1/*
2 * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_OPTO_TYPE_HPP
26#define SHARE_OPTO_TYPE_HPP
27
28#include "opto/adlcVMDeps.hpp"
29#include "runtime/handles.hpp"
30
31// Portions of code courtesy of Clifford Click
32
33// Optimization - Graph Style
34
35
36// This class defines a Type lattice. The lattice is used in the constant
37// propagation algorithms, and for some type-checking of the iloc code.
38// Basic types include RSD's (lower bound, upper bound, stride for integers),
39// float & double precision constants, sets of data-labels and code-labels.
40// The complete lattice is described below. Subtypes have no relationship to
41// up or down in the lattice; that is entirely determined by the behavior of
42// the MEET/JOIN functions.
43
44class Dict;
45class Type;
46class TypeD;
47class TypeF;
48class TypeInt;
49class TypeLong;
50class TypeNarrowPtr;
51class TypeNarrowOop;
52class TypeNarrowKlass;
53class TypeAry;
54class TypeTuple;
55class TypeVect;
56class TypeVectS;
57class TypeVectD;
58class TypeVectX;
59class TypeVectY;
60class TypeVectZ;
61class TypePtr;
62class TypeRawPtr;
63class TypeOopPtr;
64class TypeInstPtr;
65class TypeAryPtr;
66class TypeKlassPtr;
67class TypeMetadataPtr;
68
69//------------------------------Type-------------------------------------------
70// Basic Type object, represents a set of primitive Values.
71// Types are hash-cons'd into a private class dictionary, so only one of each
72// different kind of Type exists. Types are never modified after creation, so
73// all their interesting fields are constant.
74class Type {
75 friend class VMStructs;
76
77public:
78 enum TYPES {
79 Bad=0, // Type check
80 Control, // Control of code (not in lattice)
81 Top, // Top of the lattice
82 Int, // Integer range (lo-hi)
83 Long, // Long integer range (lo-hi)
84 Half, // Placeholder half of doubleword
85 NarrowOop, // Compressed oop pointer
86 NarrowKlass, // Compressed klass pointer
87
88 Tuple, // Method signature or object layout
89 Array, // Array types
90 VectorS, // 32bit Vector types
91 VectorD, // 64bit Vector types
92 VectorX, // 128bit Vector types
93 VectorY, // 256bit Vector types
94 VectorZ, // 512bit Vector types
95
96 AnyPtr, // Any old raw, klass, inst, or array pointer
97 RawPtr, // Raw (non-oop) pointers
98 OopPtr, // Any and all Java heap entities
99 InstPtr, // Instance pointers (non-array objects)
100 AryPtr, // Array pointers
101 // (Ptr order matters: See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
102
103 MetadataPtr, // Generic metadata
104 KlassPtr, // Klass pointers
105
106 Function, // Function signature
107 Abio, // Abstract I/O
108 Return_Address, // Subroutine return address
109 Memory, // Abstract store
110 FloatTop, // No float value
111 FloatCon, // Floating point constant
112 FloatBot, // Any float value
113 DoubleTop, // No double value
114 DoubleCon, // Double precision constant
115 DoubleBot, // Any double value
116 Bottom, // Bottom of lattice
117 lastype // Bogus ending type (not in lattice)
118 };
119
120 // Signal values for offsets from a base pointer
121 enum OFFSET_SIGNALS {
122 OffsetTop = -2000000000, // undefined offset
123 OffsetBot = -2000000001 // any possible offset
124 };
125
126 // Min and max WIDEN values.
127 enum WIDEN {
128 WidenMin = 0,
129 WidenMax = 3
130 };
131
132private:
133 typedef struct {
134 TYPES dual_type;
135 BasicType basic_type;
136 const char* msg;
137 bool isa_oop;
138 uint ideal_reg;
139 relocInfo::relocType reloc;
140 } TypeInfo;
141
142 // Dictionary of types shared among compilations.
143 static Dict* _shared_type_dict;
144 static const TypeInfo _type_info[];
145
146 static int uhash( const Type *const t );
147 // Structural equality check. Assumes that cmp() has already compared
148 // the _base types and thus knows it can cast 't' appropriately.
149 virtual bool eq( const Type *t ) const;
150
151 // Top-level hash-table of types
152 static Dict *type_dict() {
153 return Compile::current()->type_dict();
154 }
155
156 // DUAL operation: reflect around lattice centerline. Used instead of
157 // join to ensure my lattice is symmetric up and down. Dual is computed
158 // lazily, on demand, and cached in _dual.
159 const Type *_dual; // Cached dual value
160 // Table for efficient dualing of base types
161 static const TYPES dual_type[lastype];
162
163#ifdef ASSERT
164 // One type is interface, the other is oop
165 virtual bool interface_vs_oop_helper(const Type *t) const;
166#endif
167
168 const Type *meet_helper(const Type *t, bool include_speculative) const;
169
170protected:
171 // Each class of type is also identified by its base.
172 const TYPES _base; // Enum of Types type
173
174 Type( TYPES t ) : _dual(NULL), _base(t) {} // Simple types
175 // ~Type(); // Use fast deallocation
176 const Type *hashcons(); // Hash-cons the type
177 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
178 const Type *join_helper(const Type *t, bool include_speculative) const {
179 return dual()->meet_helper(t->dual(), include_speculative)->dual();
180 }
181
182public:
183
184 inline void* operator new( size_t x ) throw() {
185 Compile* compile = Compile::current();
186 compile->set_type_last_size(x);
187 void *temp = compile->type_arena()->Amalloc_D(x);
188 compile->set_type_hwm(temp);
189 return temp;
190 }
191 inline void operator delete( void* ptr ) {
192 Compile* compile = Compile::current();
193 compile->type_arena()->Afree(ptr,compile->type_last_size());
194 }
195
196 // Initialize the type system for a particular compilation.
197 static void Initialize(Compile* compile);
198
199 // Initialize the types shared by all compilations.
200 static void Initialize_shared(Compile* compile);
201
202 TYPES base() const {
203 assert(_base > Bad && _base < lastype, "sanity");
204 return _base;
205 }
206
207 // Create a new hash-consd type
208 static const Type *make(enum TYPES);
209 // Test for equivalence of types
210 static int cmp( const Type *const t1, const Type *const t2 );
211 // Test for higher or equal in lattice
212 // Variant that drops the speculative part of the types
213 bool higher_equal(const Type *t) const {
214 return !cmp(meet(t),t->remove_speculative());
215 }
216 // Variant that keeps the speculative part of the types
217 bool higher_equal_speculative(const Type *t) const {
218 return !cmp(meet_speculative(t),t);
219 }
220
221 // MEET operation; lower in lattice.
222 // Variant that drops the speculative part of the types
223 const Type *meet(const Type *t) const {
224 return meet_helper(t, false);
225 }
226 // Variant that keeps the speculative part of the types
227 const Type *meet_speculative(const Type *t) const {
228 return meet_helper(t, true)->cleanup_speculative();
229 }
230 // WIDEN: 'widens' for Ints and other range types
231 virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
232 // NARROW: complement for widen, used by pessimistic phases
233 virtual const Type *narrow( const Type *old ) const { return this; }
234
235 // DUAL operation: reflect around lattice centerline. Used instead of
236 // join to ensure my lattice is symmetric up and down.
237 const Type *dual() const { return _dual; }
238
239 // Compute meet dependent on base type
240 virtual const Type *xmeet( const Type *t ) const;
241 virtual const Type *xdual() const; // Compute dual right now.
242
243 // JOIN operation; higher in lattice. Done by finding the dual of the
244 // meet of the dual of the 2 inputs.
245 // Variant that drops the speculative part of the types
246 const Type *join(const Type *t) const {
247 return join_helper(t, false);
248 }
249 // Variant that keeps the speculative part of the types
250 const Type *join_speculative(const Type *t) const {
251 return join_helper(t, true)->cleanup_speculative();
252 }
253
254 // Modified version of JOIN adapted to the needs Node::Value.
255 // Normalizes all empty values to TOP. Does not kill _widen bits.
256 // Currently, it also works around limitations involving interface types.
