| 1 | /* |
| 2 | * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved. |
| 3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
| 4 | * |
| 5 | * This code is free software; you can redistribute it and/or modify it |
| 6 | * under the terms of the GNU General Public License version 2 only, as |
| 7 | * published by the Free Software Foundation. |
| 8 | * |
| 9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 12 | * version 2 for more details (a copy is included in the LICENSE file that |
| 13 | * accompanied this code). |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License version |
| 16 | * 2 along with this work; if not, write to the Free Software Foundation, |
| 17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
| 18 | * |
| 19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
| 20 | * or visit www.oracle.com if you need additional information or have any |
| 21 | * questions. |
| 22 | * |
| 23 | */ |
| 24 | |
| 25 | #include "precompiled.hpp" |
| 26 | #include "classfile/vmSymbols.hpp" |
| 27 | #include "logging/log.hpp" |
| 28 | #include "logging/logStream.hpp" |
| 29 | #include "jfr/jfrEvents.hpp" |
| 30 | #include "memory/allocation.inline.hpp" |
| 31 | #include "memory/metaspaceShared.hpp" |
| 32 | #include "memory/padded.hpp" |
| 33 | #include "memory/resourceArea.hpp" |
| 34 | #include "memory/universe.hpp" |
| 35 | #include "oops/markOop.hpp" |
| 36 | #include "oops/oop.inline.hpp" |
| 37 | #include "runtime/atomic.hpp" |
| 38 | #include "runtime/biasedLocking.hpp" |
| 39 | #include "runtime/handles.inline.hpp" |
| 40 | #include "runtime/interfaceSupport.inline.hpp" |
| 41 | #include "runtime/mutexLocker.hpp" |
| 42 | #include "runtime/objectMonitor.hpp" |
| 43 | #include "runtime/objectMonitor.inline.hpp" |
| 44 | #include "runtime/osThread.hpp" |
| 45 | #include "runtime/safepointVerifiers.hpp" |
| 46 | #include "runtime/sharedRuntime.hpp" |
| 47 | #include "runtime/stubRoutines.hpp" |
| 48 | #include "runtime/synchronizer.hpp" |
| 49 | #include "runtime/thread.inline.hpp" |
| 50 | #include "runtime/timer.hpp" |
| 51 | #include "runtime/vframe.hpp" |
| 52 | #include "runtime/vmThread.hpp" |
| 53 | #include "utilities/align.hpp" |
| 54 | #include "utilities/dtrace.hpp" |
| 55 | #include "utilities/events.hpp" |
| 56 | #include "utilities/preserveException.hpp" |
| 57 | |
| 58 | // The "core" versions of monitor enter and exit reside in this file. |
| 59 | // The interpreter and compilers contain specialized transliterated |
| 60 | // variants of the enter-exit fast-path operations. See i486.ad fast_lock(), |
| 61 | // for instance. If you make changes here, make sure to modify the |
| 62 | // interpreter, and both C1 and C2 fast-path inline locking code emission. |
| 63 | // |
| 64 | // ----------------------------------------------------------------------------- |
| 65 | |
| 66 | #ifdef DTRACE_ENABLED |
| 67 | |
| 68 | // Only bother with this argument setup if dtrace is available |
| 69 | // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly. |
| 70 | |
| 71 | #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \ |
| 72 | char* bytes = NULL; \ |
| 73 | int len = 0; \ |
| 74 | jlong jtid = SharedRuntime::get_java_tid(thread); \ |
| 75 | Symbol* klassname = ((oop)(obj))->klass()->name(); \ |
| 76 | if (klassname != NULL) { \ |
| 77 | bytes = (char*)klassname->bytes(); \ |
| 78 | len = klassname->utf8_length(); \ |
| 79 | } |
| 80 | |
| 81 | #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \ |
| 82 | { \ |
| 83 | if (DTraceMonitorProbes) { \ |
| 84 | DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ |
| 85 | HOTSPOT_MONITOR_WAIT(jtid, \ |
| 86 | (uintptr_t)(monitor), bytes, len, (millis)); \ |
| 87 | } \ |
| 88 | } |
| 89 | |
| 90 | #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY |
| 91 | #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL |
| 92 | #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED |
| 93 | |
| 94 | #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \ |
| 95 | { \ |
| 96 | if (DTraceMonitorProbes) { \ |
| 97 | DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ |
| 98 | HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */ \ |
| 99 | (uintptr_t)(monitor), bytes, len); \ |
| 100 | } \ |
| 101 | } |
| 102 | |
| 103 | #else // ndef DTRACE_ENABLED |
| 104 | |
| 105 | #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;} |
| 106 | #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;} |
| 107 | |
| 108 | #endif // ndef DTRACE_ENABLED |
| 109 | |
| 110 | // This exists only as a workaround of dtrace bug 6254741 |
| 111 | int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) { |
| 112 | DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr); |
| 113 | return 0; |
| 114 | } |
| 115 | |
| 116 | #define NINFLATIONLOCKS 256 |
| 117 | static volatile intptr_t gInflationLocks[NINFLATIONLOCKS]; |
| 118 | |
| 119 | // global list of blocks of monitors |
| 120 | PaddedEnd<ObjectMonitor> * volatile ObjectSynchronizer::gBlockList = NULL; |
| 121 | // global monitor free list |
| 122 | ObjectMonitor * volatile ObjectSynchronizer::gFreeList = NULL; |
| 123 | // global monitor in-use list, for moribund threads, |
| 124 | // monitors they inflated need to be scanned for deflation |
| 125 | ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList = NULL; |
| 126 | // count of entries in gOmInUseList |
| 127 | int ObjectSynchronizer::gOmInUseCount = 0; |
| 128 | |
| 129 | static volatile intptr_t gListLock = 0; // protects global monitor lists |
| 130 | static volatile int gMonitorFreeCount = 0; // # on gFreeList |
| 131 | static volatile int gMonitorPopulation = 0; // # Extant -- in circulation |
| 132 | |
| 133 | #define CHAINMARKER (cast_to_oop<intptr_t>(-1)) |
| 134 | |
| 135 | |
| 136 | // =====================> Quick functions |
| 137 | |
| 138 | // The quick_* forms are special fast-path variants used to improve |
| 139 | // performance. In the simplest case, a "quick_*" implementation could |
| 140 | // simply return false, in which case the caller will perform the necessary |
| 141 | // state transitions and call the slow-path form. |
| 142 | // The fast-path is designed to handle frequently arising cases in an efficient |
| 143 | // manner and is just a degenerate "optimistic" variant of the slow-path. |
| 144 | // returns true -- to indicate the call was satisfied. |
| 145 | // returns false -- to indicate the call needs the services of the slow-path. |
| 146 | // A no-loitering ordinance is in effect for code in the quick_* family |
| 147 | // operators: safepoints or indefinite blocking (blocking that might span a |
| 148 | // safepoint) are forbidden. Generally the thread_state() is _in_Java upon |
| 149 | // entry. |
| 150 | // |
| 151 | // Consider: An interesting optimization is to have the JIT recognize the |
| 152 | // following common idiom: |
| 153 | // synchronized (someobj) { .... ; notify(); } |
| 154 | // That is, we find a notify() or notifyAll() call that immediately precedes |
| 155 | // the monitorexit operation. In that case the JIT could fuse the operations |
| 156 | // into a single notifyAndExit() runtime primitive. |
| 157 | |
| 158 | bool ObjectSynchronizer::quick_notify(oopDesc * obj, Thread * self, bool all) { |
| 159 | assert(!SafepointSynchronize::is_at_safepoint(), "invariant" ); |
| 160 | assert(self->is_Java_thread(), "invariant" ); |
| 161 | assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant" ); |
| 162 | NoSafepointVerifier nsv; |
| 163 | if (obj == NULL) return false; // slow-path for invalid obj |
| 164 | const markOop mark = obj->mark(); |
| 165 | |
| 166 | if (mark->has_locker() && self->is_lock_owned((address)mark->locker())) { |
| 167 | // Degenerate notify |
| 168 | // stack-locked by caller so by definition the implied waitset is empty. |
| 169 | return true; |
| 170 | } |
| 171 | |
| 172 | if (mark->has_monitor()) { |
| 173 | ObjectMonitor * const mon = mark->monitor(); |
| 174 | assert(oopDesc::equals((oop) mon->object(), obj), "invariant" ); |
| 175 | if (mon->owner() != self) return false; // slow-path for IMS exception |
| 176 | |
| 177 | if (mon->first_waiter() != NULL) { |
| 178 | // We have one or more waiters. Since this is an inflated monitor |
| 179 | // that we own, we can transfer one or more threads from the waitset |
| 180 | // to the entrylist here and now, avoiding the slow-path. |
| 181 | if (all) { |
| 182 | DTRACE_MONITOR_PROBE(notifyAll, mon, obj, self); |
| 183 | } else { |
| 184 | DTRACE_MONITOR_PROBE(notify, mon, obj, self); |
| 185 | } |
| 186 | int tally = 0; |
| 187 | do { |
| 188 | mon->INotify(self); |
| 189 | ++tally; |
| 190 | } while (mon->first_waiter() != NULL && all); |
| 191 | OM_PERFDATA_OP(Notifications, inc(tally)); |
| 192 | } |
| 193 | return true; |
| 194 | } |
| 195 | |
| 196 | // biased locking and any other IMS exception states take the slow-path |
| 197 | return false; |
| 198 | } |
| 199 | |
| 200 | |
| 201 | // The LockNode emitted directly at the synchronization site would have |
| 202 | // been too big if it were to have included support for the cases of inflated |
| 203 | // recursive enter and exit, so they go here instead. |
| 204 | // Note that we can't safely call AsyncPrintJavaStack() from within |
| 205 | // quick_enter() as our thread state remains _in_Java. |
| 206 | |
| 207 | bool ObjectSynchronizer::quick_enter(oop obj, Thread * Self, |
| 208 | BasicLock * lock) { |
| 209 | assert(!SafepointSynchronize::is_at_safepoint(), "invariant" ); |
| 210 | assert(Self->is_Java_thread(), "invariant" ); |
| 211 | assert(((JavaThread *) Self)->thread_state() == _thread_in_Java, "invariant" ); |
| 212 | NoSafepointVerifier nsv; |
| 213 | if (obj == NULL) return false; // Need to throw NPE |
| 214 | const markOop mark = obj->mark(); |
| 215 | |
| 216 | if (mark->has_monitor()) { |
| 217 | ObjectMonitor * const m = mark->monitor(); |
| 218 | assert(oopDesc::equals((oop) m->object(), obj), "invariant" ); |
| 219 | Thread * const owner = (Thread *) m->_owner; |
| 220 | |
| 221 | // Lock contention and Transactional Lock Elision (TLE) diagnostics |
| 222 | // and observability |
| 223 | // Case: light contention possibly amenable to TLE |
| 224 | // Case: TLE inimical operations such as nested/recursive synchronization |
| 225 | |
| 226 | if (owner == Self) { |
| 227 | m->_recursions++; |
| 228 | return true; |
| 229 | } |
| 230 | |
| 231 | // This Java Monitor is inflated so obj's header will never be |
| 232 | // displaced to this thread's BasicLock. Make the displaced header |
| 233 | // non-NULL so this BasicLock is not seen as recursive nor as |
| 234 | // being locked. We do this unconditionally so that this thread's |
| 235 | // BasicLock cannot be mis-interpreted by any stack walkers. For |
| 236 | // performance reasons, stack walkers generally first check for |
| 237 | // Biased Locking in the object's header, the second check is for |
| 238 | // stack-locking in the object's header, the third check is for |
| 239 | // recursive stack-locking in the displaced header in the BasicLock, |
| 240 | // and last are the inflated Java Monitor (ObjectMonitor) checks. |
| 241 | lock->set_displaced_header(markOopDesc::unused_mark()); |
| 242 | |
