1/*
2 * Copyright (c) 2017, 2018, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_OOPS_ACCESS_INLINE_HPP
26#define SHARE_OOPS_ACCESS_INLINE_HPP
27
28#include "gc/shared/barrierSet.inline.hpp"
29#include "gc/shared/barrierSetConfig.inline.hpp"
30#include "oops/access.hpp"
31#include "oops/accessBackend.inline.hpp"
32
33// This file outlines the last 2 steps of the template pipeline of accesses going through
34// the Access API.
35// * Step 5.a: Barrier resolution. This step is invoked the first time a runtime-dispatch
36// happens for an access. The appropriate BarrierSet::AccessBarrier accessor
37// is resolved, then the function pointer is updated to that accessor for
38// future invocations.
39// * Step 5.b: Post-runtime dispatch. This step now casts previously unknown types such
40// as the address type of an oop on the heap (is it oop* or narrowOop*) to
41// the appropriate type. It also splits sufficiently orthogonal accesses into
42// different functions, such as whether the access involves oops or primitives
43// and whether the access is performed on the heap or outside. Then the
44// appropriate BarrierSet::AccessBarrier is called to perform the access.
45
46namespace AccessInternal {
47 // Step 5.b: Post-runtime dispatch.
48 // This class is the last step before calling the BarrierSet::AccessBarrier.
49 // Here we make sure to figure out types that were not known prior to the
50 // runtime dispatch, such as whether an oop on the heap is oop or narrowOop.
51 // We also split orthogonal barriers such as handling primitives vs oops
52 // and on-heap vs off-heap into different calls to the barrier set.
53 template <class GCBarrierType, BarrierType type, DecoratorSet decorators>
54 struct PostRuntimeDispatch: public AllStatic { };
55
56 template <class GCBarrierType, DecoratorSet decorators>
57 struct PostRuntimeDispatch<GCBarrierType, BARRIER_STORE, decorators>: public AllStatic {
58 template <typename T>
59 static void access_barrier(void* addr, T value) {
60 GCBarrierType::store_in_heap(reinterpret_cast<T*>(addr), value);
61 }
62
63 static void oop_access_barrier(void* addr, oop value) {
64 typedef typename HeapOopType<decorators>::type OopType;
65 if (HasDecorator<decorators, IN_HEAP>::value) {
66 GCBarrierType::oop_store_in_heap(reinterpret_cast<OopType*>(addr), value);
67 } else {
68 GCBarrierType::oop_store_not_in_heap(reinterpret_cast<OopType*>(addr), value);
69 }
70 }
71 };
72
73 template <class GCBarrierType, DecoratorSet decorators>
74 struct PostRuntimeDispatch<GCBarrierType, BARRIER_LOAD, decorators>: public AllStatic {
75 template <typename T>
76 static T access_barrier(void* addr) {
77 return GCBarrierType::load_in_heap(reinterpret_cast<T*>(addr));
78 }
79
80 static oop oop_access_barrier(void* addr) {
81 typedef typename HeapOopType<decorators>::type OopType;
82 if (HasDecorator<decorators, IN_HEAP>::value) {
83 return GCBarrierType::oop_load_in_heap(reinterpret_cast<OopType*>(addr));
84 } else {
85 return GCBarrierType::oop_load_not_in_heap(reinterpret_cast<OopType*>(addr));
86 }
87 }
88 };
89
90 template <class GCBarrierType, DecoratorSet decorators>
91 struct PostRuntimeDispatch<GCBarrierType, BARRIER_ATOMIC_XCHG, decorators>: public AllStatic {
92 template <typename T>
93 static T access_barrier(T new_value, void* addr) {
94 return GCBarrierType::atomic_xchg_in_heap(new_value, reinterpret_cast<T*>(addr));
95 }
96
97 static oop oop_access_barrier(oop new_value, void* addr) {
98 typedef typename HeapOopType<decorators>::type OopType;
99 if (HasDecorator<decorators, IN_HEAP>::value) {
100 return GCBarrierType::oop_atomic_xchg_in_heap(new_value, reinterpret_cast<OopType*>(addr));
101 } else {
102 return GCBarrierType::oop_atomic_xchg_not_in_heap(new_value, reinterpret_cast<OopType*>(addr));
103 }
104 }
105 };
106
107 template <class GCBarrierType, DecoratorSet decorators>
108 struct PostRuntimeDispatch<GCBarrierType, BARRIER_ATOMIC_CMPXCHG, decorators>: public AllStatic {
109 template <typename T>
110 static T access_barrier(T new_value, void* addr, T compare_value) {
111 return GCBarrierType::atomic_cmpxchg_in_heap(new_value, reinterpret_cast<T*>(addr), compare_value);
112 }
113
114 static oop oop_access_barrier(oop new_value, void* addr, oop compare_value) {