257 // Variant that drops the speculative part of the types
258 const Type *filter(const Type *kills) const {
259 return filter_helper(kills, false);
260 }
261 // Variant that keeps the speculative part of the types
262 const Type *filter_speculative(const Type *kills) const {
263 return filter_helper(kills, true)->cleanup_speculative();
264 }
265
266#ifdef ASSERT
267 // One type is interface, the other is oop
268 virtual bool interface_vs_oop(const Type *t) const;
269#endif
270
271 // Returns true if this pointer points at memory which contains a
272 // compressed oop references.
273 bool is_ptr_to_narrowoop() const;
274 bool is_ptr_to_narrowklass() const;
275
276 bool is_ptr_to_boxing_obj() const;
277
278
279 // Convenience access
280 float getf() const;
281 double getd() const;
282
283 const TypeInt *is_int() const;
284 const TypeInt *isa_int() const; // Returns NULL if not an Int
285 const TypeLong *is_long() const;
286 const TypeLong *isa_long() const; // Returns NULL if not a Long
287 const TypeD *isa_double() const; // Returns NULL if not a Double{Top,Con,Bot}
288 const TypeD *is_double_constant() const; // Asserts it is a DoubleCon
289 const TypeD *isa_double_constant() const; // Returns NULL if not a DoubleCon
290 const TypeF *isa_float() const; // Returns NULL if not a Float{Top,Con,Bot}
291 const TypeF *is_float_constant() const; // Asserts it is a FloatCon
292 const TypeF *isa_float_constant() const; // Returns NULL if not a FloatCon
293 const TypeTuple *is_tuple() const; // Collection of fields, NOT a pointer
294 const TypeAry *is_ary() const; // Array, NOT array pointer
295 const TypeVect *is_vect() const; // Vector
296 const TypeVect *isa_vect() const; // Returns NULL if not a Vector
297 const TypePtr *is_ptr() const; // Asserts it is a ptr type
298 const TypePtr *isa_ptr() const; // Returns NULL if not ptr type
299 const TypeRawPtr *isa_rawptr() const; // NOT Java oop
300 const TypeRawPtr *is_rawptr() const; // Asserts is rawptr
301 const TypeNarrowOop *is_narrowoop() const; // Java-style GC'd pointer
302 const TypeNarrowOop *isa_narrowoop() const; // Returns NULL if not oop ptr type
303 const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
304 const TypeNarrowKlass *isa_narrowklass() const;// Returns NULL if not oop ptr type
305 const TypeOopPtr *isa_oopptr() const; // Returns NULL if not oop ptr type
306 const TypeOopPtr *is_oopptr() const; // Java-style GC'd pointer
307 const TypeInstPtr *isa_instptr() const; // Returns NULL if not InstPtr
308 const TypeInstPtr *is_instptr() const; // Instance
309 const TypeAryPtr *isa_aryptr() const; // Returns NULL if not AryPtr
310 const TypeAryPtr *is_aryptr() const; // Array oop
311
312 const TypeMetadataPtr *isa_metadataptr() const; // Returns NULL if not oop ptr type
313 const TypeMetadataPtr *is_metadataptr() const; // Java-style GC'd pointer
314 const TypeKlassPtr *isa_klassptr() const; // Returns NULL if not KlassPtr
315 const TypeKlassPtr *is_klassptr() const; // assert if not KlassPtr
316
317 virtual bool is_finite() const; // Has a finite value
318 virtual bool is_nan() const; // Is not a number (NaN)
319
320 // Returns this ptr type or the equivalent ptr type for this compressed pointer.
321 const TypePtr* make_ptr() const;
322
323 // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
324 // Asserts if the underlying type is not an oopptr or narrowoop.
325 const TypeOopPtr* make_oopptr() const;
326
327 // Returns this compressed pointer or the equivalent compressed version
328 // of this pointer type.
329 const TypeNarrowOop* make_narrowoop() const;
330
331 // Returns this compressed klass pointer or the equivalent
332 // compressed version of this pointer type.
333 const TypeNarrowKlass* make_narrowklass() const;
334
335 // Special test for register pressure heuristic
336 bool is_floatingpoint() const; // True if Float or Double base type
337
338 // Do you have memory, directly or through a tuple?
339 bool has_memory( ) const;
340
341 // TRUE if type is a singleton
342 virtual bool singleton(void) const;
343
344 // TRUE if type is above the lattice centerline, and is therefore vacuous
345 virtual bool empty(void) const;
346
347 // Return a hash for this type. The hash function is public so ConNode
348 // (constants) can hash on their constant, which is represented by a Type.
349 virtual int hash() const;
350
351 // Map ideal registers (machine types) to ideal types
352 static const Type *mreg2type[];
353
354 // Printing, statistics
355#ifndef PRODUCT
356 void dump_on(outputStream *st) const;
357 void dump() const {
358 dump_on(tty);
359 }
360 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
361 static void dump_stats();
362
363 static const char* str(const Type* t);
364#endif
365 void typerr(const Type *t) const; // Mixing types error
366
367 // Create basic type
368 static const Type* get_const_basic_type(BasicType type) {
369 assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
370 return _const_basic_type[type];
371 }
372
373 // For two instance arrays of same dimension, return the base element types.
374 // Otherwise or if the arrays have different dimensions, return NULL.
375 static void get_arrays_base_elements(const Type *a1, const Type *a2,
376 const TypeInstPtr **e1, const TypeInstPtr **e2);
377
378 // Mapping to the array element's basic type.
379 BasicType array_element_basic_type() const;
380
381 // Create standard type for a ciType:
382 static const Type* get_const_type(ciType* type);
383
384 // Create standard zero value:
385 static const Type* get_zero_type(BasicType type) {
386 assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
387 return _zero_type[type];
388 }
389
390 // Report if this is a zero value (not top).
391 bool is_zero_type() const {
392 BasicType type = basic_type();
393 if (type == T_VOID || type >= T_CONFLICT)
394 return false;
395 else
396 return (this == _zero_type[type]);
397 }
398
399 // Convenience common pre-built types.
400 static const Type *ABIO;
401 static const Type *BOTTOM;
402 static const Type *CONTROL;
403 static const Type *DOUBLE;
404 static const Type *FLOAT;
405 static const Type *HALF;
406 static const Type *MEMORY;
407 static const Type *MULTI;
408 static const Type *RETURN_ADDRESS;
409 static const Type *TOP;
410
411 // Mapping from compiler type to VM BasicType
412 BasicType basic_type() const { return _type_info[_base].basic_type; }
413 uint ideal_reg() const { return _type_info[_base].ideal_reg; }
414 const char* msg() const { return _type_info[_base].msg; }
415 bool isa_oop_ptr() const { return _type_info[_base].isa_oop; }
416 relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
417
418 // Mapping from CI type system to compiler type:
419 static const Type* get_typeflow_type(ciType* type);
420
421 static const Type* make_from_constant(ciConstant constant,
422 bool require_constant = false,
423 int stable_dimension = 0,
424 bool is_narrow = false,
425 bool is_autobox_cache = false);
426
427 static const Type* make_constant_from_field(ciInstance* holder,
428 int off,
429 bool is_unsigned_load,
430 BasicType loadbt);
431
432 static const Type* make_constant_from_field(ciField* field,
433 ciInstance* holder,
434 BasicType loadbt,
435 bool is_unsigned_load);
436
437 static const Type* make_constant_from_array_element(ciArray* array,
438 int off,
439 int stable_dimension,
440 BasicType loadbt,
441 bool is_unsigned_load);
442
443 // Speculative type helper methods. See TypePtr.
444 virtual const TypePtr* speculative() const { return NULL; }
445 virtual ciKlass* speculative_type() const { return NULL; }
446 virtual ciKlass* speculative_type_not_null() const { return NULL; }
447 virtual bool speculative_maybe_null() const { return true; }
448 virtual bool speculative_always_null() const { return true; }
449 virtual const Type* remove_speculative() const { return this; }
450 virtual const Type* cleanup_speculative() const { return this; }
451 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return exact_kls != NULL; }
452 virtual bool would_improve_ptr(ProfilePtrKind ptr_kind) const { return ptr_kind == ProfileAlwaysNull || ptr_kind == ProfileNeverNull; }
453 const Type* maybe_remove_speculative(bool include_speculative) const;
454
455 virtual bool maybe_null() const { return true; }
456
457private:
458 // support arrays
459 static const BasicType _basic_type[];
460 static const Type* _zero_type[T_CONFLICT+1];
461 static const Type* _const_basic_type[T_CONFLICT+1];
462};
463
464//------------------------------TypeF------------------------------------------
465// Class of Float-Constant Types.
