1 | /* |
2 | * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "classfile/vmSymbols.hpp" |
27 | #include "logging/log.hpp" |
28 | #include "logging/logStream.hpp" |
29 | #include "jfr/jfrEvents.hpp" |
30 | #include "memory/allocation.inline.hpp" |
31 | #include "memory/metaspaceShared.hpp" |
32 | #include "memory/padded.hpp" |
33 | #include "memory/resourceArea.hpp" |
34 | #include "memory/universe.hpp" |
35 | #include "oops/markOop.hpp" |
36 | #include "oops/oop.inline.hpp" |
37 | #include "runtime/atomic.hpp" |
38 | #include "runtime/biasedLocking.hpp" |
39 | #include "runtime/handles.inline.hpp" |
40 | #include "runtime/interfaceSupport.inline.hpp" |
41 | #include "runtime/mutexLocker.hpp" |
42 | #include "runtime/objectMonitor.hpp" |
43 | #include "runtime/objectMonitor.inline.hpp" |
44 | #include "runtime/osThread.hpp" |
45 | #include "runtime/safepointVerifiers.hpp" |
46 | #include "runtime/sharedRuntime.hpp" |
47 | #include "runtime/stubRoutines.hpp" |
48 | #include "runtime/synchronizer.hpp" |
49 | #include "runtime/thread.inline.hpp" |
50 | #include "runtime/timer.hpp" |
51 | #include "runtime/vframe.hpp" |
52 | #include "runtime/vmThread.hpp" |
53 | #include "utilities/align.hpp" |
54 | #include "utilities/dtrace.hpp" |
55 | #include "utilities/events.hpp" |
56 | #include "utilities/preserveException.hpp" |
57 | |
58 | // The "core" versions of monitor enter and exit reside in this file. |
59 | // The interpreter and compilers contain specialized transliterated |
60 | // variants of the enter-exit fast-path operations. See i486.ad fast_lock(), |
61 | // for instance. If you make changes here, make sure to modify the |
62 | // interpreter, and both C1 and C2 fast-path inline locking code emission. |
63 | // |
64 | // ----------------------------------------------------------------------------- |
65 | |
66 | #ifdef DTRACE_ENABLED |
67 | |
68 | // Only bother with this argument setup if dtrace is available |
69 | // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly. |
70 | |
71 | #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \ |
72 | char* bytes = NULL; \ |
73 | int len = 0; \ |
74 | jlong jtid = SharedRuntime::get_java_tid(thread); \ |
75 | Symbol* klassname = ((oop)(obj))->klass()->name(); \ |
76 | if (klassname != NULL) { \ |
77 | bytes = (char*)klassname->bytes(); \ |
78 | len = klassname->utf8_length(); \ |
79 | } |
80 | |
81 | #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \ |
82 | { \ |
83 | if (DTraceMonitorProbes) { \ |
84 | DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ |
85 | HOTSPOT_MONITOR_WAIT(jtid, \ |
86 | (uintptr_t)(monitor), bytes, len, (millis)); \ |
87 | } \ |
88 | } |
89 | |
90 | #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY |
91 | #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL |
92 | #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED |
93 | |
94 | #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \ |
95 | { \ |
96 | if (DTraceMonitorProbes) { \ |
97 | DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ |
98 | HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */ \ |
99 | (uintptr_t)(monitor), bytes, len); \ |
100 | } \ |
101 | } |
102 | |
103 | #else // ndef DTRACE_ENABLED |
104 | |
105 | #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;} |
106 | #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;} |
107 | |
108 | #endif // ndef DTRACE_ENABLED |
109 | |
110 | // This exists only as a workaround of dtrace bug 6254741 |
111 | int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) { |
112 | DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr); |
113 | return 0; |
114 | } |
115 | |
116 | #define NINFLATIONLOCKS 256 |
117 | static volatile intptr_t gInflationLocks[NINFLATIONLOCKS]; |
118 | |
119 | // global list of blocks of monitors |
120 | PaddedEnd<ObjectMonitor> * volatile ObjectSynchronizer::gBlockList = NULL; |
121 | // global monitor free list |
122 | ObjectMonitor * volatile ObjectSynchronizer::gFreeList = NULL; |
123 | // global monitor in-use list, for moribund threads, |
124 | // monitors they inflated need to be scanned for deflation |
125 | ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList = NULL; |
126 | // count of entries in gOmInUseList |
127 | int ObjectSynchronizer::gOmInUseCount = 0; |
128 | |
129 | static volatile intptr_t gListLock = 0; // protects global monitor lists |
130 | static volatile int gMonitorFreeCount = 0; // # on gFreeList |
131 | static volatile int gMonitorPopulation = 0; // # Extant -- in circulation |
132 | |
133 | #define CHAINMARKER (cast_to_oop<intptr_t>(-1)) |
134 | |
135 | |
136 | // =====================> Quick functions |
137 | |
138 | // The quick_* forms are special fast-path variants used to improve |
139 | // performance. In the simplest case, a "quick_*" implementation could |
140 | // simply return false, in which case the caller will perform the necessary |
141 | // state transitions and call the slow-path form. |
142 | // The fast-path is designed to handle frequently arising cases in an efficient |
143 | // manner and is just a degenerate "optimistic" variant of the slow-path. |
144 | // returns true -- to indicate the call was satisfied. |
145 | // returns false -- to indicate the call needs the services of the slow-path. |
146 | // A no-loitering ordinance is in effect for code in the quick_* family |
147 | // operators: safepoints or indefinite blocking (blocking that might span a |
148 | // safepoint) are forbidden. Generally the thread_state() is _in_Java upon |
149 | // entry. |
150 | // |
151 | // Consider: An interesting optimization is to have the JIT recognize the |
152 | // following common idiom: |
153 | // synchronized (someobj) { .... ; notify(); } |
154 | // That is, we find a notify() or notifyAll() call that immediately precedes |
155 | // the monitorexit operation. In that case the JIT could fuse the operations |
156 | // into a single notifyAndExit() runtime primitive. |
157 | |
158 | bool ObjectSynchronizer::quick_notify(oopDesc * obj, Thread * self, bool all) { |
159 | assert(!SafepointSynchronize::is_at_safepoint(), "invariant" ); |
160 | assert(self->is_Java_thread(), "invariant" ); |
161 | assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant" ); |
162 | NoSafepointVerifier nsv; |
163 | if (obj == NULL) return false; // slow-path for invalid obj |
164 | const markOop mark = obj->mark(); |
165 | |
166 | if (mark->has_locker() && self->is_lock_owned((address)mark->locker())) { |
167 | // Degenerate notify |
168 | // stack-locked by caller so by definition the implied waitset is empty. |
169 | return true; |
170 | } |
171 | |
172 | if (mark->has_monitor()) { |
173 | ObjectMonitor * const mon = mark->monitor(); |
174 | assert(oopDesc::equals((oop) mon->object(), obj), "invariant" ); |
175 | if (mon->owner() != self) return false; // slow-path for IMS exception |
176 | |
177 | if (mon->first_waiter() != NULL) { |
178 | // We have one or more waiters. Since this is an inflated monitor |
179 | // that we own, we can transfer one or more threads from the waitset |
180 | // to the entrylist here and now, avoiding the slow-path. |
181 | if (all) { |
182 | DTRACE_MONITOR_PROBE(notifyAll, mon, obj, self); |
183 | } else { |
184 | DTRACE_MONITOR_PROBE(notify, mon, obj, self); |
185 | } |
186 | int tally = 0; |
187 | do { |
188 | mon->INotify(self); |
189 | ++tally; |
190 | } while (mon->first_waiter() != NULL && all); |
191 | OM_PERFDATA_OP(Notifications, inc(tally)); |
192 | } |
193 | return true; |
194 | } |
195 | |
196 | // biased locking and any other IMS exception states take the slow-path |
197 | return false; |
198 | } |
199 | |
200 | |
201 | // The LockNode emitted directly at the synchronization site would have |
202 | // been too big if it were to have included support for the cases of inflated |
203 | // recursive enter and exit, so they go here instead. |
204 | // Note that we can't safely call AsyncPrintJavaStack() from within |
205 | // quick_enter() as our thread state remains _in_Java. |
206 | |
207 | bool ObjectSynchronizer::quick_enter(oop obj, Thread * Self, |
208 | BasicLock * lock) { |
209 | assert(!SafepointSynchronize::is_at_safepoint(), "invariant" ); |
210 | assert(Self->is_Java_thread(), "invariant" ); |
211 | assert(((JavaThread *) Self)->thread_state() == _thread_in_Java, "invariant" ); |
212 | NoSafepointVerifier nsv; |
213 | if (obj == NULL) return false; // Need to throw NPE |
214 | const markOop mark = obj->mark(); |
215 | |
216 | if (mark->has_monitor()) { |
217 | ObjectMonitor * const m = mark->monitor(); |
218 | assert(oopDesc::equals((oop) m->object(), obj), "invariant" ); |
219 | Thread * const owner = (Thread *) m->_owner; |
220 | |
221 | // Lock contention and Transactional Lock Elision (TLE) diagnostics |
222 | // and observability |
223 | // Case: light contention possibly amenable to TLE |
224 | // Case: TLE inimical operations such as nested/recursive synchronization |
225 | |
226 | if (owner == Self) { |
227 | m->_recursions++; |
228 | return true; |
229 | } |
230 | |
231 | // This Java Monitor is inflated so obj's header will never be |
232 | // displaced to this thread's BasicLock. Make the displaced header |
233 | // non-NULL so this BasicLock is not seen as recursive nor as |
234 | // being locked. We do this unconditionally so that this thread's |
235 | // BasicLock cannot be mis-interpreted by any stack walkers. For |
236 | // performance reasons, stack walkers generally first check for |
237 | // Biased Locking in the object's header, the second check is for |
238 | // stack-locking in the object's header, the third check is for |
239 | // recursive stack-locking in the displaced header in the BasicLock, |
240 | // and last are the inflated Java Monitor (ObjectMonitor) checks. |
241 | lock->set_displaced_header(markOopDesc::unused_mark()); |
242 | |
243 | if (owner == NULL && Atomic::replace_if_null(Self, &(m->_owner))) { |
244 | assert(m->_recursions == 0, "invariant" ); |
245 | return true; |
246 | } |
247 | } |
248 | |
249 | // Note that we could inflate in quick_enter. |
250 | // This is likely a useful optimization |
251 | // Critically, in quick_enter() we must not: |
252 | // -- perform bias revocation, or |
253 | // -- block indefinitely, or |
254 | // -- reach a safepoint |
255 | |
256 | return false; // revert to slow-path |
257 | } |
258 | |
259 | // ----------------------------------------------------------------------------- |
260 | // Fast Monitor Enter/Exit |
261 | // This the fast monitor enter. The interpreter and compiler use |
262 | // some assembly copies of this code. Make sure update those code |
263 | // if the following function is changed. The implementation is |
264 | // extremely sensitive to race condition. Be careful. |
265 | |
266 | void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, |
267 | bool attempt_rebias, TRAPS) { |
268 | if (UseBiasedLocking) { |
269 | if (!SafepointSynchronize::is_at_safepoint()) { |
270 | BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD); |
271 | if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) { |
272 | return; |
273 | } |
274 | } else { |
275 | assert(!attempt_rebias, "can not rebias toward VM thread" ); |
276 | BiasedLocking::revoke_at_safepoint(obj); |
277 | } |
278 | assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now" ); |
279 | } |
280 | |
281 | slow_enter(obj, lock, THREAD); |
282 | } |
283 | |
284 | void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) { |
285 | markOop mark = object->mark(); |
286 | // We cannot check for Biased Locking if we are racing an inflation. |
287 | assert(mark == markOopDesc::INFLATING() || |
288 | !mark->has_bias_pattern(), "should not see bias pattern here" ); |
289 | |
290 | markOop dhw = lock->displaced_header(); |
291 | if (dhw == NULL) { |
292 | // If the displaced header is NULL, then this exit matches up with |
293 | // a recursive enter. No real work to do here except for diagnostics. |
294 | #ifndef PRODUCT |
295 | if (mark != markOopDesc::INFLATING()) { |
296 | // Only do diagnostics if we are not racing an inflation. Simply |
297 | // exiting a recursive enter of a Java Monitor that is being |
298 | // inflated is safe; see the has_monitor() comment below. |
