| 1 | /* |
| 2 | * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #ifndef SHARE_OPTO_SUBNODE_HPP |
| 26 | #define SHARE_OPTO_SUBNODE_HPP |
| 27 | |
| 28 | #include "opto/node.hpp" |
| 29 | #include "opto/opcodes.hpp" |
| 30 | #include "opto/type.hpp" |
| 31 | |
| 32 | // Portions of code courtesy of Clifford Click |
| 33 | |
| 34 | //------------------------------SUBNode---------------------------------------- |
| 35 | // Class SUBTRACTION functionality. This covers all the usual 'subtract' |
| 36 | // behaviors. Subtract-integer, -float, -double, binary xor, compare-integer, |
| 37 | // -float, and -double are all inherited from this class. The compare |
| 38 | // functions behave like subtract functions, except that all negative answers |
| 39 | // are compressed into -1, and all positive answers compressed to 1. |
| 40 | class SubNode : public Node { |
| 41 | public: |
| 42 | SubNode( Node *in1, Node *in2 ) : Node(0,in1,in2) { |
| 43 | init_class_id(Class_Sub); |
| 44 | } |
| 45 | |
| 46 | // Handle algebraic identities here. If we have an identity, return the Node |
| 47 | // we are equivalent to. We look for "add of zero" as an identity. |
| 48 | virtual Node* Identity(PhaseGVN* phase); |
| 49 | |
| 50 | // Compute a new Type for this node. Basically we just do the pre-check, |
| 51 | // then call the virtual add() to set the type. |
| 52 | virtual const Type* Value(PhaseGVN* phase) const; |
| 53 | const Type* Value_common( PhaseTransform *phase ) const; |
| 54 | |
| 55 | // Supplied function returns the subtractend of the inputs. |
| 56 | // This also type-checks the inputs for sanity. Guaranteed never to |
| 57 | // be passed a TOP or BOTTOM type, these are filtered out by a pre-check. |
| 58 | virtual const Type *sub( const Type *, const Type * ) const = 0; |
| 59 | |
| 60 | // Supplied function to return the additive identity type. |
| 61 | // This is returned whenever the subtracts inputs are the same. |
| 62 | virtual const Type *add_id() const = 0; |
| 63 | }; |
| 64 | |
| 65 | |
| 66 | // NOTE: SubINode should be taken away and replaced by add and negate |
| 67 | //------------------------------SubINode--------------------------------------- |
| 68 | // Subtract 2 integers |
| 69 | class SubINode : public SubNode { |
| 70 | public: |
| 71 | SubINode( Node *in1, Node *in2 ) : SubNode(in1,in2) {} |
| 72 | virtual int Opcode() const; |
| 73 | virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); |
| 74 | virtual const Type *sub( const Type *, const Type * ) const; |
| 75 | const Type *add_id() const { return TypeInt::ZERO; } |
| 76 | const Type *bottom_type() const { return TypeInt::INT; } |
| 77 | virtual uint ideal_reg() const { return Op_RegI; } |
| 78 | }; |
| 79 | |
| 80 | //------------------------------SubLNode--------------------------------------- |
| 81 | // Subtract 2 integers |
| 82 | class SubLNode : public SubNode { |
| 83 | public: |
| 84 | SubLNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {} |
| 85 | virtual int Opcode() const; |
| 86 | virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); |
| 87 | virtual const Type *sub( const Type *, const Type * ) const; |
| 88 | const Type *add_id() const { return TypeLong::ZERO; } |
| 89 | const Type *bottom_type() const { return TypeLong::LONG; } |
| 90 | virtual uint ideal_reg() const { return Op_RegL; } |
| 91 | }; |
| 92 | |
| 93 | // NOTE: SubFPNode should be taken away and replaced by add and negate |
| 94 | //------------------------------SubFPNode-------------------------------------- |
| 95 | // Subtract 2 floats or doubles |
| 96 | class SubFPNode : public SubNode { |
| 97 | protected: |
| 98 | SubFPNode( Node *in1, Node *in2 ) : SubNode(in1,in2) {} |
| 99 | public: |
| 100 | const Type* Value(PhaseGVN* phase) const; |
| 101 | }; |
| 102 | |
| 103 | // NOTE: SubFNode should be taken away and replaced by add and negate |
| 104 | //------------------------------SubFNode--------------------------------------- |
| 105 | // Subtract 2 doubles |
