1/*
2 * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_OPTO_MULNODE_HPP
26#define SHARE_OPTO_MULNODE_HPP
27
28#include "opto/node.hpp"
29#include "opto/opcodes.hpp"
30#include "opto/type.hpp"
31
32// Portions of code courtesy of Clifford Click
33
34class PhaseTransform;
35
36//------------------------------MulNode----------------------------------------
37// Classic MULTIPLY functionality. This covers all the usual 'multiply'
38// behaviors for an algebraic ring. Multiply-integer, multiply-float,
39// multiply-double, and binary-and are all inherited from this class. The
40// various identity values are supplied by virtual functions.
41class MulNode : public Node {
42 virtual uint hash() const;
43public:
44 MulNode( Node *in1, Node *in2 ): Node(0,in1,in2) {
45 init_class_id(Class_Mul);
46 }
47
48 // Handle algebraic identities here. If we have an identity, return the Node
49 // we are equivalent to. We look for "add of zero" as an identity.
50 virtual Node* Identity(PhaseGVN* phase);
51
52 // We also canonicalize the Node, moving constants to the right input,
53 // and flatten expressions (so that 1+x+2 becomes x+3).
54 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
55
56 // Compute a new Type for this node. Basically we just do the pre-check,
57 // then call the virtual add() to set the type.
58 virtual const Type* Value(PhaseGVN* phase) const;
59
60 // Supplied function returns the product of the inputs.
61 // This also type-checks the inputs for sanity. Guaranteed never to
62 // be passed a TOP or BOTTOM type, these are filtered out by a pre-check.
63 // This call recognizes the multiplicative zero type.
64 virtual const Type *mul_ring( const Type *, const Type * ) const = 0;
65
66 // Supplied function to return the multiplicative identity type
67 virtual const Type *mul_id() const = 0;
68
69 // Supplied function to return the additive identity type
70 virtual const Type *add_id() const = 0;
71
72 // Supplied function to return the additive opcode
73 virtual int add_opcode() const = 0;
74
75 // Supplied function to return the multiplicative opcode
76 virtual int mul_opcode() const = 0;
77
78};
79
80//------------------------------MulINode---------------------------------------
81// Multiply 2 integers
82class MulINode : public MulNode {
83public:
84 MulINode( Node *in1, Node *in2 ) : MulNode(in1,in2) {}
85 virtual int Opcode() const;
86 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
87 virtual const Type *mul_ring( const Type *, const Type * ) const;
88 const Type *mul_id() const { return TypeInt::ONE; }
89 const Type *add_id() const { return TypeInt::ZERO; }
90 int add_opcode() const { return Op_AddI; }
91 int mul_opcode() const { return Op_MulI; }
92 const Type *bottom_type() const { return TypeInt::INT; }
93 virtual uint ideal_reg() const { return Op_RegI; }
94};
95
96//------------------------------MulLNode---------------------------------------
97// Multiply 2 longs
98class MulLNode : public MulNode {
99public:
100 MulLNode( Node *in1, Node *in2 ) : MulNode(in1,in2) {}
101 virtual int Opcode() const;
102 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
103 virtual const Type *mul_ring( const Type *, const Type * ) const;
104 const Type *mul_id() const { return TypeLong::ONE; }
105 const Type *add_id() const { return TypeLong::ZERO; }
106 int add_opcode() const { return Op_AddL; }
107 int mul_opcode() const { return Op_MulL; }
108 const Type *bottom_type() const { return TypeLong::LONG; }
109 virtual uint ideal_reg() const { return Op_RegL; }
110};
111
112
113//------------------------------MulFNode---------------------------------------
114// Multiply 2 floats
115class MulFNode : public MulNode {
116public:
117 MulFNode( Node *in1, Node *in2 ) : MulNode(in1,in2) {}
118 virtual int Opcode() const;
119 virtual const Type *mul_ring( const Type *, const Type * ) const;
120 const Type *mul_id() const { return TypeF::ONE; }
121 const Type *add_id() const { return TypeF::ZERO; }
122 int add_opcode() const { return Op_AddF; }
123 int mul_opcode() const { return Op_MulF; }
124 const Type *bottom_type() const { return Type::FLOAT; }
125 virtual uint ideal_reg() const { return Op_RegF; }
126};
127
128//------------------------------MulDNode---------------------------------------
129// Multiply 2 doubles
130class MulDNode : public MulNode {
131public:
132 MulDNode( Node *in1, Node *in2 ) : MulNode(in1,in2) {}
133 virtual int Opcode() const;
134 virtual const Type *mul_ring( const Type *, const Type * ) const;
135 const Type *mul_id() const { return TypeD::ONE; }
136 const Type *add_id() const { return TypeD::ZERO; }
137 int add_opcode() const { return Op_AddD; }
138 int mul_opcode() const { return Op_MulD; }
139 const Type *bottom_type() const { return Type::DOUBLE; }
140 virtual uint ideal_reg() const { return Op_RegD; }
141};
142
143//-------------------------------MulHiLNode------------------------------------
144// Upper 64 bits of a 64 bit by 64 bit multiply
145class MulHiLNode : public Node {
146public:
147 MulHiLNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
148 virtual int Opcode() const;
149 virtual const Type* Value(PhaseGVN* phase) const;
150 const Type *bottom_type() const { return TypeLong::LONG; }
151 virtual uint ideal_reg() const { return Op_RegL; }
152};
153
154//------------------------------AndINode---------------------------------------
155// Logically AND 2 integers. Included with the MUL nodes because it inherits
156// all the behavior of multiplication on a ring.
