1 | /* |
2 | * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #ifndef SHARE_OPTO_TYPE_HPP |
26 | #define SHARE_OPTO_TYPE_HPP |
27 | |
28 | #include "opto/adlcVMDeps.hpp" |
29 | #include "runtime/handles.hpp" |
30 | |
31 | // Portions of code courtesy of Clifford Click |
32 | |
33 | // Optimization - Graph Style |
34 | |
35 | |
36 | // This class defines a Type lattice. The lattice is used in the constant |
37 | // propagation algorithms, and for some type-checking of the iloc code. |
38 | // Basic types include RSD's (lower bound, upper bound, stride for integers), |
39 | // float & double precision constants, sets of data-labels and code-labels. |
40 | // The complete lattice is described below. Subtypes have no relationship to |
41 | // up or down in the lattice; that is entirely determined by the behavior of |
42 | // the MEET/JOIN functions. |
43 | |
44 | class Dict; |
45 | class Type; |
46 | class TypeD; |
47 | class TypeF; |
48 | class TypeInt; |
49 | class TypeLong; |
50 | class TypeNarrowPtr; |
51 | class TypeNarrowOop; |
52 | class TypeNarrowKlass; |
53 | class TypeAry; |
54 | class TypeTuple; |
55 | class TypeVect; |
56 | class TypeVectS; |
57 | class TypeVectD; |
58 | class TypeVectX; |
59 | class TypeVectY; |
60 | class TypeVectZ; |
61 | class TypePtr; |
62 | class TypeRawPtr; |
63 | class TypeOopPtr; |
64 | class TypeInstPtr; |
65 | class TypeAryPtr; |
66 | class TypeKlassPtr; |
67 | class TypeMetadataPtr; |
68 | |
69 | //------------------------------Type------------------------------------------- |
70 | // Basic Type object, represents a set of primitive Values. |
71 | // Types are hash-cons'd into a private class dictionary, so only one of each |
72 | // different kind of Type exists. Types are never modified after creation, so |
73 | // all their interesting fields are constant. |
74 | class Type { |
75 | friend class VMStructs; |
76 | |
77 | public: |
78 | enum TYPES { |
79 | Bad=0, // Type check |
80 | Control, // Control of code (not in lattice) |
81 | Top, // Top of the lattice |
82 | Int, // Integer range (lo-hi) |
83 | Long, // Long integer range (lo-hi) |
84 | Half, // Placeholder half of doubleword |
85 | NarrowOop, // Compressed oop pointer |
86 | NarrowKlass, // Compressed klass pointer |
87 | |
88 | Tuple, // Method signature or object layout |
89 | Array, // Array types |
90 | VectorS, // 32bit Vector types |
91 | VectorD, // 64bit Vector types |
92 | VectorX, // 128bit Vector types |
93 | VectorY, // 256bit Vector types |
94 | VectorZ, // 512bit Vector types |
95 | |
96 | AnyPtr, // Any old raw, klass, inst, or array pointer |
97 | RawPtr, // Raw (non-oop) pointers |
98 | OopPtr, // Any and all Java heap entities |
99 | InstPtr, // Instance pointers (non-array objects) |
100 | AryPtr, // Array pointers |
101 | // (Ptr order matters: See is_ptr, isa_ptr, is_oopptr, isa_oopptr.) |
102 | |
103 | MetadataPtr, // Generic metadata |
104 | KlassPtr, // Klass pointers |
105 | |
106 | Function, // Function signature |
107 | Abio, // Abstract I/O |
108 | Return_Address, // Subroutine return address |
109 | Memory, // Abstract store |
110 | FloatTop, // No float value |
111 | FloatCon, // Floating point constant |
112 | FloatBot, // Any float value |
113 | DoubleTop, // No double value |
114 | DoubleCon, // Double precision constant |
115 | DoubleBot, // Any double value |
116 | Bottom, // Bottom of lattice |
117 | lastype // Bogus ending type (not in lattice) |
118 | }; |
119 | |
120 | // Signal values for offsets from a base pointer |
121 | enum OFFSET_SIGNALS { |
122 | OffsetTop = -2000000000, // undefined offset |
123 | OffsetBot = -2000000001 // any possible offset |
124 | }; |
125 | |
126 | // Min and max WIDEN values. |
127 | enum WIDEN { |
128 | WidenMin = 0, |
129 | WidenMax = 3 |
130 | }; |
131 | |
132 | private: |
133 | typedef struct { |
134 | TYPES dual_type; |
135 | BasicType basic_type; |
136 | const char* msg; |
137 | bool isa_oop; |
138 | uint ideal_reg; |
139 | relocInfo::relocType reloc; |
140 | } TypeInfo; |
141 | |
142 | // Dictionary of types shared among compilations. |
143 | static Dict* _shared_type_dict; |
144 | static const TypeInfo _type_info[]; |
145 | |
146 | static int uhash( const Type *const t ); |
147 | // Structural equality check. Assumes that cmp() has already compared |
148 | // the _base types and thus knows it can cast 't' appropriately. |
149 | virtual bool eq( const Type *t ) const; |
150 | |
151 | // Top-level hash-table of types |
152 | static Dict *type_dict() { |
153 | return Compile::current()->type_dict(); |
154 | } |
155 | |
156 | // DUAL operation: reflect around lattice centerline. Used instead of |
157 | // join to ensure my lattice is symmetric up and down. Dual is computed |
158 | // lazily, on demand, and cached in _dual. |
159 | const Type *_dual; // Cached dual value |
160 | // Table for efficient dualing of base types |
161 | static const TYPES dual_type[lastype]; |
162 | |
163 | #ifdef ASSERT |
164 | // One type is interface, the other is oop |
165 | virtual bool interface_vs_oop_helper(const Type *t) const; |
166 | #endif |
167 | |
168 | const Type *meet_helper(const Type *t, bool include_speculative) const; |
169 | |
170 | protected: |
171 | // Each class of type is also identified by its base. |
172 | const TYPES _base; // Enum of Types type |
173 | |
174 | Type( TYPES t ) : _dual(NULL), _base(t) {} // Simple types |
175 | // ~Type(); // Use fast deallocation |
176 | const Type *hashcons(); // Hash-cons the type |
177 | virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; |
178 | const Type *join_helper(const Type *t, bool include_speculative) const { |
179 | return dual()->meet_helper(t->dual(), include_speculative)->dual(); |
180 | } |
181 | |
182 | public: |
183 | |
184 | inline void* operator new( size_t x ) throw() { |
185 | Compile* compile = Compile::current(); |
186 | compile->set_type_last_size(x); |
187 | void *temp = compile->type_arena()->Amalloc_D(x); |
188 | compile->set_type_hwm(temp); |
189 | return temp; |
190 | } |
191 | inline void operator delete( void* ptr ) { |
192 | Compile* compile = Compile::current(); |
193 | compile->type_arena()->Afree(ptr,compile->type_last_size()); |
194 | } |
195 | |
196 | // Initialize the type system for a particular compilation. |
197 | static void Initialize(Compile* compile); |
198 | |
199 | // Initialize the types shared by all compilations. |
200 | static void Initialize_shared(Compile* compile); |
201 | |
202 | TYPES base() const { |
203 | assert(_base > Bad && _base < lastype, "sanity" ); |
204 | return _base; |
205 | } |
206 | |
207 | // Create a new hash-consd type |
208 | static const Type *make(enum TYPES); |
209 | // Test for equivalence of types |
210 | static int cmp( const Type *const t1, const Type *const t2 ); |
211 | // Test for higher or equal in lattice |
212 | // Variant that drops the speculative part of the types |
213 | bool higher_equal(const Type *t) const { |
214 | return !cmp(meet(t),t->remove_speculative()); |
215 | } |
216 | // Variant that keeps the speculative part of the types |
217 | bool higher_equal_speculative(const Type *t) const { |
218 | return !cmp(meet_speculative(t),t); |
219 | } |
220 | |
221 | // MEET operation; lower in lattice. |
222 | // Variant that drops the speculative part of the types |
223 | const Type *meet(const Type *t) const { |
224 | return meet_helper(t, false); |
225 | } |
226 | // Variant that keeps the speculative part of the types |
227 | const Type *meet_speculative(const Type *t) const { |
228 | return meet_helper(t, true)->cleanup_speculative(); |
229 | } |
230 | // WIDEN: 'widens' for Ints and other range types |
231 | virtual const Type *widen( const Type *old, const Type* limit ) const { return this; } |
232 | // NARROW: complement for widen, used by pessimistic phases |
233 | virtual const Type *narrow( const Type *old ) const { return this; } |
234 | |
235 | // DUAL operation: reflect around lattice centerline. Used instead of |
236 | // join to ensure my lattice is symmetric up and down. |
237 | const Type *dual() const { return _dual; } |
238 | |
239 | // Compute meet dependent on base type |
240 | virtual const Type *xmeet( const Type *t ) const; |
241 | virtual const Type *xdual() const; // Compute dual right now. |
242 | |
243 | // JOIN operation; higher in lattice. Done by finding the dual of the |
244 | // meet of the dual of the 2 inputs. |
245 | // Variant that drops the speculative part of the types |
246 | const Type *join(const Type *t) const { |
247 | return join_helper(t, false); |
248 | } |
249 | // Variant that keeps the speculative part of the types |
250 | const Type *join_speculative(const Type *t) const { |
251 | return join_helper(t, true)->cleanup_speculative(); |
252 | } |
253 | |
254 | // Modified version of JOIN adapted to the needs Node::Value. |
255 | // Normalizes all empty values to TOP. Does not kill _widen bits. |
256 | // Currently, it also works around limitations involving interface types. |
257 | // Variant that drops the speculative part of the types |
258 | const Type *filter(const Type *kills) const { |
259 | return filter_helper(kills, false); |
260 | } |
261 | // Variant that keeps the speculative part of the types |
262 | const Type *filter_speculative(const Type *kills) const { |
263 | return filter_helper(kills, true)->cleanup_speculative(); |
264 | } |
265 | |
266 | #ifdef ASSERT |
267 | // One type is interface, the other is oop |
268 | virtual bool interface_vs_oop(const Type *t) const; |