| 106 | class SubFNode : public SubFPNode { |
| 107 | public: |
| 108 | SubFNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {} |
| 109 | virtual int Opcode() const; |
| 110 | virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); |
| 111 | virtual const Type *sub( const Type *, const Type * ) const; |
| 112 | const Type *add_id() const { return TypeF::ZERO; } |
| 113 | const Type *bottom_type() const { return Type::FLOAT; } |
| 114 | virtual uint ideal_reg() const { return Op_RegF; } |
| 115 | }; |
| 116 | |
| 117 | // NOTE: SubDNode should be taken away and replaced by add and negate |
| 118 | //------------------------------SubDNode--------------------------------------- |
| 119 | // Subtract 2 doubles |
| 120 | class SubDNode : public SubFPNode { |
| 121 | public: |
| 122 | SubDNode( Node *in1, Node *in2 ) : SubFPNode(in1,in2) {} |
| 123 | virtual int Opcode() const; |
| 124 | virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); |
| 125 | virtual const Type *sub( const Type *, const Type * ) const; |
| 126 | const Type *add_id() const { return TypeD::ZERO; } |
| 127 | const Type *bottom_type() const { return Type::DOUBLE; } |
| 128 | virtual uint ideal_reg() const { return Op_RegD; } |
| 129 | }; |
| 130 | |
| 131 | //------------------------------CmpNode--------------------------------------- |
| 132 | // Compare 2 values, returning condition codes (-1, 0 or 1). |
| 133 | class CmpNode : public SubNode { |
| 134 | public: |
| 135 | CmpNode( Node *in1, Node *in2 ) : SubNode(in1,in2) { |
| 136 | init_class_id(Class_Cmp); |
| 137 | } |
| 138 | virtual Node* Identity(PhaseGVN* phase); |
| 139 | const Type *add_id() const { return TypeInt::ZERO; } |
| 140 | const Type *bottom_type() const { return TypeInt::CC; } |
| 141 | virtual uint ideal_reg() const { return Op_RegFlags; } |
| 142 | |
| 143 | #ifndef PRODUCT |
| 144 | // CmpNode and subclasses include all data inputs (until hitting a control |
| 145 | // boundary) in their related node set, as well as all outputs until and |
| 146 | // including eventual control nodes and their projections. |
| 147 | virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const; |
| 148 | #endif |
| 149 | }; |
| 150 | |
| 151 | //------------------------------CmpINode--------------------------------------- |
| 152 | // Compare 2 signed values, returning condition codes (-1, 0 or 1). |
| 153 | class CmpINode : public CmpNode { |
| 154 | public: |
| 155 | CmpINode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {} |
| 156 | virtual int Opcode() const; |
| 157 | virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); |
| 158 | virtual const Type *sub( const Type *, const Type * ) const; |
| 159 | }; |
| 160 | |
| 161 | //------------------------------CmpUNode--------------------------------------- |
| 162 | // Compare 2 unsigned values (integer or pointer), returning condition codes (-1, 0 or 1). |
| 163 | class CmpUNode : public CmpNode { |
| 164 | public: |
| 165 | CmpUNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {} |
| 166 | virtual int Opcode() const; |
| 167 | virtual const Type *sub( const Type *, const Type * ) const; |
| 168 | const Type* Value(PhaseGVN* phase) const; |
| 169 | bool is_index_range_check() const; |
| 170 | }; |
| 171 | |
| 172 | //------------------------------CmpPNode--------------------------------------- |
| 173 | // Compare 2 pointer values, returning condition codes (-1, 0 or 1). |
| 174 | class CmpPNode : public CmpNode { |
| 175 | public: |
| 176 | CmpPNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {} |
| 177 | virtual int Opcode() const; |
| 178 | virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); |
| 179 | virtual const Type *sub( const Type *, const Type * ) const; |
| 180 | }; |
| 181 | |
| 182 | //------------------------------CmpNNode-------------------------------------- |
| 183 | // Compare 2 narrow oop values, returning condition codes (-1, 0 or 1). |
| 184 | class CmpNNode : public CmpNode { |
| 185 | public: |
| 186 | CmpNNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {} |
