1/*
2 * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25#ifndef SHARE_OPTO_SUBNODE_HPP
26#define SHARE_OPTO_SUBNODE_HPP
27
28#include "opto/node.hpp"
29#include "opto/opcodes.hpp"
30#include "opto/type.hpp"
31
32// Portions of code courtesy of Clifford Click
33
34//------------------------------SUBNode----------------------------------------
35// Class SUBTRACTION functionality. This covers all the usual 'subtract'
36// behaviors. Subtract-integer, -float, -double, binary xor, compare-integer,
37// -float, and -double are all inherited from this class. The compare
38// functions behave like subtract functions, except that all negative answers
39// are compressed into -1, and all positive answers compressed to 1.
40class SubNode : public Node {
41public:
42 SubNode( Node *in1, Node *in2 ) : Node(0,in1,in2) {
43 init_class_id(Class_Sub);
44 }
45
46 // Handle algebraic identities here. If we have an identity, return the Node
47 // we are equivalent to. We look for "add of zero" as an identity.
48 virtual Node* Identity(PhaseGVN* phase);
49
50 // Compute a new Type for this node. Basically we just do the pre-check,
51 // then call the virtual add() to set the type.
52 virtual const Type* Value(PhaseGVN* phase) const;
53 const Type* Value_common( PhaseTransform *phase ) const;
54
55 // Supplied function returns the subtractend of the inputs.
56 // This also type-checks the inputs for sanity. Guaranteed never to
57 // be passed a TOP or BOTTOM type, these are filtered out by a pre-check.
58 virtual const Type *sub( const Type *, const Type * ) const = 0;
59
60 // Supplied function to return the additive identity type.
61 // This is returned whenever the subtracts inputs are the same.
62 virtual const Type *add_id() const = 0;
63};
64
65
66// NOTE: SubINode should be taken away and replaced by add and negate
67//------------------------------SubINode---------------------------------------
68// Subtract 2 integers
69class SubINode : public SubNode {
70public:
71 SubINode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
72 virtual int Opcode() const;
73 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
74 virtual const Type *sub( const Type *, const Type * ) const;
75 const Type *add_id() const { return TypeInt::ZERO; }
76 const Type *bottom_type() const { return TypeInt::INT; }
77 virtual uint ideal_reg() const { return Op_RegI; }
78};
79
80//------------------------------SubLNode---------------------------------------
81// Subtract 2 integers
82class SubLNode : public SubNode {
83public:
84 SubLNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
85 virtual int Opcode() const;
86 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
87 virtual const Type *sub( const Type *, const Type * ) const;
88 const Type *add_id() const { return TypeLong::ZERO; }
89 const Type *bottom_type() const { return TypeLong::LONG; }
90 virtual uint ideal_reg() const { return Op_RegL; }
91};
92
93// NOTE: SubFPNode should be taken away and replaced by add and negate
94//------------------------------SubFPNode--------------------------------------
95// Subtract 2 floats or doubles
96class SubFPNode : public SubNode {
97protected:
98 SubFPNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {}
99public:
100 const Type* Value(PhaseGVN* phase) const;
101};
102
103// NOTE: SubFNode should be taken away and replaced by add and negate
104//------------------------------SubFNode---------------------------------------
105// Subtract 2 doubles
106class SubFNode : public SubFPNode {
107public:
108 SubFNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
109 virtual int Opcode() const;
110 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
111 virtual const Type *sub( const Type *, const Type * ) const;
112 const Type *add_id() const { return TypeF::ZERO; }
113 const Type *bottom_type() const { return Type::FLOAT; }
114 virtual uint ideal_reg() const { return Op_RegF; }
115};
116
117// NOTE: SubDNode should be taken away and replaced by add and negate
118//------------------------------SubDNode---------------------------------------
119// Subtract 2 doubles
120class SubDNode : public SubFPNode {
121public:
122 SubDNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {}
123 virtual int Opcode() const;
124 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
125 virtual const Type *sub( const Type *, const Type * ) const;
126 const Type *add_id() const { return TypeD::ZERO; }
127 const Type *bottom_type() const { return Type::DOUBLE; }
128 virtual uint ideal_reg() const { return Op_RegD; }
129};
130
131//------------------------------CmpNode---------------------------------------
132// Compare 2 values, returning condition codes (-1, 0 or 1).