299 | assert(!mark->is_neutral(), "invariant" ); |
300 | assert(!mark->has_locker() || |
301 | THREAD->is_lock_owned((address)mark->locker()), "invariant" ); |
302 | if (mark->has_monitor()) { |
303 | // The BasicLock's displaced_header is marked as a recursive |
304 | // enter and we have an inflated Java Monitor (ObjectMonitor). |
305 | // This is a special case where the Java Monitor was inflated |
306 | // after this thread entered the stack-lock recursively. When a |
307 | // Java Monitor is inflated, we cannot safely walk the Java |
308 | // Monitor owner's stack and update the BasicLocks because a |
309 | // Java Monitor can be asynchronously inflated by a thread that |
310 | // does not own the Java Monitor. |
311 | ObjectMonitor * m = mark->monitor(); |
312 | assert(((oop)(m->object()))->mark() == mark, "invariant" ); |
313 | assert(m->is_entered(THREAD), "invariant" ); |
314 | } |
315 | } |
316 | #endif |
317 | return; |
318 | } |
319 | |
320 | if (mark == (markOop) lock) { |
321 | // If the object is stack-locked by the current thread, try to |
322 | // swing the displaced header from the BasicLock back to the mark. |
323 | assert(dhw->is_neutral(), "invariant" ); |
324 | if (object->cas_set_mark(dhw, mark) == mark) { |
325 | return; |
326 | } |
327 | } |
328 | |
329 | // We have to take the slow-path of possible inflation and then exit. |
330 | inflate(THREAD, object, inflate_cause_vm_internal)->exit(true, THREAD); |
331 | } |
332 | |
333 | // ----------------------------------------------------------------------------- |
334 | // Interpreter/Compiler Slow Case |
335 | // This routine is used to handle interpreter/compiler slow case |
336 | // We don't need to use fast path here, because it must have been |
337 | // failed in the interpreter/compiler code. |
338 | void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) { |
339 | markOop mark = obj->mark(); |
340 | assert(!mark->has_bias_pattern(), "should not see bias pattern here" ); |
341 | |
342 | if (mark->is_neutral()) { |
343 | // Anticipate successful CAS -- the ST of the displaced mark must |
344 | // be visible <= the ST performed by the CAS. |
345 | lock->set_displaced_header(mark); |
346 | if (mark == obj()->cas_set_mark((markOop) lock, mark)) { |
347 | return; |
348 | } |
349 | // Fall through to inflate() ... |
350 | } else if (mark->has_locker() && |
351 | THREAD->is_lock_owned((address)mark->locker())) { |
352 | assert(lock != mark->locker(), "must not re-lock the same lock" ); |
353 | assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock" ); |
354 | lock->set_displaced_header(NULL); |
355 | return; |
356 | } |
357 | |
358 | // The object header will never be displaced to this lock, |
359 | // so it does not matter what the value is, except that it |
360 | // must be non-zero to avoid looking like a re-entrant lock, |
361 | // and must not look locked either. |
362 | lock->set_displaced_header(markOopDesc::unused_mark()); |
363 | inflate(THREAD, obj(), inflate_cause_monitor_enter)->enter(THREAD); |
364 | } |
365 | |
366 | // This routine is used to handle interpreter/compiler slow case |
367 | // We don't need to use fast path here, because it must have |
368 | // failed in the interpreter/compiler code. Simply use the heavy |
369 | // weight monitor should be ok, unless someone find otherwise. |
370 | void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) { |
371 | fast_exit(object, lock, THREAD); |
372 | } |
373 | |
374 | // ----------------------------------------------------------------------------- |
375 | // Class Loader support to workaround deadlocks on the class loader lock objects |
376 | // Also used by GC |
377 | // complete_exit()/reenter() are used to wait on a nested lock |
378 | // i.e. to give up an outer lock completely and then re-enter |
379 | // Used when holding nested locks - lock acquisition order: lock1 then lock2 |
380 | // 1) complete_exit lock1 - saving recursion count |
381 | // 2) wait on lock2 |
382 | // 3) when notified on lock2, unlock lock2 |
383 | // 4) reenter lock1 with original recursion count |
384 | // 5) lock lock2 |
385 | // NOTE: must use heavy weight monitor to handle complete_exit/reenter() |
386 | intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) { |
387 | if (UseBiasedLocking) { |
388 | BiasedLocking::revoke_and_rebias(obj, false, THREAD); |
389 | assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now" ); |
390 | } |
391 | |
392 | ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_vm_internal); |
393 | |
394 | return monitor->complete_exit(THREAD); |
395 | } |
396 | |
397 | // NOTE: must use heavy weight monitor to handle complete_exit/reenter() |
398 | void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) { |
399 | if (UseBiasedLocking) { |
400 | BiasedLocking::revoke_and_rebias(obj, false, THREAD); |
401 | assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now" ); |
402 | } |
403 | |
404 | ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_vm_internal); |
405 | |
406 | monitor->reenter(recursion, THREAD); |
407 | } |
408 | // ----------------------------------------------------------------------------- |
409 | // JNI locks on java objects |
410 | // NOTE: must use heavy weight monitor to handle jni monitor enter |
411 | void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) { |
412 | // the current locking is from JNI instead of Java code |
413 | if (UseBiasedLocking) { |
414 | BiasedLocking::revoke_and_rebias(obj, false, THREAD); |
415 | assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now" ); |
416 | } |
417 | THREAD->set_current_pending_monitor_is_from_java(false); |
418 | inflate(THREAD, obj(), inflate_cause_jni_enter)->enter(THREAD); |
419 | THREAD->set_current_pending_monitor_is_from_java(true); |
420 | } |
421 | |
422 | // NOTE: must use heavy weight monitor to handle jni monitor exit |
423 | void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) { |
424 | if (UseBiasedLocking) { |
425 | Handle h_obj(THREAD, obj); |
426 | BiasedLocking::revoke_and_rebias(h_obj, false, THREAD); |
427 | obj = h_obj(); |
428 | } |
429 | assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now" ); |
430 | |
431 | ObjectMonitor* monitor = inflate(THREAD, obj, inflate_cause_jni_exit); |
432 | // If this thread has locked the object, exit the monitor. Note: can't use |
433 | // monitor->check(CHECK); must exit even if an exception is pending. |
434 | if (monitor->check(THREAD)) { |
435 | monitor->exit(true, THREAD); |
436 | } |
437 | } |
438 | |
439 | // ----------------------------------------------------------------------------- |
440 | // Internal VM locks on java objects |
441 | // standard constructor, allows locking failures |
442 | ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) { |
443 | _dolock = doLock; |
444 | _thread = thread; |
445 | debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);) |
446 | _obj = obj; |
447 | |
448 | if (_dolock) { |
449 | ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread); |
450 | } |
451 | } |
452 | |
453 | ObjectLocker::~ObjectLocker() { |
454 | if (_dolock) { |
455 | ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread); |
456 | } |
457 | } |
458 | |
459 | |
460 | // ----------------------------------------------------------------------------- |
461 | // Wait/Notify/NotifyAll |
462 | // NOTE: must use heavy weight monitor to handle wait() |
463 | int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) { |
464 | if (UseBiasedLocking) { |
465 | BiasedLocking::revoke_and_rebias(obj, false, THREAD); |
466 | assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now" ); |
467 | } |
468 | if (millis < 0) { |
469 | THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative" ); |
470 | } |
471 | ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_wait); |
472 | |
473 | DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis); |
474 | monitor->wait(millis, true, THREAD); |
475 | |
476 | // This dummy call is in place to get around dtrace bug 6254741. Once |
477 | // that's fixed we can uncomment the following line, remove the call |
478 | // and change this function back into a "void" func. |
479 | // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD); |
480 | return dtrace_waited_probe(monitor, obj, THREAD); |
481 | } |
482 | |
483 | void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) { |
484 | if (UseBiasedLocking) { |
485 | BiasedLocking::revoke_and_rebias(obj, false, THREAD); |
486 | assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now" ); |
487 | } |
488 | if (millis < 0) { |
489 | THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative" ); |
490 | } |
491 | inflate(THREAD, obj(), inflate_cause_wait)->wait(millis, false, THREAD); |
492 | } |
493 | |
494 | void ObjectSynchronizer::notify(Handle obj, TRAPS) { |
495 | if (UseBiasedLocking) { |
496 | BiasedLocking::revoke_and_rebias(obj, false, THREAD); |
497 | assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now" ); |
498 | } |
499 | |
500 | markOop mark = obj->mark(); |
501 | if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) { |
502 | return; |
503 | } |
504 | inflate(THREAD, obj(), inflate_cause_notify)->notify(THREAD); |
505 | } |
506 | |
507 | // NOTE: see comment of notify() |
508 | void ObjectSynchronizer::notifyall(Handle obj, TRAPS) { |
509 | if (UseBiasedLocking) { |
510 | BiasedLocking::revoke_and_rebias(obj, false, THREAD); |
511 | assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now" ); |
512 | } |
513 | |
514 | markOop mark = obj->mark(); |
515 | if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) { |
516 | return; |
517 | } |
518 | inflate(THREAD, obj(), inflate_cause_notify)->notifyAll(THREAD); |
519 | } |
520 | |
521 | // ----------------------------------------------------------------------------- |
522 | // Hash Code handling |
523 | // |
524 | // Performance concern: |
525 | // OrderAccess::storestore() calls release() which at one time stored 0 |
526 | // into the global volatile OrderAccess::dummy variable. This store was |
527 | // unnecessary for correctness. Many threads storing into a common location |
528 | // causes considerable cache migration or "sloshing" on large SMP systems. |
529 | // As such, I avoided using OrderAccess::storestore(). In some cases |
530 | // OrderAccess::fence() -- which incurs local latency on the executing |
531 | // processor -- is a better choice as it scales on SMP systems. |
532 | // |
533 | // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for |
534 | // a discussion of coherency costs. Note that all our current reference |
535 | // platforms provide strong ST-ST order, so the issue is moot on IA32, |
536 | // x64, and SPARC. |
537 | // |
538 | // As a general policy we use "volatile" to control compiler-based reordering |
539 | // and explicit fences (barriers) to control for architectural reordering |
540 | // performed by the CPU(s) or platform. |
541 | |
542 | struct SharedGlobals { |
543 | char _pad_prefix[DEFAULT_CACHE_LINE_SIZE]; |
544 | // These are highly shared mostly-read variables. |
545 | // To avoid false-sharing they need to be the sole occupants of a cache line. |
546 | volatile int stwRandom; |
547 | volatile int stwCycle; |
548 | DEFINE_PAD_MINUS_SIZE(1, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int) * 2); |
549 | // Hot RW variable -- Sequester to avoid false-sharing |
550 | volatile int hcSequence; |
551 | DEFINE_PAD_MINUS_SIZE(2, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int)); |
552 | }; |
553 | |
554 | static SharedGlobals GVars; |
555 | static int MonitorScavengeThreshold = 1000000; |
556 | static volatile int ForceMonitorScavenge = 0; // Scavenge required and pending |
557 | |
558 | static markOop ReadStableMark(oop obj) { |
559 | markOop mark = obj->mark(); |
560 | if (!mark->is_being_inflated()) { |
561 | return mark; // normal fast-path return |
562 | } |
563 | |
564 | int its = 0; |
565 | for (;;) { |
566 | markOop mark = obj->mark(); |
567 | if (!mark->is_being_inflated()) { |
568 | return mark; // normal fast-path return |
569 | } |
570 | |
571 | // The object is being inflated by some other thread. |
572 | // The caller of ReadStableMark() must wait for inflation to complete. |
573 | // Avoid live-lock |