269 | #endif |
270 | |
271 | // Returns true if this pointer points at memory which contains a |
272 | // compressed oop references. |
273 | bool is_ptr_to_narrowoop() const; |
274 | bool is_ptr_to_narrowklass() const; |
275 | |
276 | bool is_ptr_to_boxing_obj() const; |
277 | |
278 | |
279 | // Convenience access |
280 | float getf() const; |
281 | double getd() const; |
282 | |
283 | const TypeInt *is_int() const; |
284 | const TypeInt *isa_int() const; // Returns NULL if not an Int |
285 | const TypeLong *is_long() const; |
286 | const TypeLong *isa_long() const; // Returns NULL if not a Long |
287 | const TypeD *isa_double() const; // Returns NULL if not a Double{Top,Con,Bot} |
288 | const TypeD *is_double_constant() const; // Asserts it is a DoubleCon |
289 | const TypeD *isa_double_constant() const; // Returns NULL if not a DoubleCon |
290 | const TypeF *isa_float() const; // Returns NULL if not a Float{Top,Con,Bot} |
291 | const TypeF *is_float_constant() const; // Asserts it is a FloatCon |
292 | const TypeF *isa_float_constant() const; // Returns NULL if not a FloatCon |
293 | const TypeTuple *is_tuple() const; // Collection of fields, NOT a pointer |
294 | const TypeAry *is_ary() const; // Array, NOT array pointer |
295 | const TypeVect *is_vect() const; // Vector |
296 | const TypeVect *isa_vect() const; // Returns NULL if not a Vector |
297 | const TypePtr *is_ptr() const; // Asserts it is a ptr type |
298 | const TypePtr *isa_ptr() const; // Returns NULL if not ptr type |
299 | const TypeRawPtr *isa_rawptr() const; // NOT Java oop |
300 | const TypeRawPtr *is_rawptr() const; // Asserts is rawptr |
301 | const TypeNarrowOop *is_narrowoop() const; // Java-style GC'd pointer |
302 | const TypeNarrowOop *isa_narrowoop() const; // Returns NULL if not oop ptr type |
303 | const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer |
304 | const TypeNarrowKlass *isa_narrowklass() const;// Returns NULL if not oop ptr type |
305 | const TypeOopPtr *isa_oopptr() const; // Returns NULL if not oop ptr type |
306 | const TypeOopPtr *is_oopptr() const; // Java-style GC'd pointer |
307 | const TypeInstPtr *isa_instptr() const; // Returns NULL if not InstPtr |
308 | const TypeInstPtr *is_instptr() const; // Instance |
309 | const TypeAryPtr *isa_aryptr() const; // Returns NULL if not AryPtr |
310 | const TypeAryPtr *is_aryptr() const; // Array oop |
311 | |
312 | const TypeMetadataPtr *isa_metadataptr() const; // Returns NULL if not oop ptr type |
313 | const TypeMetadataPtr *is_metadataptr() const; // Java-style GC'd pointer |
314 | const TypeKlassPtr *isa_klassptr() const; // Returns NULL if not KlassPtr |
315 | const TypeKlassPtr *is_klassptr() const; // assert if not KlassPtr |
316 | |
317 | virtual bool is_finite() const; // Has a finite value |
318 | virtual bool is_nan() const; // Is not a number (NaN) |
319 | |
320 | // Returns this ptr type or the equivalent ptr type for this compressed pointer. |
321 | const TypePtr* make_ptr() const; |
322 | |
323 | // Returns this oopptr type or the equivalent oopptr type for this compressed pointer. |
324 | // Asserts if the underlying type is not an oopptr or narrowoop. |
325 | const TypeOopPtr* make_oopptr() const; |
326 | |
327 | // Returns this compressed pointer or the equivalent compressed version |
328 | // of this pointer type. |
329 | const TypeNarrowOop* make_narrowoop() const; |
330 | |
331 | // Returns this compressed klass pointer or the equivalent |
332 | // compressed version of this pointer type. |
333 | const TypeNarrowKlass* make_narrowklass() const; |
334 | |
335 | // Special test for register pressure heuristic |
336 | bool is_floatingpoint() const; // True if Float or Double base type |
337 | |
338 | // Do you have memory, directly or through a tuple? |
339 | bool has_memory( ) const; |
340 | |
341 | // TRUE if type is a singleton |
342 | virtual bool singleton(void) const; |
343 | |
344 | // TRUE if type is above the lattice centerline, and is therefore vacuous |
345 | virtual bool empty(void) const; |
346 | |
347 | // Return a hash for this type. The hash function is public so ConNode |
348 | // (constants) can hash on their constant, which is represented by a Type. |
349 | virtual int hash() const; |
350 | |
351 | // Map ideal registers (machine types) to ideal types |
352 | static const Type *mreg2type[]; |
353 | |
354 | // Printing, statistics |
355 | #ifndef PRODUCT |
356 | void dump_on(outputStream *st) const; |
357 | void dump() const { |
358 | dump_on(tty); |
359 | } |
360 | virtual void dump2( Dict &d, uint depth, outputStream *st ) const; |
361 | static void dump_stats(); |
362 | |
363 | static const char* str(const Type* t); |
364 | #endif |
365 | void typerr(const Type *t) const; // Mixing types error |
366 | |
367 | // Create basic type |
368 | static const Type* get_const_basic_type(BasicType type) { |
369 | assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type" ); |
370 | return _const_basic_type[type]; |
371 | } |
372 | |
373 | // For two instance arrays of same dimension, return the base element types. |
374 | // Otherwise or if the arrays have different dimensions, return NULL. |
375 | static void get_arrays_base_elements(const Type *a1, const Type *a2, |
376 | const TypeInstPtr **e1, const TypeInstPtr **e2); |
377 | |
378 | // Mapping to the array element's basic type. |
379 | BasicType array_element_basic_type() const; |
380 | |
381 | // Create standard type for a ciType: |
382 | static const Type* get_const_type(ciType* type); |
383 | |
384 | // Create standard zero value: |
385 | static const Type* get_zero_type(BasicType type) { |
386 | assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type" ); |
387 | return _zero_type[type]; |
388 | } |
389 | |
390 | // Report if this is a zero value (not top). |
391 | bool is_zero_type() const { |
392 | BasicType type = basic_type(); |
393 | if (type == T_VOID || type >= T_CONFLICT) |
394 | return false; |
395 | else |
396 | return (this == _zero_type[type]); |
397 | } |
398 | |
399 | // Convenience common pre-built types. |
400 | static const Type *ABIO; |
401 | static const Type *BOTTOM; |
402 | static const Type *CONTROL; |
403 | static const Type *DOUBLE; |
404 | static const Type *FLOAT; |
405 | static const Type *HALF; |
406 | static const Type *MEMORY; |
407 | static const Type *MULTI; |
408 | static const Type *RETURN_ADDRESS; |
409 | static const Type *TOP; |
410 | |
411 | // Mapping from compiler type to VM BasicType |
412 | BasicType basic_type() const { return _type_info[_base].basic_type; } |
413 | uint ideal_reg() const { return _type_info[_base].ideal_reg; } |
414 | const char* msg() const { return _type_info[_base].msg; } |
415 | bool isa_oop_ptr() const { return _type_info[_base].isa_oop; } |
416 | relocInfo::relocType reloc() const { return _type_info[_base].reloc; } |
417 | |
418 | // Mapping from CI type system to compiler type: |
419 | static const Type* get_typeflow_type(ciType* type); |
420 | |
421 | static const Type* make_from_constant(ciConstant constant, |
422 | bool require_constant = false, |
423 | int stable_dimension = 0, |
424 | bool is_narrow = false, |
425 | bool is_autobox_cache = false); |
426 | |
427 | static const Type* make_constant_from_field(ciInstance* holder, |
428 | int off, |
429 | bool is_unsigned_load, |
430 | BasicType loadbt); |
431 | |
432 | static const Type* make_constant_from_field(ciField* field, |
433 | ciInstance* holder, |
434 | BasicType loadbt, |
435 | bool is_unsigned_load); |
436 | |
437 | static const Type* make_constant_from_array_element(ciArray* array, |
438 | int off, |
439 | int stable_dimension, |
440 | BasicType loadbt, |
441 | bool is_unsigned_load); |
442 | |
443 | // Speculative type helper methods. See TypePtr. |
444 | virtual const TypePtr* speculative() const { return NULL; } |
445 | virtual ciKlass* speculative_type() const { return NULL; } |
446 | virtual ciKlass* speculative_type_not_null() const { return NULL; } |
447 | virtual bool speculative_maybe_null() const { return true; } |
448 | virtual bool speculative_always_null() const { return true; } |
449 | virtual const Type* remove_speculative() const { return this; } |
450 | virtual const Type* cleanup_speculative() const { return this; } |
451 | virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return exact_kls != NULL; } |
452 | virtual bool would_improve_ptr(ProfilePtrKind ptr_kind) const { return ptr_kind == ProfileAlwaysNull || ptr_kind == ProfileNeverNull; } |
453 | const Type* maybe_remove_speculative(bool include_speculative) const; |
454 | |
455 | virtual bool maybe_null() const { return true; } |
456 | |
457 | private: |
458 | // support arrays |
459 | static const BasicType _basic_type[]; |
460 | static const Type* _zero_type[T_CONFLICT+1]; |
461 | static const Type* _const_basic_type[T_CONFLICT+1]; |
462 | }; |
463 | |
464 | //------------------------------TypeF------------------------------------------ |
465 | // Class of Float-Constant Types. |
466 | class TypeF : public Type { |
467 | TypeF( float f ) : Type(FloatCon), _f(f) {}; |
468 | public: |
469 | virtual bool eq( const Type *t ) const; |
470 | virtual int hash() const; // Type specific hashing |
471 | virtual bool singleton(void) const; // TRUE if type is a singleton |
472 | virtual bool empty(void) const; // TRUE if type is vacuous |
473 | public: |
474 | const float _f; // Float constant |
475 | |
476 | static const TypeF *make(float f); |
477 | |
478 | virtual bool is_finite() const; // Has a finite value |