| 243 | if (owner == NULL && Atomic::replace_if_null(Self, &(m->_owner))) { |
| 244 | assert(m->_recursions == 0, "invariant" ); |
| 245 | return true; |
| 246 | } |
| 247 | } |
| 248 | |
| 249 | // Note that we could inflate in quick_enter. |
| 250 | // This is likely a useful optimization |
| 251 | // Critically, in quick_enter() we must not: |
| 252 | // -- perform bias revocation, or |
| 253 | // -- block indefinitely, or |
| 254 | // -- reach a safepoint |
| 255 | |
| 256 | return false; // revert to slow-path |
| 257 | } |
| 258 | |
| 259 | // ----------------------------------------------------------------------------- |
| 260 | // Fast Monitor Enter/Exit |
| 261 | // This the fast monitor enter. The interpreter and compiler use |
| 262 | // some assembly copies of this code. Make sure update those code |
| 263 | // if the following function is changed. The implementation is |
| 264 | // extremely sensitive to race condition. Be careful. |
| 265 | |
| 266 | void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock, |
| 267 | bool attempt_rebias, TRAPS) { |
| 268 | if (UseBiasedLocking) { |
| 269 | if (!SafepointSynchronize::is_at_safepoint()) { |
| 270 | BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD); |
| 271 | if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) { |
| 272 | return; |
| 273 | } |
| 274 | } else { |
| 275 | assert(!attempt_rebias, "can not rebias toward VM thread" ); |
| 276 | BiasedLocking::revoke_at_safepoint(obj); |
| 277 | } |
| 278 | assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now" ); |
| 279 | } |
| 280 | |
| 281 | slow_enter(obj, lock, THREAD); |
| 282 | } |
| 283 | |
| 284 | void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) { |
| 285 | markOop mark = object->mark(); |
| 286 | // We cannot check for Biased Locking if we are racing an inflation. |
| 287 | assert(mark == markOopDesc::INFLATING() || |
| 288 | !mark->has_bias_pattern(), "should not see bias pattern here" ); |
| 289 | |
| 290 | markOop dhw = lock->displaced_header(); |
| 291 | if (dhw == NULL) { |
| 292 | // If the displaced header is NULL, then this exit matches up with |
| 293 | // a recursive enter. No real work to do here except for diagnostics. |
| 294 | #ifndef PRODUCT |
| 295 | if (mark != markOopDesc::INFLATING()) { |
| 296 | // Only do diagnostics if we are not racing an inflation. Simply |
| 297 | // exiting a recursive enter of a Java Monitor that is being |
| 298 | // inflated is safe; see the has_monitor() comment below. |
| 299 | assert(!mark->is_neutral(), "invariant" ); |
| 300 | assert(!mark->has_locker() || |
| 301 | THREAD->is_lock_owned((address)mark->locker()), "invariant" ); |
| 302 | if (mark->has_monitor()) { |
| 303 | // The BasicLock's displaced_header is marked as a recursive |
| 304 | // enter and we have an inflated Java Monitor (ObjectMonitor). |
| 305 | // This is a special case where the Java Monitor was inflated |
| 306 | // after this thread entered the stack-lock recursively. When a |
| 307 | // Java Monitor is inflated, we cannot safely walk the Java |
| 308 | // Monitor owner's stack and update the BasicLocks because a |
| 309 | // Java Monitor can be asynchronously inflated by a thread that |
| 310 | // does not own the Java Monitor. |
| 311 | ObjectMonitor * m = mark->monitor(); |
| 312 | assert(((oop)(m->object()))->mark() == mark, "invariant" ); |
| 313 | assert(m->is_entered(THREAD), "invariant" ); |
| 314 | } |
| 315 | } |
| 316 | #endif |
| 317 | return; |
| 318 | } |
| 319 | |
| 320 | if (mark == (markOop) lock) { |
| 321 | // If the object is stack-locked by the current thread, try to |
| 322 | // swing the displaced header from the BasicLock back to the mark. |
| 323 | assert(dhw->is_neutral(), "invariant" ); |
| 324 | if (object->cas_set_mark(dhw, mark) == mark) { |
| 325 | return; |
| 326 | } |
| 327 | } |
| 328 | |
| 329 | // We have to take the slow-path of possible inflation and then exit. |
| 330 | inflate(THREAD, object, inflate_cause_vm_internal)->exit(true, THREAD); |
| 331 | } |
| 332 | |
| 333 | // ----------------------------------------------------------------------------- |
| 334 | // Interpreter/Compiler Slow Case |
| 335 | // This routine is used to handle interpreter/compiler slow case |
| 336 | // We don't need to use fast path here, because it must have been |
| 337 | // failed in the interpreter/compiler code. |
| 338 | void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) { |
| 339 | markOop mark = obj->mark(); |
| 340 | assert(!mark->has_bias_pattern(), "should not see bias pattern here" ); |
| 341 | |
| 342 | if (mark->is_neutral()) { |
| 343 | // Anticipate successful CAS -- the ST of the displaced mark must |
| 344 | // be visible <= the ST performed by the CAS. |
| 345 | lock->set_displaced_header(mark); |
| 346 | if (mark == obj()->cas_set_mark((markOop) lock, mark)) { |
| 347 | return; |
| 348 | } |
| 349 | // Fall through to inflate() ... |
| 350 | } else if (mark->has_locker() && |
| 351 | THREAD->is_lock_owned((address)mark->locker())) { |
| 352 | assert(lock != mark->locker(), "must not re-lock the same lock" ); |
| 353 | assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock" ); |
| 354 | lock->set_displaced_header(NULL); |
| 355 | return; |
| 356 | } |
| 357 | |
| 358 | // The object header will never be displaced to this lock, |
| 359 | // so it does not matter what the value is, except that it |
| 360 | // must be non-zero to avoid looking like a re-entrant lock, |
| 361 | // and must not look locked either. |
| 362 | lock->set_displaced_header(markOopDesc::unused_mark()); |
| 363 | inflate(THREAD, obj(), inflate_cause_monitor_enter)->enter(THREAD); |
| 364 | } |
| 365 | |
| 366 | // This routine is used to handle interpreter/compiler slow case |
| 367 | // We don't need to use fast path here, because it must have |
| 368 | // failed in the interpreter/compiler code. Simply use the heavy |
| 369 | // weight monitor should be ok, unless someone find otherwise. |
| 370 | void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) { |
| 371 | fast_exit(object, lock, THREAD); |
| 372 | } |
| 373 | |
| 374 | // ----------------------------------------------------------------------------- |
| 375 | // Class Loader support to workaround deadlocks on the class loader lock objects |
| 376 | // Also used by GC |
| 377 | // complete_exit()/reenter() are used to wait on a nested lock |
| 378 | // i.e. to give up an outer lock completely and then re-enter |
| 379 | // Used when holding nested locks - lock acquisition order: lock1 then lock2 |
| 380 | // 1) complete_exit lock1 - saving recursion count |
| 381 | // 2) wait on lock2 |
| 382 | // 3) when notified on lock2, unlock lock2 |
| 383 | // 4) reenter lock1 with original recursion count |
| 384 | // 5) lock lock2 |
| 385 | // NOTE: must use heavy weight monitor to handle complete_exit/reenter() |
| 386 | intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) { |
| 387 | if (UseBiasedLocking) { |
| 388 | BiasedLocking::revoke_and_rebias(obj, false, THREAD); |
| 389 | assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now" ); |
| 390 | } |
| 391 | |
| 392 | ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_vm_internal); |
| 393 | |
| 394 | return monitor->complete_exit(THREAD); |
| 395 | } |
| 396 | |
| 397 | // NOTE: must use heavy weight monitor to handle complete_exit/reenter() |
| 398 | void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) { |
| 399 | if (UseBiasedLocking) { |
| 400 | BiasedLocking::revoke_and_rebias(obj, false, THREAD); |
| 401 | assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now" ); |
| 402 | } |
| 403 | |
| 404 | ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_vm_internal); |
| 405 | |
| 406 | monitor->reenter(recursion, THREAD); |
| 407 | } |
| 408 | // ----------------------------------------------------------------------------- |
| 409 | // JNI locks on java objects |
| 410 | // NOTE: must use heavy weight monitor to handle jni monitor enter |
| 411 | void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) { |
| 412 | // the current locking is from JNI instead of Java code |
| 413 | if (UseBiasedLocking) { |
| 414 | BiasedLocking::revoke_and_rebias(obj, false, THREAD); |
| 415 | assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now" ); |
| 416 | } |
| 417 | THREAD->set_current_pending_monitor_is_from_java(false); |
| 418 | inflate(THREAD, obj(), inflate_cause_jni_enter)->enter(THREAD); |
| 419 | THREAD->set_current_pending_monitor_is_from_java(true); |
| 420 | } |
| 421 | |
| 422 | // NOTE: must use heavy weight monitor to handle jni monitor exit |
| 423 | void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) { |
| 424 | if (UseBiasedLocking) { |
| 425 | Handle h_obj(THREAD, obj); |
| 426 | BiasedLocking::revoke_and_rebias(h_obj, false, THREAD); |
| 427 | obj = h_obj(); |
| 428 | } |
| 429 | assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now" ); |
| 430 | |
| 431 | ObjectMonitor* monitor = inflate(THREAD, obj, inflate_cause_jni_exit); |
| 432 | // If this thread has locked the object, exit the monitor. Note: can't use |
| 433 | // monitor->check(CHECK); must exit even if an exception is pending. |
| 434 | if (monitor->check(THREAD)) { |
| 435 | monitor->exit(true, THREAD); |
| 436 | } |
| 437 | } |
| 438 | |
| 439 | // ----------------------------------------------------------------------------- |
| 440 | // Internal VM locks on java objects |
| 441 | // standard constructor, allows locking failures |
| 442 | ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) { |
| 443 | _dolock = doLock; |
| 444 | _thread = thread; |
| 445 | debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);) |
| 446 | _obj = obj; |
| 447 | |
| 448 | if (_dolock) { |
| 449 | ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread); |
| 450 | } |
| 451 | } |
| 452 | |
| 453 | ObjectLocker::~ObjectLocker() { |
| 454 | if (_dolock) { |
| 455 | ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread); |
| 456 | } |
| 457 | } |
| 458 | |
| 459 | |
| 460 | // ----------------------------------------------------------------------------- |
| 461 | // Wait/Notify/NotifyAll |
| 462 | // NOTE: must use heavy weight monitor to handle wait() |
| 463 | int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) { |
| 464 | if (UseBiasedLocking) { |
| 465 | BiasedLocking::revoke_and_rebias(obj, false, THREAD); |
| 466 | assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now" ); |
| 467 | } |
| 468 | if (millis < 0) { |
| 469 | THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative" ); |
| 470 | } |
| 471 | ObjectMonitor* monitor = inflate(THREAD, obj(), inflate_cause_wait); |
| 472 | |
| 473 | DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis); |
| 474 | monitor->wait(millis, true, THREAD); |
| 475 | |
| 476 | // This dummy call is in place to get around dtrace bug 6254741. Once |
| 477 | // that's fixed we can uncomment the following line, remove the call |
| 478 | // and change this function back into a "void" func. |
| 479 | // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD); |
| 480 | return dtrace_waited_probe(monitor, obj, THREAD); |
| 481 | } |
| 482 | |
| 483 | void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) { |
| 484 | if (UseBiasedLocking) { |
