>(addr, value); |
228 | } |
229 | |
230 | template <typename P, typename T> |
231 | static inline T atomic_cmpxchg(T new_value, P* addr, T compare_value) { |
232 | verify_primitive_decorators<atomic_cmpxchg_mo_decorators>(); |
233 | return AccessInternal::atomic_cmpxchg<decorators>(new_value, addr, compare_value); |
234 | } |
235 | |
236 | template <typename P, typename T> |
237 | static inline T atomic_xchg(T new_value, P* addr) { |
238 | verify_primitive_decorators<atomic_xchg_mo_decorators>(); |
239 | return AccessInternal::atomic_xchg<decorators>(new_value, addr); |
240 | } |
241 | |
242 | // Oop accesses |
243 | template <typename P> |
244 | static inline AccessInternal::OopLoadProxy<P, decorators> oop_load(P* addr) { |
245 | verify_oop_decorators<load_mo_decorators>(); |
246 | return AccessInternal::OopLoadProxy<P, decorators>(addr); |
247 | } |
248 | |
249 | template <typename P, typename T> |
250 | static inline void oop_store(P* addr, T value) { |
251 | verify_oop_decorators<store_mo_decorators>(); |
252 | typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType; |
253 | OopType oop_value = value; |
254 | AccessInternal::store<decorators | INTERNAL_VALUE_IS_OOP>(addr, oop_value); |
255 | } |
256 | |
257 | template <typename P, typename T> |
258 | static inline T oop_atomic_cmpxchg(T new_value, P* addr, T compare_value) { |
259 | verify_oop_decorators<atomic_cmpxchg_mo_decorators>(); |
260 | typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType; |
261 | OopType new_oop_value = new_value; |
262 | OopType compare_oop_value = compare_value; |
263 | return AccessInternal::atomic_cmpxchg<decorators | INTERNAL_VALUE_IS_OOP>(new_oop_value, addr, compare_oop_value); |
264 | } |
265 | |
266 | template <typename P, typename T> |
267 | static inline T oop_atomic_xchg(T new_value, P* addr) { |
268 | verify_oop_decorators<atomic_xchg_mo_decorators>(); |
269 | typedef typename AccessInternal::OopOrNarrowOop<T>::type OopType; |
270 | OopType new_oop_value = new_value; |
271 | return AccessInternal::atomic_xchg<decorators | INTERNAL_VALUE_IS_OOP>(new_oop_value, addr); |
272 | } |
273 | |
274 | static oop resolve(oop obj) { |
275 | verify_decorators<DECORATORS_NONE>(); |
276 | return AccessInternal::resolve<decorators>(obj); |
277 | } |
278 | |
279 | static bool equals(oop o1, oop o2) { |
280 | verify_decorators<AS_RAW>(); |
281 | return AccessInternal::equals<decorators>(o1, o2); |
282 | } |
283 | }; |
284 | |
285 | // Helper for performing raw accesses (knows only of memory ordering |
286 | // atomicity decorators as well as compressed oops) |
287 | template <DecoratorSet decorators = DECORATORS_NONE> |
288 | class RawAccess: public Access<AS_RAW | decorators> {}; |
289 | |
290 | // Helper for performing normal accesses on the heap. These accesses |
291 | // may resolve an accessor on a GC barrier set |
292 | template <DecoratorSet decorators = DECORATORS_NONE> |
293 | class HeapAccess: public Access<IN_HEAP | decorators> {}; |
294 | |
295 | // Helper for performing normal accesses in roots. These accesses |
296 | // may resolve an accessor on a GC barrier set |
297 | template <DecoratorSet decorators = DECORATORS_NONE> |
298 | class NativeAccess: public Access<IN_NATIVE | decorators> {}; |
299 | |
300 | // Helper for array access. |
301 | template <DecoratorSet decorators = DECORATORS_NONE> |
302 | class ArrayAccess: public HeapAccess<IS_ARRAY | decorators> { |
303 | typedef HeapAccess<IS_ARRAY | decorators> AccessT; |
304 | public: |
305 | template <typename T> |
306 | static inline void arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, |