479 | virtual bool is_nan() const; // Is not a number (NaN) |
480 | |
481 | virtual const Type *xmeet( const Type *t ) const; |
482 | virtual const Type *xdual() const; // Compute dual right now. |
483 | // Convenience common pre-built types. |
484 | static const TypeF *ZERO; // positive zero only |
485 | static const TypeF *ONE; |
486 | static const TypeF *POS_INF; |
487 | static const TypeF *NEG_INF; |
488 | #ifndef PRODUCT |
489 | virtual void dump2( Dict &d, uint depth, outputStream *st ) const; |
490 | #endif |
491 | }; |
492 | |
493 | //------------------------------TypeD------------------------------------------ |
494 | // Class of Double-Constant Types. |
495 | class TypeD : public Type { |
496 | TypeD( double d ) : Type(DoubleCon), _d(d) {}; |
497 | public: |
498 | virtual bool eq( const Type *t ) const; |
499 | virtual int hash() const; // Type specific hashing |
500 | virtual bool singleton(void) const; // TRUE if type is a singleton |
501 | virtual bool empty(void) const; // TRUE if type is vacuous |
502 | public: |
503 | const double _d; // Double constant |
504 | |
505 | static const TypeD *make(double d); |
506 | |
507 | virtual bool is_finite() const; // Has a finite value |
508 | virtual bool is_nan() const; // Is not a number (NaN) |
509 | |
510 | virtual const Type *xmeet( const Type *t ) const; |
511 | virtual const Type *xdual() const; // Compute dual right now. |
512 | // Convenience common pre-built types. |
513 | static const TypeD *ZERO; // positive zero only |
514 | static const TypeD *ONE; |
515 | static const TypeD *POS_INF; |
516 | static const TypeD *NEG_INF; |
517 | #ifndef PRODUCT |
518 | virtual void dump2( Dict &d, uint depth, outputStream *st ) const; |
519 | #endif |
520 | }; |
521 | |
522 | //------------------------------TypeInt---------------------------------------- |
523 | // Class of integer ranges, the set of integers between a lower bound and an |
524 | // upper bound, inclusive. |
525 | class TypeInt : public Type { |
526 | TypeInt( jint lo, jint hi, int w ); |
527 | protected: |
528 | virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; |
529 | |
530 | public: |
531 | typedef jint NativeType; |
532 | virtual bool eq( const Type *t ) const; |
533 | virtual int hash() const; // Type specific hashing |
534 | virtual bool singleton(void) const; // TRUE if type is a singleton |
535 | virtual bool empty(void) const; // TRUE if type is vacuous |
536 | const jint _lo, _hi; // Lower bound, upper bound |
537 | const short _widen; // Limit on times we widen this sucker |
538 | |
539 | static const TypeInt *make(jint lo); |
540 | // must always specify w |
541 | static const TypeInt *make(jint lo, jint hi, int w); |
542 | |
543 | // Check for single integer |
544 | int is_con() const { return _lo==_hi; } |
545 | bool is_con(int i) const { return is_con() && _lo == i; } |
546 | jint get_con() const { assert( is_con(), "" ); return _lo; } |
547 | |
548 | virtual bool is_finite() const; // Has a finite value |
549 | |
550 | virtual const Type *xmeet( const Type *t ) const; |
551 | virtual const Type *xdual() const; // Compute dual right now. |
552 | virtual const Type *widen( const Type *t, const Type* limit_type ) const; |
553 | virtual const Type *narrow( const Type *t ) const; |
554 | // Do not kill _widen bits. |
555 | // Convenience common pre-built types. |
556 | static const TypeInt *MINUS_1; |
557 | static const TypeInt *ZERO; |
558 | static const TypeInt *ONE; |
559 | static const TypeInt *BOOL; |
560 | static const TypeInt *CC; |
561 | static const TypeInt *CC_LT; // [-1] == MINUS_1 |
562 | static const TypeInt *CC_GT; // [1] == ONE |
563 | static const TypeInt *CC_EQ; // [0] == ZERO |
564 | static const TypeInt *CC_LE; // [-1,0] |
565 | static const TypeInt *CC_GE; // [0,1] == BOOL (!) |
566 | static const TypeInt *BYTE; |
567 | static const TypeInt *UBYTE; |
568 | static const TypeInt *CHAR; |
569 | static const TypeInt *SHORT; |
570 | static const TypeInt *POS; |
571 | static const TypeInt *POS1; |
572 | static const TypeInt *INT; |
573 | static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint] |
574 | static const TypeInt *TYPE_DOMAIN; // alias for TypeInt::INT |
575 | |
576 | static const TypeInt *as_self(const Type *t) { return t->is_int(); } |
577 | #ifndef PRODUCT |
578 | virtual void dump2( Dict &d, uint depth, outputStream *st ) const; |
579 | #endif |
580 | }; |
581 | |
582 | |
583 | //------------------------------TypeLong--------------------------------------- |
584 | // Class of long integer ranges, the set of integers between a lower bound and |
585 | // an upper bound, inclusive. |
586 | class TypeLong : public Type { |
587 | TypeLong( jlong lo, jlong hi, int w ); |
588 | protected: |
589 | // Do not kill _widen bits. |
590 | virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; |
591 | public: |
592 | typedef jlong NativeType; |
593 | virtual bool eq( const Type *t ) const; |
594 | virtual int hash() const; // Type specific hashing |
595 | virtual bool singleton(void) const; // TRUE if type is a singleton |
596 | virtual bool empty(void) const; // TRUE if type is vacuous |
597 | public: |
598 | const jlong _lo, _hi; // Lower bound, upper bound |
599 | const short _widen; // Limit on times we widen this sucker |
600 | |
601 | static const TypeLong *make(jlong lo); |
602 | // must always specify w |
603 | static const TypeLong *make(jlong lo, jlong hi, int w); |
604 | |
605 | // Check for single integer |
606 | int is_con() const { return _lo==_hi; } |
607 | bool is_con(int i) const { return is_con() && _lo == i; } |
608 | jlong get_con() const { assert( is_con(), "" ); return _lo; } |
609 | |
610 | // Check for positive 32-bit value. |
611 | int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; } |
612 | |
613 | virtual bool is_finite() const; // Has a finite value |
614 | |
615 | |
616 | virtual const Type *xmeet( const Type *t ) const; |
617 | virtual const Type *xdual() const; // Compute dual right now. |
618 | virtual const Type *widen( const Type *t, const Type* limit_type ) const; |
619 | virtual const Type *narrow( const Type *t ) const; |
620 | // Convenience common pre-built types. |
621 | static const TypeLong *MINUS_1; |
622 | static const TypeLong *ZERO; |
623 | static const TypeLong *ONE; |
624 | static const TypeLong *POS; |
625 | static const TypeLong *LONG; |
626 | static const TypeLong *INT; // 32-bit subrange [min_jint..max_jint] |
627 | static const TypeLong *UINT; // 32-bit unsigned [0..max_juint] |
628 | static const TypeLong *TYPE_DOMAIN; // alias for TypeLong::LONG |
629 | |
630 | // static convenience methods. |
631 | static const TypeLong *as_self(const Type *t) { return t->is_long(); } |
632 | |
633 | #ifndef PRODUCT |
634 | virtual void dump2( Dict &d, uint, outputStream *st ) const;// Specialized per-Type dumping |
635 | #endif |
636 | }; |
637 | |
638 | //------------------------------TypeTuple-------------------------------------- |
639 | // Class of Tuple Types, essentially type collections for function signatures |
640 | // and class layouts. It happens to also be a fast cache for the HotSpot |
641 | // signature types. |
642 | class TypeTuple : public Type { |
643 | TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { } |
644 | |
645 | const uint _cnt; // Count of fields |
646 | const Type ** const _fields; // Array of field types |
647 | |
648 | public: |
649 | virtual bool eq( const Type *t ) const; |
650 | virtual int hash() const; // Type specific hashing |
651 | virtual bool singleton(void) const; // TRUE if type is a singleton |
652 | virtual bool empty(void) const; // TRUE if type is vacuous |
653 | |
654 | // Accessors: |
655 | uint cnt() const { return _cnt; } |
656 | const Type* field_at(uint i) const { |
657 | assert(i < _cnt, "oob" ); |
658 | return _fields[i]; |
659 | } |
660 | void set_field_at(uint i, const Type* t) { |
661 | assert(i < _cnt, "oob" ); |
662 | _fields[i] = t; |
663 | } |
664 | |
665 | static const TypeTuple *make( uint cnt, const Type **fields ); |
666 | static const TypeTuple *make_range(ciSignature *sig); |
667 | static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig); |
668 | |
669 | // Subroutine call type with space allocated for argument types |
670 | // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly |
671 | static const Type **fields( uint arg_cnt ); |
672 | |
673 | virtual const Type *xmeet( const Type *t ) const; |
674 | virtual const Type *xdual() const; // Compute dual right now. |
675 | // Convenience common pre-built types. |
676 | static const TypeTuple *IFBOTH; |
677 | static const TypeTuple *IFFALSE; |
678 | static const TypeTuple *IFTRUE; |
679 | static const TypeTuple *IFNEITHER; |
680 | static const TypeTuple *LOOPBODY; |
681 | static const TypeTuple *MEMBAR; |
682 | static const TypeTuple *STORECONDITIONAL; |
683 | static const TypeTuple *START_I2C; |
684 | static const TypeTuple *INT_PAIR; |
685 | static const TypeTuple *LONG_PAIR; |
686 | static const TypeTuple *INT_CC_PAIR; |
687 | static const TypeTuple *LONG_CC_PAIR; |
688 | #ifndef PRODUCT |
689 | virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping |
690 | #endif |
691 | }; |
692 | |
693 | //------------------------------TypeAry---------------------------------------- |
694 | // Class of Array Types |
695 | class TypeAry : public Type { |
696 | TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array), |
697 | _elem(elem), _size(size), _stable(stable) {} |
698 | public: |