| 485 | BiasedLocking::revoke_and_rebias(obj, false, THREAD); |
| 486 | assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now" ); |
| 487 | } |
| 488 | if (millis < 0) { |
| 489 | THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative" ); |
| 490 | } |
| 491 | inflate(THREAD, obj(), inflate_cause_wait)->wait(millis, false, THREAD); |
| 492 | } |
| 493 | |
| 494 | void ObjectSynchronizer::notify(Handle obj, TRAPS) { |
| 495 | if (UseBiasedLocking) { |
| 496 | BiasedLocking::revoke_and_rebias(obj, false, THREAD); |
| 497 | assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now" ); |
| 498 | } |
| 499 | |
| 500 | markOop mark = obj->mark(); |
| 501 | if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) { |
| 502 | return; |
| 503 | } |
| 504 | inflate(THREAD, obj(), inflate_cause_notify)->notify(THREAD); |
| 505 | } |
| 506 | |
| 507 | // NOTE: see comment of notify() |
| 508 | void ObjectSynchronizer::notifyall(Handle obj, TRAPS) { |
| 509 | if (UseBiasedLocking) { |
| 510 | BiasedLocking::revoke_and_rebias(obj, false, THREAD); |
| 511 | assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now" ); |
| 512 | } |
| 513 | |
| 514 | markOop mark = obj->mark(); |
| 515 | if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) { |
| 516 | return; |
| 517 | } |
| 518 | inflate(THREAD, obj(), inflate_cause_notify)->notifyAll(THREAD); |
| 519 | } |
| 520 | |
| 521 | // ----------------------------------------------------------------------------- |
| 522 | // Hash Code handling |
| 523 | // |
| 524 | // Performance concern: |
| 525 | // OrderAccess::storestore() calls release() which at one time stored 0 |
| 526 | // into the global volatile OrderAccess::dummy variable. This store was |
| 527 | // unnecessary for correctness. Many threads storing into a common location |
| 528 | // causes considerable cache migration or "sloshing" on large SMP systems. |
| 529 | // As such, I avoided using OrderAccess::storestore(). In some cases |
| 530 | // OrderAccess::fence() -- which incurs local latency on the executing |
| 531 | // processor -- is a better choice as it scales on SMP systems. |
| 532 | // |
| 533 | // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for |
| 534 | // a discussion of coherency costs. Note that all our current reference |
| 535 | // platforms provide strong ST-ST order, so the issue is moot on IA32, |
| 536 | // x64, and SPARC. |
| 537 | // |
| 538 | // As a general policy we use "volatile" to control compiler-based reordering |
| 539 | // and explicit fences (barriers) to control for architectural reordering |
| 540 | // performed by the CPU(s) or platform. |
| 541 | |
| 542 | struct SharedGlobals { |
| 543 | char _pad_prefix[DEFAULT_CACHE_LINE_SIZE]; |
| 544 | // These are highly shared mostly-read variables. |
| 545 | // To avoid false-sharing they need to be the sole occupants of a cache line. |
| 546 | volatile int stwRandom; |
| 547 | volatile int stwCycle; |
| 548 | DEFINE_PAD_MINUS_SIZE(1, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int) * 2); |
| 549 | // Hot RW variable -- Sequester to avoid false-sharing |
| 550 | volatile int hcSequence; |
| 551 | DEFINE_PAD_MINUS_SIZE(2, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int)); |
| 552 | }; |
| 553 | |
| 554 | static SharedGlobals GVars; |
| 555 | static int MonitorScavengeThreshold = 1000000; |
| 556 | static volatile int ForceMonitorScavenge = 0; // Scavenge required and pending |
| 557 | |
| 558 | static markOop ReadStableMark(oop obj) { |
| 559 | markOop mark = obj->mark(); |
| 560 | if (!mark->is_being_inflated()) { |
| 561 | return mark; // normal fast-path return |
| 562 | } |
| 563 | |
| 564 | int its = 0; |
| 565 | for (;;) { |
| 566 | markOop mark = obj->mark(); |
| 567 | if (!mark->is_being_inflated()) { |
| 568 | return mark; // normal fast-path return |
| 569 | } |
| 570 | |
| 571 | // The object is being inflated by some other thread. |
| 572 | // The caller of ReadStableMark() must wait for inflation to complete. |
| 573 | // Avoid live-lock |
| 574 | // TODO: consider calling SafepointSynchronize::do_call_back() while |
| 575 | // spinning to see if there's a safepoint pending. If so, immediately |
| 576 | // yielding or blocking would be appropriate. Avoid spinning while |
| 577 | // there is a safepoint pending. |
| 578 | // TODO: add inflation contention performance counters. |
| 579 | // TODO: restrict the aggregate number of spinners. |
| 580 | |
| 581 | ++its; |
| 582 | if (its > 10000 || !os::is_MP()) { |
| 583 | if (its & 1) { |
| 584 | os::naked_yield(); |
| 585 | } else { |
| 586 | // Note that the following code attenuates the livelock problem but is not |
| 587 | // a complete remedy. A more complete solution would require that the inflating |
| 588 | // thread hold the associated inflation lock. The following code simply restricts |
| 589 | // the number of spinners to at most one. We'll have N-2 threads blocked |
| 590 | // on the inflationlock, 1 thread holding the inflation lock and using |
| 591 | // a yield/park strategy, and 1 thread in the midst of inflation. |
| 592 | // A more refined approach would be to change the encoding of INFLATING |
| 593 | // to allow encapsulation of a native thread pointer. Threads waiting for |
| 594 | // inflation to complete would use CAS to push themselves onto a singly linked |
| 595 | // list rooted at the markword. Once enqueued, they'd loop, checking a per-thread flag |
| 596 | // and calling park(). When inflation was complete the thread that accomplished inflation |
| 597 | // would detach the list and set the markword to inflated with a single CAS and |
| 598 | // then for each thread on the list, set the flag and unpark() the thread. |
| 599 | // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease |
| 600 | // wakes at most one thread whereas we need to wake the entire list. |
| 601 | int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1); |
| 602 | int YieldThenBlock = 0; |
| 603 | assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant" ); |
| 604 | assert((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant" ); |
| 605 | Thread::muxAcquire(gInflationLocks + ix, "gInflationLock" ); |
| 606 | while (obj->mark() == markOopDesc::INFLATING()) { |
| 607 | // Beware: NakedYield() is advisory and has almost no effect on some platforms |
| 608 | // so we periodically call Self->_ParkEvent->park(1). |
| 609 | // We use a mixed spin/yield/block mechanism. |
| 610 | if ((YieldThenBlock++) >= 16) { |
| 611 | Thread::current()->_ParkEvent->park(1); |
| 612 | } else { |
| 613 | os::naked_yield(); |
| 614 | } |
| 615 | } |
| 616 | Thread::muxRelease(gInflationLocks + ix); |
| 617 | } |
| 618 | } else { |
| 619 | SpinPause(); // SMP-polite spinning |
| 620 | } |
| 621 | } |
| 622 | } |
| 623 | |
| 624 | // hashCode() generation : |
| 625 | // |
| 626 | // Possibilities: |
| 627 | // * MD5Digest of {obj,stwRandom} |
| 628 | // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function. |
| 629 | // * A DES- or AES-style SBox[] mechanism |
| 630 | // * One of the Phi-based schemes, such as: |
| 631 | // 2654435761 = 2^32 * Phi (golden ratio) |
| 632 | // HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ; |
| 633 | // * A variation of Marsaglia's shift-xor RNG scheme. |
| 634 | // * (obj ^ stwRandom) is appealing, but can result |
| 635 | // in undesirable regularity in the hashCode values of adjacent objects |
| 636 | // (objects allocated back-to-back, in particular). This could potentially |
| 637 | // result in hashtable collisions and reduced hashtable efficiency. |
| 638 | // There are simple ways to "diffuse" the middle address bits over the |
| 639 | // generated hashCode values: |
| 640 | |
| 641 | static inline intptr_t get_next_hash(Thread * Self, oop obj) { |
| 642 | intptr_t value = 0; |
| 643 | if (hashCode == 0) { |
| 644 | // This form uses global Park-Miller RNG. |
| 645 | // On MP system we'll have lots of RW access to a global, so the |
| 646 | // mechanism induces lots of coherency traffic. |
| 647 | value = os::random(); |
| 648 | } else if (hashCode == 1) { |
| 649 | // This variation has the property of being stable (idempotent) |
| 650 | // between STW operations. This can be useful in some of the 1-0 |
| 651 | // synchronization schemes. |
| 652 | intptr_t addrBits = cast_from_oop<intptr_t>(obj) >> 3; |
| 653 | value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom; |
| 654 | } else if (hashCode == 2) { |
| 655 | value = 1; // for sensitivity testing |
| 656 | } else if (hashCode == 3) { |
| 657 | value = ++GVars.hcSequence; |
| 658 | } else if (hashCode == 4) { |
| 659 | value = cast_from_oop<intptr_t>(obj); |
| 660 | } else { |
| 661 | // Marsaglia's xor-shift scheme with thread-specific state |
| 662 | // This is probably the best overall implementation -- we'll |
| 663 | // likely make this the default in future releases. |
| 664 | unsigned t = Self->_hashStateX; |
| 665 | t ^= (t << 11); |
| 666 | Self->_hashStateX = Self->_hashStateY; |
| 667 | Self->_hashStateY = Self->_hashStateZ; |
| 668 | Self->_hashStateZ = Self->_hashStateW; |
| 669 | unsigned v = Self->_hashStateW; |
| 670 | v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)); |
| 671 | Self->_hashStateW = v; |
| 672 | value = v; |
| 673 | } |
| 674 | |
| 675 | value &= markOopDesc::hash_mask; |
| 676 | if (value == 0) value = 0xBAD; |
| 677 | assert(value != markOopDesc::no_hash, "invariant" ); |
| 678 | return value; |
| 679 | } |
| 680 | |
| 681 | intptr_t ObjectSynchronizer::FastHashCode(Thread * Self, oop obj) { |
| 682 | if (UseBiasedLocking) { |
| 683 | // NOTE: many places throughout the JVM do not expect a safepoint |
| 684 | // to be taken here, in particular most operations on perm gen |
| 685 | // objects. However, we only ever bias Java instances and all of |
| 686 | // the call sites of identity_hash that might revoke biases have |
| 687 | // been checked to make sure they can handle a safepoint. The |
| 688 | // added check of the bias pattern is to avoid useless calls to |
| 689 | // thread-local storage. |
| 690 | if (obj->mark()->has_bias_pattern()) { |
| 691 | // Handle for oop obj in case of STW safepoint |
| 692 | Handle hobj(Self, obj); |
| 693 | // Relaxing assertion for bug 6320749. |
| 694 | assert(Universe::verify_in_progress() || |
| 695 | !SafepointSynchronize::is_at_safepoint(), |
| 696 | "biases should not be seen by VM thread here" ); |
| 697 | BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current()); |
| 698 | obj = hobj(); |
| 699 | assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now" ); |
| 700 | } |
| 701 | } |
| 702 | |
| 703 | // hashCode() is a heap mutator ... |
| 704 | // Relaxing assertion for bug 6320749. |
| 705 | assert(Universe::verify_in_progress() || DumpSharedSpaces || |
| 706 | !SafepointSynchronize::is_at_safepoint(), "invariant" ); |
| 707 | assert(Universe::verify_in_progress() || DumpSharedSpaces || |
| 708 | Self->is_Java_thread() , "invariant" ); |
| 709 | assert(Universe::verify_in_progress() || DumpSharedSpaces || |
| 710 | ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant" ); |
| 711 | |
| 712 | ObjectMonitor* monitor = NULL; |
| 713 | markOop temp, test; |
| 714 | intptr_t hash; |