574 | // TODO: consider calling SafepointSynchronize::do_call_back() while |
575 | // spinning to see if there's a safepoint pending. If so, immediately |
576 | // yielding or blocking would be appropriate. Avoid spinning while |
577 | // there is a safepoint pending. |
578 | // TODO: add inflation contention performance counters. |
579 | // TODO: restrict the aggregate number of spinners. |
580 | |
581 | ++its; |
582 | if (its > 10000 || !os::is_MP()) { |
583 | if (its & 1) { |
584 | os::naked_yield(); |
585 | } else { |
586 | // Note that the following code attenuates the livelock problem but is not |
587 | // a complete remedy. A more complete solution would require that the inflating |
588 | // thread hold the associated inflation lock. The following code simply restricts |
589 | // the number of spinners to at most one. We'll have N-2 threads blocked |
590 | // on the inflationlock, 1 thread holding the inflation lock and using |
591 | // a yield/park strategy, and 1 thread in the midst of inflation. |
592 | // A more refined approach would be to change the encoding of INFLATING |
593 | // to allow encapsulation of a native thread pointer. Threads waiting for |
594 | // inflation to complete would use CAS to push themselves onto a singly linked |
595 | // list rooted at the markword. Once enqueued, they'd loop, checking a per-thread flag |
596 | // and calling park(). When inflation was complete the thread that accomplished inflation |
597 | // would detach the list and set the markword to inflated with a single CAS and |
598 | // then for each thread on the list, set the flag and unpark() the thread. |
599 | // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease |
600 | // wakes at most one thread whereas we need to wake the entire list. |
601 | int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1); |
602 | int YieldThenBlock = 0; |
603 | assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant" ); |
604 | assert((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant" ); |
605 | Thread::muxAcquire(gInflationLocks + ix, "gInflationLock" ); |
606 | while (obj->mark() == markOopDesc::INFLATING()) { |
607 | // Beware: NakedYield() is advisory and has almost no effect on some platforms |
608 | // so we periodically call Self->_ParkEvent->park(1). |
609 | // We use a mixed spin/yield/block mechanism. |
610 | if ((YieldThenBlock++) >= 16) { |
611 | Thread::current()->_ParkEvent->park(1); |
612 | } else { |
613 | os::naked_yield(); |
614 | } |
615 | } |
616 | Thread::muxRelease(gInflationLocks + ix); |
617 | } |
618 | } else { |
619 | SpinPause(); // SMP-polite spinning |
620 | } |
621 | } |
622 | } |
623 | |
624 | // hashCode() generation : |
625 | // |
626 | // Possibilities: |
627 | // * MD5Digest of {obj,stwRandom} |
628 | // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function. |
629 | // * A DES- or AES-style SBox[] mechanism |
630 | // * One of the Phi-based schemes, such as: |
631 | // 2654435761 = 2^32 * Phi (golden ratio) |
632 | // HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ; |
633 | // * A variation of Marsaglia's shift-xor RNG scheme. |
634 | // * (obj ^ stwRandom) is appealing, but can result |
635 | // in undesirable regularity in the hashCode values of adjacent objects |
636 | // (objects allocated back-to-back, in particular). This could potentially |
637 | // result in hashtable collisions and reduced hashtable efficiency. |
638 | // There are simple ways to "diffuse" the middle address bits over the |
639 | // generated hashCode values: |
640 | |
641 | static inline intptr_t get_next_hash(Thread * Self, oop obj) { |
642 | intptr_t value = 0; |
643 | if (hashCode == 0) { |
644 | // This form uses global Park-Miller RNG. |
645 | // On MP system we'll have lots of RW access to a global, so the |
646 | // mechanism induces lots of coherency traffic. |
647 | value = os::random(); |
648 | } else if (hashCode == 1) { |
649 | // This variation has the property of being stable (idempotent) |
650 | // between STW operations. This can be useful in some of the 1-0 |
651 | // synchronization schemes. |
652 | intptr_t addrBits = cast_from_oop<intptr_t>(obj) >> 3; |
653 | value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom; |
654 | } else if (hashCode == 2) { |
655 | value = 1; // for sensitivity testing |
656 | } else if (hashCode == 3) { |
657 | value = ++GVars.hcSequence; |
658 | } else if (hashCode == 4) { |
659 | value = cast_from_oop<intptr_t>(obj); |
660 | } else { |
661 | // Marsaglia's xor-shift scheme with thread-specific state |
662 | // This is probably the best overall implementation -- we'll |
663 | // likely make this the default in future releases. |
664 | unsigned t = Self->_hashStateX; |
665 | t ^= (t << 11); |
666 | Self->_hashStateX = Self->_hashStateY; |
667 | Self->_hashStateY = Self->_hashStateZ; |
668 | Self->_hashStateZ = Self->_hashStateW; |
669 | unsigned v = Self->_hashStateW; |
670 | v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)); |
671 | Self->_hashStateW = v; |
672 | value = v; |
673 | } |
674 | |
675 | value &= markOopDesc::hash_mask; |
676 | if (value == 0) value = 0xBAD; |
677 | assert(value != markOopDesc::no_hash, "invariant" ); |
678 | return value; |
679 | } |
680 | |
681 | intptr_t ObjectSynchronizer::FastHashCode(Thread * Self, oop obj) { |
682 | if (UseBiasedLocking) { |
683 | // NOTE: many places throughout the JVM do not expect a safepoint |
684 | // to be taken here, in particular most operations on perm gen |
685 | // objects. However, we only ever bias Java instances and all of |
686 | // the call sites of identity_hash that might revoke biases have |
687 | // been checked to make sure they can handle a safepoint. The |
688 | // added check of the bias pattern is to avoid useless calls to |
689 | // thread-local storage. |
690 | if (obj->mark()->has_bias_pattern()) { |
691 | // Handle for oop obj in case of STW safepoint |
692 | Handle hobj(Self, obj); |
693 | // Relaxing assertion for bug 6320749. |
694 | assert(Universe::verify_in_progress() || |
695 | !SafepointSynchronize::is_at_safepoint(), |
696 | "biases should not be seen by VM thread here" ); |
697 | BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current()); |
698 | obj = hobj(); |
699 | assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now" ); |
700 | } |
701 | } |
702 | |
703 | // hashCode() is a heap mutator ... |
704 | // Relaxing assertion for bug 6320749. |
705 | assert(Universe::verify_in_progress() || DumpSharedSpaces || |
706 | !SafepointSynchronize::is_at_safepoint(), "invariant" ); |
707 | assert(Universe::verify_in_progress() || DumpSharedSpaces || |
708 | Self->is_Java_thread() , "invariant" ); |
709 | assert(Universe::verify_in_progress() || DumpSharedSpaces || |
710 | ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant" ); |
711 | |
712 | ObjectMonitor* monitor = NULL; |
713 | markOop temp, test; |
714 | intptr_t hash; |
715 | markOop mark = ReadStableMark(obj); |
716 | |
717 | // object should remain ineligible for biased locking |
718 | assert(!mark->has_bias_pattern(), "invariant" ); |
719 | |
720 | if (mark->is_neutral()) { |
721 | hash = mark->hash(); // this is a normal header |
722 | if (hash != 0) { // if it has hash, just return it |
723 | return hash; |
724 | } |
725 | hash = get_next_hash(Self, obj); // allocate a new hash code |
726 | temp = mark->copy_set_hash(hash); // merge the hash code into header |
727 | // use (machine word version) atomic operation to install the hash |
728 | test = obj->cas_set_mark(temp, mark); |
729 | if (test == mark) { |
730 | return hash; |
731 | } |
732 | // If atomic operation failed, we must inflate the header |
733 | // into heavy weight monitor. We could add more code here |
734 | // for fast path, but it does not worth the complexity. |
735 | } else if (mark->has_monitor()) { |
736 | monitor = mark->monitor(); |
737 | temp = monitor->header(); |
738 | assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp)); |
739 | hash = temp->hash(); |
740 | if (hash != 0) { |
741 | return hash; |
742 | } |
743 | // Skip to the following code to reduce code size |
744 | } else if (Self->is_lock_owned((address)mark->locker())) { |
745 | temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned |
746 | assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp)); |
747 | hash = temp->hash(); // by current thread, check if the displaced |
748 | if (hash != 0) { // header contains hash code |
749 | return hash; |
750 | } |
751 | // WARNING: |
752 | // The displaced header in the BasicLock on a thread's stack |
753 | // is strictly immutable. It CANNOT be changed in ANY cases. |
754 | // So we have to inflate the stack lock into an ObjectMonitor |
755 | // even if the current thread owns the lock. The BasicLock on |
756 | // a thread's stack can be asynchronously read by other threads |
757 | // during an inflate() call so any change to that stack memory |
758 | // may not propagate to other threads correctly. |
759 | } |
760 | |
761 | // Inflate the monitor to set hash code |
762 | monitor = inflate(Self, obj, inflate_cause_hash_code); |
763 | // Load displaced header and check it has hash code |
764 | mark = monitor->header(); |
765 | assert(mark->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(mark)); |
766 | hash = mark->hash(); |
767 | if (hash == 0) { |
768 | hash = get_next_hash(Self, obj); |
769 | temp = mark->copy_set_hash(hash); // merge hash code into header |
770 | assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp)); |
771 | test = Atomic::cmpxchg(temp, monitor->header_addr(), mark); |
772 | if (test != mark) { |
773 | // The only update to the ObjectMonitor's header/dmw field |
774 | // is to merge in the hash code. If someone adds a new usage |
775 | // of the header/dmw field, please update this code. |
776 | hash = test->hash(); |
777 | assert(test->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(test)); |
778 | assert(hash != 0, "Trivial unexpected object/monitor header usage." ); |
779 | } |
780 | } |
781 | // We finally get the hash |
782 | return hash; |
783 | } |
784 | |
785 | // Deprecated -- use FastHashCode() instead. |
786 | |
787 | intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) { |
788 | return FastHashCode(Thread::current(), obj()); |
789 | } |
790 | |
791 | |
792 | bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread, |
793 | Handle h_obj) { |
794 | if (UseBiasedLocking) { |
795 | BiasedLocking::revoke_and_rebias(h_obj, false, thread); |
796 | assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now" ); |
797 | } |
798 | |
799 | assert(thread == JavaThread::current(), "Can only be called on current thread" ); |
800 | oop obj = h_obj(); |
801 | |
802 | markOop mark = ReadStableMark(obj); |
803 | |
804 | // Uncontended case, header points to stack |
805 | if (mark->has_locker()) { |
806 | return thread->is_lock_owned((address)mark->locker()); |
807 | } |
808 | // Contended case, header points to ObjectMonitor (tagged pointer) |
809 | if (mark->has_monitor()) { |
810 | ObjectMonitor* monitor = mark->monitor(); |
811 | return monitor->is_entered(thread) != 0; |
812 | } |
813 | // Unlocked case, header in place |
814 | assert(mark->is_neutral(), "sanity check" ); |
815 | return false; |
816 | } |
817 | |
818 | // Be aware of this method could revoke bias of the lock object. |
819 | // This method queries the ownership of the lock handle specified by 'h_obj'. |
820 | // If the current thread owns the lock, it returns owner_self. If no |
821 | // thread owns the lock, it returns owner_none. Otherwise, it will return |
822 | // owner_other. |
823 | ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership |
824 | (JavaThread *self, Handle h_obj) { |
825 | // The caller must beware this method can revoke bias, and |
826 | // revocation can result in a safepoint. |
827 | assert(!SafepointSynchronize::is_at_safepoint(), "invariant" ); |
828 | assert(self->thread_state() != _thread_blocked, "invariant" ); |
829 | |
830 | // Possible mark states: neutral, biased, stack-locked, inflated |
831 | |
832 | if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) { |
833 | // CASE: biased |
834 | BiasedLocking::revoke_and_rebias(h_obj, false, self); |
