| 1 | /* |
| 2 | * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #ifndef SHARE_OPTO_PHASEX_HPP |
| 26 | #define SHARE_OPTO_PHASEX_HPP |
| 27 | |
| 28 | #include "libadt/dict.hpp" |
| 29 | #include "libadt/vectset.hpp" |
| 30 | #include "memory/resourceArea.hpp" |
| 31 | #include "opto/memnode.hpp" |
| 32 | #include "opto/node.hpp" |
| 33 | #include "opto/phase.hpp" |
| 34 | #include "opto/type.hpp" |
| 35 | |
| 36 | class Compile; |
| 37 | class ConINode; |
| 38 | class ConLNode; |
| 39 | class Node; |
| 40 | class Type; |
| 41 | class PhaseTransform; |
| 42 | class PhaseGVN; |
| 43 | class PhaseIterGVN; |
| 44 | class PhaseCCP; |
| 45 | class PhasePeephole; |
| 46 | class PhaseRegAlloc; |
| 47 | |
| 48 | |
| 49 | //----------------------------------------------------------------------------- |
| 50 | // Expandable closed hash-table of nodes, initialized to NULL. |
| 51 | // Note that the constructor just zeros things |
| 52 | // Storage is reclaimed when the Arena's lifetime is over. |
| 53 | class NodeHash : public StackObj { |
| 54 | protected: |
| 55 | Arena *_a; // Arena to allocate in |
| 56 | uint _max; // Size of table (power of 2) |
| 57 | uint _inserts; // For grow and debug, count of hash_inserts |
| 58 | uint _insert_limit; // 'grow' when _inserts reaches _insert_limit |
| 59 | Node **_table; // Hash table of Node pointers |
| 60 | Node *_sentinel; // Replaces deleted entries in hash table |
| 61 | |
| 62 | public: |
| 63 | NodeHash(uint est_max_size); |
| 64 | NodeHash(Arena *arena, uint est_max_size); |
| 65 | NodeHash(NodeHash *use_this_state); |
| 66 | #ifdef ASSERT |
| 67 | ~NodeHash(); // Unlock all nodes upon destruction of table. |
| 68 | void operator=(const NodeHash&); // Unlock all nodes upon replacement of table. |
| 69 | #endif |
| 70 | Node *hash_find(const Node*);// Find an equivalent version in hash table |
| 71 | Node *hash_find_insert(Node*);// If not in table insert else return found node |
| 72 | void hash_insert(Node*); // Insert into hash table |
| 73 | bool hash_delete(const Node*);// Replace with _sentinel in hash table |
| 74 | void check_grow() { |
| 75 | _inserts++; |
| 76 | if( _inserts == _insert_limit ) { grow(); } |
| 77 | assert( _inserts <= _insert_limit, "hash table overflow" ); |
| 78 | assert( _inserts < _max, "hash table overflow" ); |
| 79 | } |
| 80 | static uint round_up(uint); // Round up to nearest power of 2 |
| 81 | void grow(); // Grow _table to next power of 2 and rehash |
| 82 | // Return 75% of _max, rounded up. |
| 83 | uint insert_limit() const { return _max - (_max>>2); } |
| 84 | |
| 85 | void clear(); // Set all entries to NULL, keep storage. |
| 86 | // Size of hash table |
| 87 | uint size() const { return _max; } |
| 88 | // Return Node* at index in table |
| 89 | Node *at(uint table_index) { |
| 90 | assert(table_index < _max, "Must be within table" ); |
| 91 | return _table[table_index]; |
| 92 | } |
| 93 | |
| 94 | void remove_useless_nodes(VectorSet &useful); // replace with sentinel |
| 95 | void replace_with(NodeHash* nh); |
| 96 | void check_no_speculative_types(); // Check no speculative part for type nodes in table |
| 97 | |
| 98 | Node *sentinel() { return _sentinel; } |
| 99 | |
| 100 | #ifndef PRODUCT |
| 101 | Node *find_index(uint idx); // For debugging |
| 102 | void dump(); // For debugging, dump statistics |
| 103 | uint _grows; // For debugging, count of table grow()s |
| 104 | uint _look_probes; // For debugging, count of hash probes |
| 105 | uint _lookup_hits; // For debugging, count of hash_finds |
| 106 | uint _lookup_misses; // For debugging, count of hash_finds |