| 715 | markOop mark = ReadStableMark(obj); |
| 716 | |
| 717 | // object should remain ineligible for biased locking |
| 718 | assert(!mark->has_bias_pattern(), "invariant" ); |
| 719 | |
| 720 | if (mark->is_neutral()) { |
| 721 | hash = mark->hash(); // this is a normal header |
| 722 | if (hash != 0) { // if it has hash, just return it |
| 723 | return hash; |
| 724 | } |
| 725 | hash = get_next_hash(Self, obj); // allocate a new hash code |
| 726 | temp = mark->copy_set_hash(hash); // merge the hash code into header |
| 727 | // use (machine word version) atomic operation to install the hash |
| 728 | test = obj->cas_set_mark(temp, mark); |
| 729 | if (test == mark) { |
| 730 | return hash; |
| 731 | } |
| 732 | // If atomic operation failed, we must inflate the header |
| 733 | // into heavy weight monitor. We could add more code here |
| 734 | // for fast path, but it does not worth the complexity. |
| 735 | } else if (mark->has_monitor()) { |
| 736 | monitor = mark->monitor(); |
| 737 | temp = monitor->header(); |
| 738 | assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp)); |
| 739 | hash = temp->hash(); |
| 740 | if (hash != 0) { |
| 741 | return hash; |
| 742 | } |
| 743 | // Skip to the following code to reduce code size |
| 744 | } else if (Self->is_lock_owned((address)mark->locker())) { |
| 745 | temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned |
| 746 | assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp)); |
| 747 | hash = temp->hash(); // by current thread, check if the displaced |
| 748 | if (hash != 0) { // header contains hash code |
| 749 | return hash; |
| 750 | } |
| 751 | // WARNING: |
| 752 | // The displaced header in the BasicLock on a thread's stack |
| 753 | // is strictly immutable. It CANNOT be changed in ANY cases. |
| 754 | // So we have to inflate the stack lock into an ObjectMonitor |
| 755 | // even if the current thread owns the lock. The BasicLock on |
| 756 | // a thread's stack can be asynchronously read by other threads |
| 757 | // during an inflate() call so any change to that stack memory |
| 758 | // may not propagate to other threads correctly. |
| 759 | } |
| 760 | |
| 761 | // Inflate the monitor to set hash code |
| 762 | monitor = inflate(Self, obj, inflate_cause_hash_code); |
| 763 | // Load displaced header and check it has hash code |
| 764 | mark = monitor->header(); |
| 765 | assert(mark->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(mark)); |
| 766 | hash = mark->hash(); |
| 767 | if (hash == 0) { |
| 768 | hash = get_next_hash(Self, obj); |
| 769 | temp = mark->copy_set_hash(hash); // merge hash code into header |
| 770 | assert(temp->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(temp)); |
| 771 | test = Atomic::cmpxchg(temp, monitor->header_addr(), mark); |
| 772 | if (test != mark) { |
| 773 | // The only update to the ObjectMonitor's header/dmw field |
| 774 | // is to merge in the hash code. If someone adds a new usage |
| 775 | // of the header/dmw field, please update this code. |
| 776 | hash = test->hash(); |
| 777 | assert(test->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(test)); |
| 778 | assert(hash != 0, "Trivial unexpected object/monitor header usage." ); |
| 779 | } |
| 780 | } |
| 781 | // We finally get the hash |
| 782 | return hash; |
| 783 | } |
| 784 | |
| 785 | // Deprecated -- use FastHashCode() instead. |
| 786 | |
| 787 | intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) { |
| 788 | return FastHashCode(Thread::current(), obj()); |
| 789 | } |
| 790 | |
| 791 | |
| 792 | bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread, |
| 793 | Handle h_obj) { |
| 794 | if (UseBiasedLocking) { |
| 795 | BiasedLocking::revoke_and_rebias(h_obj, false, thread); |
| 796 | assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now" ); |
| 797 | } |
| 798 | |
| 799 | assert(thread == JavaThread::current(), "Can only be called on current thread" ); |
| 800 | oop obj = h_obj(); |
| 801 | |
| 802 | markOop mark = ReadStableMark(obj); |
| 803 | |
| 804 | // Uncontended case, header points to stack |
| 805 | if (mark->has_locker()) { |
| 806 | return thread->is_lock_owned((address)mark->locker()); |
| 807 | } |
| 808 | // Contended case, header points to ObjectMonitor (tagged pointer) |
| 809 | if (mark->has_monitor()) { |
| 810 | ObjectMonitor* monitor = mark->monitor(); |
| 811 | return monitor->is_entered(thread) != 0; |
| 812 | } |
| 813 | // Unlocked case, header in place |
| 814 | assert(mark->is_neutral(), "sanity check" ); |
| 815 | return false; |
| 816 | } |
| 817 | |
| 818 | // Be aware of this method could revoke bias of the lock object. |
| 819 | // This method queries the ownership of the lock handle specified by 'h_obj'. |
| 820 | // If the current thread owns the lock, it returns owner_self. If no |
| 821 | // thread owns the lock, it returns owner_none. Otherwise, it will return |
| 822 | // owner_other. |
| 823 | ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership |
| 824 | (JavaThread *self, Handle h_obj) { |
| 825 | // The caller must beware this method can revoke bias, and |
| 826 | // revocation can result in a safepoint. |
| 827 | assert(!SafepointSynchronize::is_at_safepoint(), "invariant" ); |
| 828 | assert(self->thread_state() != _thread_blocked, "invariant" ); |
| 829 | |
| 830 | // Possible mark states: neutral, biased, stack-locked, inflated |
| 831 | |
| 832 | if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) { |
| 833 | // CASE: biased |
| 834 | BiasedLocking::revoke_and_rebias(h_obj, false, self); |
| 835 | assert(!h_obj->mark()->has_bias_pattern(), |
| 836 | "biases should be revoked by now" ); |
| 837 | } |
| 838 | |
| 839 | assert(self == JavaThread::current(), "Can only be called on current thread" ); |
| 840 | oop obj = h_obj(); |
| 841 | markOop mark = ReadStableMark(obj); |
| 842 | |
| 843 | // CASE: stack-locked. Mark points to a BasicLock on the owner's stack. |
| 844 | if (mark->has_locker()) { |
| 845 | return self->is_lock_owned((address)mark->locker()) ? |
| 846 | owner_self : owner_other; |
| 847 | } |
| 848 | |
| 849 | // CASE: inflated. Mark (tagged pointer) points to an ObjectMonitor. |
| 850 | // The Object:ObjectMonitor relationship is stable as long as we're |
| 851 | // not at a safepoint. |
| 852 | if (mark->has_monitor()) { |
| 853 | void * owner = mark->monitor()->_owner; |
| 854 | if (owner == NULL) return owner_none; |
| 855 | return (owner == self || |
| 856 | self->is_lock_owned((address)owner)) ? owner_self : owner_other; |
| 857 | } |
| 858 | |
| 859 | // CASE: neutral |
| 860 | assert(mark->is_neutral(), "sanity check" ); |
| 861 | return owner_none; // it's unlocked |
| 862 | } |
| 863 | |
| 864 | // FIXME: jvmti should call this |
| 865 | JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) { |
| 866 | if (UseBiasedLocking) { |
| 867 | if (SafepointSynchronize::is_at_safepoint()) { |
| 868 | BiasedLocking::revoke_at_safepoint(h_obj); |
| 869 | } else { |
| 870 | BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current()); |
| 871 | } |
| 872 | assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now" ); |
| 873 | } |
| 874 | |
| 875 | oop obj = h_obj(); |
| 876 | address owner = NULL; |
| 877 | |
| 878 | markOop mark = ReadStableMark(obj); |
| 879 | |
| 880 | // Uncontended case, header points to stack |
| 881 | if (mark->has_locker()) { |
| 882 | owner = (address) mark->locker(); |
| 883 | } |
| 884 | |
| 885 | // Contended case, header points to ObjectMonitor (tagged pointer) |
| 886 | else if (mark->has_monitor()) { |
| 887 | ObjectMonitor* monitor = mark->monitor(); |
| 888 | assert(monitor != NULL, "monitor should be non-null" ); |
| 889 | owner = (address) monitor->owner(); |
| 890 | } |
| 891 | |
| 892 | if (owner != NULL) { |
| 893 | // owning_thread_from_monitor_owner() may also return NULL here |
| 894 | return Threads::owning_thread_from_monitor_owner(t_list, owner); |
| 895 | } |
| 896 | |
| 897 | // Unlocked case, header in place |
| 898 | // Cannot have assertion since this object may have been |
| 899 | // locked by another thread when reaching here. |
| 900 | // assert(mark->is_neutral(), "sanity check"); |
| 901 | |
| 902 | return NULL; |
| 903 | } |
| 904 | |
| 905 | // Visitors ... |
| 906 | |
| 907 | void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) { |
| 908 | PaddedEnd<ObjectMonitor> * block = OrderAccess::load_acquire(&gBlockList); |
| 909 | while (block != NULL) { |
| 910 | assert(block->object() == CHAINMARKER, "must be a block header" ); |
| 911 | for (int i = _BLOCKSIZE - 1; i > 0; i--) { |
| 912 | ObjectMonitor* mid = (ObjectMonitor *)(block + i); |
| 913 | oop object = (oop)mid->object(); |
| 914 | if (object != NULL) { |
| 915 | closure->do_monitor(mid); |
| 916 | } |
| 917 | } |
| 918 | block = (PaddedEnd<ObjectMonitor> *)block->FreeNext; |
| 919 | } |
| 920 | } |
| 921 | |
| 922 | // Get the next block in the block list. |
| 923 | static inline PaddedEnd<ObjectMonitor>* next(PaddedEnd<ObjectMonitor>* block) { |
| 924 | assert(block->object() == CHAINMARKER, "must be a block header" ); |
| 925 | block = (PaddedEnd<ObjectMonitor>*) block->FreeNext; |
| 926 | assert(block == NULL || block->object() == CHAINMARKER, "must be a block header" ); |
| 927 | return block; |
| 928 | } |
| 929 | |
| 930 | static bool monitors_used_above_threshold() { |
| 931 | if (gMonitorPopulation == 0) { |
| 932 | return false; |
| 933 | } |
| 934 | int monitors_used = gMonitorPopulation - gMonitorFreeCount; |
| 935 | int monitor_usage = (monitors_used * 100LL) / gMonitorPopulation; |
| 936 | return monitor_usage > MonitorUsedDeflationThreshold; |
| 937 | } |
| 938 | |
| 939 | bool ObjectSynchronizer::is_cleanup_needed() { |
| 940 | if (MonitorUsedDeflationThreshold > 0) { |
| 941 | return monitors_used_above_threshold(); |
| 942 | } |
| 943 | return false; |
| 944 | } |
| 945 | |
| 946 | void ObjectSynchronizer::oops_do(OopClosure* f) { |
| 947 | // We only scan the global used list here (for moribund threads), and |
| 948 | // the thread-local monitors in Thread::oops_do(). |
| 949 | global_used_oops_do(f); |
| 950 | } |
| 951 | |
| 952 | void ObjectSynchronizer::global_used_oops_do(OopClosure* f) { |
| 953 | assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint" ); |
| 954 | list_oops_do(gOmInUseList, f); |
| 955 | } |
| 956 | |
| 957 | void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) { |
| 958 | assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint" ); |
| 959 | list_oops_do(thread->omInUseList, f); |
| 960 | } |
| 961 | |
| 962 | void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, OopClosure* f) { |
| 963 | assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint" ); |
| 964 | ObjectMonitor* mid; |
| 965 | for (mid = list; mid != NULL; mid = mid->FreeNext) { |
| 966 | if (mid->object() != NULL) { |
| 967 | f->do_oop((oop*)mid->object_addr()); |
| 968 | } |
| 969 | } |
| 970 | } |
| 971 | |
| 972 | |
| 973 | // ----------------------------------------------------------------------------- |
| 974 | // ObjectMonitor Lifecycle |
| 975 | // ----------------------- |
| 976 | // Inflation unlinks monitors from the global gFreeList and |
| 977 | // associates them with objects. Deflation -- which occurs at |