133class CmpNode : public SubNode {
134public:
135 CmpNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {
136 init_class_id(Class_Cmp);
137 }
138 virtual Node* Identity(PhaseGVN* phase);
139 const Type *add_id() const { return TypeInt::ZERO; }
140 const Type *bottom_type() const { return TypeInt::CC; }
141 virtual uint ideal_reg() const { return Op_RegFlags; }
142
143#ifndef PRODUCT
144 // CmpNode and subclasses include all data inputs (until hitting a control
145 // boundary) in their related node set, as well as all outputs until and
146 // including eventual control nodes and their projections.
147 virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
148#endif
149};
150
151//------------------------------CmpINode---------------------------------------
152// Compare 2 signed values, returning condition codes (-1, 0 or 1).
153class CmpINode : public CmpNode {
154public:
155 CmpINode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
156 virtual int Opcode() const;
157 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
158 virtual const Type *sub( const Type *, const Type * ) const;
159};
160
161//------------------------------CmpUNode---------------------------------------
162// Compare 2 unsigned values (integer or pointer), returning condition codes (-1, 0 or 1).
163class CmpUNode : public CmpNode {
164public:
165 CmpUNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
166 virtual int Opcode() const;
167 virtual const Type *sub( const Type *, const Type * ) const;
168 const Type* Value(PhaseGVN* phase) const;
169 bool is_index_range_check() const;
170};
171
172//------------------------------CmpPNode---------------------------------------
173// Compare 2 pointer values, returning condition codes (-1, 0 or 1).
174class CmpPNode : public CmpNode {
175public:
176 CmpPNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
177 virtual int Opcode() const;
178 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
179 virtual const Type *sub( const Type *, const Type * ) const;
180};
181
182//------------------------------CmpNNode--------------------------------------
183// Compare 2 narrow oop values, returning condition codes (-1, 0 or 1).
184class CmpNNode : public CmpNode {
185public:
186 CmpNNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
187 virtual int Opcode() const;
188 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
189 virtual const Type *sub( const Type *, const Type * ) const;
190};
191
192//------------------------------CmpLNode---------------------------------------
193// Compare 2 long values, returning condition codes (-1, 0 or 1).
194class CmpLNode : public CmpNode {
195public:
196 CmpLNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
197 virtual int Opcode() const;
198 virtual const Type *sub( const Type *, const Type * ) const;
199};
200
201//------------------------------CmpULNode---------------------------------------
202// Compare 2 unsigned long values, returning condition codes (-1, 0 or 1).
203class CmpULNode : public CmpNode {
204public:
205 CmpULNode(Node* in1, Node* in2) : CmpNode(in1, in2) { }
206 virtual int Opcode() const;
207 virtual const Type* sub(const Type*, const Type*) const;
208};
209
210//------------------------------CmpL3Node--------------------------------------
211// Compare 2 long values, returning integer value (-1, 0 or 1).
212class CmpL3Node : public CmpLNode {
213public:
214 CmpL3Node( Node *in1, Node *in2 ) : CmpLNode(in1,in2) {
215 // Since it is not consumed by Bools, it is not really a Cmp.
216 init_class_id(Class_Sub);
217 }
218 virtual int Opcode() const;
219 virtual uint ideal_reg() const { return Op_RegI; }
220};
221
222//------------------------------CmpFNode---------------------------------------
223// Compare 2 float values, returning condition codes (-1, 0 or 1).
224// This implements the Java bytecode fcmpl, so unordered returns -1.
225// Operands may not commute.
226class CmpFNode : public CmpNode {
227public:
228 CmpFNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
229 virtual int Opcode() const;
230 virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; }
231 const Type* Value(PhaseGVN* phase) const;
232};
233
234//------------------------------CmpF3Node--------------------------------------
235// Compare 2 float values, returning integer value (-1, 0 or 1).