699 | virtual bool eq( const Type *t ) const; |
700 | virtual int hash() const; // Type specific hashing |
701 | virtual bool singleton(void) const; // TRUE if type is a singleton |
702 | virtual bool empty(void) const; // TRUE if type is vacuous |
703 | |
704 | private: |
705 | const Type *_elem; // Element type of array |
706 | const TypeInt *_size; // Elements in array |
707 | const bool _stable; // Are elements @Stable? |
708 | friend class TypeAryPtr; |
709 | |
710 | public: |
711 | static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false); |
712 | |
713 | virtual const Type *xmeet( const Type *t ) const; |
714 | virtual const Type *xdual() const; // Compute dual right now. |
715 | bool ary_must_be_exact() const; // true if arrays of such are never generic |
716 | virtual const Type* remove_speculative() const; |
717 | virtual const Type* cleanup_speculative() const; |
718 | #ifdef ASSERT |
719 | // One type is interface, the other is oop |
720 | virtual bool interface_vs_oop(const Type *t) const; |
721 | #endif |
722 | #ifndef PRODUCT |
723 | virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping |
724 | #endif |
725 | }; |
726 | |
727 | //------------------------------TypeVect--------------------------------------- |
728 | // Class of Vector Types |
729 | class TypeVect : public Type { |
730 | const Type* _elem; // Vector's element type |
731 | const uint _length; // Elements in vector (power of 2) |
732 | |
733 | protected: |
734 | TypeVect(TYPES t, const Type* elem, uint length) : Type(t), |
735 | _elem(elem), _length(length) {} |
736 | |
737 | public: |
738 | const Type* element_type() const { return _elem; } |
739 | BasicType element_basic_type() const { return _elem->array_element_basic_type(); } |
740 | uint length() const { return _length; } |
741 | uint length_in_bytes() const { |
742 | return _length * type2aelembytes(element_basic_type()); |
743 | } |
744 | |
745 | virtual bool eq(const Type *t) const; |
746 | virtual int hash() const; // Type specific hashing |
747 | virtual bool singleton(void) const; // TRUE if type is a singleton |
748 | virtual bool empty(void) const; // TRUE if type is vacuous |
749 | |
750 | static const TypeVect *make(const BasicType elem_bt, uint length) { |
751 | // Use bottom primitive type. |
752 | return make(get_const_basic_type(elem_bt), length); |
753 | } |
754 | // Used directly by Replicate nodes to construct singleton vector. |
755 | static const TypeVect *make(const Type* elem, uint length); |
756 | |
757 | virtual const Type *xmeet( const Type *t) const; |
758 | virtual const Type *xdual() const; // Compute dual right now. |
759 | |
760 | static const TypeVect *VECTS; |
761 | static const TypeVect *VECTD; |
762 | static const TypeVect *VECTX; |
763 | static const TypeVect *VECTY; |
764 | static const TypeVect *VECTZ; |
765 | |
766 | #ifndef PRODUCT |
767 | virtual void dump2(Dict &d, uint, outputStream *st) const; // Specialized per-Type dumping |
768 | #endif |
769 | }; |
770 | |
771 | class TypeVectS : public TypeVect { |
772 | friend class TypeVect; |
773 | TypeVectS(const Type* elem, uint length) : TypeVect(VectorS, elem, length) {} |
774 | }; |
775 | |
776 | class TypeVectD : public TypeVect { |
777 | friend class TypeVect; |
778 | TypeVectD(const Type* elem, uint length) : TypeVect(VectorD, elem, length) {} |
779 | }; |
780 | |
781 | class TypeVectX : public TypeVect { |
782 | friend class TypeVect; |
783 | TypeVectX(const Type* elem, uint length) : TypeVect(VectorX, elem, length) {} |
784 | }; |
785 | |
786 | class TypeVectY : public TypeVect { |
787 | friend class TypeVect; |
788 | TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {} |
789 | }; |
790 | |
791 | class TypeVectZ : public TypeVect { |
792 | friend class TypeVect; |
793 | TypeVectZ(const Type* elem, uint length) : TypeVect(VectorZ, elem, length) {} |
794 | }; |
795 | |
796 | //------------------------------TypePtr---------------------------------------- |
797 | // Class of machine Pointer Types: raw data, instances or arrays. |
798 | // If the _base enum is AnyPtr, then this refers to all of the above. |
799 | // Otherwise the _base will indicate which subset of pointers is affected, |
800 | // and the class will be inherited from. |
801 | class TypePtr : public Type { |
802 | friend class TypeNarrowPtr; |
803 | public: |
804 | enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR }; |
805 | protected: |
806 | TypePtr(TYPES t, PTR ptr, int offset, |
807 | const TypePtr* speculative = NULL, |
808 | int inline_depth = InlineDepthBottom) : |
809 | Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset), |
810 | _ptr(ptr) {} |
811 | static const PTR ptr_meet[lastPTR][lastPTR]; |
812 | static const PTR ptr_dual[lastPTR]; |
813 | static const char * const ptr_msg[lastPTR]; |
814 | |
815 | enum { |
816 | InlineDepthBottom = INT_MAX, |
817 | InlineDepthTop = -InlineDepthBottom |
818 | }; |
819 | |
820 | // Extra type information profiling gave us. We propagate it the |
821 | // same way the rest of the type info is propagated. If we want to |
822 | // use it, then we have to emit a guard: this part of the type is |
823 | // not something we know but something we speculate about the type. |
824 | const TypePtr* _speculative; |
825 | // For speculative types, we record at what inlining depth the |
826 | // profiling point that provided the data is. We want to favor |
827 | // profile data coming from outer scopes which are likely better for |
828 | // the current compilation. |
829 | int _inline_depth; |
830 | |
831 | // utility methods to work on the speculative part of the type |
832 | const TypePtr* dual_speculative() const; |
833 | const TypePtr* xmeet_speculative(const TypePtr* other) const; |
834 | bool eq_speculative(const TypePtr* other) const; |
835 | int hash_speculative() const; |
836 | const TypePtr* add_offset_speculative(intptr_t offset) const; |
837 | #ifndef PRODUCT |
838 | void dump_speculative(outputStream *st) const; |
839 | #endif |
840 | |
841 | // utility methods to work on the inline depth of the type |
842 | int dual_inline_depth() const; |
843 | int meet_inline_depth(int depth) const; |
844 | #ifndef PRODUCT |
845 | void dump_inline_depth(outputStream *st) const; |
846 | #endif |
847 | |
848 | public: |
849 | const int _offset; // Offset into oop, with TOP & BOT |
850 | const PTR _ptr; // Pointer equivalence class |
851 | |
852 | const int offset() const { return _offset; } |
853 | const PTR ptr() const { return _ptr; } |
854 | |
855 | static const TypePtr *make(TYPES t, PTR ptr, int offset, |
856 | const TypePtr* speculative = NULL, |
857 | int inline_depth = InlineDepthBottom); |
858 | |
859 | // Return a 'ptr' version of this type |
860 | virtual const Type *cast_to_ptr_type(PTR ptr) const; |
861 | |
862 | virtual intptr_t get_con() const; |
863 | |
864 | int xadd_offset( intptr_t offset ) const; |
865 | virtual const TypePtr *add_offset( intptr_t offset ) const; |
866 | virtual bool eq(const Type *t) const; |
867 | virtual int hash() const; // Type specific hashing |
868 | |
869 | virtual bool singleton(void) const; // TRUE if type is a singleton |
870 | virtual bool empty(void) const; // TRUE if type is vacuous |
871 | virtual const Type *xmeet( const Type *t ) const; |
872 | virtual const Type *xmeet_helper( const Type *t ) const; |
873 | int meet_offset( int offset ) const; |
874 | int dual_offset( ) const; |
875 | virtual const Type *xdual() const; // Compute dual right now. |
876 | |
877 | // meet, dual and join over pointer equivalence sets |
878 | PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; } |
879 | PTR dual_ptr() const { return ptr_dual[ptr()]; } |
880 | |
881 | // This is textually confusing unless one recalls that |
882 | // join(t) == dual()->meet(t->dual())->dual(). |
883 | PTR join_ptr( const PTR in_ptr ) const { |
884 | return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ]; |
885 | } |
886 | |
887 | // Speculative type helper methods. |
888 | virtual const TypePtr* speculative() const { return _speculative; } |
889 | int inline_depth() const { return _inline_depth; } |
890 | virtual ciKlass* speculative_type() const; |
891 | virtual ciKlass* speculative_type_not_null() const; |
892 | virtual bool speculative_maybe_null() const; |
893 | virtual bool speculative_always_null() const; |
894 | virtual const Type* remove_speculative() const; |
895 | virtual const Type* cleanup_speculative() const; |
896 | virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const; |
897 | virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const; |
898 | virtual const TypePtr* with_inline_depth(int depth) const; |
899 | |
900 | virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); } |
901 | |
902 | // Tests for relation to centerline of type lattice: |
903 | static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); } |
904 | static bool below_centerline(PTR ptr) { return (ptr >= NotNull); } |
905 | // Convenience common pre-built types. |
906 | static const TypePtr *NULL_PTR; |
907 | static const TypePtr *NOTNULL; |
908 | static const TypePtr *BOTTOM; |
909 | #ifndef PRODUCT |
910 | virtual void dump2( Dict &d, uint depth, outputStream *st ) const; |
911 | #endif |
912 | }; |
913 | |
914 | //------------------------------TypeRawPtr------------------------------------- |
915 | // Class of raw pointers, pointers to things other than Oops. Examples |
916 | // include the stack pointer, top of heap, card-marking area, handles, etc. |