| 978 | // STW-time -- disassociates idle monitors from objects. Such |
| 979 | // scavenged monitors are returned to the gFreeList. |
| 980 | // |
| 981 | // The global list is protected by gListLock. All the critical sections |
| 982 | // are short and operate in constant-time. |
| 983 | // |
| 984 | // ObjectMonitors reside in type-stable memory (TSM) and are immortal. |
| 985 | // |
| 986 | // Lifecycle: |
| 987 | // -- unassigned and on the global free list |
| 988 | // -- unassigned and on a thread's private omFreeList |
| 989 | // -- assigned to an object. The object is inflated and the mark refers |
| 990 | // to the objectmonitor. |
| 991 | |
| 992 | |
| 993 | // Constraining monitor pool growth via MonitorBound ... |
| 994 | // |
| 995 | // The monitor pool is grow-only. We scavenge at STW safepoint-time, but the |
| 996 | // the rate of scavenging is driven primarily by GC. As such, we can find |
| 997 | // an inordinate number of monitors in circulation. |
| 998 | // To avoid that scenario we can artificially induce a STW safepoint |
| 999 | // if the pool appears to be growing past some reasonable bound. |
| 1000 | // Generally we favor time in space-time tradeoffs, but as there's no |
| 1001 | // natural back-pressure on the # of extant monitors we need to impose some |
| 1002 | // type of limit. Beware that if MonitorBound is set to too low a value |
| 1003 | // we could just loop. In addition, if MonitorBound is set to a low value |
| 1004 | // we'll incur more safepoints, which are harmful to performance. |
| 1005 | // See also: GuaranteedSafepointInterval |
| 1006 | // |
| 1007 | // The current implementation uses asynchronous VM operations. |
| 1008 | |
| 1009 | static void InduceScavenge(Thread * Self, const char * Whence) { |
| 1010 | // Induce STW safepoint to trim monitors |
| 1011 | // Ultimately, this results in a call to deflate_idle_monitors() in the near future. |
| 1012 | // More precisely, trigger an asynchronous STW safepoint as the number |
| 1013 | // of active monitors passes the specified threshold. |
| 1014 | // TODO: assert thread state is reasonable |
| 1015 | |
| 1016 | if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) { |
| 1017 | // Induce a 'null' safepoint to scavenge monitors |
| 1018 | // Must VM_Operation instance be heap allocated as the op will be enqueue and posted |
| 1019 | // to the VMthread and have a lifespan longer than that of this activation record. |
| 1020 | // The VMThread will delete the op when completed. |
| 1021 | VMThread::execute(new VM_ScavengeMonitors()); |
| 1022 | } |
| 1023 | } |
| 1024 | |
| 1025 | ObjectMonitor* ObjectSynchronizer::omAlloc(Thread * Self) { |
| 1026 | // A large MAXPRIVATE value reduces both list lock contention |
| 1027 | // and list coherency traffic, but also tends to increase the |
| 1028 | // number of objectMonitors in circulation as well as the STW |
| 1029 | // scavenge costs. As usual, we lean toward time in space-time |
| 1030 | // tradeoffs. |
| 1031 | const int MAXPRIVATE = 1024; |
| 1032 | stringStream ss; |
| 1033 | for (;;) { |
| 1034 | ObjectMonitor * m; |
| 1035 | |
| 1036 | // 1: try to allocate from the thread's local omFreeList. |
| 1037 | // Threads will attempt to allocate first from their local list, then |
| 1038 | // from the global list, and only after those attempts fail will the thread |
| 1039 | // attempt to instantiate new monitors. Thread-local free lists take |
| 1040 | // heat off the gListLock and improve allocation latency, as well as reducing |
| 1041 | // coherency traffic on the shared global list. |
| 1042 | m = Self->omFreeList; |
| 1043 | if (m != NULL) { |
| 1044 | Self->omFreeList = m->FreeNext; |
| 1045 | Self->omFreeCount--; |
| 1046 | guarantee(m->object() == NULL, "invariant" ); |
| 1047 | m->FreeNext = Self->omInUseList; |
| 1048 | Self->omInUseList = m; |
| 1049 | Self->omInUseCount++; |
| 1050 | return m; |
| 1051 | } |
| 1052 | |
| 1053 | // 2: try to allocate from the global gFreeList |
| 1054 | // CONSIDER: use muxTry() instead of muxAcquire(). |
| 1055 | // If the muxTry() fails then drop immediately into case 3. |
| 1056 | // If we're using thread-local free lists then try |
| 1057 | // to reprovision the caller's free list. |
| 1058 | if (gFreeList != NULL) { |
| 1059 | // Reprovision the thread's omFreeList. |
| 1060 | // Use bulk transfers to reduce the allocation rate and heat |
| 1061 | // on various locks. |
| 1062 | Thread::muxAcquire(&gListLock, "omAlloc(1)" ); |
| 1063 | for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL;) { |
| 1064 | gMonitorFreeCount--; |
| 1065 | ObjectMonitor * take = gFreeList; |
| 1066 | gFreeList = take->FreeNext; |
| 1067 | guarantee(take->object() == NULL, "invariant" ); |
| 1068 | take->Recycle(); |
| 1069 | omRelease(Self, take, false); |
| 1070 | } |
| 1071 | Thread::muxRelease(&gListLock); |
| 1072 | Self->omFreeProvision += 1 + (Self->omFreeProvision/2); |
| 1073 | if (Self->omFreeProvision > MAXPRIVATE) Self->omFreeProvision = MAXPRIVATE; |
| 1074 | |
| 1075 | const int mx = MonitorBound; |
| 1076 | if (mx > 0 && (gMonitorPopulation-gMonitorFreeCount) > mx) { |
| 1077 | // We can't safely induce a STW safepoint from omAlloc() as our thread |
| 1078 | // state may not be appropriate for such activities and callers may hold |
| 1079 | // naked oops, so instead we defer the action. |
| 1080 | InduceScavenge(Self, "omAlloc" ); |
| 1081 | } |
| 1082 | continue; |
| 1083 | } |
| 1084 | |
| 1085 | // 3: allocate a block of new ObjectMonitors |
| 1086 | // Both the local and global free lists are empty -- resort to malloc(). |
| 1087 | // In the current implementation objectMonitors are TSM - immortal. |
| 1088 | // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want |
| 1089 | // each ObjectMonitor to start at the beginning of a cache line, |
| 1090 | // so we use align_up(). |
| 1091 | // A better solution would be to use C++ placement-new. |
| 1092 | // BEWARE: As it stands currently, we don't run the ctors! |
| 1093 | assert(_BLOCKSIZE > 1, "invariant" ); |
| 1094 | size_t neededsize = sizeof(PaddedEnd<ObjectMonitor>) * _BLOCKSIZE; |
| 1095 | PaddedEnd<ObjectMonitor> * temp; |
| 1096 | size_t aligned_size = neededsize + (DEFAULT_CACHE_LINE_SIZE - 1); |
| 1097 | void* real_malloc_addr = (void *)NEW_C_HEAP_ARRAY(char, aligned_size, |
| 1098 | mtInternal); |
| 1099 | temp = (PaddedEnd<ObjectMonitor> *) |
| 1100 | align_up(real_malloc_addr, DEFAULT_CACHE_LINE_SIZE); |
| 1101 | |
| 1102 | // NOTE: (almost) no way to recover if allocation failed. |
| 1103 | // We might be able to induce a STW safepoint and scavenge enough |
| 1104 | // objectMonitors to permit progress. |
| 1105 | if (temp == NULL) { |
| 1106 | vm_exit_out_of_memory(neededsize, OOM_MALLOC_ERROR, |
| 1107 | "Allocate ObjectMonitors" ); |
| 1108 | } |
| 1109 | (void)memset((void *) temp, 0, neededsize); |
| 1110 | |
| 1111 | // Format the block. |
| 1112 | // initialize the linked list, each monitor points to its next |
| 1113 | // forming the single linked free list, the very first monitor |
| 1114 | // will points to next block, which forms the block list. |
| 1115 | // The trick of using the 1st element in the block as gBlockList |
| 1116 | // linkage should be reconsidered. A better implementation would |
| 1117 | // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; } |
| 1118 | |
| 1119 | for (int i = 1; i < _BLOCKSIZE; i++) { |
| 1120 | temp[i].FreeNext = (ObjectMonitor *)&temp[i+1]; |
| 1121 | } |
| 1122 | |
| 1123 | // terminate the last monitor as the end of list |
| 1124 | temp[_BLOCKSIZE - 1].FreeNext = NULL; |
| 1125 | |
| 1126 | // Element [0] is reserved for global list linkage |
| 1127 | temp[0].set_object(CHAINMARKER); |
| 1128 | |
| 1129 | // Consider carving out this thread's current request from the |
| 1130 | // block in hand. This avoids some lock traffic and redundant |
| 1131 | // list activity. |
| 1132 | |
| 1133 | // Acquire the gListLock to manipulate gBlockList and gFreeList. |
| 1134 | // An Oyama-Taura-Yonezawa scheme might be more efficient. |
| 1135 | Thread::muxAcquire(&gListLock, "omAlloc(2)" ); |
| 1136 | gMonitorPopulation += _BLOCKSIZE-1; |
| 1137 | gMonitorFreeCount += _BLOCKSIZE-1; |
| 1138 | |
| 1139 | // Add the new block to the list of extant blocks (gBlockList). |
| 1140 | // The very first objectMonitor in a block is reserved and dedicated. |
| 1141 | // It serves as blocklist "next" linkage. |
| 1142 | temp[0].FreeNext = gBlockList; |
| 1143 | // There are lock-free uses of gBlockList so make sure that |
| 1144 | // the previous stores happen before we update gBlockList. |
| 1145 | OrderAccess::release_store(&gBlockList, temp); |
| 1146 | |
| 1147 | // Add the new string of objectMonitors to the global free list |
| 1148 | temp[_BLOCKSIZE - 1].FreeNext = gFreeList; |
| 1149 | gFreeList = temp + 1; |
| 1150 | Thread::muxRelease(&gListLock); |
| 1151 | } |
| 1152 | } |
| 1153 | |
| 1154 | // Place "m" on the caller's private per-thread omFreeList. |
| 1155 | // In practice there's no need to clamp or limit the number of |
| 1156 | // monitors on a thread's omFreeList as the only time we'll call |
| 1157 | // omRelease is to return a monitor to the free list after a CAS |
| 1158 | // attempt failed. This doesn't allow unbounded #s of monitors to |
| 1159 | // accumulate on a thread's free list. |
| 1160 | // |
| 1161 | // Key constraint: all ObjectMonitors on a thread's free list and the global |
| 1162 | // free list must have their object field set to null. This prevents the |
| 1163 | // scavenger -- deflate_monitor_list() -- from reclaiming them. |
| 1164 | |
| 1165 | void ObjectSynchronizer::omRelease(Thread * Self, ObjectMonitor * m, |
| 1166 | bool fromPerThreadAlloc) { |
| 1167 | guarantee(m->header() == NULL, "invariant" ); |
| 1168 | guarantee(m->object() == NULL, "invariant" ); |
| 1169 | stringStream ss; |
| 1170 | guarantee((m->is_busy() | m->_recursions) == 0, "freeing in-use monitor: " |
| 1171 | "%s, recursions=" INTPTR_FORMAT, m->is_busy_to_string(&ss), |
| 1172 | m->_recursions); |
| 1173 | // Remove from omInUseList |
| 1174 | if (fromPerThreadAlloc) { |
| 1175 | ObjectMonitor* cur_mid_in_use = NULL; |
| 1176 | bool = false; |
| 1177 | for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; cur_mid_in_use = mid, mid = mid->FreeNext) { |
| 1178 | if (m == mid) { |
| 1179 | // extract from per-thread in-use list |
| 1180 | if (mid == Self->omInUseList) { |
| 1181 | Self->omInUseList = mid->FreeNext; |
| 1182 | } else if (cur_mid_in_use != NULL) { |
| 1183 | cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list |
| 1184 | } |
| 1185 | extracted = true; |
| 1186 | Self->omInUseCount--; |
| 1187 | break; |
| 1188 | } |
| 1189 | } |
| 1190 | assert(extracted, "Should have extracted from in-use list" ); |
| 1191 | } |
| 1192 | |
| 1193 | // FreeNext is used for both omInUseList and omFreeList, so clear old before setting new |
| 1194 | m->FreeNext = Self->omFreeList; |
| 1195 | Self->omFreeList = m; |
| 1196 | Self->omFreeCount++; |
| 1197 | } |
| 1198 | |
| 1199 | // Return the monitors of a moribund thread's local free list to |
| 1200 | // the global free list. Typically a thread calls omFlush() when |