| 187 | virtual int Opcode() const; |
| 188 | virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); |
| 189 | virtual const Type *sub( const Type *, const Type * ) const; |
| 190 | }; |
| 191 | |
| 192 | //------------------------------CmpLNode--------------------------------------- |
| 193 | // Compare 2 long values, returning condition codes (-1, 0 or 1). |
| 194 | class CmpLNode : public CmpNode { |
| 195 | public: |
| 196 | CmpLNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {} |
| 197 | virtual int Opcode() const; |
| 198 | virtual const Type *sub( const Type *, const Type * ) const; |
| 199 | }; |
| 200 | |
| 201 | //------------------------------CmpULNode--------------------------------------- |
| 202 | // Compare 2 unsigned long values, returning condition codes (-1, 0 or 1). |
| 203 | class CmpULNode : public CmpNode { |
| 204 | public: |
| 205 | CmpULNode(Node* in1, Node* in2) : CmpNode(in1, in2) { } |
| 206 | virtual int Opcode() const; |
| 207 | virtual const Type* sub(const Type*, const Type*) const; |
| 208 | }; |
| 209 | |
| 210 | //------------------------------CmpL3Node-------------------------------------- |
| 211 | // Compare 2 long values, returning integer value (-1, 0 or 1). |
| 212 | class CmpL3Node : public CmpLNode { |
| 213 | public: |
| 214 | CmpL3Node( Node *in1, Node *in2 ) : CmpLNode(in1,in2) { |
| 215 | // Since it is not consumed by Bools, it is not really a Cmp. |
| 216 | init_class_id(Class_Sub); |
| 217 | } |
| 218 | virtual int Opcode() const; |
| 219 | virtual uint ideal_reg() const { return Op_RegI; } |
| 220 | }; |
| 221 | |
| 222 | //------------------------------CmpFNode--------------------------------------- |
| 223 | // Compare 2 float values, returning condition codes (-1, 0 or 1). |
| 224 | // This implements the Java bytecode fcmpl, so unordered returns -1. |
| 225 | // Operands may not commute. |
| 226 | class CmpFNode : public CmpNode { |
| 227 | public: |
| 228 | CmpFNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {} |
| 229 | virtual int Opcode() const; |
| 230 | virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; } |
| 231 | const Type* Value(PhaseGVN* phase) const; |
| 232 | }; |
| 233 | |
| 234 | //------------------------------CmpF3Node-------------------------------------- |
| 235 | // Compare 2 float values, returning integer value (-1, 0 or 1). |
| 236 | // This implements the Java bytecode fcmpl, so unordered returns -1. |
| 237 | // Operands may not commute. |
| 238 | class CmpF3Node : public CmpFNode { |
| 239 | public: |
| 240 | CmpF3Node( Node *in1, Node *in2 ) : CmpFNode(in1,in2) { |
| 241 | // Since it is not consumed by Bools, it is not really a Cmp. |
| 242 | init_class_id(Class_Sub); |
| 243 | } |
| 244 | virtual int Opcode() const; |
| 245 | // Since it is not consumed by Bools, it is not really a Cmp. |
| 246 | virtual uint ideal_reg() const { return Op_RegI; } |
| 247 | }; |
| 248 | |
| 249 | |
| 250 | //------------------------------CmpDNode--------------------------------------- |
| 251 | // Compare 2 double values, returning condition codes (-1, 0 or 1). |
| 252 | // This implements the Java bytecode dcmpl, so unordered returns -1. |
| 253 | // Operands may not commute. |
| 254 | class CmpDNode : public CmpNode { |
| 255 | public: |
| 256 | CmpDNode( Node *in1, Node *in2 ) : CmpNode(in1,in2) {} |
| 257 | virtual int Opcode() const; |
| 258 | virtual const Type *sub( const Type *, const Type * ) const { ShouldNotReachHere(); return NULL; } |
| 259 | const Type* Value(PhaseGVN* phase) const; |
| 260 | virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); |
| 261 | }; |
| 262 | |
| 263 | //------------------------------CmpD3Node-------------------------------------- |
| 264 | // Compare 2 double values, returning integer value (-1, 0 or 1). |
| 265 | // This implements the Java bytecode dcmpl, so unordered returns -1. |
| 266 | // Operands may not commute. |
| 267 | class CmpD3Node : public CmpDNode { |
| 268 | public: |