115 typedef typename HeapOopType<decorators>::type OopType;
116 if (HasDecorator<decorators, IN_HEAP>::value) {
117 return GCBarrierType::oop_atomic_cmpxchg_in_heap(new_value, reinterpret_cast<OopType*>(addr), compare_value);
118 } else {
119 return GCBarrierType::oop_atomic_cmpxchg_not_in_heap(new_value, reinterpret_cast<OopType*>(addr), compare_value);
120 }
121 }
122 };
123
124 template <class GCBarrierType, DecoratorSet decorators>
125 struct PostRuntimeDispatch<GCBarrierType, BARRIER_ARRAYCOPY, decorators>: public AllStatic {
126 template <typename T>
127 static bool access_barrier(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
128 arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
129 size_t length) {
130 GCBarrierType::arraycopy_in_heap(src_obj, src_offset_in_bytes, src_raw,
131 dst_obj, dst_offset_in_bytes, dst_raw,
132 length);
133 return true;
134 }
135
136 template <typename T>
137 static bool oop_access_barrier(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
138 arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
139 size_t length) {
140 typedef typename HeapOopType<decorators>::type OopType;
141 return GCBarrierType::oop_arraycopy_in_heap(src_obj, src_offset_in_bytes, reinterpret_cast<OopType*>(src_raw),
142 dst_obj, dst_offset_in_bytes, reinterpret_cast<OopType*>(dst_raw),
143 length);
144 }
145 };
146
147 template <class GCBarrierType, DecoratorSet decorators>
148 struct PostRuntimeDispatch<GCBarrierType, BARRIER_STORE_AT, decorators>: public AllStatic {
149 template <typename T>
150 static void access_barrier(oop base, ptrdiff_t offset, T value) {
151 GCBarrierType::store_in_heap_at(base, offset, value);
152 }
153
154 static void oop_access_barrier(oop base, ptrdiff_t offset, oop value) {
155 GCBarrierType::oop_store_in_heap_at(base, offset, value);
156 }
157 };
158
159 template <class GCBarrierType, DecoratorSet decorators>
160 struct PostRuntimeDispatch<GCBarrierType, BARRIER_LOAD_AT, decorators>: public AllStatic {
161 template <typename T>
162 static T access_barrier(oop base, ptrdiff_t offset) {
163 return GCBarrierType::template load_in_heap_at<T>(base, offset);
164 }
165
166 static oop oop_access_barrier(oop base, ptrdiff_t offset) {
167 return GCBarrierType::oop_load_in_heap_at(base, offset);
168 }
169 };
170
171 template <class GCBarrierType, DecoratorSet decorators>
172 struct PostRuntimeDispatch<GCBarrierType, BARRIER_ATOMIC_XCHG_AT, decorators>: public AllStatic {
173 template <typename T>
174 static T access_barrier(T new_value, oop base, ptrdiff_t offset) {
175 return GCBarrierType::atomic_xchg_in_heap_at(new_value, base, offset);
176 }
177
178 static oop oop_access_barrier(oop new_value, oop base, ptrdiff_t offset) {
179 return GCBarrierType::oop_atomic_xchg_in_heap_at(new_value, base, offset);
180 }
181 };
182
183 template <class GCBarrierType, DecoratorSet decorators>
184 struct PostRuntimeDispatch<GCBarrierType, BARRIER_ATOMIC_CMPXCHG_AT, decorators>: public AllStatic {
185 template <typename T>
186 static T access_barrier(T new_value, oop base, ptrdiff_t offset, T compare_value) {
187 return GCBarrierType::atomic_cmpxchg_in_heap_at(new_value, base, offset, compare_value);
188 }
189
190 static oop oop_access_barrier(oop new_value, oop base, ptrdiff_t offset, oop compare_value) {
191 return GCBarrierType::oop_atomic_cmpxchg_in_heap_at(new_value, base, offset, compare_value);
192 }
193 };
194
195 template <class GCBarrierType, DecoratorSet decorators>
196 struct PostRuntimeDispatch<GCBarrierType, BARRIER_CLONE, decorators>: public AllStatic {
197 static void access_barrier(oop src, oop dst, size_t size) {
198 GCBarrierType::clone_in_heap(src, dst, size);
199 }
200 };
201
202 template <class GCBarrierType, DecoratorSet decorators>
203 struct PostRuntimeDispatch<GCBarrierType, BARRIER_RESOLVE, decorators>: public AllStatic {
204 static oop access_barrier(oop obj) {
205 return GCBarrierType::resolve(obj);
206 }
207 };
208
209 template <class GCBarrierType, DecoratorSet decorators>
210 struct PostRuntimeDispatch<GCBarrierType, BARRIER_EQUALS, decorators>: public AllStatic {
211 static bool access_barrier(oop o1, oop o2) {
212 return GCBarrierType::equals(o1, o2);
213 }
214 };
215
216 // Resolving accessors with barriers from the barrier set happens in two steps.