236// This implements the Java bytecode fcmpl, so unordered returns -1.
237// Operands may not commute.
238class CmpF3Node : public CmpFNode {
239public:
240 CmpF3Node( Node *in1, Node *in2 ) : CmpFNode(in1,in2) {
241 // Since it is not consumed by Bools, it is not really a Cmp.
242 init_class_id(Class_Sub);
243 }
244 virtual int Opcode() const;
245 // Since it is not consumed by Bools, it is not really a Cmp.
246 virtual uint ideal_reg() const { return Op_RegI; }
247};
248
249
250//------------------------------CmpDNode---------------------------------------
251// Compare 2 double values, returning condition codes (-1, 0 or 1).
252// This implements the Java bytecode dcmpl, so unordered returns -1.
253// Operands may not commute.
254class CmpDNode : public CmpNode {
255public:
256 CmpDNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {}
257 virtual int Opcode() const;
258 virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; }
259 const Type* Value(PhaseGVN* phase) const;
260 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
261};
262
263//------------------------------CmpD3Node--------------------------------------
264// Compare 2 double values, returning integer value (-1, 0 or 1).
265// This implements the Java bytecode dcmpl, so unordered returns -1.
266// Operands may not commute.
267class CmpD3Node : public CmpDNode {
268public:
269 CmpD3Node( Node *in1, Node *in2 ) : CmpDNode(in1,in2) {
270 // Since it is not consumed by Bools, it is not really a Cmp.
271 init_class_id(Class_Sub);
272 }
273 virtual int Opcode() const;
274 virtual uint ideal_reg() const { return Op_RegI; }
275};
276
277
278//------------------------------BoolTest---------------------------------------
279// Convert condition codes to a boolean test value (0 or -1).
280// We pick the values as 3 bits; the low order 2 bits we compare against the
281// condition codes, the high bit flips the sense of the result.
282struct BoolTest {
283 enum mask { eq = 0, ne = 4, le = 5, ge = 7, lt = 3, gt = 1, overflow = 2, no_overflow = 6, never = 8, illegal = 9 };
284 mask _test;
285 BoolTest( mask btm ) : _test(btm) {}
286 const Type *cc2logical( const Type *CC ) const;
287 // Commute the test. I use a small table lookup. The table is created as
288 // a simple char array where each element is the ASCII version of a 'mask'
289 // enum from above.
290 mask commute( ) const { return mask("032147658"[_test]-'0'); }
291 mask negate( ) const { return mask(_test^4); }
292 bool is_canonical( ) const { return (_test == BoolTest::ne || _test == BoolTest::lt || _test == BoolTest::le || _test == BoolTest::overflow); }
293 bool is_less( ) const { return _test == BoolTest::lt || _test == BoolTest::le; }
294 bool is_greater( ) const { return _test == BoolTest::gt || _test == BoolTest::ge; }
295 void dump_on(outputStream *st) const;
296 mask merge(BoolTest other) const;
297};
298
299//------------------------------BoolNode---------------------------------------
300// A Node to convert a Condition Codes to a Logical result.
301class BoolNode : public Node {
302 virtual uint hash() const;
303 virtual bool cmp( const Node &n ) const;
304 virtual uint size_of() const;
305
306 // Try to optimize signed integer comparison
307 Node* fold_cmpI(PhaseGVN* phase, SubNode* cmp, Node* cmp1, int cmp_op,
308 int cmp1_op, const TypeInt* cmp2_type);
309public:
310 const BoolTest _test;
311 BoolNode( Node *cc, BoolTest::mask t): Node(0,cc), _test(t) {
312 init_class_id(Class_Bool);
313 }
314 // Convert an arbitrary int value to a Bool or other suitable predicate.
315 static Node* make_predicate(Node* test_value, PhaseGVN* phase);
316 // Convert self back to an integer value.
317 Node* as_int_value(PhaseGVN* phase);
318 // Invert sense of self, returning new Bool.