466class TypeF : public Type {
467 TypeF( float f ) : Type(FloatCon), _f(f) {};
468public:
469 virtual bool eq( const Type *t ) const;
470 virtual int hash() const; // Type specific hashing
471 virtual bool singleton(void) const; // TRUE if type is a singleton
472 virtual bool empty(void) const; // TRUE if type is vacuous
473public:
474 const float _f; // Float constant
475
476 static const TypeF *make(float f);
477
478 virtual bool is_finite() const; // Has a finite value
479 virtual bool is_nan() const; // Is not a number (NaN)
480
481 virtual const Type *xmeet( const Type *t ) const;
482 virtual const Type *xdual() const; // Compute dual right now.
483 // Convenience common pre-built types.
484 static const TypeF *ZERO; // positive zero only
485 static const TypeF *ONE;
486 static const TypeF *POS_INF;
487 static const TypeF *NEG_INF;
488#ifndef PRODUCT
489 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
490#endif
491};
492
493//------------------------------TypeD------------------------------------------
494// Class of Double-Constant Types.
495class TypeD : public Type {
496 TypeD( double d ) : Type(DoubleCon), _d(d) {};
497public:
498 virtual bool eq( const Type *t ) const;
499 virtual int hash() const; // Type specific hashing
500 virtual bool singleton(void) const; // TRUE if type is a singleton
501 virtual bool empty(void) const; // TRUE if type is vacuous
502public:
503 const double _d; // Double constant
504
505 static const TypeD *make(double d);
506
507 virtual bool is_finite() const; // Has a finite value
508 virtual bool is_nan() const; // Is not a number (NaN)
509
510 virtual const Type *xmeet( const Type *t ) const;
511 virtual const Type *xdual() const; // Compute dual right now.
512 // Convenience common pre-built types.
513 static const TypeD *ZERO; // positive zero only
514 static const TypeD *ONE;
515 static const TypeD *POS_INF;
516 static const TypeD *NEG_INF;
517#ifndef PRODUCT
518 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
519#endif
520};
521
522//------------------------------TypeInt----------------------------------------
523// Class of integer ranges, the set of integers between a lower bound and an
524// upper bound, inclusive.
525class TypeInt : public Type {
526 TypeInt( jint lo, jint hi, int w );
527protected:
528 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
529
530public:
531 typedef jint NativeType;
532 virtual bool eq( const Type *t ) const;
533 virtual int hash() const; // Type specific hashing
534 virtual bool singleton(void) const; // TRUE if type is a singleton
535 virtual bool empty(void) const; // TRUE if type is vacuous
536 const jint _lo, _hi; // Lower bound, upper bound
537 const short _widen; // Limit on times we widen this sucker
538
539 static const TypeInt *make(jint lo);
540 // must always specify w
541 static const TypeInt *make(jint lo, jint hi, int w);
542
543 // Check for single integer
544 int is_con() const { return _lo==_hi; }
545 bool is_con(int i) const { return is_con() && _lo == i; }
546 jint get_con() const { assert( is_con(), "" ); return _lo; }
547
548 virtual bool is_finite() const; // Has a finite value
549
550 virtual const Type *xmeet( const Type *t ) const;
551 virtual const Type *xdual() const; // Compute dual right now.
552 virtual const Type *widen( const Type *t, const Type* limit_type ) const;
553 virtual const Type *narrow( const Type *t ) const;
554 // Do not kill _widen bits.
555 // Convenience common pre-built types.
556 static const TypeInt *MINUS_1;
557 static const TypeInt *ZERO;
558 static const TypeInt *ONE;
559 static const TypeInt *BOOL;
560 static const TypeInt *CC;
561 static const TypeInt *CC_LT; // [-1] == MINUS_1
562 static const TypeInt *CC_GT; // [1] == ONE
563 static const TypeInt *CC_EQ; // [0] == ZERO
564 static const TypeInt *CC_LE; // [-1,0]
565 static const TypeInt *CC_GE; // [0,1] == BOOL (!)
566 static const TypeInt *BYTE;
567 static const TypeInt *UBYTE;
568 static const TypeInt *CHAR;
569 static const TypeInt *SHORT;
570 static const TypeInt *POS;
571 static const TypeInt *POS1;
572 static const TypeInt *INT;
573 static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
574 static const TypeInt *TYPE_DOMAIN; // alias for TypeInt::INT
575
576 static const TypeInt *as_self(const Type *t) { return t->is_int(); }
577#ifndef PRODUCT
578 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
579#endif
580};
581
582
583//------------------------------TypeLong---------------------------------------
584// Class of long integer ranges, the set of integers between a lower bound and
585// an upper bound, inclusive.
586class TypeLong : public Type {
587 TypeLong( jlong lo, jlong hi, int w );
588protected:
589 // Do not kill _widen bits.
590 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
591public:
592 typedef jlong NativeType;
593 virtual bool eq( const Type *t ) const;
594 virtual int hash() const; // Type specific hashing
595 virtual bool singleton(void) const; // TRUE if type is a singleton
596 virtual bool empty(void) const; // TRUE if type is vacuous
597public:
598 const jlong _lo, _hi; // Lower bound, upper bound
599 const short _widen; // Limit on times we widen this sucker
600
601 static const TypeLong *make(jlong lo);
602 // must always specify w
603 static const TypeLong *make(jlong lo, jlong hi, int w);
604
605 // Check for single integer
606 int is_con() const { return _lo==_hi; }
607 bool is_con(int i) const { return is_con() && _lo == i; }
608 jlong get_con() const { assert( is_con(), "" ); return _lo; }
609
610 // Check for positive 32-bit value.
611 int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; }
612
613 virtual bool is_finite() const; // Has a finite value
614
615
616 virtual const Type *xmeet( const Type *t ) const;
617 virtual const Type *xdual() const; // Compute dual right now.
618 virtual const Type *widen( const Type *t, const Type* limit_type ) const;
619 virtual const Type *narrow( const Type *t ) const;
620 // Convenience common pre-built types.
621 static const TypeLong *MINUS_1;
622 static const TypeLong *ZERO;
623 static const TypeLong *ONE;
624 static const TypeLong *POS;
625 static const TypeLong *LONG;
626 static const TypeLong *INT; // 32-bit subrange [min_jint..max_jint]
627 static const TypeLong *UINT; // 32-bit unsigned [0..max_juint]
628 static const TypeLong *TYPE_DOMAIN; // alias for TypeLong::LONG
629
630 // static convenience methods.
631 static const TypeLong *as_self(const Type *t) { return t->is_long(); }
632
633#ifndef PRODUCT
634 virtual void dump2( Dict &d, uint, outputStream *st ) const;// Specialized per-Type dumping
635#endif
636};
637
638//------------------------------TypeTuple--------------------------------------
639// Class of Tuple Types, essentially type collections for function signatures
640// and class layouts. It happens to also be a fast cache for the HotSpot
641// signature types.
642class TypeTuple : public Type {
643 TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
644
645 const uint _cnt; // Count of fields
646 const Type ** const _fields; // Array of field types
647
648public:
649 virtual bool eq( const Type *t ) const;
650 virtual int hash() const; // Type specific hashing
651 virtual bool singleton(void) const; // TRUE if type is a singleton
652 virtual bool empty(void) const; // TRUE if type is vacuous
653
654 // Accessors:
655 uint cnt() const { return _cnt; }
656 const Type* field_at(uint i) const {
657 assert(i < _cnt, "oob");
658 return _fields[i];
659 }
660 void set_field_at(uint i, const Type* t) {
661 assert(i < _cnt, "oob");
662 _fields[i] = t;
663 }
664
665 static const TypeTuple *make( uint cnt, const Type **fields );
666 static const TypeTuple *make_range(ciSignature *sig);
667 static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
668
669 // Subroutine call type with space allocated for argument types
670 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
671 static const Type **fields( uint arg_cnt );
672
673 virtual const Type *xmeet( const Type *t ) const;
674 virtual const Type *xdual() const; // Compute dual right now.
675 // Convenience common pre-built types.