| 107 | uint _insert_probes; // For debugging, count of hash probes |
| 108 | uint _delete_probes; // For debugging, count of hash probes for deletes |
| 109 | uint _delete_hits; // For debugging, count of hash probes for deletes |
| 110 | uint _delete_misses; // For debugging, count of hash probes for deletes |
| 111 | uint _total_inserts; // For debugging, total inserts into hash table |
| 112 | uint _total_insert_probes; // For debugging, total probes while inserting |
| 113 | #endif |
| 114 | }; |
| 115 | |
| 116 | |
| 117 | //----------------------------------------------------------------------------- |
| 118 | // Map dense integer indices to Types. Uses classic doubling-array trick. |
| 119 | // Abstractly provides an infinite array of Type*'s, initialized to NULL. |
| 120 | // Note that the constructor just zeros things, and since I use Arena |
| 121 | // allocation I do not need a destructor to reclaim storage. |
| 122 | // Despite the general name, this class is customized for use by PhaseTransform. |
| 123 | class Type_Array : public StackObj { |
| 124 | Arena *_a; // Arena to allocate in |
| 125 | uint _max; |
| 126 | const Type **_types; |
| 127 | void grow( uint i ); // Grow array node to fit |
| 128 | const Type *operator[] ( uint i ) const // Lookup, or NULL for not mapped |
| 129 | { return (i<_max) ? _types[i] : (Type*)NULL; } |
| 130 | friend class PhaseTransform; |
| 131 | public: |
| 132 | Type_Array(Arena *a) : _a(a), _max(0), _types(0) {} |
| 133 | Type_Array(Type_Array *ta) : _a(ta->_a), _max(ta->_max), _types(ta->_types) { } |
| 134 | const Type *fast_lookup(uint i) const{assert(i<_max,"oob" );return _types[i];} |
| 135 | // Extend the mapping: index i maps to Type *n. |
| 136 | void map( uint i, const Type *n ) { if( i>=_max ) grow(i); _types[i] = n; } |
| 137 | uint Size() const { return _max; } |
| 138 | #ifndef PRODUCT |
| 139 | void dump() const; |
| 140 | #endif |
| 141 | }; |
| 142 | |
| 143 | |
| 144 | //------------------------------PhaseRemoveUseless----------------------------- |
| 145 | // Remove useless nodes from GVN hash-table, worklist, and graph |
| 146 | class PhaseRemoveUseless : public Phase { |
| 147 | protected: |
| 148 | Unique_Node_List _useful; // Nodes reachable from root |
| 149 | // list is allocated from current resource area |
| 150 | public: |
| 151 | PhaseRemoveUseless(PhaseGVN *gvn, Unique_Node_List *worklist, PhaseNumber phase_num = Remove_Useless); |
| 152 | |
| 153 | Unique_Node_List *get_useful() { return &_useful; } |
| 154 | }; |
| 155 | |
| 156 | //------------------------------PhaseRenumber---------------------------------- |
| 157 | // Phase that first performs a PhaseRemoveUseless, then it renumbers compiler |
| 158 | // structures accordingly. |
| 159 | class PhaseRenumberLive : public PhaseRemoveUseless { |
| 160 | protected: |
| 161 | Type_Array _new_type_array; // Storage for the updated type information. |
| 162 | GrowableArray<int> _old2new_map; |
| 163 | Node_List _delayed; |
| 164 | bool _is_pass_finished; |
| 165 | uint _live_node_count; |
| 166 | |
| 167 | int update_embedded_ids(Node* n); |
| 168 | int new_index(int old_idx); |
| 169 | |
| 170 | public: |
| 171 | PhaseRenumberLive(PhaseGVN* gvn, |
| 172 | Unique_Node_List* worklist, Unique_Node_List* new_worklist, |
| 173 | PhaseNumber phase_num = Remove_Useless_And_Renumber_Live); |
| 174 | }; |
| 175 | |
| 176 | |
| 177 | //------------------------------PhaseTransform--------------------------------- |
| 178 | // Phases that analyze, then transform. Constructing the Phase object does any |
| 179 | // global or slow analysis. The results are cached later for a fast |