917 | class TypeRawPtr : public TypePtr { |
918 | protected: |
919 | TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){} |
920 | public: |
921 | virtual bool eq( const Type *t ) const; |
922 | virtual int hash() const; // Type specific hashing |
923 | |
924 | const address _bits; // Constant value, if applicable |
925 | |
926 | static const TypeRawPtr *make( PTR ptr ); |
927 | static const TypeRawPtr *make( address bits ); |
928 | |
929 | // Return a 'ptr' version of this type |
930 | virtual const Type *cast_to_ptr_type(PTR ptr) const; |
931 | |
932 | virtual intptr_t get_con() const; |
933 | |
934 | virtual const TypePtr *add_offset( intptr_t offset ) const; |
935 | |
936 | virtual const Type *xmeet( const Type *t ) const; |
937 | virtual const Type *xdual() const; // Compute dual right now. |
938 | // Convenience common pre-built types. |
939 | static const TypeRawPtr *BOTTOM; |
940 | static const TypeRawPtr *NOTNULL; |
941 | #ifndef PRODUCT |
942 | virtual void dump2( Dict &d, uint depth, outputStream *st ) const; |
943 | #endif |
944 | }; |
945 | |
946 | //------------------------------TypeOopPtr------------------------------------- |
947 | // Some kind of oop (Java pointer), either instance or array. |
948 | class TypeOopPtr : public TypePtr { |
949 | protected: |
950 | TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, |
951 | const TypePtr* speculative, int inline_depth); |
952 | public: |
953 | virtual bool eq( const Type *t ) const; |
954 | virtual int hash() const; // Type specific hashing |
955 | virtual bool singleton(void) const; // TRUE if type is a singleton |
956 | enum { |
957 | InstanceTop = -1, // undefined instance |
958 | InstanceBot = 0 // any possible instance |
959 | }; |
960 | protected: |
961 | |
962 | // Oop is NULL, unless this is a constant oop. |
963 | ciObject* _const_oop; // Constant oop |
964 | // If _klass is NULL, then so is _sig. This is an unloaded klass. |
965 | ciKlass* _klass; // Klass object |
966 | // Does the type exclude subclasses of the klass? (Inexact == polymorphic.) |
967 | bool _klass_is_exact; |
968 | bool _is_ptr_to_narrowoop; |
969 | bool _is_ptr_to_narrowklass; |
970 | bool _is_ptr_to_boxed_value; |
971 | |
972 | // If not InstanceTop or InstanceBot, indicates that this is |
973 | // a particular instance of this type which is distinct. |
974 | // This is the node index of the allocation node creating this instance. |
975 | int _instance_id; |
976 | |
977 | static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact); |
978 | |
979 | int dual_instance_id() const; |
980 | int meet_instance_id(int uid) const; |
981 | |
982 | // Do not allow interface-vs.-noninterface joins to collapse to top. |
983 | virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; |
984 | |
985 | public: |
986 | // Creates a type given a klass. Correctly handles multi-dimensional arrays |
987 | // Respects UseUniqueSubclasses. |
988 | // If the klass is final, the resulting type will be exact. |
989 | static const TypeOopPtr* make_from_klass(ciKlass* klass) { |
990 | return make_from_klass_common(klass, true, false); |
991 | } |
992 | // Same as before, but will produce an exact type, even if |
993 | // the klass is not final, as long as it has exactly one implementation. |
994 | static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) { |
995 | return make_from_klass_common(klass, true, true); |
996 | } |
997 | // Same as before, but does not respects UseUniqueSubclasses. |
998 | // Use this only for creating array element types. |
999 | static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) { |
1000 | return make_from_klass_common(klass, false, false); |
1001 | } |
1002 | // Creates a singleton type given an object. |
1003 | // If the object cannot be rendered as a constant, |
1004 | // may return a non-singleton type. |
1005 | // If require_constant, produce a NULL if a singleton is not possible. |
1006 | static const TypeOopPtr* make_from_constant(ciObject* o, |
1007 | bool require_constant = false); |
1008 | |
1009 | // Make a generic (unclassed) pointer to an oop. |
1010 | static const TypeOopPtr* make(PTR ptr, int offset, int instance_id, |
1011 | const TypePtr* speculative = NULL, |
1012 | int inline_depth = InlineDepthBottom); |
1013 | |
1014 | ciObject* const_oop() const { return _const_oop; } |
1015 | virtual ciKlass* klass() const { return _klass; } |
1016 | bool klass_is_exact() const { return _klass_is_exact; } |
1017 | |
1018 | // Returns true if this pointer points at memory which contains a |
1019 | // compressed oop references. |
1020 | bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; } |
1021 | bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; } |
1022 | bool is_ptr_to_boxed_value() const { return _is_ptr_to_boxed_value; } |
1023 | bool is_known_instance() const { return _instance_id > 0; } |
1024 | int instance_id() const { return _instance_id; } |
1025 | bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; } |
1026 | |
1027 | virtual intptr_t get_con() const; |
1028 | |
1029 | virtual const Type *cast_to_ptr_type(PTR ptr) const; |
1030 | |
1031 | virtual const Type *cast_to_exactness(bool klass_is_exact) const; |
1032 | |
1033 | virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const; |
1034 | |
1035 | virtual const TypeOopPtr *cast_to_nonconst() const; |
1036 | |
1037 | // corresponding pointer to klass, for a given instance |
1038 | const TypeKlassPtr* as_klass_type() const; |
1039 | |
1040 | virtual const TypePtr *add_offset( intptr_t offset ) const; |
1041 | |
1042 | // Speculative type helper methods. |
1043 | virtual const Type* remove_speculative() const; |
1044 | virtual const Type* cleanup_speculative() const; |
1045 | virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const; |
1046 | virtual const TypePtr* with_inline_depth(int depth) const; |
1047 | |
1048 | virtual const TypePtr* with_instance_id(int instance_id) const; |
1049 | |
1050 | virtual const Type *xdual() const; // Compute dual right now. |
1051 | // the core of the computation of the meet for TypeOopPtr and for its subclasses |
1052 | virtual const Type *xmeet_helper(const Type *t) const; |
1053 | |
1054 | // Convenience common pre-built type. |
1055 | static const TypeOopPtr *BOTTOM; |
1056 | #ifndef PRODUCT |
1057 | virtual void dump2( Dict &d, uint depth, outputStream *st ) const; |
1058 | #endif |
1059 | }; |
1060 | |
1061 | //------------------------------TypeInstPtr------------------------------------ |
1062 | // Class of Java object pointers, pointing either to non-array Java instances |
1063 | // or to a Klass* (including array klasses). |
1064 | class TypeInstPtr : public TypeOopPtr { |
1065 | TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id, |
1066 | const TypePtr* speculative, int inline_depth); |
1067 | virtual bool eq( const Type *t ) const; |
1068 | virtual int hash() const; // Type specific hashing |
1069 | |
1070 | ciSymbol* _name; // class name |
1071 | |
1072 | public: |
1073 | ciSymbol* name() const { return _name; } |
1074 | |
1075 | bool is_loaded() const { return _klass->is_loaded(); } |
1076 | |
1077 | // Make a pointer to a constant oop. |
1078 | static const TypeInstPtr *make(ciObject* o) { |
1079 | return make(TypePtr::Constant, o->klass(), true, o, 0, InstanceBot); |
1080 | } |
1081 | // Make a pointer to a constant oop with offset. |
1082 | static const TypeInstPtr *make(ciObject* o, int offset) { |
1083 | return make(TypePtr::Constant, o->klass(), true, o, offset, InstanceBot); |
1084 | } |
1085 | |
1086 | // Make a pointer to some value of type klass. |
1087 | static const TypeInstPtr *make(PTR ptr, ciKlass* klass) { |
1088 | return make(ptr, klass, false, NULL, 0, InstanceBot); |
1089 | } |
1090 | |
1091 | // Make a pointer to some non-polymorphic value of exactly type klass. |
1092 | static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) { |
1093 | return make(ptr, klass, true, NULL, 0, InstanceBot); |
1094 | } |
1095 | |
1096 | // Make a pointer to some value of type klass with offset. |
1097 | static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) { |
1098 | return make(ptr, klass, false, NULL, offset, InstanceBot); |
1099 | } |
1100 | |
1101 | // Make a pointer to an oop. |
1102 | static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, |
1103 | int instance_id = InstanceBot, |
1104 | const TypePtr* speculative = NULL, |
1105 | int inline_depth = InlineDepthBottom); |
1106 | |
1107 | /** Create constant type for a constant boxed value */ |
1108 | const Type* get_const_boxed_value() const; |
1109 | |
1110 | // If this is a java.lang.Class constant, return the type for it or NULL. |
1111 | // Pass to Type::get_const_type to turn it to a type, which will usually |
1112 | // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc. |
1113 | ciType* java_mirror_type() const; |
1114 | |
1115 | virtual const Type *cast_to_ptr_type(PTR ptr) const; |
1116 | |
1117 | virtual const Type *cast_to_exactness(bool klass_is_exact) const; |
1118 | |
1119 | virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const; |
1120 | |
1121 | virtual const TypeOopPtr *cast_to_nonconst() const; |
1122 | |
1123 | virtual const TypePtr *add_offset( intptr_t offset ) const; |
1124 | |
1125 | // Speculative type helper methods. |
1126 | virtual const Type* remove_speculative() const; |
1127 | virtual const TypePtr* with_inline_depth(int depth) const; |
1128 | virtual const TypePtr* with_instance_id(int instance_id) const; |
1129 | |