217 // 1. Expand paths with runtime-decorators, e.g. is UseCompressedOops on or off.
218 // 2. Expand paths for each BarrierSet available in the system.
219 template <DecoratorSet decorators, typename FunctionPointerT, BarrierType barrier_type>
220 struct BarrierResolver: public AllStatic {
221 template <DecoratorSet ds>
222 static typename EnableIf<
223 HasDecorator<ds, INTERNAL_VALUE_IS_OOP>::value,
224 FunctionPointerT>::type
225 resolve_barrier_gc() {
226 BarrierSet* bs = BarrierSet::barrier_set();
227 assert(bs != NULL, "GC barriers invoked before BarrierSet is set");
228 switch (bs->kind()) {
229#define BARRIER_SET_RESOLVE_BARRIER_CLOSURE(bs_name) \
230 case BarrierSet::bs_name: { \
231 return PostRuntimeDispatch<typename BarrierSet::GetType<BarrierSet::bs_name>::type:: \
232 AccessBarrier<ds>, barrier_type, ds>::oop_access_barrier; \
233 } \
234 break;
235 FOR_EACH_CONCRETE_BARRIER_SET_DO(BARRIER_SET_RESOLVE_BARRIER_CLOSURE)
236#undef BARRIER_SET_RESOLVE_BARRIER_CLOSURE
237
238 default:
239 fatal("BarrierSet AccessBarrier resolving not implemented");
240 return NULL;
241 };
242 }
243
244 template <DecoratorSet ds>
245 static typename EnableIf<
246 !HasDecorator<ds, INTERNAL_VALUE_IS_OOP>::value,
247 FunctionPointerT>::type
248 resolve_barrier_gc() {
249 BarrierSet* bs = BarrierSet::barrier_set();
250 assert(bs != NULL, "GC barriers invoked before BarrierSet is set");
251 switch (bs->kind()) {
252#define BARRIER_SET_RESOLVE_BARRIER_CLOSURE(bs_name) \
253 case BarrierSet::bs_name: { \
254 return PostRuntimeDispatch<typename BarrierSet::GetType<BarrierSet::bs_name>::type:: \
255 AccessBarrier<ds>, barrier_type, ds>::access_barrier; \
256 } \
257 break;
258 FOR_EACH_CONCRETE_BARRIER_SET_DO(BARRIER_SET_RESOLVE_BARRIER_CLOSURE)
259#undef BARRIER_SET_RESOLVE_BARRIER_CLOSURE
260
261 default:
262 fatal("BarrierSet AccessBarrier resolving not implemented");
263 return NULL;
264 };
265 }
266
267 static FunctionPointerT resolve_barrier_rt() {
268 if (UseCompressedOops) {
269 const DecoratorSet expanded_decorators = decorators | INTERNAL_RT_USE_COMPRESSED_OOPS;
270 return resolve_barrier_gc<expanded_decorators>();
271 } else {
272 return resolve_barrier_gc<decorators>();
273 }
274 }
275
276 static FunctionPointerT resolve_barrier() {
277 return resolve_barrier_rt();
278 }
279 };
280
281 // Step 5.a: Barrier resolution
282 // The RuntimeDispatch class is responsible for performing a runtime dispatch of the
283 // accessor. This is required when the access either depends on whether compressed oops
284 // is being used, or it depends on which GC implementation was chosen (e.g. requires GC
285 // barriers). The way it works is that a function pointer initially pointing to an
286 // accessor resolution function gets called for each access. Upon first invocation,
287 // it resolves which accessor to be used in future invocations and patches the
288 // function pointer to this new accessor.