| 180 | // transformation pass. When the Phase object is deleted the cached analysis |
| 181 | // results are deleted. |
| 182 | class PhaseTransform : public Phase { |
| 183 | protected: |
| 184 | Arena* _arena; |
| 185 | Node_List _nodes; // Map old node indices to new nodes. |
| 186 | Type_Array _types; // Map old node indices to Types. |
| 187 | |
| 188 | // ConNode caches: |
| 189 | enum { _icon_min = -1 * HeapWordSize, |
| 190 | _icon_max = 16 * HeapWordSize, |
| 191 | _lcon_min = _icon_min, |
| 192 | _lcon_max = _icon_max, |
| 193 | _zcon_max = (uint)T_CONFLICT |
| 194 | }; |
| 195 | ConINode* _icons[_icon_max - _icon_min + 1]; // cached jint constant nodes |
| 196 | ConLNode* _lcons[_lcon_max - _lcon_min + 1]; // cached jlong constant nodes |
| 197 | ConNode* _zcons[_zcon_max + 1]; // cached is_zero_type nodes |
| 198 | void init_con_caches(); |
| 199 | |
| 200 | // Support both int and long caches because either might be an intptr_t, |
| 201 | // so they show up frequently in address computations. |
| 202 | |
| 203 | public: |
| 204 | PhaseTransform( PhaseNumber pnum ); |
| 205 | PhaseTransform( Arena *arena, PhaseNumber pnum ); |
| 206 | PhaseTransform( PhaseTransform *phase, PhaseNumber pnum ); |
| 207 | |
| 208 | Arena* arena() { return _arena; } |
| 209 | Type_Array& types() { return _types; } |
| 210 | void replace_types(Type_Array new_types) { |
| 211 | _types = new_types; |
| 212 | } |
| 213 | // _nodes is used in varying ways by subclasses, which define local accessors |
| 214 | uint nodes_size() { |
| 215 | return _nodes.size(); |
| 216 | } |
| 217 | |
| 218 | public: |
| 219 | // Get a previously recorded type for the node n. |
| 220 | // This type must already have been recorded. |
| 221 | // If you want the type of a very new (untransformed) node, |
| 222 | // you must use type_or_null, and test the result for NULL. |
| 223 | const Type* type(const Node* n) const { |
| 224 | assert(_pnum != Ideal_Loop, "should not be used from PhaseIdealLoop" ); |
| 225 | assert(n != NULL, "must not be null" ); |
| 226 | const Type* t = _types.fast_lookup(n->_idx); |
| 227 | assert(t != NULL, "must set before get" ); |
| 228 | return t; |
| 229 | } |
| 230 | // Get a previously recorded type for the node n, |
| 231 | // or else return NULL if there is none. |
| 232 | const Type* type_or_null(const Node* n) const { |
| 233 | assert(_pnum != Ideal_Loop, "should not be used from PhaseIdealLoop" ); |
| 234 | return _types.fast_lookup(n->_idx); |
| 235 | } |
| 236 | // Record a type for a node. |
| 237 | void set_type(const Node* n, const Type *t) { |
| 238 | assert(t != NULL, "type must not be null" ); |
| 239 | _types.map(n->_idx, t); |
| 240 | } |
| 241 | // Record an initial type for a node, the node's bottom type. |
| 242 | void set_type_bottom(const Node* n) { |
| 243 | // Use this for initialization when bottom_type() (or better) is not handy. |
| 244 | // Usually the initialization shoudl be to n->Value(this) instead, |
| 245 | // or a hand-optimized value like Type::MEMORY or Type::CONTROL. |
| 246 | assert(_types[n->_idx] == NULL, "must set the initial type just once" ); |
| 247 | _types.map(n->_idx, n->bottom_type()); |
| 248 | } |
| 249 | // Make sure the types array is big enough to record a size for the node n. |
| 250 | // (In product builds, we never want to do range checks on the types array!) |
| 251 | void ensure_type_or_null(const Node* n) { |
| 252 | if (n->_idx >= _types.Size()) |
| 253 | _types.map(n->_idx, NULL); // Grow the types array as needed. |
| 254 | } |
| 255 | |
| 256 | // Utility functions: |
| 257 | const TypeInt* find_int_type( Node* n); |