1130 | // the core of the computation of the meet of 2 types |
1131 | virtual const Type *xmeet_helper(const Type *t) const; |
1132 | virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const; |
1133 | virtual const Type *xdual() const; // Compute dual right now. |
1134 | |
1135 | // Convenience common pre-built types. |
1136 | static const TypeInstPtr *NOTNULL; |
1137 | static const TypeInstPtr *BOTTOM; |
1138 | static const TypeInstPtr *MIRROR; |
1139 | static const TypeInstPtr *MARK; |
1140 | static const TypeInstPtr *KLASS; |
1141 | #ifndef PRODUCT |
1142 | virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping |
1143 | #endif |
1144 | }; |
1145 | |
1146 | //------------------------------TypeAryPtr------------------------------------- |
1147 | // Class of Java array pointers |
1148 | class TypeAryPtr : public TypeOopPtr { |
1149 | TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, |
1150 | int offset, int instance_id, bool is_autobox_cache, |
1151 | const TypePtr* speculative, int inline_depth) |
1152 | : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id, speculative, inline_depth), |
1153 | _ary(ary), |
1154 | _is_autobox_cache(is_autobox_cache) |
1155 | { |
1156 | #ifdef ASSERT |
1157 | if (k != NULL) { |
1158 | // Verify that specified klass and TypeAryPtr::klass() follow the same rules. |
1159 | ciKlass* ck = compute_klass(true); |
1160 | if (k != ck) { |
1161 | this->dump(); tty->cr(); |
1162 | tty->print(" k: " ); |
1163 | k->print(); tty->cr(); |
1164 | tty->print("ck: " ); |
1165 | if (ck != NULL) ck->print(); |
1166 | else tty->print("<NULL>" ); |
1167 | tty->cr(); |
1168 | assert(false, "unexpected TypeAryPtr::_klass" ); |
1169 | } |
1170 | } |
1171 | #endif |
1172 | } |
1173 | virtual bool eq( const Type *t ) const; |
1174 | virtual int hash() const; // Type specific hashing |
1175 | const TypeAry *_ary; // Array we point into |
1176 | const bool _is_autobox_cache; |
1177 | |
1178 | ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const; |
1179 | |
1180 | public: |
1181 | // Accessors |
1182 | ciKlass* klass() const; |
1183 | const TypeAry* ary() const { return _ary; } |
1184 | const Type* elem() const { return _ary->_elem; } |
1185 | const TypeInt* size() const { return _ary->_size; } |
1186 | bool is_stable() const { return _ary->_stable; } |
1187 | |
1188 | bool is_autobox_cache() const { return _is_autobox_cache; } |
1189 | |
1190 | static const TypeAryPtr *make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, |
1191 | int instance_id = InstanceBot, |
1192 | const TypePtr* speculative = NULL, |
1193 | int inline_depth = InlineDepthBottom); |
1194 | // Constant pointer to array |
1195 | static const TypeAryPtr *make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, |
1196 | int instance_id = InstanceBot, |
1197 | const TypePtr* speculative = NULL, |
1198 | int inline_depth = InlineDepthBottom, bool is_autobox_cache = false); |
1199 | |
1200 | // Return a 'ptr' version of this type |
1201 | virtual const Type *cast_to_ptr_type(PTR ptr) const; |
1202 | |
1203 | virtual const Type *cast_to_exactness(bool klass_is_exact) const; |
1204 | |
1205 | virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const; |
1206 | |
1207 | virtual const TypeOopPtr *cast_to_nonconst() const; |
1208 | |
1209 | virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const; |
1210 | virtual const TypeInt* narrow_size_type(const TypeInt* size) const; |
1211 | |
1212 | virtual bool empty(void) const; // TRUE if type is vacuous |
1213 | virtual const TypePtr *add_offset( intptr_t offset ) const; |
1214 | |
1215 | // Speculative type helper methods. |
1216 | virtual const Type* remove_speculative() const; |
1217 | virtual const TypePtr* with_inline_depth(int depth) const; |
1218 | virtual const TypePtr* with_instance_id(int instance_id) const; |
1219 | |
1220 | // the core of the computation of the meet of 2 types |
1221 | virtual const Type *xmeet_helper(const Type *t) const; |
1222 | virtual const Type *xdual() const; // Compute dual right now. |
1223 | |
1224 | const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const; |
1225 | int stable_dimension() const; |
1226 | |
1227 | const TypeAryPtr* cast_to_autobox_cache(bool cache) const; |
1228 | |
1229 | // Convenience common pre-built types. |
1230 | static const TypeAryPtr *RANGE; |
1231 | static const TypeAryPtr *OOPS; |
1232 | static const TypeAryPtr *NARROWOOPS; |
1233 | static const TypeAryPtr *BYTES; |
1234 | static const TypeAryPtr *SHORTS; |
1235 | static const TypeAryPtr *CHARS; |
1236 | static const TypeAryPtr *INTS; |
1237 | static const TypeAryPtr *LONGS; |
1238 | static const TypeAryPtr *FLOATS; |
1239 | static const TypeAryPtr *DOUBLES; |
1240 | // selects one of the above: |
1241 | static const TypeAryPtr *get_array_body_type(BasicType elem) { |
1242 | assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type" ); |
1243 | return _array_body_type[elem]; |
1244 | } |
1245 | static const TypeAryPtr *_array_body_type[T_CONFLICT+1]; |
1246 | // sharpen the type of an int which is used as an array size |
1247 | #ifdef ASSERT |
1248 | // One type is interface, the other is oop |
1249 | virtual bool interface_vs_oop(const Type *t) const; |
1250 | #endif |
1251 | #ifndef PRODUCT |
1252 | virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping |
1253 | #endif |
1254 | }; |
1255 | |
1256 | //------------------------------TypeMetadataPtr------------------------------------- |
1257 | // Some kind of metadata, either Method*, MethodData* or CPCacheOop |
1258 | class TypeMetadataPtr : public TypePtr { |
1259 | protected: |
1260 | TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset); |
1261 | // Do not allow interface-vs.-noninterface joins to collapse to top. |
1262 | virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; |
1263 | public: |
1264 | virtual bool eq( const Type *t ) const; |
1265 | virtual int hash() const; // Type specific hashing |
1266 | virtual bool singleton(void) const; // TRUE if type is a singleton |
1267 | |
1268 | private: |
1269 | ciMetadata* _metadata; |
1270 | |
1271 | public: |
1272 | static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset); |
1273 | |
1274 | static const TypeMetadataPtr* make(ciMethod* m); |
1275 | static const TypeMetadataPtr* make(ciMethodData* m); |
1276 | |
1277 | ciMetadata* metadata() const { return _metadata; } |
1278 | |
1279 | virtual const Type *cast_to_ptr_type(PTR ptr) const; |
1280 | |
1281 | virtual const TypePtr *add_offset( intptr_t offset ) const; |
1282 | |
1283 | virtual const Type *xmeet( const Type *t ) const; |
1284 | virtual const Type *xdual() const; // Compute dual right now. |
1285 | |
1286 | virtual intptr_t get_con() const; |
1287 | |
1288 | // Convenience common pre-built types. |
1289 | static const TypeMetadataPtr *BOTTOM; |
1290 | |
1291 | #ifndef PRODUCT |
1292 | virtual void dump2( Dict &d, uint depth, outputStream *st ) const; |
1293 | #endif |
1294 | }; |
1295 | |
1296 | //------------------------------TypeKlassPtr----------------------------------- |
1297 | // Class of Java Klass pointers |
1298 | class TypeKlassPtr : public TypePtr { |
1299 | TypeKlassPtr( PTR ptr, ciKlass* klass, int offset ); |
1300 | |
1301 | protected: |
1302 | virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; |
1303 | public: |
1304 | virtual bool eq( const Type *t ) const; |
1305 | virtual int hash() const; // Type specific hashing |
1306 | virtual bool singleton(void) const; // TRUE if type is a singleton |
1307 | private: |
1308 | |
1309 | static const TypeKlassPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact); |
1310 | |
1311 | ciKlass* _klass; |
1312 | |
1313 | // Does the type exclude subclasses of the klass? (Inexact == polymorphic.) |
1314 | bool _klass_is_exact; |
1315 | |
1316 | public: |
1317 | ciSymbol* name() const { return klass()->name(); } |
1318 | |
1319 | ciKlass* klass() const { return _klass; } |
1320 | bool klass_is_exact() const { return _klass_is_exact; } |
1321 | |
1322 | bool is_loaded() const { return klass()->is_loaded(); } |
1323 | |
1324 | // Creates a type given a klass. Correctly handles multi-dimensional arrays |
1325 | // Respects UseUniqueSubclasses. |
1326 | // If the klass is final, the resulting type will be exact. |
1327 | static const TypeKlassPtr* make_from_klass(ciKlass* klass) { |
1328 | return make_from_klass_common(klass, true, false); |
1329 | } |
1330 | // Same as before, but will produce an exact type, even if |
1331 | // the klass is not final, as long as it has exactly one implementation. |
1332 | static const TypeKlassPtr* make_from_klass_unique(ciKlass* klass) { |
1333 | return make_from_klass_common(klass, true, true); |
1334 | } |
1335 | // Same as before, but does not respects UseUniqueSubclasses. |
1336 | // Use this only for creating array element types. |
1337 | static const TypeKlassPtr* make_from_klass_raw(ciKlass* klass) { |
1338 | return make_from_klass_common(klass, false, false); |
1339 | } |
1340 | |
1341 | // Make a generic (unclassed) pointer to metadata. |
1342 | static const TypeKlassPtr* make(PTR ptr, int offset); |
1343 | |
1344 | // ptr to klass 'k' |
1345 | static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); } |
1346 | // ptr to klass 'k' with offset |
1347 | static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); } |
1348 | // ptr to klass 'k' or sub-klass |
1349 | static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset); |
1350 | |
1351 | virtual const Type *cast_to_ptr_type(PTR ptr) const; |