676 static const TypeTuple *IFBOTH;
677 static const TypeTuple *IFFALSE;
678 static const TypeTuple *IFTRUE;
679 static const TypeTuple *IFNEITHER;
680 static const TypeTuple *LOOPBODY;
681 static const TypeTuple *MEMBAR;
682 static const TypeTuple *STORECONDITIONAL;
683 static const TypeTuple *START_I2C;
684 static const TypeTuple *INT_PAIR;
685 static const TypeTuple *LONG_PAIR;
686 static const TypeTuple *INT_CC_PAIR;
687 static const TypeTuple *LONG_CC_PAIR;
688#ifndef PRODUCT
689 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
690#endif
691};
692
693//------------------------------TypeAry----------------------------------------
694// Class of Array Types
695class TypeAry : public Type {
696 TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array),
697 _elem(elem), _size(size), _stable(stable) {}
698public:
699 virtual bool eq( const Type *t ) const;
700 virtual int hash() const; // Type specific hashing
701 virtual bool singleton(void) const; // TRUE if type is a singleton
702 virtual bool empty(void) const; // TRUE if type is vacuous
703
704private:
705 const Type *_elem; // Element type of array
706 const TypeInt *_size; // Elements in array
707 const bool _stable; // Are elements @Stable?
708 friend class TypeAryPtr;
709
710public:
711 static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);
712
713 virtual const Type *xmeet( const Type *t ) const;
714 virtual const Type *xdual() const; // Compute dual right now.
715 bool ary_must_be_exact() const; // true if arrays of such are never generic
716 virtual const Type* remove_speculative() const;
717 virtual const Type* cleanup_speculative() const;
718#ifdef ASSERT
719 // One type is interface, the other is oop
720 virtual bool interface_vs_oop(const Type *t) const;
721#endif
722#ifndef PRODUCT
723 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping
724#endif
725};
726
727//------------------------------TypeVect---------------------------------------
728// Class of Vector Types
729class TypeVect : public Type {
730 const Type* _elem; // Vector's element type
731 const uint _length; // Elements in vector (power of 2)
732
733protected:
734 TypeVect(TYPES t, const Type* elem, uint length) : Type(t),
735 _elem(elem), _length(length) {}
736
737public:
738 const Type* element_type() const { return _elem; }
739 BasicType element_basic_type() const { return _elem->array_element_basic_type(); }
740 uint length() const { return _length; }
741 uint length_in_bytes() const {
742 return _length * type2aelembytes(element_basic_type());
743 }
744
745 virtual bool eq(const Type *t) const;
746 virtual int hash() const; // Type specific hashing
747 virtual bool singleton(void) const; // TRUE if type is a singleton
748 virtual bool empty(void) const; // TRUE if type is vacuous
749
750 static const TypeVect *make(const BasicType elem_bt, uint length) {
751 // Use bottom primitive type.
752 return make(get_const_basic_type(elem_bt), length);
753 }
754 // Used directly by Replicate nodes to construct singleton vector.
755 static const TypeVect *make(const Type* elem, uint length);
756
757 virtual const Type *xmeet( const Type *t) const;
758 virtual const Type *xdual() const; // Compute dual right now.
759
760 static const TypeVect *VECTS;
761 static const TypeVect *VECTD;
762 static const TypeVect *VECTX;
763 static const TypeVect *VECTY;
764 static const TypeVect *VECTZ;
765
766#ifndef PRODUCT
767 virtual void dump2(Dict &d, uint, outputStream *st) const; // Specialized per-Type dumping
768#endif
769};
770
771class TypeVectS : public TypeVect {
772 friend class TypeVect;
773 TypeVectS(const Type* elem, uint length) : TypeVect(VectorS, elem, length) {}
774};
775
776class TypeVectD : public TypeVect {
777 friend class TypeVect;
778 TypeVectD(const Type* elem, uint length) : TypeVect(VectorD, elem, length) {}
779};
780
781class TypeVectX : public TypeVect {
782 friend class TypeVect;
783 TypeVectX(const Type* elem, uint length) : TypeVect(VectorX, elem, length) {}
784};
785
786class TypeVectY : public TypeVect {
787 friend class TypeVect;
788 TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {}
789};
790
791class TypeVectZ : public TypeVect {
792 friend class TypeVect;
793 TypeVectZ(const Type* elem, uint length) : TypeVect(VectorZ, elem, length) {}
794};
795
796//------------------------------TypePtr----------------------------------------
797// Class of machine Pointer Types: raw data, instances or arrays.
798// If the _base enum is AnyPtr, then this refers to all of the above.
799// Otherwise the _base will indicate which subset of pointers is affected,
800// and the class will be inherited from.
801class TypePtr : public Type {
802 friend class TypeNarrowPtr;
803public:
804 enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
805protected:
806 TypePtr(TYPES t, PTR ptr, int offset,
807 const TypePtr* speculative = NULL,
808 int inline_depth = InlineDepthBottom) :
809 Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset),
810 _ptr(ptr) {}
811 static const PTR ptr_meet[lastPTR][lastPTR];
812 static const PTR ptr_dual[lastPTR];
813 static const char * const ptr_msg[lastPTR];
814
815 enum {
816 InlineDepthBottom = INT_MAX,
817 InlineDepthTop = -InlineDepthBottom
818 };
819
820 // Extra type information profiling gave us. We propagate it the
821 // same way the rest of the type info is propagated. If we want to
822 // use it, then we have to emit a guard: this part of the type is
823 // not something we know but something we speculate about the type.
824 const TypePtr* _speculative;
825 // For speculative types, we record at what inlining depth the
826 // profiling point that provided the data is. We want to favor
827 // profile data coming from outer scopes which are likely better for
828 // the current compilation.
829 int _inline_depth;
830
831 // utility methods to work on the speculative part of the type
832 const TypePtr* dual_speculative() const;
833 const TypePtr* xmeet_speculative(const TypePtr* other) const;
834 bool eq_speculative(const TypePtr* other) const;
835 int hash_speculative() const;
836 const TypePtr* add_offset_speculative(intptr_t offset) const;
837#ifndef PRODUCT
838 void dump_speculative(outputStream *st) const;
839#endif
840
841 // utility methods to work on the inline depth of the type
842 int dual_inline_depth() const;
843 int meet_inline_depth(int depth) const;
844#ifndef PRODUCT
845 void dump_inline_depth(outputStream *st) const;
846#endif
847
848public:
849 const int _offset; // Offset into oop, with TOP & BOT
850 const PTR _ptr; // Pointer equivalence class
851
852 const int offset() const { return _offset; }
853 const PTR ptr() const { return _ptr; }
854
855 static const TypePtr *make(TYPES t, PTR ptr, int offset,
856 const TypePtr* speculative = NULL,
857 int inline_depth = InlineDepthBottom);
858
859 // Return a 'ptr' version of this type
860 virtual const Type *cast_to_ptr_type(PTR ptr) const;
861
862 virtual intptr_t get_con() const;
863
864 int xadd_offset( intptr_t offset ) const;
865 virtual const TypePtr *add_offset( intptr_t offset ) const;
866 virtual bool eq(const Type *t) const;
867 virtual int hash() const; // Type specific hashing
868
869 virtual bool singleton(void) const; // TRUE if type is a singleton
870 virtual bool empty(void) const; // TRUE if type is vacuous
871 virtual const Type *xmeet( const Type *t ) const;
872 virtual const Type *xmeet_helper( const Type *t ) const;
873 int meet_offset( int offset ) const;
874 int dual_offset( ) const;
875 virtual const Type *xdual() const; // Compute dual right now.
876
877 // meet, dual and join over pointer equivalence sets
878 PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
879 PTR dual_ptr() const { return ptr_dual[ptr()]; }
880
881 // This is textually confusing unless one recalls that
882 // join(t) == dual()->meet(t->dual())->dual().
883 PTR join_ptr( const PTR in_ptr ) const {
884 return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
885 }
886
887 // Speculative type helper methods.
888 virtual const TypePtr* speculative() const { return _speculative; }
889 int inline_depth() const { return _inline_depth; }
890 virtual ciKlass* speculative_type() const;
891 virtual ciKlass* speculative_type_not_null() const;
892 virtual bool speculative_maybe_null() const;
893 virtual bool speculative_always_null() const;
894 virtual const Type* remove_speculative() const;
895 virtual const Type* cleanup_speculative() const;
896 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
897 virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const;
898 virtual const TypePtr* with_inline_depth(int depth) const;
899
900 virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
901
902 // Tests for relation to centerline of type lattice:
903 static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
904 static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
905 // Convenience common pre-built types.