| 258 | const TypeLong* find_long_type(Node* n); |
| 259 | jint find_int_con( Node* n, jint value_if_unknown) { |
| 260 | const TypeInt* t = find_int_type(n); |
| 261 | return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown; |
| 262 | } |
| 263 | jlong find_long_con(Node* n, jlong value_if_unknown) { |
| 264 | const TypeLong* t = find_long_type(n); |
| 265 | return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown; |
| 266 | } |
| 267 | |
| 268 | // Make an idealized constant, i.e., one of ConINode, ConPNode, ConFNode, etc. |
| 269 | // Same as transform(ConNode::make(t)). |
| 270 | ConNode* makecon(const Type* t); |
| 271 | virtual ConNode* uncached_makecon(const Type* t) // override in PhaseValues |
| 272 | { ShouldNotCallThis(); return NULL; } |
| 273 | |
| 274 | // Fast int or long constant. Same as TypeInt::make(i) or TypeLong::make(l). |
| 275 | ConINode* intcon(jint i); |
| 276 | ConLNode* longcon(jlong l); |
| 277 | |
| 278 | // Fast zero or null constant. Same as makecon(Type::get_zero_type(bt)). |
| 279 | ConNode* zerocon(BasicType bt); |
| 280 | |
| 281 | // Return a node which computes the same function as this node, but |
| 282 | // in a faster or cheaper fashion. |
| 283 | virtual Node *transform( Node *n ) = 0; |
| 284 | |
| 285 | // Return whether two Nodes are equivalent. |
| 286 | // Must not be recursive, since the recursive version is built from this. |
| 287 | // For pessimistic optimizations this is simply pointer equivalence. |
| 288 | bool eqv(const Node* n1, const Node* n2) const { return n1 == n2; } |
| 289 | |
| 290 | // For pessimistic passes, the return type must monotonically narrow. |
| 291 | // For optimistic passes, the return type must monotonically widen. |
| 292 | // It is possible to get into a "death march" in either type of pass, |
| 293 | // where the types are continually moving but it will take 2**31 or |
| 294 | // more steps to converge. This doesn't happen on most normal loops. |
| 295 | // |
| 296 | // Here is an example of a deadly loop for an optimistic pass, along |
| 297 | // with a partial trace of inferred types: |
| 298 | // x = phi(0,x'); L: x' = x+1; if (x' >= 0) goto L; |
| 299 | // 0 1 join([0..max], 1) |
| 300 | // [0..1] [1..2] join([0..max], [1..2]) |
| 301 | // [0..2] [1..3] join([0..max], [1..3]) |
| 302 | // ... ... ... |
| 303 | // [0..max] [min]u[1..max] join([0..max], [min..max]) |
| 304 | // [0..max] ==> fixpoint |
| 305 | // We would have proven, the hard way, that the iteration space is all |
| 306 | // non-negative ints, with the loop terminating due to 32-bit overflow. |
| 307 | // |
| 308 | // Here is the corresponding example for a pessimistic pass: |
| 309 | // x = phi(0,x'); L: x' = x-1; if (x' >= 0) goto L; |
| 310 | // int int join([0..max], int) |
| 311 | // [0..max] [-1..max-1] join([0..max], [-1..max-1]) |
| 312 | // [0..max-1] [-1..max-2] join([0..max], [-1..max-2]) |
| 313 | // ... ... ... |
| 314 | // [0..1] [-1..0] join([0..max], [-1..0]) |
| 315 | // 0 -1 join([0..max], -1) |
| 316 | // 0 == fixpoint |
| 317 | // We would have proven, the hard way, that the iteration space is {0}. |
| 318 | // (Usually, other optimizations will make the "if (x >= 0)" fold up |
| 319 | // before we get into trouble. But not always.) |
| 320 | // |
| 321 | // It's a pleasant thing to observe that the pessimistic pass |
| 322 | // will make short work of the optimistic pass's deadly loop, |
| 323 | // and vice versa. That is a good example of the complementary |
| 324 | // purposes of the CCP (optimistic) vs. GVN (pessimistic) phases. |
| 325 | // |