| 1201 | // it's dying. We could also consider having the VM thread steal |
| 1202 | // monitors from threads that have not run java code over a few |
| 1203 | // consecutive STW safepoints. Relatedly, we might decay |
| 1204 | // omFreeProvision at STW safepoints. |
| 1205 | // |
| 1206 | // Also return the monitors of a moribund thread's omInUseList to |
| 1207 | // a global gOmInUseList under the global list lock so these |
| 1208 | // will continue to be scanned. |
| 1209 | // |
| 1210 | // We currently call omFlush() from Threads::remove() _before the thread |
| 1211 | // has been excised from the thread list and is no longer a mutator. |
| 1212 | // This means that omFlush() cannot run concurrently with a safepoint and |
| 1213 | // interleave with the deflate_idle_monitors scavenge operator. In particular, |
| 1214 | // this ensures that the thread's monitors are scanned by a GC safepoint, |
| 1215 | // either via Thread::oops_do() (if safepoint happens before omFlush()) or via |
| 1216 | // ObjectSynchronizer::oops_do() (if it happens after omFlush() and the thread's |
| 1217 | // monitors have been transferred to the global in-use list). |
| 1218 | |
| 1219 | void ObjectSynchronizer::omFlush(Thread * Self) { |
| 1220 | ObjectMonitor * list = Self->omFreeList; // Null-terminated SLL |
| 1221 | ObjectMonitor * tail = NULL; |
| 1222 | int tally = 0; |
| 1223 | if (list != NULL) { |
| 1224 | ObjectMonitor * s; |
| 1225 | // The thread is going away. Set 'tail' to the last per-thread free |
| 1226 | // monitor which will be linked to gFreeList below under the gListLock. |
| 1227 | stringStream ss; |
| 1228 | for (s = list; s != NULL; s = s->FreeNext) { |
| 1229 | tally++; |
| 1230 | tail = s; |
| 1231 | guarantee(s->object() == NULL, "invariant" ); |
| 1232 | guarantee(!s->is_busy(), "must be !is_busy: %s" , s->is_busy_to_string(&ss)); |
| 1233 | } |
| 1234 | guarantee(tail != NULL, "invariant" ); |
| 1235 | assert(Self->omFreeCount == tally, "free-count off" ); |
| 1236 | Self->omFreeList = NULL; |
| 1237 | Self->omFreeCount = 0; |
| 1238 | } |
| 1239 | |
| 1240 | ObjectMonitor * inUseList = Self->omInUseList; |
| 1241 | ObjectMonitor * inUseTail = NULL; |
| 1242 | int inUseTally = 0; |
| 1243 | if (inUseList != NULL) { |
| 1244 | ObjectMonitor *cur_om; |
| 1245 | // The thread is going away, however the omInUseList inflated |
| 1246 | // monitors may still be in-use by other threads. |
| 1247 | // Link them to inUseTail, which will be linked into the global in-use list |
| 1248 | // gOmInUseList below, under the gListLock |
| 1249 | for (cur_om = inUseList; cur_om != NULL; cur_om = cur_om->FreeNext) { |
| 1250 | inUseTail = cur_om; |
| 1251 | inUseTally++; |
| 1252 | } |
| 1253 | guarantee(inUseTail != NULL, "invariant" ); |
| 1254 | assert(Self->omInUseCount == inUseTally, "in-use count off" ); |
| 1255 | Self->omInUseList = NULL; |
| 1256 | Self->omInUseCount = 0; |
| 1257 | } |
| 1258 | |
| 1259 | Thread::muxAcquire(&gListLock, "omFlush" ); |
| 1260 | if (tail != NULL) { |
| 1261 | tail->FreeNext = gFreeList; |
| 1262 | gFreeList = list; |
| 1263 | gMonitorFreeCount += tally; |
| 1264 | } |
| 1265 | |
| 1266 | if (inUseTail != NULL) { |
| 1267 | inUseTail->FreeNext = gOmInUseList; |
| 1268 | gOmInUseList = inUseList; |
| 1269 | gOmInUseCount += inUseTally; |
| 1270 | } |
| 1271 | |
| 1272 | Thread::muxRelease(&gListLock); |
| 1273 | |
| 1274 | LogStreamHandle(Debug, monitorinflation) lsh_debug; |
| 1275 | LogStreamHandle(Info, monitorinflation) lsh_info; |
| 1276 | LogStream * ls = NULL; |
| 1277 | if (log_is_enabled(Debug, monitorinflation)) { |
| 1278 | ls = &lsh_debug; |
| 1279 | } else if ((tally != 0 || inUseTally != 0) && |
| 1280 | log_is_enabled(Info, monitorinflation)) { |
| 1281 | ls = &lsh_info; |
| 1282 | } |
| 1283 | if (ls != NULL) { |
| 1284 | ls->print_cr("omFlush: jt=" INTPTR_FORMAT ", free_monitor_tally=%d" |
| 1285 | ", in_use_monitor_tally=%d" ", omFreeProvision=%d" , |
| 1286 | p2i(Self), tally, inUseTally, Self->omFreeProvision); |
| 1287 | } |
| 1288 | } |
| 1289 | |
| 1290 | static void post_monitor_inflate_event(EventJavaMonitorInflate* event, |
| 1291 | const oop obj, |
| 1292 | ObjectSynchronizer::InflateCause cause) { |
| 1293 | assert(event != NULL, "invariant" ); |
| 1294 | assert(event->should_commit(), "invariant" ); |
| 1295 | event->set_monitorClass(obj->klass()); |
| 1296 | event->set_address((uintptr_t)(void*)obj); |
| 1297 | event->set_cause((u1)cause); |
| 1298 | event->commit(); |
| 1299 | } |
| 1300 | |
| 1301 | // Fast path code shared by multiple functions |
| 1302 | void ObjectSynchronizer::inflate_helper(oop obj) { |
| 1303 | markOop mark = obj->mark(); |
| 1304 | if (mark->has_monitor()) { |
| 1305 | assert(ObjectSynchronizer::verify_objmon_isinpool(mark->monitor()), "monitor is invalid" ); |
| 1306 | assert(mark->monitor()->header()->is_neutral(), "monitor must record a good object header" ); |
| 1307 | return; |
| 1308 | } |
| 1309 | inflate(Thread::current(), obj, inflate_cause_vm_internal); |
| 1310 | } |
| 1311 | |
| 1312 | ObjectMonitor* ObjectSynchronizer::inflate(Thread * Self, |
| 1313 | oop object, |
| 1314 | const InflateCause cause) { |
| 1315 | // Inflate mutates the heap ... |
| 1316 | // Relaxing assertion for bug 6320749. |
| 1317 | assert(Universe::verify_in_progress() || |
| 1318 | !SafepointSynchronize::is_at_safepoint(), "invariant" ); |
| 1319 | |
| 1320 | EventJavaMonitorInflate event; |
| 1321 | |
| 1322 | for (;;) { |
| 1323 | const markOop mark = object->mark(); |
| 1324 | assert(!mark->has_bias_pattern(), "invariant" ); |
| 1325 | |
| 1326 | // The mark can be in one of the following states: |
| 1327 | // * Inflated - just return |
| 1328 | // * Stack-locked - coerce it to inflated |
| 1329 | // * INFLATING - busy wait for conversion to complete |
| 1330 | // * Neutral - aggressively inflate the object. |
| 1331 | // * BIASED - Illegal. We should never see this |
| 1332 | |
| 1333 | // CASE: inflated |
| 1334 | if (mark->has_monitor()) { |
| 1335 | ObjectMonitor * inf = mark->monitor(); |
| 1336 | markOop dmw = inf->header(); |
| 1337 | assert(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw)); |
| 1338 | assert(oopDesc::equals((oop) inf->object(), object), "invariant" ); |
| 1339 | assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid" ); |
| 1340 | return inf; |
| 1341 | } |
| 1342 | |
| 1343 | // CASE: inflation in progress - inflating over a stack-lock. |
| 1344 | // Some other thread is converting from stack-locked to inflated. |
| 1345 | // Only that thread can complete inflation -- other threads must wait. |
| 1346 | // The INFLATING value is transient. |
| 1347 | // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish. |
| 1348 | // We could always eliminate polling by parking the thread on some auxiliary list. |
| 1349 | if (mark == markOopDesc::INFLATING()) { |
| 1350 | ReadStableMark(object); |
| 1351 | continue; |
| 1352 | } |
| 1353 | |
| 1354 | // CASE: stack-locked |
| 1355 | // Could be stack-locked either by this thread or by some other thread. |
| 1356 | // |
| 1357 | // Note that we allocate the objectmonitor speculatively, _before_ attempting |
| 1358 | // to install INFLATING into the mark word. We originally installed INFLATING, |
| 1359 | // allocated the objectmonitor, and then finally STed the address of the |
| 1360 | // objectmonitor into the mark. This was correct, but artificially lengthened |
| 1361 | // the interval in which INFLATED appeared in the mark, thus increasing |
| 1362 | // the odds of inflation contention. |
| 1363 | // |
| 1364 | // We now use per-thread private objectmonitor free lists. |
| 1365 | // These list are reprovisioned from the global free list outside the |
| 1366 | // critical INFLATING...ST interval. A thread can transfer |
| 1367 | // multiple objectmonitors en-mass from the global free list to its local free list. |
| 1368 | // This reduces coherency traffic and lock contention on the global free list. |
| 1369 | // Using such local free lists, it doesn't matter if the omAlloc() call appears |
| 1370 | // before or after the CAS(INFLATING) operation. |
| 1371 | // See the comments in omAlloc(). |
| 1372 | |
| 1373 | LogStreamHandle(Trace, monitorinflation) lsh; |
| 1374 | |
| 1375 | if (mark->has_locker()) { |
| 1376 | ObjectMonitor * m = omAlloc(Self); |
| 1377 | // Optimistically prepare the objectmonitor - anticipate successful CAS |
| 1378 | // We do this before the CAS in order to minimize the length of time |
| 1379 | // in which INFLATING appears in the mark. |
| 1380 | m->Recycle(); |
| 1381 | m->_Responsible = NULL; |
| 1382 | m->_SpinDuration = ObjectMonitor::Knob_SpinLimit; // Consider: maintain by type/class |
| 1383 | |
| 1384 | markOop cmp = object->cas_set_mark(markOopDesc::INFLATING(), mark); |
| 1385 | if (cmp != mark) { |
| 1386 | omRelease(Self, m, true); |
| 1387 | continue; // Interference -- just retry |
| 1388 | } |
| 1389 | |
| 1390 | // We've successfully installed INFLATING (0) into the mark-word. |
| 1391 | // This is the only case where 0 will appear in a mark-word. |
| 1392 | // Only the singular thread that successfully swings the mark-word |
| 1393 | // to 0 can perform (or more precisely, complete) inflation. |
| 1394 | // |
| 1395 | // Why do we CAS a 0 into the mark-word instead of just CASing the |
| 1396 | // mark-word from the stack-locked value directly to the new inflated state? |
| 1397 | // Consider what happens when a thread unlocks a stack-locked object. |
| 1398 | // It attempts to use CAS to swing the displaced header value from the |
| 1399 | // on-stack basiclock back into the object header. Recall also that the |
| 1400 | // header value (hash code, etc) can reside in (a) the object header, or |
| 1401 | // (b) a displaced header associated with the stack-lock, or (c) a displaced |
| 1402 | // header in an objectMonitor. The inflate() routine must copy the header |
| 1403 | // value from the basiclock on the owner's stack to the objectMonitor, all |
| 1404 | // the while preserving the hashCode stability invariants. If the owner |
| 1405 | // decides to release the lock while the value is 0, the unlock will fail |
| 1406 | // and control will eventually pass from slow_exit() to inflate. The owner |
| 1407 | // will then spin, waiting for the 0 value to disappear. Put another way, |
| 1408 | // the 0 causes the owner to stall if the owner happens to try to |
| 1409 | // drop the lock (restoring the header from the basiclock to the object) |
| 1410 | // while inflation is in-progress. This protocol avoids races that might |
| 1411 | // would otherwise permit hashCode values to change or "flicker" for an object. |
| 1412 | // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable. |
| 1413 | // 0 serves as a "BUSY" inflate-in-progress indicator. |
| 1414 | |
| 1415 | |
| 1416 | // fetch the displaced mark from the owner's stack. |
| 1417 | // The owner can't die or unwind past the lock while our INFLATING |
| 1418 | // object is in the mark. Furthermore the owner can't complete |
| 1419 | // an unlock on the object, either. |
| 1420 | markOop dmw = mark->displaced_mark_helper(); |
| 1421 | // Catch if the object's header is not neutral (not locked and |