835 | assert(!h_obj->mark()->has_bias_pattern(), |
836 | "biases should be revoked by now" ); |
837 | } |
838 | |
839 | assert(self == JavaThread::current(), "Can only be called on current thread" ); |
840 | oop obj = h_obj(); |
841 | markOop mark = ReadStableMark(obj); |
842 | |
843 | // CASE: stack-locked. Mark points to a BasicLock on the owner's stack. |
844 | if (mark->has_locker()) { |
845 | return self->is_lock_owned((address)mark->locker()) ? |
846 | owner_self : owner_other; |
847 | } |
848 | |
849 | // CASE: inflated. Mark (tagged pointer) points to an ObjectMonitor. |
850 | // The Object:ObjectMonitor relationship is stable as long as we're |
851 | // not at a safepoint. |
852 | if (mark->has_monitor()) { |
853 | void * owner = mark->monitor()->_owner; |
854 | if (owner == NULL) return owner_none; |
855 | return (owner == self || |
856 | self->is_lock_owned((address)owner)) ? owner_self : owner_other; |
857 | } |
858 | |
859 | // CASE: neutral |
860 | assert(mark->is_neutral(), "sanity check" ); |
861 | return owner_none; // it's unlocked |
862 | } |
863 | |
864 | // FIXME: jvmti should call this |
865 | JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) { |
866 | if (UseBiasedLocking) { |
867 | if (SafepointSynchronize::is_at_safepoint()) { |
868 | BiasedLocking::revoke_at_safepoint(h_obj); |
869 | } else { |
870 | BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current()); |
871 | } |
872 | assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now" ); |
873 | } |
874 | |
875 | oop obj = h_obj(); |
876 | address owner = NULL; |
877 | |
878 | markOop mark = ReadStableMark(obj); |
879 | |
880 | // Uncontended case, header points to stack |
881 | if (mark->has_locker()) { |
882 | owner = (address) mark->locker(); |
883 | } |
884 | |
885 | // Contended case, header points to ObjectMonitor (tagged pointer) |
886 | else if (mark->has_monitor()) { |
887 | ObjectMonitor* monitor = mark->monitor(); |
888 | assert(monitor != NULL, "monitor should be non-null" ); |
889 | owner = (address) monitor->owner(); |
890 | } |
891 | |
892 | if (owner != NULL) { |
893 | // owning_thread_from_monitor_owner() may also return NULL here |
894 | return Threads::owning_thread_from_monitor_owner(t_list, owner); |
895 | } |
896 | |
897 | // Unlocked case, header in place |
898 | // Cannot have assertion since this object may have been |
899 | // locked by another thread when reaching here. |
900 | // assert(mark->is_neutral(), "sanity check"); |
901 | |
902 | return NULL; |
903 | } |
904 | |
905 | // Visitors ... |
906 | |
907 | void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) { |
908 | PaddedEnd<ObjectMonitor> * block = OrderAccess::load_acquire(&gBlockList); |
909 | while (block != NULL) { |
910 | assert(block->object() == CHAINMARKER, "must be a block header" ); |
911 | for (int i = _BLOCKSIZE - 1; i > 0; i--) { |
912 | ObjectMonitor* mid = (ObjectMonitor *)(block + i); |
913 | oop object = (oop)mid->object(); |
914 | if (object != NULL) { |
915 | closure->do_monitor(mid); |
916 | } |
917 | } |
918 | block = (PaddedEnd<ObjectMonitor> *)block->FreeNext; |
919 | } |
920 | } |
921 | |
922 | // Get the next block in the block list. |
923 | static inline PaddedEnd<ObjectMonitor>* next(PaddedEnd<ObjectMonitor>* block) { |
924 | assert(block->object() == CHAINMARKER, "must be a block header" ); |
925 | block = (PaddedEnd<ObjectMonitor>*) block->FreeNext; |
926 | assert(block == NULL || block->object() == CHAINMARKER, "must be a block header" ); |
927 | return block; |
928 | } |
929 | |
930 | static bool monitors_used_above_threshold() { |
931 | if (gMonitorPopulation == 0) { |
932 | return false; |
933 | } |
934 | int monitors_used = gMonitorPopulation - gMonitorFreeCount; |
935 | int monitor_usage = (monitors_used * 100LL) / gMonitorPopulation; |
936 | return monitor_usage > MonitorUsedDeflationThreshold; |
937 | } |
938 | |
939 | bool ObjectSynchronizer::is_cleanup_needed() { |
940 | if (MonitorUsedDeflationThreshold > 0) { |
941 | return monitors_used_above_threshold(); |
942 | } |
943 | return false; |
944 | } |
945 | |
946 | void ObjectSynchronizer::oops_do(OopClosure* f) { |
947 | // We only scan the global used list here (for moribund threads), and |
948 | // the thread-local monitors in Thread::oops_do(). |
949 | global_used_oops_do(f); |
950 | } |
951 | |
952 | void ObjectSynchronizer::global_used_oops_do(OopClosure* f) { |
953 | assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint" ); |
954 | list_oops_do(gOmInUseList, f); |
955 | } |
956 | |
957 | void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) { |
958 | assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint" ); |
959 | list_oops_do(thread->omInUseList, f); |
960 | } |
961 | |
962 | void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, OopClosure* f) { |
963 | assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint" ); |
964 | ObjectMonitor* mid; |
965 | for (mid = list; mid != NULL; mid = mid->FreeNext) { |
966 | if (mid->object() != NULL) { |
967 | f->do_oop((oop*)mid->object_addr()); |
968 | } |
969 | } |
970 | } |
971 | |
972 | |
973 | // ----------------------------------------------------------------------------- |
974 | // ObjectMonitor Lifecycle |
975 | // ----------------------- |
976 | // Inflation unlinks monitors from the global gFreeList and |
977 | // associates them with objects. Deflation -- which occurs at |
978 | // STW-time -- disassociates idle monitors from objects. Such |
979 | // scavenged monitors are returned to the gFreeList. |
980 | // |
981 | // The global list is protected by gListLock. All the critical sections |
982 | // are short and operate in constant-time. |
983 | // |
984 | // ObjectMonitors reside in type-stable memory (TSM) and are immortal. |
985 | // |
986 | // Lifecycle: |
987 | // -- unassigned and on the global free list |
988 | // -- unassigned and on a thread's private omFreeList |
989 | // -- assigned to an object. The object is inflated and the mark refers |
990 | // to the objectmonitor. |
991 | |
992 | |
993 | // Constraining monitor pool growth via MonitorBound ... |
994 | // |
995 | // The monitor pool is grow-only. We scavenge at STW safepoint-time, but the |
996 | // the rate of scavenging is driven primarily by GC. As such, we can find |
997 | // an inordinate number of monitors in circulation. |
998 | // To avoid that scenario we can artificially induce a STW safepoint |
999 | // if the pool appears to be growing past some reasonable bound. |
1000 | // Generally we favor time in space-time tradeoffs, but as there's no |
1001 | // natural back-pressure on the # of extant monitors we need to impose some |
1002 | // type of limit. Beware that if MonitorBound is set to too low a value |
1003 | // we could just loop. In addition, if MonitorBound is set to a low value |
1004 | // we'll incur more safepoints, which are harmful to performance. |
1005 | // See also: GuaranteedSafepointInterval |
1006 | // |
1007 | // The current implementation uses asynchronous VM operations. |
1008 | |
1009 | static void InduceScavenge(Thread * Self, const char * Whence) { |
1010 | // Induce STW safepoint to trim monitors |
1011 | // Ultimately, this results in a call to deflate_idle_monitors() in the near future. |
1012 | // More precisely, trigger an asynchronous STW safepoint as the number |
1013 | // of active monitors passes the specified threshold. |
1014 | // TODO: assert thread state is reasonable |
1015 | |
1016 | if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) { |
1017 | // Induce a 'null' safepoint to scavenge monitors |
1018 | // Must VM_Operation instance be heap allocated as the op will be enqueue and posted |
1019 | // to the VMthread and have a lifespan longer than that of this activation record. |
1020 | // The VMThread will delete the op when completed. |
1021 | VMThread::execute(new VM_ScavengeMonitors()); |
1022 | } |
1023 | } |
1024 | |
1025 | ObjectMonitor* ObjectSynchronizer::omAlloc(Thread * Self) { |
1026 | // A large MAXPRIVATE value reduces both list lock contention |
1027 | // and list coherency traffic, but also tends to increase the |
1028 | // number of objectMonitors in circulation as well as the STW |
1029 | // scavenge costs. As usual, we lean toward time in space-time |
1030 | // tradeoffs. |
1031 | const int MAXPRIVATE = 1024; |
1032 | stringStream ss; |
1033 | for (;;) { |
1034 | ObjectMonitor * m; |
1035 | |
1036 | // 1: try to allocate from the thread's local omFreeList. |
1037 | // Threads will attempt to allocate first from their local list, then |
1038 | // from the global list, and only after those attempts fail will the thread |
1039 | // attempt to instantiate new monitors. Thread-local free lists take |
1040 | // heat off the gListLock and improve allocation latency, as well as reducing |
1041 | // coherency traffic on the shared global list. |
1042 | m = Self->omFreeList; |
1043 | if (m != NULL) { |
1044 | Self->omFreeList = m->FreeNext; |
1045 | Self->omFreeCount--; |
1046 | guarantee(m->object() == NULL, "invariant" ); |
1047 | m->FreeNext = Self->omInUseList; |
1048 | Self->omInUseList = m; |
1049 | Self->omInUseCount++; |
1050 | return m; |
1051 | } |
1052 | |
1053 | // 2: try to allocate from the global gFreeList |
1054 | // CONSIDER: use muxTry() instead of muxAcquire(). |
1055 | // If the muxTry() fails then drop immediately into case 3. |
1056 | // If we're using thread-local free lists then try |
1057 | // to reprovision the caller's free list. |
1058 | if (gFreeList != NULL) { |
1059 | // Reprovision the thread's omFreeList. |
1060 | // Use bulk transfers to reduce the allocation rate and heat |
1061 | // on various locks. |
1062 | Thread::muxAcquire(&gListLock, "omAlloc(1)" ); |
1063 | for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL;) { |
1064 | gMonitorFreeCount--; |
1065 | ObjectMonitor * take = gFreeList; |
1066 | gFreeList = take->FreeNext; |
1067 | guarantee(take->object() == NULL, "invariant" ); |
1068 | take->Recycle(); |
1069 | omRelease(Self, take, false); |
1070 | } |
1071 | Thread::muxRelease(&gListLock); |
1072 | Self->omFreeProvision += 1 + (Self->omFreeProvision/2); |
1073 | if (Self->omFreeProvision > MAXPRIVATE) Self->omFreeProvision = MAXPRIVATE; |
1074 | |
1075 | const int mx = MonitorBound; |
1076 | if (mx > 0 && (gMonitorPopulation-gMonitorFreeCount) > mx) { |
1077 | // We can't safely induce a STW safepoint from omAlloc() as our thread |
1078 | // state may not be appropriate for such activities and callers may hold |
1079 | // naked oops, so instead we defer the action. |
1080 | InduceScavenge(Self, "omAlloc" ); |
1081 | } |
1082 | continue; |
1083 | } |
1084 | |
1085 | // 3: allocate a block of new ObjectMonitors |
1086 | // Both the local and global free lists are empty -- resort to malloc(). |
1087 | // In the current implementation objectMonitors are TSM - immortal. |
1088 | // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want |
1089 | // each ObjectMonitor to start at the beginning of a cache line, |
1090 | // so we use align_up(). |
1091 | // A better solution would be to use C++ placement-new. |
1092 | // BEWARE: As it stands currently, we don't run the ctors! |
1093 | assert(_BLOCKSIZE > 1, "invariant" ); |
1094 | size_t neededsize = sizeof(PaddedEnd<ObjectMonitor>) * _BLOCKSIZE; |
1095 | PaddedEnd<ObjectMonitor> * temp; |
1096 | size_t aligned_size = neededsize + (DEFAULT_CACHE_LINE_SIZE - 1); |
1097 | void* real_malloc_addr = (void *)NEW_C_HEAP_ARRAY(char, aligned_size, |
1098 | mtInternal); |
1099 | temp = (PaddedEnd<ObjectMonitor> *) |
1100 | align_up(real_malloc_addr, DEFAULT_CACHE_LINE_SIZE); |
1101 | |
1102 | // NOTE: (almost) no way to recover if allocation failed. |
1103 | // We might be able to induce a STW safepoint and scavenge enough |
1104 | // objectMonitors to permit progress. |
1105 | if (temp == NULL) { |
1106 | vm_exit_out_of_memory(neededsize, OOM_MALLOC_ERROR, |
1107 | "Allocate ObjectMonitors" ); |
1108 | } |
1109 | (void)memset((void *) temp, 0, neededsize); |
1110 | |
1111 | // Format the block. |
1112 | // initialize the linked list, each monitor points to its next |
1113 | // forming the single linked free list, the very first monitor |
1114 | // will points to next block, which forms the block list. |