| 326 | // In any case, only widen or narrow a few times before going to the |
| 327 | // correct flavor of top or bottom. |
| 328 | // |
| 329 | // This call only needs to be made once as the data flows around any |
| 330 | // given cycle. We do it at Phis, and nowhere else. |
| 331 | // The types presented are the new type of a phi (computed by PhiNode::Value) |
| 332 | // and the previously computed type, last time the phi was visited. |
| 333 | // |
| 334 | // The third argument is upper limit for the saturated value, |
| 335 | // if the phase wishes to widen the new_type. |
| 336 | // If the phase is narrowing, the old type provides a lower limit. |
| 337 | // Caller guarantees that old_type and new_type are no higher than limit_type. |
| 338 | virtual const Type* saturate(const Type* new_type, const Type* old_type, |
| 339 | const Type* limit_type) const |
| 340 | { ShouldNotCallThis(); return NULL; } |
| 341 | |
| 342 | // Delayed node rehash if this is an IGVN phase |
| 343 | virtual void igvn_rehash_node_delayed(Node* n) {} |
| 344 | |
| 345 | // true if CFG node d dominates CFG node n |
| 346 | virtual bool is_dominator(Node *d, Node *n) { fatal("unimplemented for this pass" ); return false; }; |
| 347 | |
| 348 | #ifndef PRODUCT |
| 349 | void dump_old2new_map() const; |
| 350 | void dump_new( uint new_lidx ) const; |
| 351 | void dump_types() const; |
| 352 | void dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl = true); |
| 353 | void dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited); |
| 354 | |
| 355 | uint _count_progress; // For profiling, count transforms that make progress |
| 356 | void set_progress() { ++_count_progress; assert( allow_progress(),"No progress allowed during verification" ); } |
| 357 | void clear_progress() { _count_progress = 0; } |
| 358 | uint made_progress() const { return _count_progress; } |
| 359 | |
| 360 | uint _count_transforms; // For profiling, count transforms performed |
| 361 | void set_transforms() { ++_count_transforms; } |
| 362 | void clear_transforms() { _count_transforms = 0; } |
| 363 | uint made_transforms() const{ return _count_transforms; } |
| 364 | |
| 365 | bool _allow_progress; // progress not allowed during verification pass |
| 366 | void set_allow_progress(bool allow) { _allow_progress = allow; } |
| 367 | bool allow_progress() { return _allow_progress; } |
| 368 | #endif |
| 369 | }; |
| 370 | |
| 371 | //------------------------------PhaseValues------------------------------------ |
| 372 | // Phase infrastructure to support values |
| 373 | class PhaseValues : public PhaseTransform { |
| 374 | protected: |
| 375 | NodeHash _table; // Hash table for value-numbering |
| 376 | |
| 377 | public: |
| 378 | PhaseValues( Arena *arena, uint est_max_size ); |
| 379 | PhaseValues( PhaseValues *pt ); |
| 380 | PhaseValues( PhaseValues *ptv, const char *dummy ); |
| 381 | NOT_PRODUCT( ~PhaseValues(); ) |
| 382 | virtual PhaseIterGVN *is_IterGVN() { return 0; } |
| 383 | |
| 384 | // Some Ideal and other transforms delete --> modify --> insert values |
| 385 | bool hash_delete(Node *n) { return _table.hash_delete(n); } |
| 386 | void hash_insert(Node *n) { _table.hash_insert(n); } |
| 387 | Node *hash_find_insert(Node *n){ return _table.hash_find_insert(n); } |
| 388 | Node *hash_find(const Node *n) { return _table.hash_find(n); } |
| 389 | |
| 390 | // Used after parsing to eliminate values that are no longer in program |
| 391 | void remove_useless_nodes(VectorSet &useful) { |
| 392 | _table.remove_useless_nodes(useful); |
| 393 | // this may invalidate cached cons so reset the cache |
| 394 | init_con_caches(); |