1352 | |
1353 | virtual const Type *cast_to_exactness(bool klass_is_exact) const; |
1354 | |
1355 | // corresponding pointer to instance, for a given class |
1356 | const TypeOopPtr* as_instance_type() const; |
1357 | |
1358 | virtual const TypePtr *add_offset( intptr_t offset ) const; |
1359 | virtual const Type *xmeet( const Type *t ) const; |
1360 | virtual const Type *xdual() const; // Compute dual right now. |
1361 | |
1362 | virtual intptr_t get_con() const; |
1363 | |
1364 | // Convenience common pre-built types. |
1365 | static const TypeKlassPtr* OBJECT; // Not-null object klass or below |
1366 | static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same |
1367 | #ifndef PRODUCT |
1368 | virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping |
1369 | #endif |
1370 | }; |
1371 | |
1372 | class TypeNarrowPtr : public Type { |
1373 | protected: |
1374 | const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR |
1375 | |
1376 | TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t), |
1377 | _ptrtype(ptrtype) { |
1378 | assert(ptrtype->offset() == 0 || |
1379 | ptrtype->offset() == OffsetBot || |
1380 | ptrtype->offset() == OffsetTop, "no real offsets" ); |
1381 | } |
1382 | |
1383 | virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0; |
1384 | virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0; |
1385 | virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0; |
1386 | virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0; |
1387 | // Do not allow interface-vs.-noninterface joins to collapse to top. |
1388 | virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; |
1389 | public: |
1390 | virtual bool eq( const Type *t ) const; |
1391 | virtual int hash() const; // Type specific hashing |
1392 | virtual bool singleton(void) const; // TRUE if type is a singleton |
1393 | |
1394 | virtual const Type *xmeet( const Type *t ) const; |
1395 | virtual const Type *xdual() const; // Compute dual right now. |
1396 | |
1397 | virtual intptr_t get_con() const; |
1398 | |
1399 | virtual bool empty(void) const; // TRUE if type is vacuous |
1400 | |
1401 | // returns the equivalent ptr type for this compressed pointer |
1402 | const TypePtr *get_ptrtype() const { |
1403 | return _ptrtype; |
1404 | } |
1405 | |
1406 | #ifndef PRODUCT |
1407 | virtual void dump2( Dict &d, uint depth, outputStream *st ) const; |
1408 | #endif |
1409 | }; |
1410 | |
1411 | //------------------------------TypeNarrowOop---------------------------------- |
1412 | // A compressed reference to some kind of Oop. This type wraps around |
1413 | // a preexisting TypeOopPtr and forwards most of it's operations to |
1414 | // the underlying type. It's only real purpose is to track the |
1415 | // oopness of the compressed oop value when we expose the conversion |
1416 | // between the normal and the compressed form. |
1417 | class TypeNarrowOop : public TypeNarrowPtr { |
1418 | protected: |
1419 | TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) { |
1420 | } |
1421 | |
1422 | virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const { |
1423 | return t->isa_narrowoop(); |
1424 | } |
1425 | |
1426 | virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const { |
1427 | return t->is_narrowoop(); |
1428 | } |
1429 | |
1430 | virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const { |
1431 | return new TypeNarrowOop(t); |
1432 | } |
1433 | |
1434 | virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const { |
1435 | return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons()); |
1436 | } |
1437 | |
1438 | public: |
1439 | |
1440 | static const TypeNarrowOop *make( const TypePtr* type); |
1441 | |
1442 | static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) { |
1443 | return make(TypeOopPtr::make_from_constant(con, require_constant)); |
1444 | } |
1445 | |
1446 | static const TypeNarrowOop *BOTTOM; |
1447 | static const TypeNarrowOop *NULL_PTR; |
1448 | |
1449 | virtual const Type* remove_speculative() const; |
1450 | virtual const Type* cleanup_speculative() const; |
1451 | |
1452 | #ifndef PRODUCT |
1453 | virtual void dump2( Dict &d, uint depth, outputStream *st ) const; |
1454 | #endif |
1455 | }; |
1456 | |
1457 | //------------------------------TypeNarrowKlass---------------------------------- |
1458 | // A compressed reference to klass pointer. This type wraps around a |
1459 | // preexisting TypeKlassPtr and forwards most of it's operations to |
1460 | // the underlying type. |
1461 | class TypeNarrowKlass : public TypeNarrowPtr { |
1462 | protected: |
1463 | TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) { |
1464 | } |
1465 | |
1466 | virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const { |
1467 | return t->isa_narrowklass(); |
1468 | } |
1469 | |
1470 | virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const { |
1471 | return t->is_narrowklass(); |
1472 | } |
1473 | |
1474 | virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const { |
1475 | return new TypeNarrowKlass(t); |
1476 | } |
1477 | |
1478 | virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const { |
1479 | return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons()); |
1480 | } |
1481 | |
1482 | public: |
1483 | static const TypeNarrowKlass *make( const TypePtr* type); |
1484 | |
1485 | // static const TypeNarrowKlass *BOTTOM; |
1486 | static const TypeNarrowKlass *NULL_PTR; |
1487 | |
1488 | #ifndef PRODUCT |
1489 | virtual void dump2( Dict &d, uint depth, outputStream *st ) const; |
1490 | #endif |
1491 | }; |
1492 | |
1493 | //------------------------------TypeFunc--------------------------------------- |
1494 | // Class of Array Types |
1495 | class TypeFunc : public Type { |
1496 | TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function), _domain(domain), _range(range) {} |
1497 | virtual bool eq( const Type *t ) const; |
1498 | virtual int hash() const; // Type specific hashing |
1499 | virtual bool singleton(void) const; // TRUE if type is a singleton |
1500 | virtual bool empty(void) const; // TRUE if type is vacuous |
1501 | |
1502 | const TypeTuple* const _domain; // Domain of inputs |
1503 | const TypeTuple* const _range; // Range of results |
1504 | |
1505 | public: |
1506 | // Constants are shared among ADLC and VM |
1507 | enum { Control = AdlcVMDeps::Control, |
1508 | I_O = AdlcVMDeps::I_O, |
1509 | Memory = AdlcVMDeps::Memory, |
1510 | FramePtr = AdlcVMDeps::FramePtr, |
1511 | ReturnAdr = AdlcVMDeps::ReturnAdr, |
1512 | Parms = AdlcVMDeps::Parms |
1513 | }; |
1514 | |
1515 | |
1516 | // Accessors: |
1517 | const TypeTuple* domain() const { return _domain; } |
1518 | const TypeTuple* range() const { return _range; } |
1519 | |
1520 | static const TypeFunc *make(ciMethod* method); |
1521 | static const TypeFunc *make(ciSignature signature, const Type* ); |
1522 | static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range); |
1523 | |
1524 | virtual const Type *xmeet( const Type *t ) const; |
1525 | virtual const Type *xdual() const; // Compute dual right now. |
1526 | |
1527 | BasicType return_type() const; |
1528 | |
1529 | #ifndef PRODUCT |
1530 | virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping |
1531 | #endif |
1532 | // Convenience common pre-built types. |
1533 | }; |
1534 | |
1535 | //------------------------------accessors-------------------------------------- |
1536 | inline bool Type::is_ptr_to_narrowoop() const { |
1537 | #ifdef _LP64 |
1538 | return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv()); |
1539 | #else |
1540 | return false; |
1541 | #endif |
1542 | } |
1543 | |
1544 | inline bool Type::is_ptr_to_narrowklass() const { |
1545 | #ifdef _LP64 |
1546 | return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowklass_nv()); |
1547 | #else |
1548 | return false; |
1549 | #endif |
1550 | } |
1551 | |
1552 | inline float Type::getf() const { |
1553 | assert( _base == FloatCon, "Not a FloatCon" ); |
1554 | return ((TypeF*)this)->_f; |
1555 | } |
1556 | |
1557 | inline double Type::getd() const { |
1558 | assert( _base == DoubleCon, "Not a DoubleCon" ); |
1559 | return ((TypeD*)this)->_d; |
1560 | } |
1561 | |
1562 | inline const TypeInt *Type::is_int() const { |
1563 | assert( _base == Int, "Not an Int" ); |
1564 | return (TypeInt*)this; |
1565 | } |
1566 | |
1567 | inline const TypeInt *Type::isa_int() const { |
1568 | return ( _base == Int ? (TypeInt*)this : NULL); |
1569 | } |
1570 | |
1571 | inline const TypeLong *Type::is_long() const { |
1572 | assert( _base == Long, "Not a Long" ); |
1573 | return (TypeLong*)this; |
1574 | } |
1575 | |
1576 | inline const TypeLong *Type::isa_long() const { |
1577 | return ( _base == Long ? (TypeLong*)this : NULL); |
1578 | } |
1579 | |
1580 | inline const TypeF *Type::isa_float() const { |
1581 | return ((_base == FloatTop || |
1582 | _base == FloatCon || |
1583 | _base == FloatBot) ? (TypeF*)this : NULL); |
1584 | } |
1585 | |
1586 | inline const TypeF *Type::is_float_constant() const { |
1587 | assert( _base == FloatCon, "Not a Float" ); |
1588 | return (TypeF*)this; |
1589 | } |
1590 | |
1591 | inline const TypeF *Type::isa_float_constant() const { |
1592 | return ( _base == FloatCon ? (TypeF*)this : NULL); |
1593 | } |
1594 | |
1595 | inline const TypeD *Type::isa_double() const { |
1596 | return ((_base == DoubleTop || |
1597 | _base == DoubleCon || |
1598 | _base == DoubleBot) ? (TypeD*)this : NULL); |
1599 | } |
1600 | |
1601 | inline const TypeD *Type::is_double_constant() const { |