| 1422 | // not marked is what we care about here). |
| 1423 | assert(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw)); |
| 1424 | |
| 1425 | // Setup monitor fields to proper values -- prepare the monitor |
| 1426 | m->set_header(dmw); |
| 1427 | |
| 1428 | // Optimization: if the mark->locker stack address is associated |
| 1429 | // with this thread we could simply set m->_owner = Self. |
| 1430 | // Note that a thread can inflate an object |
| 1431 | // that it has stack-locked -- as might happen in wait() -- directly |
| 1432 | // with CAS. That is, we can avoid the xchg-NULL .... ST idiom. |
| 1433 | m->set_owner(mark->locker()); |
| 1434 | m->set_object(object); |
| 1435 | // TODO-FIXME: assert BasicLock->dhw != 0. |
| 1436 | |
| 1437 | // Must preserve store ordering. The monitor state must |
| 1438 | // be stable at the time of publishing the monitor address. |
| 1439 | guarantee(object->mark() == markOopDesc::INFLATING(), "invariant" ); |
| 1440 | object->release_set_mark(markOopDesc::encode(m)); |
| 1441 | |
| 1442 | // Hopefully the performance counters are allocated on distinct cache lines |
| 1443 | // to avoid false sharing on MP systems ... |
| 1444 | OM_PERFDATA_OP(Inflations, inc()); |
| 1445 | if (log_is_enabled(Trace, monitorinflation)) { |
| 1446 | ResourceMark rm(Self); |
| 1447 | lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark=" |
| 1448 | INTPTR_FORMAT ", type='%s'" , p2i(object), |
| 1449 | p2i(object->mark()), object->klass()->external_name()); |
| 1450 | } |
| 1451 | if (event.should_commit()) { |
| 1452 | post_monitor_inflate_event(&event, object, cause); |
| 1453 | } |
| 1454 | return m; |
| 1455 | } |
| 1456 | |
| 1457 | // CASE: neutral |
| 1458 | // TODO-FIXME: for entry we currently inflate and then try to CAS _owner. |
| 1459 | // If we know we're inflating for entry it's better to inflate by swinging a |
| 1460 | // pre-locked objectMonitor pointer into the object header. A successful |
| 1461 | // CAS inflates the object *and* confers ownership to the inflating thread. |
| 1462 | // In the current implementation we use a 2-step mechanism where we CAS() |
| 1463 | // to inflate and then CAS() again to try to swing _owner from NULL to Self. |
| 1464 | // An inflateTry() method that we could call from fast_enter() and slow_enter() |
| 1465 | // would be useful. |
| 1466 | |
| 1467 | // Catch if the object's header is not neutral (not locked and |
| 1468 | // not marked is what we care about here). |
| 1469 | assert(mark->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(mark)); |
| 1470 | ObjectMonitor * m = omAlloc(Self); |
| 1471 | // prepare m for installation - set monitor to initial state |
| 1472 | m->Recycle(); |
| 1473 | m->set_header(mark); |
| 1474 | m->set_object(object); |
| 1475 | m->_Responsible = NULL; |
| 1476 | m->_SpinDuration = ObjectMonitor::Knob_SpinLimit; // consider: keep metastats by type/class |
| 1477 | |
| 1478 | if (object->cas_set_mark(markOopDesc::encode(m), mark) != mark) { |
| 1479 | m->set_header(NULL); |
| 1480 | m->set_object(NULL); |
| 1481 | m->Recycle(); |
| 1482 | omRelease(Self, m, true); |
| 1483 | m = NULL; |
| 1484 | continue; |
| 1485 | // interference - the markword changed - just retry. |
| 1486 | // The state-transitions are one-way, so there's no chance of |
| 1487 | // live-lock -- "Inflated" is an absorbing state. |
| 1488 | } |
| 1489 | |
| 1490 | // Hopefully the performance counters are allocated on distinct |
| 1491 | // cache lines to avoid false sharing on MP systems ... |
| 1492 | OM_PERFDATA_OP(Inflations, inc()); |
| 1493 | if (log_is_enabled(Trace, monitorinflation)) { |
| 1494 | ResourceMark rm(Self); |
| 1495 | lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark=" |
| 1496 | INTPTR_FORMAT ", type='%s'" , p2i(object), |
| 1497 | p2i(object->mark()), object->klass()->external_name()); |
| 1498 | } |
| 1499 | if (event.should_commit()) { |
| 1500 | post_monitor_inflate_event(&event, object, cause); |
| 1501 | } |
| 1502 | return m; |
| 1503 | } |
| 1504 | } |
| 1505 | |
| 1506 | |
| 1507 | // We maintain a list of in-use monitors for each thread. |
| 1508 | // |
| 1509 | // deflate_thread_local_monitors() scans a single thread's in-use list, while |
| 1510 | // deflate_idle_monitors() scans only a global list of in-use monitors which |
| 1511 | // is populated only as a thread dies (see omFlush()). |
| 1512 | // |
| 1513 | // These operations are called at all safepoints, immediately after mutators |
| 1514 | // are stopped, but before any objects have moved. Collectively they traverse |
| 1515 | // the population of in-use monitors, deflating where possible. The scavenged |
| 1516 | // monitors are returned to the global monitor free list. |
| 1517 | // |
| 1518 | // Beware that we scavenge at *every* stop-the-world point. Having a large |
| 1519 | // number of monitors in-use could negatively impact performance. We also want |
| 1520 | // to minimize the total # of monitors in circulation, as they incur a small |
| 1521 | // footprint penalty. |
| 1522 | // |
| 1523 | // Perversely, the heap size -- and thus the STW safepoint rate -- |
| 1524 | // typically drives the scavenge rate. Large heaps can mean infrequent GC, |
| 1525 | // which in turn can mean large(r) numbers of ObjectMonitors in circulation. |
| 1526 | // This is an unfortunate aspect of this design. |
| 1527 | |
| 1528 | // Deflate a single monitor if not in-use |
| 1529 | // Return true if deflated, false if in-use |
| 1530 | bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj, |
| 1531 | ObjectMonitor** freeHeadp, |
| 1532 | ObjectMonitor** freeTailp) { |
| 1533 | bool deflated; |
| 1534 | // Normal case ... The monitor is associated with obj. |
| 1535 | const markOop mark = obj->mark(); |
| 1536 | guarantee(mark == markOopDesc::encode(mid), "should match: mark=" |
| 1537 | INTPTR_FORMAT ", encoded mid=" INTPTR_FORMAT, p2i(mark), |
| 1538 | p2i(markOopDesc::encode(mid))); |
| 1539 | // Make sure that mark->monitor() and markOopDesc::encode() agree: |
| 1540 | guarantee(mark->monitor() == mid, "should match: monitor()=" INTPTR_FORMAT |
| 1541 | ", mid=" INTPTR_FORMAT, p2i(mark->monitor()), p2i(mid)); |
| 1542 | const markOop dmw = mid->header(); |
| 1543 | guarantee(dmw->is_neutral(), "invariant: header=" INTPTR_FORMAT, p2i(dmw)); |
| 1544 | |
| 1545 | if (mid->is_busy()) { |
| 1546 | deflated = false; |
| 1547 | } else { |
| 1548 | // Deflate the monitor if it is no longer being used |
| 1549 | // It's idle - scavenge and return to the global free list |
| 1550 | // plain old deflation ... |
| 1551 | if (log_is_enabled(Trace, monitorinflation)) { |
| 1552 | ResourceMark rm; |
| 1553 | log_trace(monitorinflation)("deflate_monitor: " |
| 1554 | "object=" INTPTR_FORMAT ", mark=" |
| 1555 | INTPTR_FORMAT ", type='%s'" , p2i(obj), |
| 1556 | p2i(mark), obj->klass()->external_name()); |
| 1557 | } |
| 1558 | |
| 1559 | // Restore the header back to obj |
| 1560 | obj->release_set_mark(dmw); |
| 1561 | mid->clear(); |
| 1562 | |
| 1563 | assert(mid->object() == NULL, "invariant: object=" INTPTR_FORMAT, |
| 1564 | p2i(mid->object())); |
| 1565 | |
| 1566 | // Move the object to the working free list defined by freeHeadp, freeTailp |
| 1567 | if (*freeHeadp == NULL) *freeHeadp = mid; |
| 1568 | if (*freeTailp != NULL) { |
| 1569 | ObjectMonitor * prevtail = *freeTailp; |
| 1570 | assert(prevtail->FreeNext == NULL, "cleaned up deflated?" ); |
| 1571 | prevtail->FreeNext = mid; |
| 1572 | } |
| 1573 | *freeTailp = mid; |
| 1574 | deflated = true; |
| 1575 | } |
| 1576 | return deflated; |
| 1577 | } |
| 1578 | |
| 1579 | // Walk a given monitor list, and deflate idle monitors |
| 1580 | // The given list could be a per-thread list or a global list |
| 1581 | // Caller acquires gListLock as needed. |
| 1582 | // |
| 1583 | // In the case of parallel processing of thread local monitor lists, |
| 1584 | // work is done by Threads::parallel_threads_do() which ensures that |
| 1585 | // each Java thread is processed by exactly one worker thread, and |
| 1586 | // thus avoid conflicts that would arise when worker threads would |
| 1587 | // process the same monitor lists concurrently. |
| 1588 | // |
| 1589 | // See also ParallelSPCleanupTask and |
| 1590 | // SafepointSynchronize::do_cleanup_tasks() in safepoint.cpp and |
| 1591 | // Threads::parallel_java_threads_do() in thread.cpp. |
| 1592 | int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor** listHeadp, |
| 1593 | ObjectMonitor** freeHeadp, |
| 1594 | ObjectMonitor** freeTailp) { |
| 1595 | ObjectMonitor* mid; |
| 1596 | ObjectMonitor* next; |
| 1597 | ObjectMonitor* cur_mid_in_use = NULL; |
| 1598 | int deflated_count = 0; |
| 1599 | |
| 1600 | for (mid = *listHeadp; mid != NULL;) { |
| 1601 | oop obj = (oop) mid->object(); |
| 1602 | if (obj != NULL && deflate_monitor(mid, obj, freeHeadp, freeTailp)) { |
| 1603 | // if deflate_monitor succeeded, |
| 1604 | // extract from per-thread in-use list |
| 1605 | if (mid == *listHeadp) { |
| 1606 | *listHeadp = mid->FreeNext; |
| 1607 | } else if (cur_mid_in_use != NULL) { |
| 1608 | cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list |
| 1609 | } |
| 1610 | next = mid->FreeNext; |
| 1611 | mid->FreeNext = NULL; // This mid is current tail in the freeHeadp list |
| 1612 | mid = next; |
| 1613 | deflated_count++; |
| 1614 | } else { |
| 1615 | cur_mid_in_use = mid; |
| 1616 | mid = mid->FreeNext; |
| 1617 | } |
| 1618 | } |
| 1619 | return deflated_count; |
| 1620 | } |
| 1621 | |
| 1622 | void ObjectSynchronizer::prepare_deflate_idle_monitors(DeflateMonitorCounters* counters) { |
| 1623 | counters->nInuse = 0; // currently associated with objects |
| 1624 | counters->nInCirculation = 0; // extant |
| 1625 | counters->nScavenged = 0; // reclaimed (global and per-thread) |
| 1626 | counters->perThreadScavenged = 0; // per-thread scavenge total |
| 1627 | counters->perThreadTimes = 0.0; // per-thread scavenge times |
| 1628 | } |
| 1629 | |
| 1630 | void ObjectSynchronizer::deflate_idle_monitors(DeflateMonitorCounters* counters) { |
| 1631 | assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint" ); |
| 1632 | bool deflated = false; |
| 1633 | |
| 1634 | ObjectMonitor * freeHeadp = NULL; // Local SLL of scavenged monitors |
| 1635 | ObjectMonitor * freeTailp = NULL; |
| 1636 | elapsedTimer timer; |
| 1637 | |
| 1638 | if (log_is_enabled(Info, monitorinflation)) { |
| 1639 | timer.start(); |
| 1640 | } |
| 1641 | |
| 1642 | // Prevent omFlush from changing mids in Thread dtor's during deflation |
| 1643 | // And in case the vm thread is acquiring a lock during a safepoint |
| 1644 | // See e.g. 6320749 |
| 1645 | Thread::muxAcquire(&gListLock, "deflate_idle_monitors" ); |
| 1646 | |
| 1647 | // Note: the thread-local monitors lists get deflated in |
| 1648 | // a separate pass. See deflate_thread_local_monitors(). |
| 1649 | |
| 1650 | // For moribund threads, scan gOmInUseList |
| 1651 | int deflated_count = 0; |
| 1652 | if (gOmInUseList) { |
| 1653 | counters->nInCirculation += gOmInUseCount; |
| 1654 | deflated_count = deflate_monitor_list((ObjectMonitor **)&gOmInUseList, &freeHeadp, &freeTailp); |
| 1655 | gOmInUseCount -= deflated_count; |
| 1656 | counters->nScavenged += deflated_count; |