| 269 | CmpD3Node( Node *in1, Node *in2 ) : CmpDNode(in1,in2) { |
| 270 | // Since it is not consumed by Bools, it is not really a Cmp. |
| 271 | init_class_id(Class_Sub); |
| 272 | } |
| 273 | virtual int Opcode() const; |
| 274 | virtual uint ideal_reg() const { return Op_RegI; } |
| 275 | }; |
| 276 | |
| 277 | |
| 278 | //------------------------------BoolTest--------------------------------------- |
| 279 | // Convert condition codes to a boolean test value (0 or -1). |
| 280 | // We pick the values as 3 bits; the low order 2 bits we compare against the |
| 281 | // condition codes, the high bit flips the sense of the result. |
| 282 | struct BoolTest { |
| 283 | enum mask { eq = 0, ne = 4, le = 5, ge = 7, lt = 3, gt = 1, overflow = 2, no_overflow = 6, never = 8, illegal = 9 }; |
| 284 | mask _test; |
| 285 | BoolTest( mask btm ) : _test(btm) {} |
| 286 | const Type *cc2logical( const Type *CC ) const; |
| 287 | // Commute the test. I use a small table lookup. The table is created as |
| 288 | // a simple char array where each element is the ASCII version of a 'mask' |
| 289 | // enum from above. |
| 290 | mask commute( ) const { return mask("032147658" [_test]-'0'); } |
| 291 | mask negate( ) const { return mask(_test^4); } |
| 292 | bool is_canonical( ) const { return (_test == BoolTest::ne || _test == BoolTest::lt || _test == BoolTest::le || _test == BoolTest::overflow); } |
| 293 | bool is_less( ) const { return _test == BoolTest::lt || _test == BoolTest::le; } |
| 294 | bool is_greater( ) const { return _test == BoolTest::gt || _test == BoolTest::ge; } |
| 295 | void dump_on(outputStream *st) const; |
| 296 | mask merge(BoolTest other) const; |
| 297 | }; |
| 298 | |
| 299 | //------------------------------BoolNode--------------------------------------- |
| 300 | // A Node to convert a Condition Codes to a Logical result. |
| 301 | class BoolNode : public Node { |
| 302 | virtual uint hash() const; |
| 303 | virtual bool cmp( const Node &n ) const; |
| 304 | virtual uint size_of() const; |
| 305 | |
| 306 | // Try to optimize signed integer comparison |
| 307 | Node* fold_cmpI(PhaseGVN* phase, SubNode* cmp, Node* cmp1, int cmp_op, |
| 308 | int cmp1_op, const TypeInt* cmp2_type); |
| 309 | public: |
| 310 | const BoolTest _test; |
| 311 | BoolNode( Node *cc, BoolTest::mask t): Node(0,cc), _test(t) { |
| 312 | init_class_id(Class_Bool); |
| 313 | } |
| 314 | // Convert an arbitrary int value to a Bool or other suitable predicate. |
| 315 | static Node* make_predicate(Node* test_value, PhaseGVN* phase); |
| 316 | // Convert self back to an integer value. |
| 317 | Node* as_int_value(PhaseGVN* phase); |
| 318 | // Invert sense of self, returning new Bool. |
| 319 | BoolNode* negate(PhaseGVN* phase); |
| 320 | virtual int Opcode() const; |
| 321 | virtual Node *Ideal(PhaseGVN *phase, bool can_reshape); |
| 322 | virtual const Type* Value(PhaseGVN* phase) const; |
| 323 | virtual const Type *bottom_type() const { return TypeInt::BOOL; } |
| 324 | uint match_edge(uint idx) const { return 0; } |
| 325 | virtual uint ideal_reg() const { return Op_RegI; } |
| 326 | |
| 327 | bool is_counted_loop_exit_test(); |
| 328 | #ifndef PRODUCT |
| 329 | virtual void dump_spec(outputStream *st) const; |
| 330 | virtual void related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const; |
| 331 | #endif |
| 332 | }; |
| 333 | |
| 334 | //------------------------------AbsNode---------------------------------------- |
| 335 | // Abstract class for absolute value. Mostly used to get a handy wrapper |
| 336 | // for finding this pattern in the graph. |
| 337 | class AbsNode : public Node { |
| 338 | public: |
| 339 | AbsNode( Node *value ) : Node(0,value) {} |
| 340 | }; |
| 341 | |
| 342 | //------------------------------AbsINode--------------------------------------- |
| 343 | // Absolute value an integer. Since a naive graph involves control flow, we |
| 344 | // "match" it in the ideal world (so the control flow can be removed). |
| 345 | class AbsINode : public AbsNode { |