1115 | // The trick of using the 1st element in the block as gBlockList |
1116 | // linkage should be reconsidered. A better implementation would |
1117 | // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; } |
1118 | |
1119 | for (int i = 1; i < _BLOCKSIZE; i++) { |
1120 | temp[i].FreeNext = (ObjectMonitor *)&temp[i+1]; |
1121 | } |
1122 | |
1123 | // terminate the last monitor as the end of list |
1124 | temp[_BLOCKSIZE - 1].FreeNext = NULL; |
1125 | |
1126 | // Element [0] is reserved for global list linkage |
1127 | temp[0].set_object(CHAINMARKER); |
1128 | |
1129 | // Consider carving out this thread's current request from the |
1130 | // block in hand. This avoids some lock traffic and redundant |
1131 | // list activity. |
1132 | |
1133 | // Acquire the gListLock to manipulate gBlockList and gFreeList. |
1134 | // An Oyama-Taura-Yonezawa scheme might be more efficient. |
1135 | Thread::muxAcquire(&gListLock, "omAlloc(2)" ); |
1136 | gMonitorPopulation += _BLOCKSIZE-1; |
1137 | gMonitorFreeCount += _BLOCKSIZE-1; |
1138 | |
1139 | // Add the new block to the list of extant blocks (gBlockList). |
1140 | // The very first objectMonitor in a block is reserved and dedicated. |
1141 | // It serves as blocklist "next" linkage. |
1142 | temp[0].FreeNext = gBlockList; |
1143 | // There are lock-free uses of gBlockList so make sure that |
1144 | // the previous stores happen before we update gBlockList. |
1145 | OrderAccess::release_store(&gBlockList, temp); |
1146 | |
1147 | // Add the new string of objectMonitors to the global free list |
1148 | temp[_BLOCKSIZE - 1].FreeNext = gFreeList; |
1149 | gFreeList = temp + 1; |
1150 | Thread::muxRelease(&gListLock); |
1151 | } |
1152 | } |
1153 | |
1154 | // Place "m" on the caller's private per-thread omFreeList. |
1155 | // In practice there's no need to clamp or limit the number of |
1156 | // monitors on a thread's omFreeList as the only time we'll call |
1157 | // omRelease is to return a monitor to the free list after a CAS |
1158 | // attempt failed. This doesn't allow unbounded #s of monitors to |
1159 | // accumulate on a thread's free list. |
1160 | // |
1161 | // Key constraint: all ObjectMonitors on a thread's free list and the global |
1162 | // free list must have their object field set to null. This prevents the |
1163 | // scavenger -- deflate_monitor_list() -- from reclaiming them. |
1164 | |
1165 | void ObjectSynchronizer::omRelease(Thread * Self, ObjectMonitor * m, |
1166 | bool fromPerThreadAlloc) { |
1167 | guarantee(m->header() == NULL, "invariant" ); |
1168 | guarantee(m->object() == NULL, "invariant" ); |
1169 | stringStream ss; |
1170 | guarantee((m->is_busy() | m->_recursions) == 0, "freeing in-use monitor: " |
1171 | "%s, recursions=" INTPTR_FORMAT, m->is_busy_to_string(&ss), |
1172 | m->_recursions); |
1173 | // Remove from omInUseList |
1174 | if (fromPerThreadAlloc) { |
1175 | ObjectMonitor* cur_mid_in_use = NULL; |
1176 | bool = false; |
1177 | for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; cur_mid_in_use = mid, mid = mid->FreeNext) { |
1178 | if (m == mid) { |
1179 | // extract from per-thread in-use list |
1180 | if (mid == Self->omInUseList) { |
1181 | Self->omInUseList = mid->FreeNext; |
1182 | } else if (cur_mid_in_use != NULL) { |
1183 | cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list |
1184 | } |
1185 | extracted = true; |
1186 | Self->omInUseCount--; |
1187 | break; |
1188 | } |
1189 | } |
1190 | assert(extracted, "Should have extracted from in-use list" ); |
1191 | } |
1192 | |
1193 | // FreeNext is used for both omInUseList and omFreeList, so clear old before setting new |
1194 | m->FreeNext = Self->omFreeList; |
1195 | Self->omFreeList = m; |
1196 | Self->omFreeCount++; |
1197 | } |
1198 | |
1199 | // Return the monitors of a moribund thread's local free list to |
1200 | // the global free list. Typically a thread calls omFlush() when |
1201 | // it's dying. We could also consider having the VM thread steal |
1202 | // monitors from threads that have not run java code over a few |
1203 | // consecutive STW safepoints. Relatedly, we might decay |
1204 | // omFreeProvision at STW safepoints. |
1205 | // |
1206 | // Also return the monitors of a moribund thread's omInUseList to |
1207 | // a global gOmInUseList under the global list lock so these |
1208 | // will continue to be scanned. |
1209 | // |
1210 | // We currently call omFlush() from Threads::remove() _before the thread |
1211 | // has been excised from the thread list and is no longer a mutator. |
1212 | // This means that omFlush() cannot run concurrently with a safepoint and |
1213 | // interleave with the deflate_idle_monitors scavenge operator. In particular, |
1214 | // this ensures that the thread's monitors are scanned by a GC safepoint, |
1215 | // either via Thread::oops_do() (if safepoint happens before omFlush()) or via |
1216 | // ObjectSynchronizer::oops_do() (if it happens after omFlush() and the thread's |
1217 | // monitors have been transferred to the global in-use list). |
1218 | |
1219 | void ObjectSynchronizer::omFlush(Thread * Self) { |
1220 | ObjectMonitor * list = Self->omFreeList; // Null-terminated SLL |
1221 | ObjectMonitor * tail = NULL; |
1222 | int tally = 0; |
1223 | if (list != NULL) { |
1224 | ObjectMonitor * s; |
1225 | // The thread is going away. Set 'tail' to the last per-thread free |
1226 | // monitor which will be linked to gFreeList below under the gListLock. |
1227 | stringStream ss; |
1228 | for (s = list; s != NULL; s = s->FreeNext) { |
1229 | tally++; |
1230 | tail = s; |
1231 | guarantee(s->object() == NULL, "invariant" ); |
1232 | guarantee(!s->is_busy(), "must be !is_busy: %s" , s->is_busy_to_string(&ss)); |
1233 | } |
1234 | guarantee(tail != NULL, "invariant" ); |
1235 | assert(Self->omFreeCount == tally, "free-count off" ); |
1236 | Self->omFreeList = NULL; |
1237 | Self->omFreeCount = 0; |
1238 | } |
1239 | |
1240 | ObjectMonitor * inUseList = Self->omInUseList; |
1241 | ObjectMonitor * inUseTail = NULL; |
1242 | int inUseTally = 0; |
1243 | if (inUseList != NULL) { |
1244 | ObjectMonitor *cur_om; |
1245 | // The thread is going away, however the omInUseList inflated |
1246 | // monitors may still be in-use by other threads. |
1247 | // Link them to inUseTail, which will be linked into the global in-use list |
1248 | // gOmInUseList below, under the gListLock |
1249 | for (cur_om = inUseList; cur_om != NULL; cur_om = cur_om->FreeNext) { |
1250 | inUseTail = cur_om; |
1251 | inUseTally++; |
1252 | } |
1253 | guarantee(inUseTail != NULL, "invariant" ); |
1254 | assert(Self->omInUseCount == inUseTally, "in-use count off" ); |
1255 | Self->omInUseList = NULL; |
1256 | Self->omInUseCount = 0; |
1257 | } |
1258 | |
1259 | Thread::muxAcquire(&gListLock, "omFlush" ); |
1260 | if (tail != NULL) { |
1261 | tail->FreeNext = gFreeList; |
1262 | gFreeList = list; |
1263 | gMonitorFreeCount += tally; |
1264 | } |
1265 | |
1266 | if (inUseTail != NULL) { |
1267 | inUseTail->FreeNext = gOmInUseList; |
1268 | gOmInUseList = inUseList; |
1269 | gOmInUseCount += inUseTally; |
1270 | } |
1271 | |
1272 | Thread::muxRelease(&gListLock); |
1273 | |
1274 | LogStreamHandle(Debug, monitorinflation) lsh_debug; |
1275 | LogStreamHandle(Info, monitorinflation) lsh_info; |
1276 | LogStream * ls = NULL; |
1277 | if (log_is_enabled(Debug, monitorinflation)) { |
1278 | ls = &lsh_debug; |
1279 | } else if ((tally != 0 || inUseTally != 0) && |
1280 | log_is_enabled(Info, monitorinflation)) { |
1281 | ls = &lsh_info; |
1282 | } |
1283 | if (ls != NULL) { |
1284 | ls->print_cr("omFlush: jt=" INTPTR_FORMAT ", free_monitor_tally=%d" |
1285 | ", in_use_monitor_tally=%d" ", omFreeProvision=%d" , |
1286 | p2i(Self), tally, inUseTally, Self->omFreeProvision); |
1287 | } |
1288 | } |
1289 | |
1290 | static void post_monitor_inflate_event(EventJavaMonitorInflate* event, |
1291 | const oop obj, |
1292 | ObjectSynchronizer::InflateCause cause) { |
1293 | assert(event != NULL, "invariant" ); |
1294 | assert(event->should_commit(), "invariant" ); |
1295 | event->set_monitorClass(obj->klass()); |
1296 | event->set_address((uintptr_t)(void*)obj); |
1297 | event->set_cause((u1)cause); |
1298 | event->commit(); |
1299 | } |
1300 | |
1301 | // Fast path code shared by multiple functions |
1302 | void ObjectSynchronizer::inflate_helper(oop obj) { |
1303 | markOop mark = obj->mark(); |
1304 | if (mark->has_monitor()) { |
1305 | assert(ObjectSynchronizer::verify_objmon_isinpool(mark->monitor()), "monitor is invalid" ); |
1306 | assert(mark->monitor()->header()->is_neutral(), "monitor must record a good object header" ); |
1307 | return; |
1308 | } |
1309 | inflate(Thread::current(), obj, inflate_cause_vm_internal); |
1310 | } |
1311 | |
1312 | ObjectMonitor* ObjectSynchronizer::inflate(Thread * Self, |
1313 | oop object, |
1314 | const InflateCause cause) { |
1315 | // Inflate mutates the heap ... |
1316 | // Relaxing assertion for bug 6320749. |
1317 | assert(Universe::verify_in_progress() || |
1318 | !SafepointSynchronize::is_at_safepoint(), "invariant" ); |
1319 | |
1320 | EventJavaMonitorInflate event; |
1321 | |
1322 | for (;;) { |
1323 | const markOop mark = object->mark(); |
1324 | assert(!mark->has_bias_pattern(), "invariant" ); |
1325 | |
1326 | // The mark can be in one of the following states: |
1327 | // * Inflated - just return |
1328 | // * Stack-locked - coerce it to inflated |
1329 | // * INFLATING - busy wait for conversion to complete |
1330 | // * Neutral - aggressively inflate the object. |
1331 | // * BIASED - Illegal. We should never see this |
1332 | |
1333 | // CASE: inflated |
1334 | if (mark->has_monitor()) { |
1335 | ObjectMonitor * inf = mark->monitor(); |
1336 | markOop dmw = inf->header(); |
1337 | assert(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw)); |
1338 | assert(oopDesc::equals((oop) inf->object(), object), "invariant" ); |
1339 | assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid" ); |
1340 | return inf; |
1341 | } |
1342 | |
1343 | // CASE: inflation in progress - inflating over a stack-lock. |
1344 | // Some other thread is converting from stack-locked to inflated. |
1345 | // Only that thread can complete inflation -- other threads must wait. |
1346 | // The INFLATING value is transient. |
1347 | // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish. |
1348 | // We could always eliminate polling by parking the thread on some auxiliary list. |
1349 | if (mark == markOopDesc::INFLATING()) { |
1350 | ReadStableMark(object); |
1351 | continue; |
1352 | } |
1353 | |
1354 | // CASE: stack-locked |
1355 | // Could be stack-locked either by this thread or by some other thread. |
1356 | // |
1357 | // Note that we allocate the objectmonitor speculatively, _before_ attempting |
1358 | // to install INFLATING into the mark word. We originally installed INFLATING, |
1359 | // allocated the objectmonitor, and then finally STed the address of the |
1360 | // objectmonitor into the mark. This was correct, but artificially lengthened |
1361 | // the interval in which INFLATED appeared in the mark, thus increasing |
1362 | // the odds of inflation contention. |
1363 | // |
1364 | // We now use per-thread private objectmonitor free lists. |
1365 | // These list are reprovisioned from the global free list outside the |
1366 | // critical INFLATING...ST interval. A thread can transfer |
1367 | // multiple objectmonitors en-mass from the global free list to its local free list. |
1368 | // This reduces coherency traffic and lock contention on the global free list. |
1369 | // Using such local free lists, it doesn't matter if the omAlloc() call appears |
1370 | // before or after the CAS(INFLATING) operation. |
1371 | // See the comments in omAlloc(). |
1372 | |
1373 | LogStreamHandle(Trace, monitorinflation) lsh; |
1374 | |
1375 | if (mark->has_locker()) { |
1376 | ObjectMonitor * m = omAlloc(Self); |
1377 | // Optimistically prepare the objectmonitor - anticipate successful CAS |
1378 | // We do this before the CAS in order to minimize the length of time |
1379 | // in which INFLATING appears in the mark. |
1380 | m->Recycle(); |
1381 | m->_Responsible = NULL; |
1382 | m->_SpinDuration = ObjectMonitor::Knob_SpinLimit; // Consider: maintain by type/class |