319 BoolNode* negate(PhaseGVN* phase);
320 virtual int Opcode() const;
321 virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
322 virtual const Type* Value(PhaseGVN* phase) const;
323 virtual const Type *bottom_type() const { return TypeInt::BOOL; }
324 uint match_edge(uint idx) const { return 0; }
325 virtual uint ideal_reg() const { return Op_RegI; }
326
327 bool is_counted_loop_exit_test();
328#ifndef PRODUCT
329 virtual void dump_spec(outputStream *st) const;
330 virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const;
331#endif
332};
333
334//------------------------------AbsNode----------------------------------------
335// Abstract class for absolute value. Mostly used to get a handy wrapper
336// for finding this pattern in the graph.
337class AbsNode : public Node {
338public:
339 AbsNode( Node *value ) : Node(0,value) {}
340};
341
342//------------------------------AbsINode---------------------------------------
343// Absolute value an integer. Since a naive graph involves control flow, we
344// "match" it in the ideal world (so the control flow can be removed).
345class AbsINode : public AbsNode {
346public:
347 AbsINode( Node *in1 ) : AbsNode(in1) {}
348 virtual int Opcode() const;
349 const Type *bottom_type() const { return TypeInt::INT; }
350 virtual uint ideal_reg() const { return Op_RegI; }
351};
352
353//------------------------------AbsLNode---------------------------------------
354// Absolute value a long. Since a naive graph involves control flow, we
355// "match" it in the ideal world (so the control flow can be removed).
356class AbsLNode : public AbsNode {
357public:
358 AbsLNode( Node *in1 ) : AbsNode(in1) {}
359 virtual int Opcode() const;
360 const Type *bottom_type() const { return TypeLong::LONG; }
361 virtual uint ideal_reg() const { return Op_RegL; }
362};
363
364//------------------------------AbsFNode---------------------------------------
365// Absolute value a float, a common float-point idiom with a cheap hardware
366// implemention on most chips. Since a naive graph involves control flow, we
367// "match" it in the ideal world (so the control flow can be removed).
368class AbsFNode : public AbsNode {
369public:
370 AbsFNode( Node *in1 ) : AbsNode(in1) {}
371 virtual int Opcode() const;
372 const Type *bottom_type() const { return Type::FLOAT; }
373 virtual uint ideal_reg() const { return Op_RegF; }
374};
375
376//------------------------------AbsDNode---------------------------------------
377// Absolute value a double, a common float-point idiom with a cheap hardware
378// implemention on most chips. Since a naive graph involves control flow, we
379// "match" it in the ideal world (so the control flow can be removed).
380class AbsDNode : public AbsNode {
381public:
382 AbsDNode( Node *in1 ) : AbsNode(in1) {}
383 virtual int Opcode() const;
384 const Type *bottom_type() const { return Type::DOUBLE; }
385 virtual uint ideal_reg() const { return Op_RegD; }
386};
387
388
389//------------------------------CmpLTMaskNode----------------------------------
390// If p < q, return -1 else return 0. Nice for flow-free idioms.
391class CmpLTMaskNode : public Node {
392public:
393 CmpLTMaskNode( Node *p, Node *q ) : Node(0, p, q) {}
394 virtual int Opcode() const;
395 const Type *bottom_type() const { return TypeInt::INT; }
396 virtual uint ideal_reg() const { return Op_RegI; }
397};
398
399
400//------------------------------NegNode----------------------------------------
401class NegNode : public Node {
402public:
403 NegNode( Node *in1 ) : Node(0,in1) {}
404};
405
406//------------------------------NegFNode---------------------------------------
407// Negate value a float. Negating 0.0 returns -0.0, but subtracting from
408// zero returns +0.0 (per JVM spec on 'fneg' bytecode). As subtraction
409// cannot be used to replace negation we have to implement negation as ideal
410// node; note that negation and addition can replace subtraction.
411class NegFNode : public NegNode {
412public:
413 NegFNode( Node *in1 ) : NegNode(in1) {}
414 virtual int Opcode() const;
415 const Type *bottom_type() const { return Type::FLOAT; }
416 virtual uint ideal_reg() const { return Op_RegF; }
417};
418
419//------------------------------NegDNode---------------------------------------
420// Negate value a double. Negating 0.0 returns -0.0, but subtracting from
421// zero returns +0.0 (per JVM spec on 'dneg' bytecode). As subtraction
422// cannot be used to replace negation we have to implement negation as ideal
423// node; note that negation and addition can replace subtraction.