| 346 | public: |
| 347 | AbsINode( Node *in1 ) : AbsNode(in1) {} |
| 348 | virtual int Opcode() const; |
| 349 | const Type *bottom_type() const { return TypeInt::INT; } |
| 350 | virtual uint ideal_reg() const { return Op_RegI; } |
| 351 | }; |
| 352 | |
| 353 | //------------------------------AbsLNode--------------------------------------- |
| 354 | // Absolute value a long. Since a naive graph involves control flow, we |
| 355 | // "match" it in the ideal world (so the control flow can be removed). |
| 356 | class AbsLNode : public AbsNode { |
| 357 | public: |
| 358 | AbsLNode( Node *in1 ) : AbsNode(in1) {} |
| 359 | virtual int Opcode() const; |
| 360 | const Type *bottom_type() const { return TypeLong::LONG; } |
| 361 | virtual uint ideal_reg() const { return Op_RegL; } |
| 362 | }; |
| 363 | |
| 364 | //------------------------------AbsFNode--------------------------------------- |
| 365 | // Absolute value a float, a common float-point idiom with a cheap hardware |
| 366 | // implemention on most chips. Since a naive graph involves control flow, we |
| 367 | // "match" it in the ideal world (so the control flow can be removed). |
| 368 | class AbsFNode : public AbsNode { |
| 369 | public: |
| 370 | AbsFNode( Node *in1 ) : AbsNode(in1) {} |
| 371 | virtual int Opcode() const; |
| 372 | const Type *bottom_type() const { return Type::FLOAT; } |
| 373 | virtual uint ideal_reg() const { return Op_RegF; } |
| 374 | }; |
| 375 | |
| 376 | //------------------------------AbsDNode--------------------------------------- |
| 377 | // Absolute value a double, a common float-point idiom with a cheap hardware |
| 378 | // implemention on most chips. Since a naive graph involves control flow, we |
| 379 | // "match" it in the ideal world (so the control flow can be removed). |
| 380 | class AbsDNode : public AbsNode { |
| 381 | public: |
| 382 | AbsDNode( Node *in1 ) : AbsNode(in1) {} |
| 383 | virtual int Opcode() const; |
| 384 | const Type *bottom_type() const { return Type::DOUBLE; } |
| 385 | virtual uint ideal_reg() const { return Op_RegD; } |
| 386 | }; |
| 387 | |
| 388 | |
| 389 | //------------------------------CmpLTMaskNode---------------------------------- |
| 390 | // If p < q, return -1 else return 0. Nice for flow-free idioms. |
| 391 | class CmpLTMaskNode : public Node { |
| 392 | public: |
| 393 | CmpLTMaskNode( Node *p, Node *q ) : Node(0, p, q) {} |
| 394 | virtual int Opcode() const; |
| 395 | const Type *bottom_type() const { return TypeInt::INT; } |
| 396 | virtual uint ideal_reg() const { return Op_RegI; } |
| 397 | }; |
| 398 | |
| 399 | |
| 400 | //------------------------------NegNode---------------------------------------- |
| 401 | class NegNode : public Node { |
| 402 | public: |
| 403 | NegNode( Node *in1 ) : Node(0,in1) {} |
| 404 | }; |
| 405 | |
| 406 | //------------------------------NegFNode--------------------------------------- |
| 407 | // Negate value a float. Negating 0.0 returns -0.0, but subtracting from |
| 408 | // zero returns +0.0 (per JVM spec on 'fneg' bytecode). As subtraction |
| 409 | // cannot be used to replace negation we have to implement negation as ideal |
| 410 | // node; note that negation and addition can replace subtraction. |
| 411 | class NegFNode : public NegNode { |
| 412 | public: |
| 413 | NegFNode( Node *in1 ) : NegNode(in1) {} |
| 414 | virtual int Opcode() const; |
| 415 | const Type *bottom_type() const { return Type::FLOAT; } |
| 416 | virtual uint ideal_reg() const { return Op_RegF; } |
| 417 | }; |
| 418 | |
| 419 | //------------------------------NegDNode--------------------------------------- |
| 420 | // Negate value a double. Negating 0.0 returns -0.0, but subtracting from |
| 421 | // zero returns +0.0 (per JVM spec on 'dneg' bytecode). As subtraction |
| 422 | // cannot be used to replace negation we have to implement negation as ideal |
| 423 | // node; note that negation and addition can replace subtraction. |
| 424 | class NegDNode : public NegNode { |
| 425 | public: |