| 395 | } |
| 396 | |
| 397 | virtual ConNode* uncached_makecon(const Type* t); // override from PhaseTransform |
| 398 | |
| 399 | virtual const Type* saturate(const Type* new_type, const Type* old_type, |
| 400 | const Type* limit_type) const |
| 401 | { return new_type; } |
| 402 | |
| 403 | #ifndef PRODUCT |
| 404 | uint _count_new_values; // For profiling, count new values produced |
| 405 | void inc_new_values() { ++_count_new_values; } |
| 406 | void clear_new_values() { _count_new_values = 0; } |
| 407 | uint made_new_values() const { return _count_new_values; } |
| 408 | #endif |
| 409 | }; |
| 410 | |
| 411 | |
| 412 | //------------------------------PhaseGVN--------------------------------------- |
| 413 | // Phase for performing local, pessimistic GVN-style optimizations. |
| 414 | class PhaseGVN : public PhaseValues { |
| 415 | protected: |
| 416 | bool is_dominator_helper(Node *d, Node *n, bool linear_only); |
| 417 | |
| 418 | public: |
| 419 | PhaseGVN( Arena *arena, uint est_max_size ) : PhaseValues( arena, est_max_size ) {} |
| 420 | PhaseGVN( PhaseGVN *gvn ) : PhaseValues( gvn ) {} |
| 421 | PhaseGVN( PhaseGVN *gvn, const char *dummy ) : PhaseValues( gvn, dummy ) {} |
| 422 | |
| 423 | // Return a node which computes the same function as this node, but |
| 424 | // in a faster or cheaper fashion. |
| 425 | Node *transform( Node *n ); |
| 426 | Node *transform_no_reclaim( Node *n ); |
| 427 | virtual void record_for_igvn(Node *n) { |
| 428 | C->record_for_igvn(n); |
| 429 | } |
| 430 | |
| 431 | void replace_with(PhaseGVN* gvn) { |
| 432 | _table.replace_with(&gvn->_table); |
| 433 | _types = gvn->_types; |
| 434 | } |
| 435 | |
| 436 | bool is_dominator(Node *d, Node *n) { return is_dominator_helper(d, n, true); } |
| 437 | |
| 438 | // Helper to call Node::Ideal() and BarrierSetC2::ideal_node(). |
| 439 | Node* apply_ideal(Node* i, bool can_reshape); |
| 440 | |
| 441 | // Helper to call Node::Identity() and BarrierSetC2::identity_node(). |
| 442 | Node* apply_identity(Node* n); |
| 443 | |
| 444 | // Check for a simple dead loop when a data node references itself. |
| 445 | DEBUG_ONLY(void dead_loop_check(Node *n);) |
| 446 | }; |
| 447 | |
| 448 | //------------------------------PhaseIterGVN----------------------------------- |
| 449 | // Phase for iteratively performing local, pessimistic GVN-style optimizations. |
| 450 | // and ideal transformations on the graph. |
| 451 | class PhaseIterGVN : public PhaseGVN { |
| 452 | private: |
| 453 | bool _delay_transform; // When true simply register the node when calling transform |
| 454 | // instead of actually optimizing it |
| 455 | |
| 456 | // Idealize old Node 'n' with respect to its inputs and its value |
| 457 | virtual Node *transform_old( Node *a_node ); |
| 458 | |
| 459 | // Subsume users of node 'old' into node 'nn' |
| 460 | void subsume_node( Node *old, Node *nn ); |
| 461 | |
| 462 | Node_Stack _stack; // Stack used to avoid recursion |
| 463 | |
| 464 | protected: |
| 465 | |
| 466 | // Warm up hash table, type table and initial worklist |
| 467 | void init_worklist( Node *a_root ); |
| 468 | |
| 469 | virtual const Type* saturate(const Type* new_type, const Type* old_type, |
| 470 | const Type* limit_type) const; |
| 471 | // Usually returns new_type. Returns old_type if new_type is only a slight |
| 472 | // improvement, such that it would take many (>>10) steps to reach 2**32. |
| 473 | |
| 474 | public: |
| 475 | PhaseIterGVN( PhaseIterGVN *igvn ); // Used by CCP constructor |
| 476 | PhaseIterGVN( PhaseGVN *gvn ); // Used after Parser |