289
290 template <DecoratorSet decorators, typename T>
291 void RuntimeDispatch<decorators, T, BARRIER_STORE>::store_init(void* addr, T value) {
292 func_t function = BarrierResolver<decorators, func_t, BARRIER_STORE>::resolve_barrier();
293 _store_func = function;
294 function(addr, value);
295 }
296
297 template <DecoratorSet decorators, typename T>
298 void RuntimeDispatch<decorators, T, BARRIER_STORE_AT>::store_at_init(oop base, ptrdiff_t offset, T value) {
299 func_t function = BarrierResolver<decorators, func_t, BARRIER_STORE_AT>::resolve_barrier();
300 _store_at_func = function;
301 function(base, offset, value);
302 }
303
304 template <DecoratorSet decorators, typename T>
305 T RuntimeDispatch<decorators, T, BARRIER_LOAD>::load_init(void* addr) {
306 func_t function = BarrierResolver<decorators, func_t, BARRIER_LOAD>::resolve_barrier();
307 _load_func = function;
308 return function(addr);
309 }
310
311 template <DecoratorSet decorators, typename T>
312 T RuntimeDispatch<decorators, T, BARRIER_LOAD_AT>::load_at_init(oop base, ptrdiff_t offset) {
313 func_t function = BarrierResolver<decorators, func_t, BARRIER_LOAD_AT>::resolve_barrier();
314 _load_at_func = function;
315 return function(base, offset);
316 }
317
318 template <DecoratorSet decorators, typename T>
319 T RuntimeDispatch<decorators, T, BARRIER_ATOMIC_CMPXCHG>::atomic_cmpxchg_init(T new_value, void* addr, T compare_value) {
320 func_t function = BarrierResolver<decorators, func_t, BARRIER_ATOMIC_CMPXCHG>::resolve_barrier();
321 _atomic_cmpxchg_func = function;
322 return function(new_value, addr, compare_value);
323 }
324
325 template <DecoratorSet decorators, typename T>
326 T RuntimeDispatch<decorators, T, BARRIER_ATOMIC_CMPXCHG_AT>::atomic_cmpxchg_at_init(T new_value, oop base, ptrdiff_t offset, T compare_value) {
327 func_t function = BarrierResolver<decorators, func_t, BARRIER_ATOMIC_CMPXCHG_AT>::resolve_barrier();
328 _atomic_cmpxchg_at_func = function;
329 return function(new_value, base, offset, compare_value);
330 }
331
332 template <DecoratorSet decorators, typename T>
333 T RuntimeDispatch<decorators, T, BARRIER_ATOMIC_XCHG>::atomic_xchg_init(T new_value, void* addr) {
334 func_t function = BarrierResolver<decorators, func_t, BARRIER_ATOMIC_XCHG>::resolve_barrier();
335 _atomic_xchg_func = function;
336 return function(new_value, addr);
337 }
338
339 template <DecoratorSet decorators, typename T>
340 T RuntimeDispatch<decorators, T, BARRIER_ATOMIC_XCHG_AT>::atomic_xchg_at_init(T new_value, oop base, ptrdiff_t offset) {
341 func_t function = BarrierResolver<decorators, func_t, BARRIER_ATOMIC_XCHG_AT>::resolve_barrier();
342 _atomic_xchg_at_func = function;
343 return function(new_value, base, offset);
344 }
345
346 template <DecoratorSet decorators, typename T>
347 bool RuntimeDispatch<decorators, T, BARRIER_ARRAYCOPY>::arraycopy_init(arrayOop src_obj, size_t src_offset_in_bytes, T* src_raw,
348 arrayOop dst_obj, size_t dst_offset_in_bytes, T* dst_raw,
349 size_t length) {
350 func_t function = BarrierResolver<decorators, func_t, BARRIER_ARRAYCOPY>::resolve_barrier();
351 _arraycopy_func = function;
352 return function(src_obj, src_offset_in_bytes, src_raw,
353 dst_obj, dst_offset_in_bytes, dst_raw,
354 length);
355 }
356
357 template <DecoratorSet decorators, typename T>
358 void RuntimeDispatch<decorators, T, BARRIER_CLONE>::clone_init(oop src, oop dst, size_t size) {
359 func_t function = BarrierResolver<decorators, func_t, BARRIER_CLONE>::resolve_barrier();
360 _clone_func = function;
361 function(src, dst, size);
362 }
363
364 template <DecoratorSet decorators, typename T>
365 oop RuntimeDispatch<decorators, T, BARRIER_RESOLVE>::resolve_init(oop obj) {
366 func_t function = BarrierResolver<decorators, func_t, BARRIER_RESOLVE>::resolve_barrier();
367 _resolve_func = function;
368 return function(obj);
369 }
370
371 template <DecoratorSet decorators, typename T>
372 bool RuntimeDispatch<decorators, T, BARRIER_EQUALS>::equals_init(oop o1, oop o2) {
373 func_t function = BarrierResolver<decorators, func_t, BARRIER_EQUALS>::resolve_barrier();
374 _equals_func = function;
375 return function(o1, o2);
376 }
377}
378
379#endif // SHARE_OOPS_ACCESS_INLINE_HPP
380