424class NegDNode : public NegNode {
425public:
426 NegDNode( Node *in1 ) : NegNode(in1) {}
427 virtual int Opcode() const;
428 const Type *bottom_type() const { return Type::DOUBLE; }
429 virtual uint ideal_reg() const { return Op_RegD; }
430};
431
432//------------------------------AtanDNode--------------------------------------
433// arcus tangens of a double
434class AtanDNode : public Node {
435public:
436 AtanDNode(Node *c, Node *in1, Node *in2 ) : Node(c, in1, in2) {}
437 virtual int Opcode() const;
438 const Type *bottom_type() const { return Type::DOUBLE; }
439 virtual uint ideal_reg() const { return Op_RegD; }
440};
441
442
443//------------------------------SqrtDNode--------------------------------------
444// square root a double
445class SqrtDNode : public Node {
446public:
447 SqrtDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
448 init_flags(Flag_is_expensive);
449 C->add_expensive_node(this);
450 }
451 virtual int Opcode() const;
452 const Type *bottom_type() const { return Type::DOUBLE; }
453 virtual uint ideal_reg() const { return Op_RegD; }
454 virtual const Type* Value(PhaseGVN* phase) const;
455};
456
457//------------------------------SqrtFNode--------------------------------------
458// square root a float
459class SqrtFNode : public Node {
460public:
461 SqrtFNode(Compile* C, Node *c, Node *in1) : Node(c, in1) {
462 init_flags(Flag_is_expensive);
463 if (c != NULL) {
464 // Treat node only as expensive if a control input is set because it might
465 // be created from a SqrtDNode in ConvD2FNode::Ideal() that was found to
466 // be unique and therefore has no control input.
467 C->add_expensive_node(this);
468 }
469 }
470 virtual int Opcode() const;
471 const Type *bottom_type() const { return Type::FLOAT; }
472 virtual uint ideal_reg() const { return Op_RegF; }
473 virtual const Type* Value(PhaseGVN* phase) const;
474};
475
476//-------------------------------ReverseBytesINode--------------------------------
477// reverse bytes of an integer
478class ReverseBytesINode : public Node {
479public:
480 ReverseBytesINode(Node *c, Node *in1) : Node(c, in1) {}
481 virtual int Opcode() const;
482 const Type *bottom_type() const { return TypeInt::INT; }
483 virtual uint ideal_reg() const { return Op_RegI; }
484};
485
486//-------------------------------ReverseBytesLNode--------------------------------
487// reverse bytes of a long
488class ReverseBytesLNode : public Node {
489public:
490 ReverseBytesLNode(Node *c, Node *in1) : Node(c, in1) {}
491 virtual int Opcode() const;
492 const Type *bottom_type() const { return TypeLong::LONG; }
493 virtual uint ideal_reg() const { return Op_RegL; }
494};
495
496//-------------------------------ReverseBytesUSNode--------------------------------
497// reverse bytes of an unsigned short / char
498class ReverseBytesUSNode : public Node {
499public:
500 ReverseBytesUSNode(Node *c, Node *in1) : Node(c, in1) {}
501 virtual int Opcode() const;
502 const Type *bottom_type() const { return TypeInt::CHAR; }
503 virtual uint ideal_reg() const { return Op_RegI; }
504};
505
506//-------------------------------ReverseBytesSNode--------------------------------
507// reverse bytes of a short
508class ReverseBytesSNode : public Node {
509public:
510 ReverseBytesSNode(Node *c, Node *in1) : Node(c, in1) {}
511 virtual int Opcode() const;
512 const Type *bottom_type() const { return TypeInt::SHORT; }
513 virtual uint ideal_reg() const { return Op_RegI; }
514};
515
516#endif // SHARE_OPTO_SUBNODE_HPP
517