1383 | |
1384 | markOop cmp = object->cas_set_mark(markOopDesc::INFLATING(), mark); |
1385 | if (cmp != mark) { |
1386 | omRelease(Self, m, true); |
1387 | continue; // Interference -- just retry |
1388 | } |
1389 | |
1390 | // We've successfully installed INFLATING (0) into the mark-word. |
1391 | // This is the only case where 0 will appear in a mark-word. |
1392 | // Only the singular thread that successfully swings the mark-word |
1393 | // to 0 can perform (or more precisely, complete) inflation. |
1394 | // |
1395 | // Why do we CAS a 0 into the mark-word instead of just CASing the |
1396 | // mark-word from the stack-locked value directly to the new inflated state? |
1397 | // Consider what happens when a thread unlocks a stack-locked object. |
1398 | // It attempts to use CAS to swing the displaced header value from the |
1399 | // on-stack basiclock back into the object header. Recall also that the |
1400 | // header value (hash code, etc) can reside in (a) the object header, or |
1401 | // (b) a displaced header associated with the stack-lock, or (c) a displaced |
1402 | // header in an objectMonitor. The inflate() routine must copy the header |
1403 | // value from the basiclock on the owner's stack to the objectMonitor, all |
1404 | // the while preserving the hashCode stability invariants. If the owner |
1405 | // decides to release the lock while the value is 0, the unlock will fail |
1406 | // and control will eventually pass from slow_exit() to inflate. The owner |
1407 | // will then spin, waiting for the 0 value to disappear. Put another way, |
1408 | // the 0 causes the owner to stall if the owner happens to try to |
1409 | // drop the lock (restoring the header from the basiclock to the object) |
1410 | // while inflation is in-progress. This protocol avoids races that might |
1411 | // would otherwise permit hashCode values to change or "flicker" for an object. |
1412 | // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable. |
1413 | // 0 serves as a "BUSY" inflate-in-progress indicator. |
1414 | |
1415 | |
1416 | // fetch the displaced mark from the owner's stack. |
1417 | // The owner can't die or unwind past the lock while our INFLATING |
1418 | // object is in the mark. Furthermore the owner can't complete |
1419 | // an unlock on the object, either. |
1420 | markOop dmw = mark->displaced_mark_helper(); |
1421 | // Catch if the object's header is not neutral (not locked and |
1422 | // not marked is what we care about here). |
1423 | assert(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw)); |
1424 | |
1425 | // Setup monitor fields to proper values -- prepare the monitor |
1426 | m->set_header(dmw); |
1427 | |
1428 | // Optimization: if the mark->locker stack address is associated |
1429 | // with this thread we could simply set m->_owner = Self. |
1430 | // Note that a thread can inflate an object |
1431 | // that it has stack-locked -- as might happen in wait() -- directly |
1432 | // with CAS. That is, we can avoid the xchg-NULL .... ST idiom. |
1433 | m->set_owner(mark->locker()); |
1434 | m->set_object(object); |
1435 | // TODO-FIXME: assert BasicLock->dhw != 0. |
1436 | |
1437 | // Must preserve store ordering. The monitor state must |
1438 | // be stable at the time of publishing the monitor address. |
1439 | guarantee(object->mark() == markOopDesc::INFLATING(), "invariant" ); |
1440 | object->release_set_mark(markOopDesc::encode(m)); |
1441 | |
1442 | // Hopefully the performance counters are allocated on distinct cache lines |
1443 | // to avoid false sharing on MP systems ... |
1444 | OM_PERFDATA_OP(Inflations, inc()); |
1445 | if (log_is_enabled(Trace, monitorinflation)) { |
1446 | ResourceMark rm(Self); |
1447 | lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark=" |
1448 | INTPTR_FORMAT ", type='%s'" , p2i(object), |
1449 | p2i(object->mark()), object->klass()->external_name()); |
1450 | } |
1451 | if (event.should_commit()) { |
1452 | post_monitor_inflate_event(&event, object, cause); |
1453 | } |
1454 | return m; |
1455 | } |
1456 | |
1457 | // CASE: neutral |
1458 | // TODO-FIXME: for entry we currently inflate and then try to CAS _owner. |
1459 | // If we know we're inflating for entry it's better to inflate by swinging a |
1460 | // pre-locked objectMonitor pointer into the object header. A successful |
1461 | // CAS inflates the object *and* confers ownership to the inflating thread. |
1462 | // In the current implementation we use a 2-step mechanism where we CAS() |
1463 | // to inflate and then CAS() again to try to swing _owner from NULL to Self. |
1464 | // An inflateTry() method that we could call from fast_enter() and slow_enter() |
1465 | // would be useful. |
1466 | |
1467 | // Catch if the object's header is not neutral (not locked and |
1468 | // not marked is what we care about here). |
1469 | assert(mark->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(mark)); |
1470 | ObjectMonitor * m = omAlloc(Self); |
1471 | // prepare m for installation - set monitor to initial state |
1472 | m->Recycle(); |
1473 | m->set_header(mark); |
1474 | m->set_object(object); |
1475 | m->_Responsible = NULL; |
1476 | m->_SpinDuration = ObjectMonitor::Knob_SpinLimit; // consider: keep metastats by type/class |
1477 | |
1478 | if (object->cas_set_mark(markOopDesc::encode(m), mark) != mark) { |
1479 | m->set_header(NULL); |
1480 | m->set_object(NULL); |
1481 | m->Recycle(); |
1482 | omRelease(Self, m, true); |
1483 | m = NULL; |
1484 | continue; |
1485 | // interference - the markword changed - just retry. |
1486 | // The state-transitions are one-way, so there's no chance of |
1487 | // live-lock -- "Inflated" is an absorbing state. |
1488 | } |
1489 | |
1490 | // Hopefully the performance counters are allocated on distinct |
1491 | // cache lines to avoid false sharing on MP systems ... |
1492 | OM_PERFDATA_OP(Inflations, inc()); |
1493 | if (log_is_enabled(Trace, monitorinflation)) { |
1494 | ResourceMark rm(Self); |
1495 | lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark=" |
1496 | INTPTR_FORMAT ", type='%s'" , p2i(object), |
1497 | p2i(object->mark()), object->klass()->external_name()); |
1498 | } |
1499 | if (event.should_commit()) { |
1500 | post_monitor_inflate_event(&event, object, cause); |
1501 | } |
1502 | return m; |
1503 | } |
1504 | } |
1505 | |
1506 | |
1507 | // We maintain a list of in-use monitors for each thread. |
1508 | // |
1509 | // deflate_thread_local_monitors() scans a single thread's in-use list, while |
1510 | // deflate_idle_monitors() scans only a global list of in-use monitors which |
1511 | // is populated only as a thread dies (see omFlush()). |
1512 | // |
1513 | // These operations are called at all safepoints, immediately after mutators |
1514 | // are stopped, but before any objects have moved. Collectively they traverse |
1515 | // the population of in-use monitors, deflating where possible. The scavenged |
1516 | // monitors are returned to the global monitor free list. |
1517 | // |
1518 | // Beware that we scavenge at *every* stop-the-world point. Having a large |
1519 | // number of monitors in-use could negatively impact performance. We also want |
1520 | // to minimize the total # of monitors in circulation, as they incur a small |
1521 | // footprint penalty. |
1522 | // |
1523 | // Perversely, the heap size -- and thus the STW safepoint rate -- |
1524 | // typically drives the scavenge rate. Large heaps can mean infrequent GC, |
1525 | // which in turn can mean large(r) numbers of ObjectMonitors in circulation. |
1526 | // This is an unfortunate aspect of this design. |
1527 | |
1528 | // Deflate a single monitor if not in-use |
1529 | // Return true if deflated, false if in-use |
1530 | bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj, |
1531 | ObjectMonitor** freeHeadp, |
1532 | ObjectMonitor** freeTailp) { |
1533 | bool deflated; |
1534 | // Normal case ... The monitor is associated with obj. |
1535 | const markOop mark = obj->mark(); |
1536 | guarantee(mark == markOopDesc::encode(mid), "should match: mark=" |
1537 | INTPTR_FORMAT ", encoded mid=" INTPTR_FORMAT, p2i(mark), |
1538 | p2i(markOopDesc::encode(mid))); |
1539 | // Make sure that mark->monitor() and markOopDesc::encode() agree: |
1540 | guarantee(mark->monitor() == mid, "should match: monitor()=" INTPTR_FORMAT |
1541 | ", mid=" INTPTR_FORMAT, p2i(mark->monitor()), p2i(mid)); |
1542 | const markOop dmw = mid->header(); |
1543 | guarantee(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw)); |
1544 | |
1545 | if (mid->is_busy()) { |
1546 | deflated = false; |
1547 | } else { |
1548 | // Deflate the monitor if it is no longer being used |
1549 | // It's idle - scavenge and return to the global free list |
1550 | // plain old deflation ... |
1551 | if (log_is_enabled(Trace, monitorinflation)) { |
1552 | ResourceMark rm; |
1553 | log_trace(monitorinflation)("deflate_monitor: " |
1554 | "object=" INTPTR_FORMAT ", mark=" |
1555 | INTPTR_FORMAT ", type='%s'" , p2i(obj), |
1556 | p2i(mark), obj->klass()->external_name()); |
1557 | } |
1558 | |
1559 | // Restore the header back to obj |
1560 | obj->release_set_mark(dmw); |
1561 | mid->clear(); |
1562 | |
1563 | assert(mid->object() == NULL, "invariant: object=" INTPTR_FORMAT, |
1564 | p2i(mid->object())); |
1565 | |
1566 | // Move the object to the working free list defined by freeHeadp, freeTailp |
1567 | if (*freeHeadp == NULL) *freeHeadp = mid; |
1568 | if (*freeTailp != NULL) { |
1569 | ObjectMonitor * prevtail = *freeTailp; |
1570 | assert(prevtail->FreeNext == NULL, "cleaned up deflated?" ); |
1571 | prevtail->FreeNext = mid; |
1572 | } |
1573 | *freeTailp = mid; |
1574 | deflated = true; |
1575 | } |
1576 | return deflated; |
1577 | } |
1578 | |
1579 | // Walk a given monitor list, and deflate idle monitors |
1580 | // The given list could be a per-thread list or a global list |
1581 | // Caller acquires gListLock as needed. |
1582 | // |
1583 | // In the case of parallel processing of thread local monitor lists, |
1584 | // work is done by Threads::parallel_threads_do() which ensures that |
1585 | // each Java thread is processed by exactly one worker thread, and |
1586 | // thus avoid conflicts that would arise when worker threads would |
1587 | // process the same monitor lists concurrently. |
1588 | // |
1589 | // See also ParallelSPCleanupTask and |
1590 | // SafepointSynchronize::do_cleanup_tasks() in safepoint.cpp and |
1591 | // Threads::parallel_java_threads_do() in thread.cpp. |
1592 | int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor** listHeadp, |
1593 | ObjectMonitor** freeHeadp, |
1594 | ObjectMonitor** freeTailp) { |
1595 | ObjectMonitor* mid; |
1596 | ObjectMonitor* next; |
1597 | ObjectMonitor* cur_mid_in_use = NULL; |
1598 | int deflated_count = 0; |
1599 | |
1600 | for (mid = *listHeadp; mid != NULL;) { |
1601 | oop obj = (oop) mid->object(); |
1602 | if (obj != NULL && deflate_monitor(mid, obj, freeHeadp, freeTailp)) { |
1603 | // if deflate_monitor succeeded, |
1604 | // extract from per-thread in-use list |
1605 | if (mid == *listHeadp) { |
1606 | *listHeadp = mid->FreeNext; |
1607 | } else if (cur_mid_in_use != NULL) { |
1608 | cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list |
1609 | } |
1610 | next = mid->FreeNext; |
1611 | mid->FreeNext = NULL; // This mid is current tail in the freeHeadp list |
1612 | mid = next; |
1613 | deflated_count++; |
1614 | } else { |
1615 | cur_mid_in_use = mid; |
1616 | mid = mid->FreeNext; |
1617 | } |
1618 | } |
1619 | return deflated_count; |
1620 | } |
1621 | |
1622 | void ObjectSynchronizer::prepare_deflate_idle_monitors(DeflateMonitorCounters* counters) { |
1623 | counters->nInuse = 0; // currently associated with objects |
1624 | counters->nInCirculation = 0; // extant |
1625 | counters->nScavenged = 0; // reclaimed (global and per-thread) |
1626 | counters->perThreadScavenged = 0; // per-thread scavenge total |
1627 | counters->perThreadTimes = 0.0; // per-thread scavenge times |
1628 | } |
1629 | |
1630 | void ObjectSynchronizer::deflate_idle_monitors(DeflateMonitorCounters* counters) { |
1631 | assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint" ); |
1632 | bool deflated = false; |
1633 | |