1602 | assert( _base == DoubleCon, "Not a Double" ); |
1603 | return (TypeD*)this; |
1604 | } |
1605 | |
1606 | inline const TypeD *Type::isa_double_constant() const { |
1607 | return ( _base == DoubleCon ? (TypeD*)this : NULL); |
1608 | } |
1609 | |
1610 | inline const TypeTuple *Type::is_tuple() const { |
1611 | assert( _base == Tuple, "Not a Tuple" ); |
1612 | return (TypeTuple*)this; |
1613 | } |
1614 | |
1615 | inline const TypeAry *Type::is_ary() const { |
1616 | assert( _base == Array , "Not an Array" ); |
1617 | return (TypeAry*)this; |
1618 | } |
1619 | |
1620 | inline const TypeVect *Type::is_vect() const { |
1621 | assert( _base >= VectorS && _base <= VectorZ, "Not a Vector" ); |
1622 | return (TypeVect*)this; |
1623 | } |
1624 | |
1625 | inline const TypeVect *Type::isa_vect() const { |
1626 | return (_base >= VectorS && _base <= VectorZ) ? (TypeVect*)this : NULL; |
1627 | } |
1628 | |
1629 | inline const TypePtr *Type::is_ptr() const { |
1630 | // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between. |
1631 | assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer" ); |
1632 | return (TypePtr*)this; |
1633 | } |
1634 | |
1635 | inline const TypePtr *Type::isa_ptr() const { |
1636 | // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between. |
1637 | return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL; |
1638 | } |
1639 | |
1640 | inline const TypeOopPtr *Type::is_oopptr() const { |
1641 | // OopPtr is the first and KlassPtr the last, with no non-oops between. |
1642 | assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ; |
1643 | return (TypeOopPtr*)this; |
1644 | } |
1645 | |
1646 | inline const TypeOopPtr *Type::isa_oopptr() const { |
1647 | // OopPtr is the first and KlassPtr the last, with no non-oops between. |
1648 | return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : NULL; |
1649 | } |
1650 | |
1651 | inline const TypeRawPtr *Type::isa_rawptr() const { |
1652 | return (_base == RawPtr) ? (TypeRawPtr*)this : NULL; |
1653 | } |
1654 | |
1655 | inline const TypeRawPtr *Type::is_rawptr() const { |
1656 | assert( _base == RawPtr, "Not a raw pointer" ); |
1657 | return (TypeRawPtr*)this; |
1658 | } |
1659 | |
1660 | inline const TypeInstPtr *Type::isa_instptr() const { |
1661 | return (_base == InstPtr) ? (TypeInstPtr*)this : NULL; |
1662 | } |
1663 | |
1664 | inline const TypeInstPtr *Type::is_instptr() const { |
1665 | assert( _base == InstPtr, "Not an object pointer" ); |
1666 | return (TypeInstPtr*)this; |
1667 | } |
1668 | |
1669 | inline const TypeAryPtr *Type::isa_aryptr() const { |
1670 | return (_base == AryPtr) ? (TypeAryPtr*)this : NULL; |
1671 | } |
1672 | |
1673 | inline const TypeAryPtr *Type::is_aryptr() const { |
1674 | assert( _base == AryPtr, "Not an array pointer" ); |
1675 | return (TypeAryPtr*)this; |
1676 | } |
1677 | |
1678 | inline const TypeNarrowOop *Type::is_narrowoop() const { |
1679 | // OopPtr is the first and KlassPtr the last, with no non-oops between. |
1680 | assert(_base == NarrowOop, "Not a narrow oop" ) ; |
1681 | return (TypeNarrowOop*)this; |
1682 | } |
1683 | |
1684 | inline const TypeNarrowOop *Type::isa_narrowoop() const { |
1685 | // OopPtr is the first and KlassPtr the last, with no non-oops between. |
1686 | return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL; |
1687 | } |
1688 | |
1689 | inline const TypeNarrowKlass *Type::is_narrowklass() const { |
1690 | assert(_base == NarrowKlass, "Not a narrow oop" ) ; |
1691 | return (TypeNarrowKlass*)this; |
1692 | } |
1693 | |
1694 | inline const TypeNarrowKlass *Type::isa_narrowklass() const { |
1695 | return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : NULL; |
1696 | } |
1697 | |
1698 | inline const TypeMetadataPtr *Type::is_metadataptr() const { |
1699 | // MetadataPtr is the first and CPCachePtr the last |
1700 | assert(_base == MetadataPtr, "Not a metadata pointer" ) ; |
1701 | return (TypeMetadataPtr*)this; |
1702 | } |
1703 | |
1704 | inline const TypeMetadataPtr *Type::isa_metadataptr() const { |
1705 | return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : NULL; |
1706 | } |
1707 | |
1708 | inline const TypeKlassPtr *Type::isa_klassptr() const { |
1709 | return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL; |
1710 | } |
1711 | |
1712 | inline const TypeKlassPtr *Type::is_klassptr() const { |
1713 | assert( _base == KlassPtr, "Not a klass pointer" ); |
1714 | return (TypeKlassPtr*)this; |
1715 | } |
1716 | |
1717 | inline const TypePtr* Type::make_ptr() const { |
1718 | return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() : |
1719 | ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() : |
1720 | isa_ptr()); |
1721 | } |
1722 | |
1723 | inline const TypeOopPtr* Type::make_oopptr() const { |
1724 | return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->isa_oopptr() : isa_oopptr(); |
1725 | } |
1726 | |
1727 | inline const TypeNarrowOop* Type::make_narrowoop() const { |
1728 | return (_base == NarrowOop) ? is_narrowoop() : |
1729 | (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL); |
1730 | } |
1731 | |
1732 | inline const TypeNarrowKlass* Type::make_narrowklass() const { |
1733 | return (_base == NarrowKlass) ? is_narrowklass() : |
1734 | (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : NULL); |
1735 | } |
1736 | |
1737 | inline bool Type::is_floatingpoint() const { |
1738 | if( (_base == FloatCon) || (_base == FloatBot) || |
1739 | (_base == DoubleCon) || (_base == DoubleBot) ) |
1740 | return true; |
1741 | return false; |
1742 | } |
1743 | |
1744 | inline bool Type::is_ptr_to_boxing_obj() const { |
1745 | const TypeInstPtr* tp = isa_instptr(); |
1746 | return (tp != NULL) && (tp->offset() == 0) && |
1747 | tp->klass()->is_instance_klass() && |
1748 | tp->klass()->as_instance_klass()->is_box_klass(); |
1749 | } |
1750 | |
1751 | |
1752 | // =============================================================== |
1753 | // Things that need to be 64-bits in the 64-bit build but |
1754 | // 32-bits in the 32-bit build. Done this way to get full |
1755 | // optimization AND strong typing. |
1756 | #ifdef _LP64 |
1757 | |
1758 | // For type queries and asserts |
1759 | #define is_intptr_t is_long |
1760 | #define isa_intptr_t isa_long |
1761 | #define find_intptr_t_type find_long_type |
1762 | #define find_intptr_t_con find_long_con |
1763 | #define TypeX TypeLong |
1764 | #define Type_X Type::Long |
1765 | #define TypeX_X TypeLong::LONG |
1766 | #define TypeX_ZERO TypeLong::ZERO |
1767 | // For 'ideal_reg' machine registers |
1768 | #define Op_RegX Op_RegL |
1769 | // For phase->intcon variants |
1770 | #define MakeConX longcon |
1771 | #define ConXNode ConLNode |
1772 | // For array index arithmetic |
1773 | #define MulXNode MulLNode |
1774 | #define AndXNode AndLNode |
1775 | #define OrXNode OrLNode |
1776 | #define CmpXNode CmpLNode |
1777 | #define SubXNode SubLNode |
1778 | #define LShiftXNode LShiftLNode |
1779 | // For object size computation: |
1780 | #define AddXNode AddLNode |
1781 | #define RShiftXNode RShiftLNode |
1782 | // For card marks and hashcodes |
1783 | #define URShiftXNode URShiftLNode |
1784 | // UseOptoBiasInlining |
1785 | #define XorXNode XorLNode |
1786 | #define StoreXConditionalNode StoreLConditionalNode |
1787 | #define LoadXNode LoadLNode |
1788 | #define StoreXNode StoreLNode |
1789 | // Opcodes |
1790 | #define Op_LShiftX Op_LShiftL |
1791 | #define Op_AndX Op_AndL |
1792 | #define Op_AddX Op_AddL |
1793 | #define Op_SubX Op_SubL |
1794 | #define Op_XorX Op_XorL |
1795 | #define Op_URShiftX Op_URShiftL |
1796 | // conversions |
1797 | #define ConvI2X(x) ConvI2L(x) |
1798 | #define ConvL2X(x) (x) |
1799 | #define ConvX2I(x) ConvL2I(x) |
1800 | #define ConvX2L(x) (x) |
1801 | #define ConvX2UL(x) (x) |
1802 | |
1803 | #else |
1804 | |
1805 | // For type queries and asserts |
1806 | #define is_intptr_t is_int |
1807 | #define isa_intptr_t isa_int |
1808 | #define find_intptr_t_type find_int_type |
1809 | #define find_intptr_t_con find_int_con |
1810 | #define TypeX TypeInt |
1811 | #define Type_X Type::Int |
1812 | #define TypeX_X TypeInt::INT |
1813 | #define TypeX_ZERO TypeInt::ZERO |
1814 | // For 'ideal_reg' machine registers |
1815 | #define Op_RegX Op_RegI |
1816 | // For phase->intcon variants |
1817 | #define MakeConX intcon |
1818 | #define ConXNode ConINode |
1819 | // For array index arithmetic |
1820 | #define MulXNode MulINode |
1821 | #define AndXNode AndINode |
1822 | #define OrXNode OrINode |
1823 | #define CmpXNode CmpINode |
1824 | #define SubXNode SubINode |
1825 | #define LShiftXNode LShiftINode |
1826 | // For object size computation: |
1827 | #define AddXNode AddINode |
1828 | #define RShiftXNode RShiftINode |
1829 | // For card marks and hashcodes |
1830 | #define URShiftXNode URShiftINode |
1831 | // UseOptoBiasInlining |
1832 | #define XorXNode XorINode |
1833 | #define StoreXConditionalNode StoreIConditionalNode |
1834 | #define LoadXNode LoadINode |
1835 | #define StoreXNode StoreINode |
1836 | // Opcodes |
1837 | #define Op_LShiftX Op_LShiftI |
1838 | #define Op_AndX Op_AndI |
1839 | #define Op_AddX Op_AddI |
1840 | #define Op_SubX Op_SubI |
1841 | #define Op_XorX Op_XorI |
1842 | #define Op_URShiftX Op_URShiftI |
1843 | // conversions |
1844 | #define ConvI2X(x) (x) |
1845 | #define ConvL2X(x) ConvL2I(x) |
1846 | #define ConvX2I(x) (x) |
1847 | #define ConvX2L(x) ConvI2L(x) |
1848 | #define ConvX2UL(x) ConvI2UL(x) |
1849 | |
1850 | #endif |
1851 | |
1852 | #endif // SHARE_OPTO_TYPE_HPP |
1853 | |