307 | arrayOop dst_obj, size_t dst_offset_in_bytes, |
308 | size_t length) { |
309 | AccessT::arraycopy(src_obj, src_offset_in_bytes, reinterpret_cast<const T*>(NULL), |
310 | dst_obj, dst_offset_in_bytes, reinterpret_cast<T*>(NULL), |
311 | length); |
312 | } |
313 | |
314 | template <typename T> |
315 | static inline void arraycopy_to_native(arrayOop src_obj, size_t src_offset_in_bytes, |
316 | T* dst, |
317 | size_t length) { |
318 | AccessT::arraycopy(src_obj, src_offset_in_bytes, reinterpret_cast<const T*>(NULL), |
319 | NULL, 0, dst, |
320 | length); |
321 | } |
322 | |
323 | template <typename T> |
324 | static inline void arraycopy_from_native(const T* src, |
325 | arrayOop dst_obj, size_t dst_offset_in_bytes, |
326 | size_t length) { |
327 | AccessT::arraycopy(NULL, 0, src, |
328 | dst_obj, dst_offset_in_bytes, reinterpret_cast<T*>(NULL), |
329 | length); |
330 | } |
331 | |
332 | static inline bool oop_arraycopy(arrayOop src_obj, size_t src_offset_in_bytes, |
333 | arrayOop dst_obj, size_t dst_offset_in_bytes, |
334 | size_t length) { |
335 | return AccessT::oop_arraycopy(src_obj, src_offset_in_bytes, reinterpret_cast<const HeapWord*>(NULL), |
336 | dst_obj, dst_offset_in_bytes, reinterpret_cast<HeapWord*>(NULL), |
337 | length); |
338 | } |
339 | |
340 | template <typename T> |
341 | static inline bool oop_arraycopy_raw(T* src, T* dst, size_t length) { |
342 | return AccessT::oop_arraycopy(NULL, 0, src, |
343 | NULL, 0, dst, |
344 | length); |
345 | } |
346 | |
347 | }; |
348 | |
349 | template <DecoratorSet decorators> |
350 | template <DecoratorSet expected_decorators> |
351 | void Access<decorators>::verify_decorators() { |
352 | STATIC_ASSERT((~expected_decorators & decorators) == 0); // unexpected decorator used |
353 | const DecoratorSet barrier_strength_decorators = decorators & AS_DECORATOR_MASK; |
354 | STATIC_ASSERT(barrier_strength_decorators == 0 || ( // make sure barrier strength decorators are disjoint if set |
355 | (barrier_strength_decorators ^ AS_NO_KEEPALIVE) == 0 || |
356 | (barrier_strength_decorators ^ AS_RAW) == 0 || |
357 | (barrier_strength_decorators ^ AS_NORMAL) == 0 |
358 | )); |
359 | const DecoratorSet ref_strength_decorators = decorators & ON_DECORATOR_MASK; |
360 | STATIC_ASSERT(ref_strength_decorators == 0 || ( // make sure ref strength decorators are disjoint if set |
361 | (ref_strength_decorators ^ ON_STRONG_OOP_REF) == 0 || |
362 | (ref_strength_decorators ^ ON_WEAK_OOP_REF) == 0 || |
363 | (ref_strength_decorators ^ ON_PHANTOM_OOP_REF) == 0 || |
364 | (ref_strength_decorators ^ ON_UNKNOWN_OOP_REF) == 0 |
365 | )); |
366 | const DecoratorSet memory_ordering_decorators = decorators & MO_DECORATOR_MASK; |
367 | STATIC_ASSERT(memory_ordering_decorators == 0 || ( // make sure memory ordering decorators are disjoint if set |
368 | (memory_ordering_decorators ^ MO_UNORDERED) == 0 || |
369 | (memory_ordering_decorators ^ MO_VOLATILE) == 0 || |
370 | (memory_ordering_decorators ^ MO_RELAXED) == 0 || |
371 | (memory_ordering_decorators ^ MO_ACQUIRE) == 0 || |
372 | (memory_ordering_decorators ^ MO_RELEASE) == 0 || |
373 | (memory_ordering_decorators ^ MO_SEQ_CST) == 0 |
374 | )); |
375 | const DecoratorSet location_decorators = decorators & IN_DECORATOR_MASK; |
376 | STATIC_ASSERT(location_decorators == 0 || ( // make sure location decorators are disjoint if set |
377 | (location_decorators ^ IN_NATIVE) == 0 || |
378 | (location_decorators ^ IN_HEAP) == 0 |
379 | )); |
380 | } |
381 | |
382 | #endif // SHARE_OOPS_ACCESS_HPP |
383 | |