1634 | ObjectMonitor * freeHeadp = NULL; // Local SLL of scavenged monitors |
1635 | ObjectMonitor * freeTailp = NULL; |
1636 | elapsedTimer timer; |
1637 | |
1638 | if (log_is_enabled(Info, monitorinflation)) { |
1639 | timer.start(); |
1640 | } |
1641 | |
1642 | // Prevent omFlush from changing mids in Thread dtor's during deflation |
1643 | // And in case the vm thread is acquiring a lock during a safepoint |
1644 | // See e.g. 6320749 |
1645 | Thread::muxAcquire(&gListLock, "deflate_idle_monitors" ); |
1646 | |
1647 | // Note: the thread-local monitors lists get deflated in |
1648 | // a separate pass. See deflate_thread_local_monitors(). |
1649 | |
1650 | // For moribund threads, scan gOmInUseList |
1651 | int deflated_count = 0; |
1652 | if (gOmInUseList) { |
1653 | counters->nInCirculation += gOmInUseCount; |
1654 | deflated_count = deflate_monitor_list((ObjectMonitor **)&gOmInUseList, &freeHeadp, &freeTailp); |
1655 | gOmInUseCount -= deflated_count; |
1656 | counters->nScavenged += deflated_count; |
1657 | counters->nInuse += gOmInUseCount; |
1658 | } |
1659 | |
1660 | // Move the scavenged monitors back to the global free list. |
1661 | if (freeHeadp != NULL) { |
1662 | guarantee(freeTailp != NULL && counters->nScavenged > 0, "invariant" ); |
1663 | assert(freeTailp->FreeNext == NULL, "invariant" ); |
1664 | // constant-time list splice - prepend scavenged segment to gFreeList |
1665 | freeTailp->FreeNext = gFreeList; |
1666 | gFreeList = freeHeadp; |
1667 | } |
1668 | Thread::muxRelease(&gListLock); |
1669 | timer.stop(); |
1670 | |
1671 | LogStreamHandle(Debug, monitorinflation) lsh_debug; |
1672 | LogStreamHandle(Info, monitorinflation) lsh_info; |
1673 | LogStream * ls = NULL; |
1674 | if (log_is_enabled(Debug, monitorinflation)) { |
1675 | ls = &lsh_debug; |
1676 | } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) { |
1677 | ls = &lsh_info; |
1678 | } |
1679 | if (ls != NULL) { |
1680 | ls->print_cr("deflating global idle monitors, %3.7f secs, %d monitors" , timer.seconds(), deflated_count); |
1681 | } |
1682 | } |
1683 | |
1684 | void ObjectSynchronizer::finish_deflate_idle_monitors(DeflateMonitorCounters* counters) { |
1685 | // Report the cumulative time for deflating each thread's idle |
1686 | // monitors. Note: if the work is split among more than one |
1687 | // worker thread, then the reported time will likely be more |
1688 | // than a beginning to end measurement of the phase. |
1689 | log_info(safepoint, cleanup)("deflating per-thread idle monitors, %3.7f secs, monitors=%d" , counters->perThreadTimes, counters->perThreadScavenged); |
1690 | |
1691 | gMonitorFreeCount += counters->nScavenged; |
1692 | |
1693 | if (log_is_enabled(Debug, monitorinflation)) { |
1694 | // exit_globals()'s call to audit_and_print_stats() is done |
1695 | // at the Info level. |
1696 | ObjectSynchronizer::audit_and_print_stats(false /* on_exit */); |
1697 | } else if (log_is_enabled(Info, monitorinflation)) { |
1698 | Thread::muxAcquire(&gListLock, "finish_deflate_idle_monitors" ); |
1699 | log_info(monitorinflation)("gMonitorPopulation=%d, gOmInUseCount=%d, " |
1700 | "gMonitorFreeCount=%d" , gMonitorPopulation, |
1701 | gOmInUseCount, gMonitorFreeCount); |
1702 | Thread::muxRelease(&gListLock); |
1703 | } |
1704 | |
1705 | ForceMonitorScavenge = 0; // Reset |
1706 | |
1707 | OM_PERFDATA_OP(Deflations, inc(counters->nScavenged)); |
1708 | OM_PERFDATA_OP(MonExtant, set_value(counters->nInCirculation)); |
1709 | |
1710 | GVars.stwRandom = os::random(); |
1711 | GVars.stwCycle++; |
1712 | } |
1713 | |
1714 | void ObjectSynchronizer::deflate_thread_local_monitors(Thread* thread, DeflateMonitorCounters* counters) { |
1715 | assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint" ); |
1716 | |
1717 | ObjectMonitor * freeHeadp = NULL; // Local SLL of scavenged monitors |
1718 | ObjectMonitor * freeTailp = NULL; |
1719 | elapsedTimer timer; |
1720 | |
1721 | if (log_is_enabled(Info, safepoint, cleanup) || |
1722 | log_is_enabled(Info, monitorinflation)) { |
1723 | timer.start(); |
1724 | } |
1725 | |
1726 | int deflated_count = deflate_monitor_list(thread->omInUseList_addr(), &freeHeadp, &freeTailp); |
1727 | |
1728 | Thread::muxAcquire(&gListLock, "deflate_thread_local_monitors" ); |
1729 | |
1730 | // Adjust counters |
1731 | counters->nInCirculation += thread->omInUseCount; |
1732 | thread->omInUseCount -= deflated_count; |
1733 | counters->nScavenged += deflated_count; |
1734 | counters->nInuse += thread->omInUseCount; |
1735 | counters->perThreadScavenged += deflated_count; |
1736 | |
1737 | // Move the scavenged monitors back to the global free list. |
1738 | if (freeHeadp != NULL) { |
1739 | guarantee(freeTailp != NULL && deflated_count > 0, "invariant" ); |
1740 | assert(freeTailp->FreeNext == NULL, "invariant" ); |
1741 | |
1742 | // constant-time list splice - prepend scavenged segment to gFreeList |
1743 | freeTailp->FreeNext = gFreeList; |
1744 | gFreeList = freeHeadp; |
1745 | } |
1746 | |
1747 | timer.stop(); |
1748 | // Safepoint logging cares about cumulative perThreadTimes and |
1749 | // we'll capture most of the cost, but not the muxRelease() which |
1750 | // should be cheap. |
1751 | counters->perThreadTimes += timer.seconds(); |
1752 | |
1753 | Thread::muxRelease(&gListLock); |
1754 | |
1755 | LogStreamHandle(Debug, monitorinflation) lsh_debug; |
1756 | LogStreamHandle(Info, monitorinflation) lsh_info; |
1757 | LogStream * ls = NULL; |
1758 | if (log_is_enabled(Debug, monitorinflation)) { |
1759 | ls = &lsh_debug; |
1760 | } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) { |
1761 | ls = &lsh_info; |
1762 | } |
1763 | if (ls != NULL) { |
1764 | ls->print_cr("jt=" INTPTR_FORMAT ": deflating per-thread idle monitors, %3.7f secs, %d monitors" , p2i(thread), timer.seconds(), deflated_count); |
1765 | } |
1766 | } |
1767 | |
1768 | // Monitor cleanup on JavaThread::exit |
1769 | |
1770 | // Iterate through monitor cache and attempt to release thread's monitors |
1771 | // Gives up on a particular monitor if an exception occurs, but continues |
1772 | // the overall iteration, swallowing the exception. |
1773 | class ReleaseJavaMonitorsClosure: public MonitorClosure { |
1774 | private: |
1775 | TRAPS; |
1776 | |
1777 | public: |
1778 | ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {} |
1779 | void do_monitor(ObjectMonitor* mid) { |
1780 | if (mid->owner() == THREAD) { |
1781 | (void)mid->complete_exit(CHECK); |
1782 | } |
1783 | } |
1784 | }; |
1785 | |
1786 | // Release all inflated monitors owned by THREAD. Lightweight monitors are |
1787 | // ignored. This is meant to be called during JNI thread detach which assumes |
1788 | // all remaining monitors are heavyweight. All exceptions are swallowed. |
1789 | // Scanning the extant monitor list can be time consuming. |
1790 | // A simple optimization is to add a per-thread flag that indicates a thread |
1791 | // called jni_monitorenter() during its lifetime. |
1792 | // |
1793 | // Instead of No_Savepoint_Verifier it might be cheaper to |
1794 | // use an idiom of the form: |
1795 | // auto int tmp = SafepointSynchronize::_safepoint_counter ; |
1796 | // <code that must not run at safepoint> |
1797 | // guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ; |
1798 | // Since the tests are extremely cheap we could leave them enabled |
1799 | // for normal product builds. |
1800 | |
1801 | void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) { |
1802 | assert(THREAD == JavaThread::current(), "must be current Java thread" ); |
1803 | NoSafepointVerifier nsv; |
1804 | ReleaseJavaMonitorsClosure rjmc(THREAD); |
1805 | Thread::muxAcquire(&gListLock, "release_monitors_owned_by_thread" ); |
1806 | ObjectSynchronizer::monitors_iterate(&rjmc); |
1807 | Thread::muxRelease(&gListLock); |
1808 | THREAD->clear_pending_exception(); |
1809 | } |
1810 | |
1811 | const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) { |
1812 | switch (cause) { |
1813 | case inflate_cause_vm_internal: return "VM Internal" ; |
1814 | case inflate_cause_monitor_enter: return "Monitor Enter" ; |
1815 | case inflate_cause_wait: return "Monitor Wait" ; |
1816 | case inflate_cause_notify: return "Monitor Notify" ; |
1817 | case inflate_cause_hash_code: return "Monitor Hash Code" ; |
1818 | case inflate_cause_jni_enter: return "JNI Monitor Enter" ; |
1819 | case inflate_cause_jni_exit: return "JNI Monitor Exit" ; |
1820 | default: |
1821 | ShouldNotReachHere(); |
1822 | } |
1823 | return "Unknown" ; |
1824 | } |
1825 | |
1826 | //------------------------------------------------------------------------------ |
1827 | // Debugging code |
1828 | |
1829 | u_char* ObjectSynchronizer::get_gvars_addr() { |
1830 | return (u_char*)&GVars; |
1831 | } |
1832 | |
1833 | u_char* ObjectSynchronizer::get_gvars_hcSequence_addr() { |
1834 | return (u_char*)&GVars.hcSequence; |
1835 | } |
1836 | |
1837 | size_t ObjectSynchronizer::get_gvars_size() { |
1838 | return sizeof(SharedGlobals); |
1839 | } |
1840 | |
1841 | u_char* ObjectSynchronizer::get_gvars_stwRandom_addr() { |
1842 | return (u_char*)&GVars.stwRandom; |
1843 | } |
1844 | |
1845 | void ObjectSynchronizer::audit_and_print_stats(bool on_exit) { |
1846 | assert(on_exit || SafepointSynchronize::is_at_safepoint(), "invariant" ); |
1847 | |
1848 | LogStreamHandle(Debug, monitorinflation) lsh_debug; |
1849 | LogStreamHandle(Info, monitorinflation) lsh_info; |
1850 | LogStreamHandle(Trace, monitorinflation) lsh_trace; |
1851 | LogStream * ls = NULL; |
1852 | if (log_is_enabled(Trace, monitorinflation)) { |
1853 | ls = &lsh_trace; |
1854 | } else if (log_is_enabled(Debug, monitorinflation)) { |
1855 | ls = &lsh_debug; |
1856 | } else if (log_is_enabled(Info, monitorinflation)) { |
1857 | ls = &lsh_info; |
1858 | } |
1859 | assert(ls != NULL, "sanity check" ); |
1860 | |
1861 | if (!on_exit) { |
1862 | // Not at VM exit so grab the global list lock. |
1863 | Thread::muxAcquire(&gListLock, "audit_and_print_stats" ); |
1864 | } |
1865 | |
1866 | // Log counts for the global and per-thread monitor lists: |
1867 | int chkMonitorPopulation = log_monitor_list_counts(ls); |
1868 | int error_cnt = 0; |
1869 | |
1870 | ls->print_cr("Checking global lists:" ); |
1871 | |
1872 | // Check gMonitorPopulation: |
1873 | if (gMonitorPopulation == chkMonitorPopulation) { |
1874 | ls->print_cr("gMonitorPopulation=%d equals chkMonitorPopulation=%d" , |
1875 | gMonitorPopulation, chkMonitorPopulation); |
1876 | } else { |
1877 | ls->print_cr("ERROR: gMonitorPopulation=%d is not equal to " |
1878 | "chkMonitorPopulation=%d" , gMonitorPopulation, |
1879 | chkMonitorPopulation); |
1880 | error_cnt++; |
1881 | } |
1882 | |
1883 | // Check gOmInUseList and gOmInUseCount: |
1884 | chk_global_in_use_list_and_count(ls, &error_cnt); |
1885 | |
1886 | // Check gFreeList and gMonitorFreeCount: |
1887 | chk_global_free_list_and_count(ls, &error_cnt); |
1888 | |
1889 | if (!on_exit) { |
1890 | Thread::muxRelease(&gListLock); |
1891 | } |
1892 | |
1893 | ls->print_cr("Checking per-thread lists:" ); |
1894 | |
1895 | for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) { |
1896 | // Check omInUseList and omInUseCount: |
1897 | chk_per_thread_in_use_list_and_count(jt, ls, &error_cnt); |
1898 | |
1899 | // Check omFreeList and omFreeCount: |
1900 | chk_per_thread_free_list_and_count(jt, ls, &error_cnt); |
1901 | } |
1902 | |
1903 | if (error_cnt == 0) { |
1904 | ls->print_cr("No errors found in monitor list checks." ); |
1905 | } else { |
1906 | log_error(monitorinflation)("found monitor list errors: error_cnt=%d" , error_cnt); |
1907 | } |
1908 | |
1909 | if ((on_exit && log_is_enabled(Info, monitorinflation)) || |
1910 | (!on_exit && log_is_enabled(Trace, monitorinflation))) { |
1911 | // When exiting this log output is at the Info level. When called |
1912 | // at a safepoint, this log output is at the Trace level since |
1913 | // there can be a lot of it. |
1914 | log_in_use_monitor_details(ls, on_exit); |
1915 | } |
1916 | |
1917 | ls->flush(); |
1918 | |
1919 | guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d" , error_cnt); |
1920 | } |
1921 | |
1922 | // Check a free monitor entry; log any errors. |
1923 | void ObjectSynchronizer::chk_free_entry(JavaThread * jt, ObjectMonitor * n, |