906 static const TypePtr *NULL_PTR;
907 static const TypePtr *NOTNULL;
908 static const TypePtr *BOTTOM;
909#ifndef PRODUCT
910 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
911#endif
912};
913
914//------------------------------TypeRawPtr-------------------------------------
915// Class of raw pointers, pointers to things other than Oops. Examples
916// include the stack pointer, top of heap, card-marking area, handles, etc.
917class TypeRawPtr : public TypePtr {
918protected:
919 TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
920public:
921 virtual bool eq( const Type *t ) const;
922 virtual int hash() const; // Type specific hashing
923
924 const address _bits; // Constant value, if applicable
925
926 static const TypeRawPtr *make( PTR ptr );
927 static const TypeRawPtr *make( address bits );
928
929 // Return a 'ptr' version of this type
930 virtual const Type *cast_to_ptr_type(PTR ptr) const;
931
932 virtual intptr_t get_con() const;
933
934 virtual const TypePtr *add_offset( intptr_t offset ) const;
935
936 virtual const Type *xmeet( const Type *t ) const;
937 virtual const Type *xdual() const; // Compute dual right now.
938 // Convenience common pre-built types.
939 static const TypeRawPtr *BOTTOM;
940 static const TypeRawPtr *NOTNULL;
941#ifndef PRODUCT
942 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
943#endif
944};
945
946//------------------------------TypeOopPtr-------------------------------------
947// Some kind of oop (Java pointer), either instance or array.
948class TypeOopPtr : public TypePtr {
949protected:
950 TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id,
951 const TypePtr* speculative, int inline_depth);
952public:
953 virtual bool eq( const Type *t ) const;
954 virtual int hash() const; // Type specific hashing
955 virtual bool singleton(void) const; // TRUE if type is a singleton
956 enum {
957 InstanceTop = -1, // undefined instance
958 InstanceBot = 0 // any possible instance
959 };
960protected:
961
962 // Oop is NULL, unless this is a constant oop.
963 ciObject* _const_oop; // Constant oop
964 // If _klass is NULL, then so is _sig. This is an unloaded klass.
965 ciKlass* _klass; // Klass object
966 // Does the type exclude subclasses of the klass? (Inexact == polymorphic.)
967 bool _klass_is_exact;
968 bool _is_ptr_to_narrowoop;
969 bool _is_ptr_to_narrowklass;
970 bool _is_ptr_to_boxed_value;
971
972 // If not InstanceTop or InstanceBot, indicates that this is
973 // a particular instance of this type which is distinct.
974 // This is the node index of the allocation node creating this instance.
975 int _instance_id;
976
977 static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
978
979 int dual_instance_id() const;
980 int meet_instance_id(int uid) const;
981
982 // Do not allow interface-vs.-noninterface joins to collapse to top.
983 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
984
985public:
986 // Creates a type given a klass. Correctly handles multi-dimensional arrays
987 // Respects UseUniqueSubclasses.
988 // If the klass is final, the resulting type will be exact.
989 static const TypeOopPtr* make_from_klass(ciKlass* klass) {
990 return make_from_klass_common(klass, true, false);
991 }
992 // Same as before, but will produce an exact type, even if
993 // the klass is not final, as long as it has exactly one implementation.
994 static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
995 return make_from_klass_common(klass, true, true);
996 }
997 // Same as before, but does not respects UseUniqueSubclasses.
998 // Use this only for creating array element types.
999 static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
1000 return make_from_klass_common(klass, false, false);
1001 }
1002 // Creates a singleton type given an object.
1003 // If the object cannot be rendered as a constant,
1004 // may return a non-singleton type.
1005 // If require_constant, produce a NULL if a singleton is not possible.
1006 static const TypeOopPtr* make_from_constant(ciObject* o,
1007 bool require_constant = false);
1008
1009 // Make a generic (unclassed) pointer to an oop.
1010 static const TypeOopPtr* make(PTR ptr, int offset, int instance_id,
1011 const TypePtr* speculative = NULL,
1012 int inline_depth = InlineDepthBottom);
1013
1014 ciObject* const_oop() const { return _const_oop; }
1015 virtual ciKlass* klass() const { return _klass; }
1016 bool klass_is_exact() const { return _klass_is_exact; }
1017
1018 // Returns true if this pointer points at memory which contains a
1019 // compressed oop references.
1020 bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1021 bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1022 bool is_ptr_to_boxed_value() const { return _is_ptr_to_boxed_value; }
1023 bool is_known_instance() const { return _instance_id > 0; }
1024 int instance_id() const { return _instance_id; }
1025 bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
1026
1027 virtual intptr_t get_con() const;
1028
1029 virtual const Type *cast_to_ptr_type(PTR ptr) const;
1030
1031 virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1032
1033 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1034
1035 virtual const TypeOopPtr *cast_to_nonconst() const;
1036
1037 // corresponding pointer to klass, for a given instance
1038 const TypeKlassPtr* as_klass_type() const;
1039
1040 virtual const TypePtr *add_offset( intptr_t offset ) const;
1041
1042 // Speculative type helper methods.
1043 virtual const Type* remove_speculative() const;
1044 virtual const Type* cleanup_speculative() const;
1045 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1046 virtual const TypePtr* with_inline_depth(int depth) const;
1047
1048 virtual const TypePtr* with_instance_id(int instance_id) const;
1049
1050 virtual const Type *xdual() const; // Compute dual right now.
1051 // the core of the computation of the meet for TypeOopPtr and for its subclasses
1052 virtual const Type *xmeet_helper(const Type *t) const;
1053
1054 // Convenience common pre-built type.
1055 static const TypeOopPtr *BOTTOM;
1056#ifndef PRODUCT
1057 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1058#endif
1059};
1060
1061//------------------------------TypeInstPtr------------------------------------
1062// Class of Java object pointers, pointing either to non-array Java instances
1063// or to a Klass* (including array klasses).
1064class TypeInstPtr : public TypeOopPtr {
1065 TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id,
1066 const TypePtr* speculative, int inline_depth);
1067 virtual bool eq( const Type *t ) const;
1068 virtual int hash() const; // Type specific hashing
1069
1070 ciSymbol* _name; // class name
1071
1072 public:
1073 ciSymbol* name() const { return _name; }
1074
1075 bool is_loaded() const { return _klass->is_loaded(); }
1076
1077 // Make a pointer to a constant oop.
1078 static const TypeInstPtr *make(ciObject* o) {
1079 return make(TypePtr::Constant, o->klass(), true, o, 0, InstanceBot);
1080 }
1081 // Make a pointer to a constant oop with offset.
1082 static const TypeInstPtr *make(ciObject* o, int offset) {
1083 return make(TypePtr::Constant, o->klass(), true, o, offset, InstanceBot);
1084 }
1085
1086 // Make a pointer to some value of type klass.
1087 static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
1088 return make(ptr, klass, false, NULL, 0, InstanceBot);
1089 }
1090
1091 // Make a pointer to some non-polymorphic value of exactly type klass.
1092 static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1093 return make(ptr, klass, true, NULL, 0, InstanceBot);
1094 }
1095
1096 // Make a pointer to some value of type klass with offset.
1097 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
1098 return make(ptr, klass, false, NULL, offset, InstanceBot);
1099 }
1100
1101 // Make a pointer to an oop.
1102 static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
1103 int instance_id = InstanceBot,
1104 const TypePtr* speculative = NULL,
1105 int inline_depth = InlineDepthBottom);
1106
1107 /** Create constant type for a constant boxed value */
1108 const Type* get_const_boxed_value() const;
1109
1110 // If this is a java.lang.Class constant, return the type for it or NULL.
1111 // Pass to Type::get_const_type to turn it to a type, which will usually
1112 // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1113 ciType* java_mirror_type() const;
1114
1115 virtual const Type *cast_to_ptr_type(PTR ptr) const;
1116
1117 virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1118
1119 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1120
1121 virtual const TypeOopPtr *cast_to_nonconst() const;
1122
1123 virtual const TypePtr *add_offset( intptr_t offset ) const;
1124
1125 // Speculative type helper methods.