| 477 | PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ); // Used after +VerifyOpto |
| 478 | |
| 479 | // Idealize new Node 'n' with respect to its inputs and its value |
| 480 | virtual Node *transform( Node *a_node ); |
| 481 | virtual void record_for_igvn(Node *n) { } |
| 482 | |
| 483 | virtual PhaseIterGVN *is_IterGVN() { return this; } |
| 484 | |
| 485 | Unique_Node_List _worklist; // Iterative worklist |
| 486 | |
| 487 | // Given def-use info and an initial worklist, apply Node::Ideal, |
| 488 | // Node::Value, Node::Identity, hash-based value numbering, Node::Ideal_DU |
| 489 | // and dominator info to a fixed point. |
| 490 | void optimize(); |
| 491 | |
| 492 | #ifndef PRODUCT |
| 493 | void trace_PhaseIterGVN(Node* n, Node* nn, const Type* old_type); |
| 494 | void init_verifyPhaseIterGVN(); |
| 495 | void verify_PhaseIterGVN(); |
| 496 | #endif |
| 497 | |
| 498 | #ifdef ASSERT |
| 499 | void dump_infinite_loop_info(Node* n); |
| 500 | void trace_PhaseIterGVN_verbose(Node* n, int num_processed); |
| 501 | #endif |
| 502 | |
| 503 | // Register a new node with the iter GVN pass without transforming it. |
| 504 | // Used when we need to restructure a Region/Phi area and all the Regions |
| 505 | // and Phis need to complete this one big transform before any other |
| 506 | // transforms can be triggered on the region. |
| 507 | // Optional 'orig' is an earlier version of this node. |
| 508 | // It is significant only for debugging and profiling. |
| 509 | Node* register_new_node_with_optimizer(Node* n, Node* orig = NULL); |
| 510 | |
| 511 | // Kill a globally dead Node. All uses are also globally dead and are |
| 512 | // aggressively trimmed. |
| 513 | void remove_globally_dead_node( Node *dead ); |
| 514 | |
| 515 | // Kill all inputs to a dead node, recursively making more dead nodes. |
| 516 | // The Node must be dead locally, i.e., have no uses. |
| 517 | void remove_dead_node( Node *dead ) { |
| 518 | assert(dead->outcnt() == 0 && !dead->is_top(), "node must be dead" ); |
| 519 | remove_globally_dead_node(dead); |
| 520 | } |
| 521 | |
| 522 | // Add users of 'n' to worklist |
| 523 | void add_users_to_worklist0( Node *n ); |
| 524 | void add_users_to_worklist ( Node *n ); |
| 525 | |
| 526 | // Replace old node with new one. |
| 527 | void replace_node( Node *old, Node *nn ) { |
| 528 | add_users_to_worklist(old); |
| 529 | hash_delete(old); // Yank from hash before hacking edges |
| 530 | subsume_node(old, nn); |
| 531 | } |
| 532 | |
| 533 | // Delayed node rehash: remove a node from the hash table and rehash it during |
| 534 | // next optimizing pass |
| 535 | void rehash_node_delayed(Node* n) { |
| 536 | hash_delete(n); |
| 537 | _worklist.push(n); |
| 538 | } |
| 539 | |
| 540 | void igvn_rehash_node_delayed(Node* n) { |
| 541 | rehash_node_delayed(n); |
| 542 | } |
| 543 | |
| 544 | // Replace ith edge of "n" with "in" |
| 545 | void replace_input_of(Node* n, int i, Node* in) { |
| 546 | rehash_node_delayed(n); |
| 547 | n->set_req(i, in); |
| 548 | } |
| 549 | |
| 550 | // Delete ith edge of "n" |
| 551 | void delete_input_of(Node* n, int i) { |
| 552 | rehash_node_delayed(n); |
| 553 | n->del_req(i); |
| 554 | } |
| 555 | |
| 556 | bool delay_transform() const { return _delay_transform; } |
| 557 | |
| 558 | void set_delay_transform(bool delay) { |
| 559 | _delay_transform = delay; |
| 560 | } |
| 561 | |
| 562 | // Clone loop predicates. Defined in loopTransform.cpp. |
| 563 | Node* clone_loop_predicates(Node* old_entry, Node* new_entry, bool clone_limit_check); |
| 564 | // Create a new if below new_entry for the predicate to be cloned |