1924 | outputStream * out, int *error_cnt_p) { |
1925 | stringStream ss; |
1926 | if (n->is_busy()) { |
1927 | if (jt != NULL) { |
1928 | out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT |
1929 | ": free per-thread monitor must not be busy: %s" , p2i(jt), |
1930 | p2i(n), n->is_busy_to_string(&ss)); |
1931 | } else { |
1932 | out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor " |
1933 | "must not be busy: %s" , p2i(n), n->is_busy_to_string(&ss)); |
1934 | } |
1935 | *error_cnt_p = *error_cnt_p + 1; |
1936 | } |
1937 | if (n->header() != NULL) { |
1938 | if (jt != NULL) { |
1939 | out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT |
1940 | ": free per-thread monitor must have NULL _header " |
1941 | "field: _header=" INTPTR_FORMAT, p2i(jt), p2i(n), |
1942 | p2i(n->header())); |
1943 | } else { |
1944 | out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor " |
1945 | "must have NULL _header field: _header=" INTPTR_FORMAT, |
1946 | p2i(n), p2i(n->header())); |
1947 | } |
1948 | *error_cnt_p = *error_cnt_p + 1; |
1949 | } |
1950 | if (n->object() != NULL) { |
1951 | if (jt != NULL) { |
1952 | out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT |
1953 | ": free per-thread monitor must have NULL _object " |
1954 | "field: _object=" INTPTR_FORMAT, p2i(jt), p2i(n), |
1955 | p2i(n->object())); |
1956 | } else { |
1957 | out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor " |
1958 | "must have NULL _object field: _object=" INTPTR_FORMAT, |
1959 | p2i(n), p2i(n->object())); |
1960 | } |
1961 | *error_cnt_p = *error_cnt_p + 1; |
1962 | } |
1963 | } |
1964 | |
1965 | // Check the global free list and count; log the results of the checks. |
1966 | void ObjectSynchronizer::chk_global_free_list_and_count(outputStream * out, |
1967 | int *error_cnt_p) { |
1968 | int chkMonitorFreeCount = 0; |
1969 | for (ObjectMonitor * n = gFreeList; n != NULL; n = n->FreeNext) { |
1970 | chk_free_entry(NULL /* jt */, n, out, error_cnt_p); |
1971 | chkMonitorFreeCount++; |
1972 | } |
1973 | if (gMonitorFreeCount == chkMonitorFreeCount) { |
1974 | out->print_cr("gMonitorFreeCount=%d equals chkMonitorFreeCount=%d" , |
1975 | gMonitorFreeCount, chkMonitorFreeCount); |
1976 | } else { |
1977 | out->print_cr("ERROR: gMonitorFreeCount=%d is not equal to " |
1978 | "chkMonitorFreeCount=%d" , gMonitorFreeCount, |
1979 | chkMonitorFreeCount); |
1980 | *error_cnt_p = *error_cnt_p + 1; |
1981 | } |
1982 | } |
1983 | |
1984 | // Check the global in-use list and count; log the results of the checks. |
1985 | void ObjectSynchronizer::chk_global_in_use_list_and_count(outputStream * out, |
1986 | int *error_cnt_p) { |
1987 | int chkOmInUseCount = 0; |
1988 | for (ObjectMonitor * n = gOmInUseList; n != NULL; n = n->FreeNext) { |
1989 | chk_in_use_entry(NULL /* jt */, n, out, error_cnt_p); |
1990 | chkOmInUseCount++; |
1991 | } |
1992 | if (gOmInUseCount == chkOmInUseCount) { |
1993 | out->print_cr("gOmInUseCount=%d equals chkOmInUseCount=%d" , gOmInUseCount, |
1994 | chkOmInUseCount); |
1995 | } else { |
1996 | out->print_cr("ERROR: gOmInUseCount=%d is not equal to chkOmInUseCount=%d" , |
1997 | gOmInUseCount, chkOmInUseCount); |
1998 | *error_cnt_p = *error_cnt_p + 1; |
1999 | } |
2000 | } |
2001 | |
2002 | // Check an in-use monitor entry; log any errors. |
2003 | void ObjectSynchronizer::chk_in_use_entry(JavaThread * jt, ObjectMonitor * n, |
2004 | outputStream * out, int *error_cnt_p) { |
2005 | if (n->header() == NULL) { |
2006 | if (jt != NULL) { |
2007 | out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT |
2008 | ": in-use per-thread monitor must have non-NULL _header " |
2009 | "field." , p2i(jt), p2i(n)); |
2010 | } else { |
2011 | out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor " |
2012 | "must have non-NULL _header field." , p2i(n)); |
2013 | } |
2014 | *error_cnt_p = *error_cnt_p + 1; |
2015 | } |
2016 | if (n->object() == NULL) { |
2017 | if (jt != NULL) { |
2018 | out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT |
2019 | ": in-use per-thread monitor must have non-NULL _object " |
2020 | "field." , p2i(jt), p2i(n)); |
2021 | } else { |
2022 | out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor " |
2023 | "must have non-NULL _object field." , p2i(n)); |
2024 | } |
2025 | *error_cnt_p = *error_cnt_p + 1; |
2026 | } |
2027 | const oop obj = (oop)n->object(); |
2028 | const markOop mark = obj->mark(); |
2029 | if (!mark->has_monitor()) { |
2030 | if (jt != NULL) { |
2031 | out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT |
2032 | ": in-use per-thread monitor's object does not think " |
2033 | "it has a monitor: obj=" INTPTR_FORMAT ", mark=" |
2034 | INTPTR_FORMAT, p2i(jt), p2i(n), p2i(obj), p2i(mark)); |
2035 | } else { |
2036 | out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global " |
2037 | "monitor's object does not think it has a monitor: obj=" |
2038 | INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n), |
2039 | p2i(obj), p2i(mark)); |
2040 | } |
2041 | *error_cnt_p = *error_cnt_p + 1; |
2042 | } |
2043 | ObjectMonitor * const obj_mon = mark->monitor(); |
2044 | if (n != obj_mon) { |
2045 | if (jt != NULL) { |
2046 | out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT |
2047 | ": in-use per-thread monitor's object does not refer " |
2048 | "to the same monitor: obj=" INTPTR_FORMAT ", mark=" |
2049 | INTPTR_FORMAT ", obj_mon=" INTPTR_FORMAT, p2i(jt), |
2050 | p2i(n), p2i(obj), p2i(mark), p2i(obj_mon)); |
2051 | } else { |
2052 | out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global " |
2053 | "monitor's object does not refer to the same monitor: obj=" |
2054 | INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon=" |
2055 | INTPTR_FORMAT, p2i(n), p2i(obj), p2i(mark), p2i(obj_mon)); |
2056 | } |
2057 | *error_cnt_p = *error_cnt_p + 1; |
2058 | } |
2059 | } |
2060 | |
2061 | // Check the thread's free list and count; log the results of the checks. |
2062 | void ObjectSynchronizer::chk_per_thread_free_list_and_count(JavaThread *jt, |
2063 | outputStream * out, |
2064 | int *error_cnt_p) { |
2065 | int chkOmFreeCount = 0; |
2066 | for (ObjectMonitor * n = jt->omFreeList; n != NULL; n = n->FreeNext) { |
2067 | chk_free_entry(jt, n, out, error_cnt_p); |
2068 | chkOmFreeCount++; |
2069 | } |
2070 | if (jt->omFreeCount == chkOmFreeCount) { |
2071 | out->print_cr("jt=" INTPTR_FORMAT ": omFreeCount=%d equals " |
2072 | "chkOmFreeCount=%d" , p2i(jt), jt->omFreeCount, chkOmFreeCount); |
2073 | } else { |
2074 | out->print_cr("ERROR: jt=" INTPTR_FORMAT ": omFreeCount=%d is not " |
2075 | "equal to chkOmFreeCount=%d" , p2i(jt), jt->omFreeCount, |
2076 | chkOmFreeCount); |
2077 | *error_cnt_p = *error_cnt_p + 1; |
2078 | } |
2079 | } |
2080 | |
2081 | // Check the thread's in-use list and count; log the results of the checks. |
2082 | void ObjectSynchronizer::chk_per_thread_in_use_list_and_count(JavaThread *jt, |
2083 | outputStream * out, |
2084 | int *error_cnt_p) { |
2085 | int chkOmInUseCount = 0; |
2086 | for (ObjectMonitor * n = jt->omInUseList; n != NULL; n = n->FreeNext) { |
2087 | chk_in_use_entry(jt, n, out, error_cnt_p); |
2088 | chkOmInUseCount++; |
2089 | } |
2090 | if (jt->omInUseCount == chkOmInUseCount) { |
2091 | out->print_cr("jt=" INTPTR_FORMAT ": omInUseCount=%d equals " |
2092 | "chkOmInUseCount=%d" , p2i(jt), jt->omInUseCount, |
2093 | chkOmInUseCount); |
2094 | } else { |
2095 | out->print_cr("ERROR: jt=" INTPTR_FORMAT ": omInUseCount=%d is not " |
2096 | "equal to chkOmInUseCount=%d" , p2i(jt), jt->omInUseCount, |
2097 | chkOmInUseCount); |
2098 | *error_cnt_p = *error_cnt_p + 1; |
2099 | } |
2100 | } |
2101 | |
2102 | // Log details about ObjectMonitors on the in-use lists. The 'BHL' |
2103 | // flags indicate why the entry is in-use, 'object' and 'object type' |
2104 | // indicate the associated object and its type. |
2105 | void ObjectSynchronizer::log_in_use_monitor_details(outputStream * out, |
2106 | bool on_exit) { |
2107 | if (!on_exit) { |
2108 | // Not at VM exit so grab the global list lock. |
2109 | Thread::muxAcquire(&gListLock, "log_in_use_monitor_details" ); |
2110 | } |
2111 | |
2112 | stringStream ss; |
2113 | if (gOmInUseCount > 0) { |
2114 | out->print_cr("In-use global monitor info:" ); |
2115 | out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)" ); |
2116 | out->print_cr("%18s %s %18s %18s" , |
2117 | "monitor" , "BHL" , "object" , "object type" ); |
2118 | out->print_cr("================== === ================== ==================" ); |
2119 | for (ObjectMonitor * n = gOmInUseList; n != NULL; n = n->FreeNext) { |
2120 | const oop obj = (oop) n->object(); |
2121 | const markOop mark = n->header(); |
2122 | ResourceMark rm; |
2123 | out->print(INTPTR_FORMAT " %d%d%d " INTPTR_FORMAT " %s" , p2i(n), |
2124 | n->is_busy() != 0, mark->hash() != 0, n->owner() != NULL, |
2125 | p2i(obj), obj->klass()->external_name()); |
2126 | if (n->is_busy() != 0) { |
2127 | out->print(" (%s)" , n->is_busy_to_string(&ss)); |
2128 | ss.reset(); |
2129 | } |
2130 | out->cr(); |
2131 | } |
2132 | } |
2133 | |
2134 | if (!on_exit) { |
2135 | Thread::muxRelease(&gListLock); |
2136 | } |
2137 | |
2138 | out->print_cr("In-use per-thread monitor info:" ); |
2139 | out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)" ); |
2140 | out->print_cr("%18s %18s %s %18s %18s" , |
2141 | "jt" , "monitor" , "BHL" , "object" , "object type" ); |
2142 | out->print_cr("================== ================== === ================== ==================" ); |
2143 | for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) { |
2144 | for (ObjectMonitor * n = jt->omInUseList; n != NULL; n = n->FreeNext) { |
2145 | const oop obj = (oop) n->object(); |
2146 | const markOop mark = n->header(); |
2147 | ResourceMark rm; |
2148 | out->print(INTPTR_FORMAT " " INTPTR_FORMAT " %d%d%d " INTPTR_FORMAT |
2149 | " %s" , p2i(jt), p2i(n), n->is_busy() != 0, |
2150 | mark->hash() != 0, n->owner() != NULL, p2i(obj), |
2151 | obj->klass()->external_name()); |
2152 | if (n->is_busy() != 0) { |
2153 | out->print(" (%s)" , n->is_busy_to_string(&ss)); |
2154 | ss.reset(); |
2155 | } |
2156 | out->cr(); |
2157 | } |
2158 | } |
2159 | |
2160 | out->flush(); |
2161 | } |
2162 | |
2163 | // Log counts for the global and per-thread monitor lists and return |
2164 | // the population count. |
2165 | int ObjectSynchronizer::log_monitor_list_counts(outputStream * out) { |
2166 | int popCount = 0; |
2167 | out->print_cr("%18s %10s %10s %10s" , |
2168 | "Global Lists:" , "InUse" , "Free" , "Total" ); |
2169 | out->print_cr("================== ========== ========== ==========" ); |
2170 | out->print_cr("%18s %10d %10d %10d" , "" , |
2171 | gOmInUseCount, gMonitorFreeCount, gMonitorPopulation); |
2172 | popCount += gOmInUseCount + gMonitorFreeCount; |
2173 | |
2174 | out->print_cr("%18s %10s %10s %10s" , |
2175 | "Per-Thread Lists:" , "InUse" , "Free" , "Provision" ); |
2176 | out->print_cr("================== ========== ========== ==========" ); |
2177 | |
2178 | for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) { |
2179 | out->print_cr(INTPTR_FORMAT " %10d %10d %10d" , p2i(jt), |
2180 | jt->omInUseCount, jt->omFreeCount, jt->omFreeProvision); |
2181 | popCount += jt->omInUseCount + jt->omFreeCount; |
2182 | } |
2183 | return popCount; |
2184 | } |
2185 | |
2186 | #ifndef PRODUCT |
2187 | |
2188 | // Check if monitor belongs to the monitor cache |
2189 | // The list is grow-only so it's *relatively* safe to traverse |
2190 | // the list of extant blocks without taking a lock. |
2191 | |
2192 | int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) { |
2193 | PaddedEnd<ObjectMonitor> * block = OrderAccess::load_acquire(&gBlockList); |
2194 | while (block != NULL) { |
2195 | assert(block->object() == CHAINMARKER, "must be a block header" ); |
2196 | if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) { |
2197 | address mon = (address)monitor; |
2198 | address blk = (address)block; |
2199 | size_t diff = mon - blk; |
2200 | assert((diff % sizeof(PaddedEnd<ObjectMonitor>)) == 0, "must be aligned" ); |
2201 | return 1; |
2202 | } |
2203 | block = (PaddedEnd<ObjectMonitor> *)block->FreeNext; |
2204 | } |
2205 | return 0; |
2206 | } |
2207 | |
2208 | #endif |
2209 | |