1126 virtual const Type* remove_speculative() const;
1127 virtual const TypePtr* with_inline_depth(int depth) const;
1128 virtual const TypePtr* with_instance_id(int instance_id) const;
1129
1130 // the core of the computation of the meet of 2 types
1131 virtual const Type *xmeet_helper(const Type *t) const;
1132 virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
1133 virtual const Type *xdual() const; // Compute dual right now.
1134
1135 // Convenience common pre-built types.
1136 static const TypeInstPtr *NOTNULL;
1137 static const TypeInstPtr *BOTTOM;
1138 static const TypeInstPtr *MIRROR;
1139 static const TypeInstPtr *MARK;
1140 static const TypeInstPtr *KLASS;
1141#ifndef PRODUCT
1142 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1143#endif
1144};
1145
1146//------------------------------TypeAryPtr-------------------------------------
1147// Class of Java array pointers
1148class TypeAryPtr : public TypeOopPtr {
1149 TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1150 int offset, int instance_id, bool is_autobox_cache,
1151 const TypePtr* speculative, int inline_depth)
1152 : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id, speculative, inline_depth),
1153 _ary(ary),
1154 _is_autobox_cache(is_autobox_cache)
1155 {
1156#ifdef ASSERT
1157 if (k != NULL) {
1158 // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
1159 ciKlass* ck = compute_klass(true);
1160 if (k != ck) {
1161 this->dump(); tty->cr();
1162 tty->print(" k: ");
1163 k->print(); tty->cr();
1164 tty->print("ck: ");
1165 if (ck != NULL) ck->print();
1166 else tty->print("<NULL>");
1167 tty->cr();
1168 assert(false, "unexpected TypeAryPtr::_klass");
1169 }
1170 }
1171#endif
1172 }
1173 virtual bool eq( const Type *t ) const;
1174 virtual int hash() const; // Type specific hashing
1175 const TypeAry *_ary; // Array we point into
1176 const bool _is_autobox_cache;
1177
1178 ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
1179
1180public:
1181 // Accessors
1182 ciKlass* klass() const;
1183 const TypeAry* ary() const { return _ary; }
1184 const Type* elem() const { return _ary->_elem; }
1185 const TypeInt* size() const { return _ary->_size; }
1186 bool is_stable() const { return _ary->_stable; }
1187
1188 bool is_autobox_cache() const { return _is_autobox_cache; }
1189
1190 static const TypeAryPtr *make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
1191 int instance_id = InstanceBot,
1192 const TypePtr* speculative = NULL,
1193 int inline_depth = InlineDepthBottom);
1194 // Constant pointer to array
1195 static const TypeAryPtr *make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
1196 int instance_id = InstanceBot,
1197 const TypePtr* speculative = NULL,
1198 int inline_depth = InlineDepthBottom, bool is_autobox_cache = false);
1199
1200 // Return a 'ptr' version of this type
1201 virtual const Type *cast_to_ptr_type(PTR ptr) const;
1202
1203 virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1204
1205 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1206
1207 virtual const TypeOopPtr *cast_to_nonconst() const;
1208
1209 virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1210 virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1211
1212 virtual bool empty(void) const; // TRUE if type is vacuous
1213 virtual const TypePtr *add_offset( intptr_t offset ) const;
1214
1215 // Speculative type helper methods.
1216 virtual const Type* remove_speculative() const;
1217 virtual const TypePtr* with_inline_depth(int depth) const;
1218 virtual const TypePtr* with_instance_id(int instance_id) const;
1219
1220 // the core of the computation of the meet of 2 types
1221 virtual const Type *xmeet_helper(const Type *t) const;
1222 virtual const Type *xdual() const; // Compute dual right now.
1223
1224 const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1225 int stable_dimension() const;
1226
1227 const TypeAryPtr* cast_to_autobox_cache(bool cache) const;
1228
1229 // Convenience common pre-built types.
1230 static const TypeAryPtr *RANGE;
1231 static const TypeAryPtr *OOPS;
1232 static const TypeAryPtr *NARROWOOPS;
1233 static const TypeAryPtr *BYTES;
1234 static const TypeAryPtr *SHORTS;
1235 static const TypeAryPtr *CHARS;
1236 static const TypeAryPtr *INTS;
1237 static const TypeAryPtr *LONGS;
1238 static const TypeAryPtr *FLOATS;
1239 static const TypeAryPtr *DOUBLES;
1240 // selects one of the above:
1241 static const TypeAryPtr *get_array_body_type(BasicType elem) {
1242 assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
1243 return _array_body_type[elem];
1244 }
1245 static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1246 // sharpen the type of an int which is used as an array size
1247#ifdef ASSERT
1248 // One type is interface, the other is oop
1249 virtual bool interface_vs_oop(const Type *t) const;
1250#endif
1251#ifndef PRODUCT
1252 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1253#endif
1254};
1255
1256//------------------------------TypeMetadataPtr-------------------------------------
1257// Some kind of metadata, either Method*, MethodData* or CPCacheOop
1258class TypeMetadataPtr : public TypePtr {
1259protected:
1260 TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
1261 // Do not allow interface-vs.-noninterface joins to collapse to top.
1262 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1263public:
1264 virtual bool eq( const Type *t ) const;
1265 virtual int hash() const; // Type specific hashing
1266 virtual bool singleton(void) const; // TRUE if type is a singleton
1267
1268private:
1269 ciMetadata* _metadata;
1270
1271public:
1272 static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
1273
1274 static const TypeMetadataPtr* make(ciMethod* m);
1275 static const TypeMetadataPtr* make(ciMethodData* m);
1276
1277 ciMetadata* metadata() const { return _metadata; }
1278
1279 virtual const Type *cast_to_ptr_type(PTR ptr) const;
1280
1281 virtual const TypePtr *add_offset( intptr_t offset ) const;
1282
1283 virtual const Type *xmeet( const Type *t ) const;
1284 virtual const Type *xdual() const; // Compute dual right now.
1285
1286 virtual intptr_t get_con() const;
1287
1288 // Convenience common pre-built types.
1289 static const TypeMetadataPtr *BOTTOM;
1290
1291#ifndef PRODUCT
1292 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1293#endif
1294};
1295
1296//------------------------------TypeKlassPtr-----------------------------------
1297// Class of Java Klass pointers
1298class TypeKlassPtr : public TypePtr {
1299 TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
1300
1301protected:
1302 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1303 public:
1304 virtual bool eq( const Type *t ) const;
1305 virtual int hash() const; // Type specific hashing
1306 virtual bool singleton(void) const; // TRUE if type is a singleton
1307 private:
1308
1309 static const TypeKlassPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
1310
1311 ciKlass* _klass;
1312
1313 // Does the type exclude subclasses of the klass? (Inexact == polymorphic.)
1314 bool _klass_is_exact;
1315
1316public:
1317 ciSymbol* name() const { return klass()->name(); }
1318
1319 ciKlass* klass() const { return _klass; }
1320 bool klass_is_exact() const { return _klass_is_exact; }
1321
1322 bool is_loaded() const { return klass()->is_loaded(); }
1323
1324 // Creates a type given a klass. Correctly handles multi-dimensional arrays
1325 // Respects UseUniqueSubclasses.
1326 // If the klass is final, the resulting type will be exact.
1327 static const TypeKlassPtr* make_from_klass(ciKlass* klass) {
1328 return make_from_klass_common(klass, true, false);
1329 }
1330 // Same as before, but will produce an exact type, even if
1331 // the klass is not final, as long as it has exactly one implementation.
1332 static const TypeKlassPtr* make_from_klass_unique(ciKlass* klass) {
1333 return make_from_klass_common(klass, true, true);
1334 }
1335 // Same as before, but does not respects UseUniqueSubclasses.
1336 // Use this only for creating array element types.
1337 static const TypeKlassPtr* make_from_klass_raw(ciKlass* klass) {
1338 return make_from_klass_common(klass, false, false);
1339 }
1340
1341 // Make a generic (unclassed) pointer to metadata.
1342 static const TypeKlassPtr* make(PTR ptr, int offset);
1343
1344 // ptr to klass 'k'
1345 static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
1346 // ptr to klass 'k' with offset
1347 static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
1348 // ptr to klass 'k' or sub-klass
1349 static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
1350
1351 virtual const Type *cast_to_ptr_type(PTR ptr) const;
1352
1353 virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1354
1355 // corresponding pointer to instance, for a given class
1356 const TypeOopPtr* as_instance_type() const;
1357
1358 virtual const TypePtr *add_offset( intptr_t offset ) const;
1359 virtual const Type *xmeet( const Type *t ) const;
1360 virtual const Type *xdual() const; // Compute dual right now.