| 565 | ProjNode* create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry, |
| 566 | Deoptimization::DeoptReason reason, |
| 567 | int opcode); |
| 568 | |
| 569 | void remove_speculative_types(); |
| 570 | void check_no_speculative_types() { |
| 571 | _table.check_no_speculative_types(); |
| 572 | } |
| 573 | |
| 574 | bool is_dominator(Node *d, Node *n) { return is_dominator_helper(d, n, false); } |
| 575 | |
| 576 | #ifndef PRODUCT |
| 577 | protected: |
| 578 | // Sub-quadratic implementation of VerifyIterativeGVN. |
| 579 | julong _verify_counter; |
| 580 | julong _verify_full_passes; |
| 581 | enum { _verify_window_size = 30 }; |
| 582 | Node* _verify_window[_verify_window_size]; |
| 583 | void verify_step(Node* n); |
| 584 | #endif |
| 585 | }; |
| 586 | |
| 587 | //------------------------------PhaseCCP--------------------------------------- |
| 588 | // Phase for performing global Conditional Constant Propagation. |
| 589 | // Should be replaced with combined CCP & GVN someday. |
| 590 | class PhaseCCP : public PhaseIterGVN { |
| 591 | // Non-recursive. Use analysis to transform single Node. |
| 592 | virtual Node *transform_once( Node *n ); |
| 593 | |
| 594 | public: |
| 595 | PhaseCCP( PhaseIterGVN *igvn ); // Compute conditional constants |
| 596 | NOT_PRODUCT( ~PhaseCCP(); ) |
| 597 | |
| 598 | // Worklist algorithm identifies constants |
| 599 | void analyze(); |
| 600 | // Recursive traversal of program. Used analysis to modify program. |
| 601 | virtual Node *transform( Node *n ); |
| 602 | // Do any transformation after analysis |
| 603 | void do_transform(); |
| 604 | |
| 605 | virtual const Type* saturate(const Type* new_type, const Type* old_type, |
| 606 | const Type* limit_type) const; |
| 607 | // Returns new_type->widen(old_type), which increments the widen bits until |
| 608 | // giving up with TypeInt::INT or TypeLong::LONG. |
| 609 | // Result is clipped to limit_type if necessary. |
| 610 | |
| 611 | #ifndef PRODUCT |
| 612 | static uint _total_invokes; // For profiling, count invocations |
| 613 | void inc_invokes() { ++PhaseCCP::_total_invokes; } |
| 614 | |
| 615 | static uint _total_constants; // For profiling, count constants found |
| 616 | uint _count_constants; |
| 617 | void clear_constants() { _count_constants = 0; } |
| 618 | void inc_constants() { ++_count_constants; } |
| 619 | uint count_constants() const { return _count_constants; } |
| 620 | |
| 621 | static void print_statistics(); |
| 622 | #endif |
| 623 | }; |
| 624 | |
| 625 | |
| 626 | //------------------------------PhasePeephole---------------------------------- |
| 627 | // Phase for performing peephole optimizations on register allocated basic blocks. |
| 628 | class PhasePeephole : public PhaseTransform { |
| 629 | PhaseRegAlloc *_regalloc; |
| 630 | PhaseCFG &_cfg; |
| 631 | // Recursive traversal of program. Pure function is unused in this phase |
| 632 | virtual Node *transform( Node *n ); |
| 633 | |
| 634 | public: |
| 635 | PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg ); |
| 636 | NOT_PRODUCT( ~PhasePeephole(); ) |
| 637 | |
| 638 | // Do any transformation after analysis |
| 639 | void do_transform(); |
| 640 | |
| 641 | #ifndef PRODUCT |
| 642 | static uint _total_peepholes; // For profiling, count peephole rules applied |
| 643 | uint _count_peepholes; |
| 644 | void clear_peepholes() { _count_peepholes = 0; } |
| 645 | void inc_peepholes() { ++_count_peepholes; } |
| 646 | uint count_peepholes() const { return _count_peepholes; } |
| 647 | |
| 648 | static void print_statistics(); |
| 649 | #endif |
| 650 | }; |
| 651 | |
| 652 | #endif // SHARE_OPTO_PHASEX_HPP |
| 653 | |