| 426 | NegDNode( Node *in1 ) : NegNode(in1) {} |
| 427 | virtual int Opcode() const; |
| 428 | const Type *bottom_type() const { return Type::DOUBLE; } |
| 429 | virtual uint ideal_reg() const { return Op_RegD; } |
| 430 | }; |
| 431 | |
| 432 | //------------------------------AtanDNode-------------------------------------- |
| 433 | // arcus tangens of a double |
| 434 | class AtanDNode : public Node { |
| 435 | public: |
| 436 | AtanDNode(Node *c, Node *in1, Node *in2 ) : Node(c, in1, in2) {} |
| 437 | virtual int Opcode() const; |
| 438 | const Type *bottom_type() const { return Type::DOUBLE; } |
| 439 | virtual uint ideal_reg() const { return Op_RegD; } |
| 440 | }; |
| 441 | |
| 442 | |
| 443 | //------------------------------SqrtDNode-------------------------------------- |
| 444 | // square root a double |
| 445 | class SqrtDNode : public Node { |
| 446 | public: |
| 447 | SqrtDNode(Compile* C, Node *c, Node *in1) : Node(c, in1) { |
| 448 | init_flags(Flag_is_expensive); |
| 449 | C->add_expensive_node(this); |
| 450 | } |
| 451 | virtual int Opcode() const; |
| 452 | const Type *bottom_type() const { return Type::DOUBLE; } |
| 453 | virtual uint ideal_reg() const { return Op_RegD; } |
| 454 | virtual const Type* Value(PhaseGVN* phase) const; |
| 455 | }; |
| 456 | |
| 457 | //------------------------------SqrtFNode-------------------------------------- |
| 458 | // square root a float |
| 459 | class SqrtFNode : public Node { |
| 460 | public: |
| 461 | SqrtFNode(Compile* C, Node *c, Node *in1) : Node(c, in1) { |
| 462 | init_flags(Flag_is_expensive); |
| 463 | if (c != NULL) { |
| 464 | // Treat node only as expensive if a control input is set because it might |
| 465 | // be created from a SqrtDNode in ConvD2FNode::Ideal() that was found to |
| 466 | // be unique and therefore has no control input. |
| 467 | C->add_expensive_node(this); |
| 468 | } |
| 469 | } |
| 470 | virtual int Opcode() const; |
| 471 | const Type *bottom_type() const { return Type::FLOAT; } |
| 472 | virtual uint ideal_reg() const { return Op_RegF; } |
| 473 | virtual const Type* Value(PhaseGVN* phase) const; |
| 474 | }; |
| 475 | |
| 476 | //-------------------------------ReverseBytesINode-------------------------------- |
| 477 | // reverse bytes of an integer |
| 478 | class ReverseBytesINode : public Node { |
| 479 | public: |
| 480 | ReverseBytesINode(Node *c, Node *in1) : Node(c, in1) {} |
| 481 | virtual int Opcode() const; |
| 482 | const Type *bottom_type() const { return TypeInt::INT; } |
| 483 | virtual uint ideal_reg() const { return Op_RegI; } |
| 484 | }; |
| 485 | |
| 486 | //-------------------------------ReverseBytesLNode-------------------------------- |
| 487 | // reverse bytes of a long |
| 488 | class ReverseBytesLNode : public Node { |
| 489 | public: |
| 490 | ReverseBytesLNode(Node *c, Node *in1) : Node(c, in1) {} |
| 491 | virtual int Opcode() const; |
| 492 | const Type *bottom_type() const { return TypeLong::LONG; } |
| 493 | virtual uint ideal_reg() const { return Op_RegL; } |
| 494 | }; |
| 495 | |
| 496 | //-------------------------------ReverseBytesUSNode-------------------------------- |
| 497 | // reverse bytes of an unsigned short / char |
| 498 | class ReverseBytesUSNode : public Node { |
| 499 | public: |
| 500 | ReverseBytesUSNode(Node *c, Node *in1) : Node(c, in1) {} |
| 501 | virtual int Opcode() const; |
| 502 | const Type *bottom_type() const { return TypeInt::CHAR; } |
| 503 | virtual uint ideal_reg() const { return Op_RegI; } |
| 504 | }; |
| 505 | |
| 506 | //-------------------------------ReverseBytesSNode-------------------------------- |
| 507 | // reverse bytes of a short |
| 508 | class ReverseBytesSNode : public Node { |
| 509 | public: |
| 510 | ReverseBytesSNode(Node *c, Node *in1) : Node(c, in1) {} |
| 511 | virtual int Opcode() const; |
| 512 | const Type *bottom_type() const { return TypeInt::SHORT; } |
| 513 | virtual uint ideal_reg() const { return Op_RegI; } |
| 514 | }; |
| 515 | |
| 516 | #endif // SHARE_OPTO_SUBNODE_HPP |
| 517 | |