1361
1362 virtual intptr_t get_con() const;
1363
1364 // Convenience common pre-built types.
1365 static const TypeKlassPtr* OBJECT; // Not-null object klass or below
1366 static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1367#ifndef PRODUCT
1368 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1369#endif
1370};
1371
1372class TypeNarrowPtr : public Type {
1373protected:
1374 const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
1375
1376 TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t),
1377 _ptrtype(ptrtype) {
1378 assert(ptrtype->offset() == 0 ||
1379 ptrtype->offset() == OffsetBot ||
1380 ptrtype->offset() == OffsetTop, "no real offsets");
1381 }
1382
1383 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
1384 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
1385 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
1386 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
1387 // Do not allow interface-vs.-noninterface joins to collapse to top.
1388 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1389public:
1390 virtual bool eq( const Type *t ) const;
1391 virtual int hash() const; // Type specific hashing
1392 virtual bool singleton(void) const; // TRUE if type is a singleton
1393
1394 virtual const Type *xmeet( const Type *t ) const;
1395 virtual const Type *xdual() const; // Compute dual right now.
1396
1397 virtual intptr_t get_con() const;
1398
1399 virtual bool empty(void) const; // TRUE if type is vacuous
1400
1401 // returns the equivalent ptr type for this compressed pointer
1402 const TypePtr *get_ptrtype() const {
1403 return _ptrtype;
1404 }
1405
1406#ifndef PRODUCT
1407 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1408#endif
1409};
1410
1411//------------------------------TypeNarrowOop----------------------------------
1412// A compressed reference to some kind of Oop. This type wraps around
1413// a preexisting TypeOopPtr and forwards most of it's operations to
1414// the underlying type. It's only real purpose is to track the
1415// oopness of the compressed oop value when we expose the conversion
1416// between the normal and the compressed form.
1417class TypeNarrowOop : public TypeNarrowPtr {
1418protected:
1419 TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
1420 }
1421
1422 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1423 return t->isa_narrowoop();
1424 }
1425
1426 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1427 return t->is_narrowoop();
1428 }
1429
1430 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1431 return new TypeNarrowOop(t);
1432 }
1433
1434 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1435 return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
1436 }
1437
1438public:
1439
1440 static const TypeNarrowOop *make( const TypePtr* type);
1441
1442 static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
1443 return make(TypeOopPtr::make_from_constant(con, require_constant));
1444 }
1445
1446 static const TypeNarrowOop *BOTTOM;
1447 static const TypeNarrowOop *NULL_PTR;
1448
1449 virtual const Type* remove_speculative() const;
1450 virtual const Type* cleanup_speculative() const;
1451
1452#ifndef PRODUCT
1453 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1454#endif
1455};
1456
1457//------------------------------TypeNarrowKlass----------------------------------
1458// A compressed reference to klass pointer. This type wraps around a
1459// preexisting TypeKlassPtr and forwards most of it's operations to
1460// the underlying type.
1461class TypeNarrowKlass : public TypeNarrowPtr {
1462protected:
1463 TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
1464 }
1465
1466 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1467 return t->isa_narrowklass();
1468 }
1469
1470 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1471 return t->is_narrowklass();
1472 }
1473
1474 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1475 return new TypeNarrowKlass(t);
1476 }
1477
1478 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1479 return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
1480 }
1481
1482public:
1483 static const TypeNarrowKlass *make( const TypePtr* type);
1484
1485 // static const TypeNarrowKlass *BOTTOM;
1486 static const TypeNarrowKlass *NULL_PTR;
1487
1488#ifndef PRODUCT
1489 virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1490#endif
1491};
1492
1493//------------------------------TypeFunc---------------------------------------
1494// Class of Array Types
1495class TypeFunc : public Type {
1496 TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function), _domain(domain), _range(range) {}
1497 virtual bool eq( const Type *t ) const;
1498 virtual int hash() const; // Type specific hashing
1499 virtual bool singleton(void) const; // TRUE if type is a singleton
1500 virtual bool empty(void) const; // TRUE if type is vacuous
1501
1502 const TypeTuple* const _domain; // Domain of inputs
1503 const TypeTuple* const _range; // Range of results
1504
1505public:
1506 // Constants are shared among ADLC and VM
1507 enum { Control = AdlcVMDeps::Control,
1508 I_O = AdlcVMDeps::I_O,
1509 Memory = AdlcVMDeps::Memory,
1510 FramePtr = AdlcVMDeps::FramePtr,
1511 ReturnAdr = AdlcVMDeps::ReturnAdr,
1512 Parms = AdlcVMDeps::Parms
1513 };
1514
1515
1516 // Accessors:
1517 const TypeTuple* domain() const { return _domain; }
1518 const TypeTuple* range() const { return _range; }
1519
1520 static const TypeFunc *make(ciMethod* method);
1521 static const TypeFunc *make(ciSignature signature, const Type* extra);
1522 static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
1523
1524 virtual const Type *xmeet( const Type *t ) const;
1525 virtual const Type *xdual() const; // Compute dual right now.
1526
1527 BasicType return_type() const;
1528
1529#ifndef PRODUCT
1530 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1531#endif
1532 // Convenience common pre-built types.
1533};
1534
1535//------------------------------accessors--------------------------------------
1536inline bool Type::is_ptr_to_narrowoop() const {
1537#ifdef _LP64
1538 return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
1539#else
1540 return false;
1541#endif
1542}
1543
1544inline bool Type::is_ptr_to_narrowklass() const {
1545#ifdef _LP64
1546 return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowklass_nv());
1547#else
1548 return false;
1549#endif
1550}
1551
1552inline float Type::getf() const {
1553 assert( _base == FloatCon, "Not a FloatCon" );
1554 return ((TypeF*)this)->_f;
1555}
1556
1557inline double Type::getd() const {
1558 assert( _base == DoubleCon, "Not a DoubleCon" );
1559 return ((TypeD*)this)->_d;
1560}
1561
1562inline const TypeInt *Type::is_int() const {
1563 assert( _base == Int, "Not an Int" );
1564 return (TypeInt*)this;
1565}
1566
1567inline const TypeInt *Type::isa_int() const {
1568 return ( _base == Int ? (TypeInt*)this : NULL);
1569}
1570
1571inline const TypeLong *Type::is_long() const {
1572 assert( _base == Long, "Not a Long" );
1573 return (TypeLong*)this;
1574}
1575
1576inline const TypeLong *Type::isa_long() const {
1577 return ( _base == Long ? (TypeLong*)this : NULL);
1578}
1579
1580inline const TypeF *Type::isa_float() const {
1581 return ((_base == FloatTop ||
1582 _base == FloatCon ||
1583 _base == FloatBot) ? (TypeF*)this : NULL);
1584}
1585
1586inline const TypeF *Type::is_float_constant() const {
1587 assert( _base == FloatCon, "Not a Float" );
1588 return (TypeF*)this;
1589}
1590
1591inline const TypeF *Type::isa_float_constant() const {
1592 return ( _base == FloatCon ? (TypeF*)this : NULL);
1593}
1594
1595inline const TypeD *Type::isa_double() const {
1596 return ((_base == DoubleTop ||
1597 _base == DoubleCon ||
1598 _base == DoubleBot) ? (TypeD*)this : NULL);
1599}
1600
1601inline const TypeD *Type::is_double_constant() const {
1602 assert( _base == DoubleCon, "Not a Double" );
1603 return (TypeD*)this;
1604}
1605
1606inline const TypeD *Type::isa_double_constant() const {
1607 return ( _base == DoubleCon ? (TypeD*)this : NULL);
1608}
1609
1610inline const TypeTuple *Type::is_tuple() const {
1611 assert( _base == Tuple, "Not a Tuple" );
1612 return (TypeTuple*)this;
1613}
1614
1615inline const TypeAry *Type::is_ary() const {
1616 assert( _base == Array , "Not an Array" );
1617 return (TypeAry*)this;
1618}
1619
1620inline const TypeVect *Type::is_vect() const {
1621 assert( _base >= VectorS && _base <= VectorZ, "Not a Vector" );
1622 return (TypeVect*)this;
1623}
1624
1625inline const TypeVect *Type::isa_vect() const {
1626 return (_base >= VectorS && _base <= VectorZ) ? (TypeVect*)this : NULL;
1627}
1628
1629inline const TypePtr *Type::is_ptr() const {
1630 // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1631 assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
1632 return (TypePtr*)this;
1633}
1634
1635inline const TypePtr *Type::isa_ptr() const {
1636 // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1637 return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
1638}
1639
1640inline const TypeOopPtr *Type::is_oopptr() const {
1641 // OopPtr is the first and KlassPtr the last, with no non-oops between.