157class AndINode : public MulINode {
158public:
159 AndINode( Node *in1, Node *in2 ) : MulINode(in1,in2) {}
160 virtual int Opcode() const;
161 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
162 virtual Node* Identity(PhaseGVN* phase);
163 virtual const Type *mul_ring( const Type *, const Type * ) const;
164 const Type *mul_id() const { return TypeInt::MINUS_1; }
165 const Type *add_id() const { return TypeInt::ZERO; }
166 int add_opcode() const { return Op_OrI; }
167 int mul_opcode() const { return Op_AndI; }
168 virtual uint ideal_reg() const { return Op_RegI; }
169};
170
171//------------------------------AndINode---------------------------------------
172// Logically AND 2 longs. Included with the MUL nodes because it inherits
173// all the behavior of multiplication on a ring.
174class AndLNode : public MulLNode {
175public:
176 AndLNode( Node *in1, Node *in2 ) : MulLNode(in1,in2) {}
177 virtual int Opcode() const;
178 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
179 virtual Node* Identity(PhaseGVN* phase);
180 virtual const Type *mul_ring( const Type *, const Type * ) const;
181 const Type *mul_id() const { return TypeLong::MINUS_1; }
182 const Type *add_id() const { return TypeLong::ZERO; }
183 int add_opcode() const { return Op_OrL; }
184 int mul_opcode() const { return Op_AndL; }
185 virtual uint ideal_reg() const { return Op_RegL; }
186};
187
188//------------------------------LShiftINode------------------------------------
189// Logical shift left
190class LShiftINode : public Node {
191public:
192 LShiftINode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
193 virtual int Opcode() const;
194 virtual Node* Identity(PhaseGVN* phase);
195 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
196 virtual const Type* Value(PhaseGVN* phase) const;
197 const Type *bottom_type() const { return TypeInt::INT; }
198 virtual uint ideal_reg() const { return Op_RegI; }
199};
200
201//------------------------------LShiftLNode------------------------------------
202// Logical shift left
203class LShiftLNode : public Node {
204public:
205 LShiftLNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
206 virtual int Opcode() const;
207 virtual Node* Identity(PhaseGVN* phase);
208 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
209 virtual const Type* Value(PhaseGVN* phase) const;
210 const Type *bottom_type() const { return TypeLong::LONG; }
211 virtual uint ideal_reg() const { return Op_RegL; }
212};
213
214//------------------------------RShiftINode------------------------------------
215// Signed shift right
216class RShiftINode : public Node {
217public:
218 RShiftINode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
219 virtual int Opcode() const;
220 virtual Node* Identity(PhaseGVN* phase);
221 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
222 virtual const Type* Value(PhaseGVN* phase) const;
223 const Type *bottom_type() const { return TypeInt::INT; }
224 virtual uint ideal_reg() const { return Op_RegI; }
225};
226
227//------------------------------RShiftLNode------------------------------------
228// Signed shift right
229class RShiftLNode : public Node {
230public:
231 RShiftLNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
232 virtual int Opcode() const;
233 virtual Node* Identity(PhaseGVN* phase);
234 virtual const Type* Value(PhaseGVN* phase) const;
235 const Type *bottom_type() const { return TypeLong::LONG; }
236 virtual uint ideal_reg() const { return Op_RegL; }
237};
238
239
240//------------------------------URShiftINode-----------------------------------
241// Logical shift right
242class URShiftINode : public Node {
243public:
244 URShiftINode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
245 virtual int Opcode() const;
246 virtual Node* Identity(PhaseGVN* phase);
247 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
248 virtual const Type* Value(PhaseGVN* phase) const;
249 const Type *bottom_type() const { return TypeInt::INT; }
250 virtual uint ideal_reg() const { return Op_RegI; }
251};
252
253//------------------------------URShiftLNode-----------------------------------
254// Logical shift right
255class URShiftLNode : public Node {
256public:
257 URShiftLNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {}
258 virtual int Opcode() const;
259 virtual Node* Identity(PhaseGVN* phase);
260 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
261 virtual const Type* Value(PhaseGVN* phase) const;
262 const Type *bottom_type() const { return TypeLong::LONG; }
263 virtual uint ideal_reg() const { return Op_RegL; }
264};
265
266//------------------------------FmaDNode--------------------------------------
267// fused-multiply-add double
268class FmaDNode : public Node {
269public:
270 FmaDNode(Node *c, Node *in1, Node *in2, Node *in3) : Node(c, in1, in2, in3) {}
271 virtual int Opcode() const;
272 const Type *bottom_type() const { return Type::DOUBLE; }
273 virtual uint ideal_reg() const { return Op_RegD; }
274 virtual const Type* Value(PhaseGVN* phase) const;
275};
276
277//------------------------------FmaFNode--------------------------------------
278// fused-multiply-add float
279class FmaFNode : public Node {
280public:
281 FmaFNode(Node *c, Node *in1, Node *in2, Node *in3) : Node(c, in1, in2, in3) {}
282 virtual int Opcode() const;
283 const Type *bottom_type() const { return Type::FLOAT; }
284 virtual uint ideal_reg() const { return Op_RegF; }
285 virtual const Type* Value(PhaseGVN* phase) const;
286};
287
288//------------------------------MulAddS2INode----------------------------------
289// Multiply shorts into integers and add them.
290// Semantics: I_OUT = S1 * S2 + S3 * S4
291class MulAddS2INode : public Node {
292 virtual uint hash() const;
293public:
294 MulAddS2INode(Node* in1, Node *in2, Node *in3, Node* in4) : Node(0, in1, in2, in3, in4) {}
295 virtual int Opcode() const;
296 const Type *bottom_type() const { return TypeInt::INT; }
297 virtual uint ideal_reg() const { return Op_RegI; }
298};
299
300#endif // SHARE_OPTO_MULNODE_HPP
301