1642 assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
1643 return (TypeOopPtr*)this;
1644}
1645
1646inline const TypeOopPtr *Type::isa_oopptr() const {
1647 // OopPtr is the first and KlassPtr the last, with no non-oops between.
1648 return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : NULL;
1649}
1650
1651inline const TypeRawPtr *Type::isa_rawptr() const {
1652 return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
1653}
1654
1655inline const TypeRawPtr *Type::is_rawptr() const {
1656 assert( _base == RawPtr, "Not a raw pointer" );
1657 return (TypeRawPtr*)this;
1658}
1659
1660inline const TypeInstPtr *Type::isa_instptr() const {
1661 return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
1662}
1663
1664inline const TypeInstPtr *Type::is_instptr() const {
1665 assert( _base == InstPtr, "Not an object pointer" );
1666 return (TypeInstPtr*)this;
1667}
1668
1669inline const TypeAryPtr *Type::isa_aryptr() const {
1670 return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
1671}
1672
1673inline const TypeAryPtr *Type::is_aryptr() const {
1674 assert( _base == AryPtr, "Not an array pointer" );
1675 return (TypeAryPtr*)this;
1676}
1677
1678inline const TypeNarrowOop *Type::is_narrowoop() const {
1679 // OopPtr is the first and KlassPtr the last, with no non-oops between.
1680 assert(_base == NarrowOop, "Not a narrow oop" ) ;
1681 return (TypeNarrowOop*)this;
1682}
1683
1684inline const TypeNarrowOop *Type::isa_narrowoop() const {
1685 // OopPtr is the first and KlassPtr the last, with no non-oops between.
1686 return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
1687}
1688
1689inline const TypeNarrowKlass *Type::is_narrowklass() const {
1690 assert(_base == NarrowKlass, "Not a narrow oop" ) ;
1691 return (TypeNarrowKlass*)this;
1692}
1693
1694inline const TypeNarrowKlass *Type::isa_narrowklass() const {
1695 return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : NULL;
1696}
1697
1698inline const TypeMetadataPtr *Type::is_metadataptr() const {
1699 // MetadataPtr is the first and CPCachePtr the last
1700 assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
1701 return (TypeMetadataPtr*)this;
1702}
1703
1704inline const TypeMetadataPtr *Type::isa_metadataptr() const {
1705 return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : NULL;
1706}
1707
1708inline const TypeKlassPtr *Type::isa_klassptr() const {
1709 return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
1710}
1711
1712inline const TypeKlassPtr *Type::is_klassptr() const {
1713 assert( _base == KlassPtr, "Not a klass pointer" );
1714 return (TypeKlassPtr*)this;
1715}
1716
1717inline const TypePtr* Type::make_ptr() const {
1718 return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
1719 ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
1720 isa_ptr());
1721}
1722
1723inline const TypeOopPtr* Type::make_oopptr() const {
1724 return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->isa_oopptr() : isa_oopptr();
1725}
1726
1727inline const TypeNarrowOop* Type::make_narrowoop() const {
1728 return (_base == NarrowOop) ? is_narrowoop() :
1729 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
1730}
1731
1732inline const TypeNarrowKlass* Type::make_narrowklass() const {
1733 return (_base == NarrowKlass) ? is_narrowklass() :
1734 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : NULL);
1735}
1736
1737inline bool Type::is_floatingpoint() const {
1738 if( (_base == FloatCon) || (_base == FloatBot) ||
1739 (_base == DoubleCon) || (_base == DoubleBot) )
1740 return true;
1741 return false;
1742}
1743
1744inline bool Type::is_ptr_to_boxing_obj() const {
1745 const TypeInstPtr* tp = isa_instptr();
1746 return (tp != NULL) && (tp->offset() == 0) &&
1747 tp->klass()->is_instance_klass() &&
1748 tp->klass()->as_instance_klass()->is_box_klass();
1749}
1750
1751
1752// ===============================================================
1753// Things that need to be 64-bits in the 64-bit build but
1754// 32-bits in the 32-bit build. Done this way to get full
1755// optimization AND strong typing.
1756#ifdef _LP64
1757
1758// For type queries and asserts
1759#define is_intptr_t is_long
1760#define isa_intptr_t isa_long
1761#define find_intptr_t_type find_long_type
1762#define find_intptr_t_con find_long_con
1763#define TypeX TypeLong
1764#define Type_X Type::Long
1765#define TypeX_X TypeLong::LONG
1766#define TypeX_ZERO TypeLong::ZERO
1767// For 'ideal_reg' machine registers
1768#define Op_RegX Op_RegL
1769// For phase->intcon variants
1770#define MakeConX longcon
1771#define ConXNode ConLNode
1772// For array index arithmetic
1773#define MulXNode MulLNode
1774#define AndXNode AndLNode
1775#define OrXNode OrLNode
1776#define CmpXNode CmpLNode
1777#define SubXNode SubLNode
1778#define LShiftXNode LShiftLNode
1779// For object size computation:
1780#define AddXNode AddLNode
1781#define RShiftXNode RShiftLNode
1782// For card marks and hashcodes
1783#define URShiftXNode URShiftLNode
1784// UseOptoBiasInlining
1785#define XorXNode XorLNode
1786#define StoreXConditionalNode StoreLConditionalNode
1787#define LoadXNode LoadLNode
1788#define StoreXNode StoreLNode
1789// Opcodes
1790#define Op_LShiftX Op_LShiftL
1791#define Op_AndX Op_AndL
1792#define Op_AddX Op_AddL
1793#define Op_SubX Op_SubL
1794#define Op_XorX Op_XorL
1795#define Op_URShiftX Op_URShiftL
1796// conversions
1797#define ConvI2X(x) ConvI2L(x)
1798#define ConvL2X(x) (x)
1799#define ConvX2I(x) ConvL2I(x)
1800#define ConvX2L(x) (x)
1801#define ConvX2UL(x) (x)
1802
1803#else
1804
1805// For type queries and asserts
1806#define is_intptr_t is_int
1807#define isa_intptr_t isa_int
1808#define find_intptr_t_type find_int_type
1809#define find_intptr_t_con find_int_con
1810#define TypeX TypeInt
1811#define Type_X Type::Int
1812#define TypeX_X TypeInt::INT
1813#define TypeX_ZERO TypeInt::ZERO
1814// For 'ideal_reg' machine registers
1815#define Op_RegX Op_RegI
1816// For phase->intcon variants
1817#define MakeConX intcon
1818#define ConXNode ConINode
1819// For array index arithmetic
1820#define MulXNode MulINode
1821#define AndXNode AndINode
1822#define OrXNode OrINode
1823#define CmpXNode CmpINode
1824#define SubXNode SubINode
1825#define LShiftXNode LShiftINode
1826// For object size computation:
1827#define AddXNode AddINode
1828#define RShiftXNode RShiftINode
1829// For card marks and hashcodes
1830#define URShiftXNode URShiftINode
1831// UseOptoBiasInlining
1832#define XorXNode XorINode
1833#define StoreXConditionalNode StoreIConditionalNode
1834#define LoadXNode LoadINode
1835#define StoreXNode StoreINode
1836// Opcodes
1837#define Op_LShiftX Op_LShiftI
1838#define Op_AndX Op_AndI
1839#define Op_AddX Op_AddI
1840#define Op_SubX Op_SubI
1841#define Op_XorX Op_XorI
1842#define Op_URShiftX Op_URShiftI
1843// conversions
1844#define ConvI2X(x) (x)
1845#define ConvL2X(x) ConvL2I(x)
1846#define ConvX2I(x) (x)
1847#define ConvX2L(x) ConvI2L(x)
1848#define ConvX2UL(x) ConvI2UL(x)
1849
1850#endif
1851
1852#endif // SHARE_OPTO_TYPE_HPP
1853