| 1657 | counters->nInuse += gOmInUseCount; |
| 1658 | } |
| 1659 | |
| 1660 | // Move the scavenged monitors back to the global free list. |
| 1661 | if (freeHeadp != NULL) { |
| 1662 | guarantee(freeTailp != NULL && counters->nScavenged > 0, "invariant" ); |
| 1663 | assert(freeTailp->FreeNext == NULL, "invariant" ); |
| 1664 | // constant-time list splice - prepend scavenged segment to gFreeList |
| 1665 | freeTailp->FreeNext = gFreeList; |
| 1666 | gFreeList = freeHeadp; |
| 1667 | } |
| 1668 | Thread::muxRelease(&gListLock); |
| 1669 | timer.stop(); |
| 1670 | |
| 1671 | LogStreamHandle(Debug, monitorinflation) lsh_debug; |
| 1672 | LogStreamHandle(Info, monitorinflation) lsh_info; |
| 1673 | LogStream * ls = NULL; |
| 1674 | if (log_is_enabled(Debug, monitorinflation)) { |
| 1675 | ls = &lsh_debug; |
| 1676 | } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) { |
| 1677 | ls = &lsh_info; |
| 1678 | } |
| 1679 | if (ls != NULL) { |
| 1680 | ls->print_cr("deflating global idle monitors, %3.7f secs, %d monitors" , timer.seconds(), deflated_count); |
| 1681 | } |
| 1682 | } |
| 1683 | |
| 1684 | void ObjectSynchronizer::finish_deflate_idle_monitors(DeflateMonitorCounters* counters) { |
| 1685 | // Report the cumulative time for deflating each thread's idle |
| 1686 | // monitors. Note: if the work is split among more than one |
| 1687 | // worker thread, then the reported time will likely be more |
| 1688 | // than a beginning to end measurement of the phase. |
| 1689 | log_info(safepoint, cleanup)("deflating per-thread idle monitors, %3.7f secs, monitors=%d" , counters->perThreadTimes, counters->perThreadScavenged); |
| 1690 | |
| 1691 | gMonitorFreeCount += counters->nScavenged; |
| 1692 | |
| 1693 | if (log_is_enabled(Debug, monitorinflation)) { |
| 1694 | // exit_globals()'s call to audit_and_print_stats() is done |
| 1695 | // at the Info level. |
| 1696 | ObjectSynchronizer::audit_and_print_stats(false /* on_exit */); |
| 1697 | } else if (log_is_enabled(Info, monitorinflation)) { |
| 1698 | Thread::muxAcquire(&gListLock, "finish_deflate_idle_monitors" ); |
| 1699 | log_info(monitorinflation)("gMonitorPopulation=%d, gOmInUseCount=%d, " |
| 1700 | "gMonitorFreeCount=%d" , gMonitorPopulation, |
| 1701 | gOmInUseCount, gMonitorFreeCount); |
| 1702 | Thread::muxRelease(&gListLock); |
| 1703 | } |
| 1704 | |
| 1705 | ForceMonitorScavenge = 0; // Reset |
| 1706 | |
| 1707 | OM_PERFDATA_OP(Deflations, inc(counters->nScavenged)); |
| 1708 | OM_PERFDATA_OP(MonExtant, set_value(counters->nInCirculation)); |
| 1709 | |
| 1710 | GVars.stwRandom = os::random(); |
| 1711 | GVars.stwCycle++; |
| 1712 | } |
| 1713 | |
| 1714 | void ObjectSynchronizer::deflate_thread_local_monitors(Thread* thread, DeflateMonitorCounters* counters) { |
| 1715 | assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint" ); |
| 1716 | |
| 1717 | ObjectMonitor * freeHeadp = NULL; // Local SLL of scavenged monitors |
| 1718 | ObjectMonitor * freeTailp = NULL; |
| 1719 | elapsedTimer timer; |
| 1720 | |
| 1721 | if (log_is_enabled(Info, safepoint, cleanup) || |
| 1722 | log_is_enabled(Info, monitorinflation)) { |
| 1723 | timer.start(); |
| 1724 | } |
| 1725 | |
| 1726 | int deflated_count = deflate_monitor_list(thread->omInUseList_addr(), &freeHeadp, &freeTailp); |
| 1727 | |
| 1728 | Thread::muxAcquire(&gListLock, "deflate_thread_local_monitors" ); |
| 1729 | |
| 1730 | // Adjust counters |
| 1731 | counters->nInCirculation += thread->omInUseCount; |
| 1732 | thread->omInUseCount -= deflated_count; |
| 1733 | counters->nScavenged += deflated_count; |
| 1734 | counters->nInuse += thread->omInUseCount; |
| 1735 | counters->perThreadScavenged += deflated_count; |
| 1736 | |
| 1737 | // Move the scavenged monitors back to the global free list. |
| 1738 | if (freeHeadp != NULL) { |
| 1739 | guarantee(freeTailp != NULL && deflated_count > 0, "invariant" ); |
| 1740 | assert(freeTailp->FreeNext == NULL, "invariant" ); |
| 1741 | |
| 1742 | // constant-time list splice - prepend scavenged segment to gFreeList |
| 1743 | freeTailp->FreeNext = gFreeList; |
| 1744 | gFreeList = freeHeadp; |
| 1745 | } |
| 1746 | |
| 1747 | timer.stop(); |
| 1748 | // Safepoint logging cares about cumulative perThreadTimes and |
| 1749 | // we'll capture most of the cost, but not the muxRelease() which |
| 1750 | // should be cheap. |
| 1751 | counters->perThreadTimes += timer.seconds(); |
| 1752 | |
| 1753 | Thread::muxRelease(&gListLock); |
| 1754 | |
| 1755 | LogStreamHandle(Debug, monitorinflation) lsh_debug; |
| 1756 | LogStreamHandle(Info, monitorinflation) lsh_info; |
| 1757 | LogStream * ls = NULL; |
| 1758 | if (log_is_enabled(Debug, monitorinflation)) { |
| 1759 | ls = &lsh_debug; |
| 1760 | } else if (deflated_count != 0 && log_is_enabled(Info, monitorinflation)) { |
| 1761 | ls = &lsh_info; |
| 1762 | } |
| 1763 | if (ls != NULL) { |
| 1764 | ls->print_cr("jt=" INTPTR_FORMAT ": deflating per-thread idle monitors, %3.7f secs, %d monitors" , p2i(thread), timer.seconds(), deflated_count); |
| 1765 | } |
| 1766 | } |
| 1767 | |
| 1768 | // Monitor cleanup on JavaThread::exit |
| 1769 | |
| 1770 | // Iterate through monitor cache and attempt to release thread's monitors |
| 1771 | // Gives up on a particular monitor if an exception occurs, but continues |
| 1772 | // the overall iteration, swallowing the exception. |
| 1773 | class ReleaseJavaMonitorsClosure: public MonitorClosure { |
| 1774 | private: |
| 1775 | TRAPS; |
| 1776 | |
| 1777 | public: |
| 1778 | ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {} |
| 1779 | void do_monitor(ObjectMonitor* mid) { |
| 1780 | if (mid->owner() == THREAD) { |
| 1781 | (void)mid->complete_exit(CHECK); |
| 1782 | } |
| 1783 | } |
| 1784 | }; |
| 1785 | |
| 1786 | // Release all inflated monitors owned by THREAD. Lightweight monitors are |
| 1787 | // ignored. This is meant to be called during JNI thread detach which assumes |
| 1788 | // all remaining monitors are heavyweight. All exceptions are swallowed. |
| 1789 | // Scanning the extant monitor list can be time consuming. |
| 1790 | // A simple optimization is to add a per-thread flag that indicates a thread |
| 1791 | // called jni_monitorenter() during its lifetime. |
| 1792 | // |
| 1793 | // Instead of No_Savepoint_Verifier it might be cheaper to |
| 1794 | // use an idiom of the form: |
| 1795 | // auto int tmp = SafepointSynchronize::_safepoint_counter ; |
| 1796 | // <code that must not run at safepoint> |
| 1797 | // guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ; |
| 1798 | // Since the tests are extremely cheap we could leave them enabled |
| 1799 | // for normal product builds. |
| 1800 | |
| 1801 | void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) { |
| 1802 | assert(THREAD == JavaThread::current(), "must be current Java thread" ); |
| 1803 | NoSafepointVerifier nsv; |
| 1804 | ReleaseJavaMonitorsClosure rjmc(THREAD); |
| 1805 | Thread::muxAcquire(&gListLock, "release_monitors_owned_by_thread" ); |
| 1806 | ObjectSynchronizer::monitors_iterate(&rjmc); |
| 1807 | Thread::muxRelease(&gListLock); |
| 1808 | THREAD->clear_pending_exception(); |
| 1809 | } |
| 1810 | |
| 1811 | const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) { |
| 1812 | switch (cause) { |
| 1813 | case inflate_cause_vm_internal: return "VM Internal" ; |
| 1814 | case inflate_cause_monitor_enter: return "Monitor Enter" ; |
| 1815 | case inflate_cause_wait: return "Monitor Wait" ; |
| 1816 | case inflate_cause_notify: return "Monitor Notify" ; |
| 1817 | case inflate_cause_hash_code: return "Monitor Hash Code" ; |
| 1818 | case inflate_cause_jni_enter: return "JNI Monitor Enter" ; |
| 1819 | case inflate_cause_jni_exit: return "JNI Monitor Exit" ; |
| 1820 | default: |
| 1821 | ShouldNotReachHere(); |
| 1822 | } |
| 1823 | return "Unknown" ; |
| 1824 | } |
| 1825 | |
| 1826 | //------------------------------------------------------------------------------ |
| 1827 | // Debugging code |
| 1828 | |
| 1829 | u_char* ObjectSynchronizer::get_gvars_addr() { |
| 1830 | return (u_char*)&GVars; |
| 1831 | } |
| 1832 | |
| 1833 | u_char* ObjectSynchronizer::get_gvars_hcSequence_addr() { |
| 1834 | return (u_char*)&GVars.hcSequence; |
| 1835 | } |
| 1836 | |
| 1837 | size_t ObjectSynchronizer::get_gvars_size() { |
| 1838 | return sizeof(SharedGlobals); |
| 1839 | } |
| 1840 | |
| 1841 | u_char* ObjectSynchronizer::get_gvars_stwRandom_addr() { |
| 1842 | return (u_char*)&GVars.stwRandom; |
| 1843 | } |
| 1844 | |
| 1845 | void ObjectSynchronizer::audit_and_print_stats(bool on_exit) { |
| 1846 | assert(on_exit || SafepointSynchronize::is_at_safepoint(), "invariant" ); |
| 1847 | |
| 1848 | LogStreamHandle(Debug, monitorinflation) lsh_debug; |
| 1849 | LogStreamHandle(Info, monitorinflation) lsh_info; |
| 1850 | LogStreamHandle(Trace, monitorinflation) lsh_trace; |
| 1851 | LogStream * ls = NULL; |
| 1852 | if (log_is_enabled(Trace, monitorinflation)) { |
| 1853 | ls = &lsh_trace; |
| 1854 | } else if (log_is_enabled(Debug, monitorinflation)) { |
| 1855 | ls = &lsh_debug; |
| 1856 | } else if (log_is_enabled(Info, monitorinflation)) { |
| 1857 | ls = &lsh_info; |
| 1858 | } |
| 1859 | assert(ls != NULL, "sanity check" ); |
| 1860 | |
| 1861 | if (!on_exit) { |
| 1862 | // Not at VM exit so grab the global list lock. |
| 1863 | Thread::muxAcquire(&gListLock, "audit_and_print_stats" ); |
| 1864 | } |
| 1865 | |
| 1866 | // Log counts for the global and per-thread monitor lists: |
| 1867 | int chkMonitorPopulation = log_monitor_list_counts(ls); |
| 1868 | int error_cnt = 0; |
| 1869 | |
| 1870 | ls->print_cr("Checking global lists:" ); |
| 1871 | |
| 1872 | // Check gMonitorPopulation: |
| 1873 | if (gMonitorPopulation == chkMonitorPopulation) { |
| 1874 | ls->print_cr("gMonitorPopulation=%d equals chkMonitorPopulation=%d" , |
| 1875 | gMonitorPopulation, chkMonitorPopulation); |
| 1876 | } else { |
| 1877 | ls->print_cr("ERROR: gMonitorPopulation=%d is not equal to " |
| 1878 | "chkMonitorPopulation=%d" , gMonitorPopulation, |
| 1879 | chkMonitorPopulation); |
| 1880 | error_cnt++; |
| 1881 | } |
| 1882 | |
| 1883 | // Check gOmInUseList and gOmInUseCount: |
| 1884 | chk_global_in_use_list_and_count(ls, &error_cnt); |
| 1885 | |
| 1886 | // Check gFreeList and gMonitorFreeCount: |
| 1887 | chk_global_free_list_and_count(ls, &error_cnt); |
| 1888 | |
| 1889 | if (!on_exit) { |
| 1890 | Thread::muxRelease(&gListLock); |
| 1891 | } |
| 1892 | |
| 1893 | ls->print_cr("Checking per-thread lists:" ); |
| 1894 | |
| 1895 | for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) { |
| 1896 | // Check omInUseList and omInUseCount: |
| 1897 | chk_per_thread_in_use_list_and_count(jt, ls, &error_cnt); |
| 1898 | |
| 1899 | // Check omFreeList and omFreeCount: |
| 1900 | chk_per_thread_free_list_and_count(jt, ls, &error_cnt); |
| 1901 | } |
| 1902 | |
| 1903 | if (error_cnt == 0) { |
| 1904 | ls->print_cr("No errors found in monitor list checks." ); |
| 1905 | } else { |
| 1906 | log_error(monitorinflation)("found monitor list errors: error_cnt=%d" , error_cnt); |
| 1907 | } |
| 1908 | |
| 1909 | if ((on_exit && log_is_enabled(Info, monitorinflation)) || |
| 1910 | (!on_exit && log_is_enabled(Trace, monitorinflation))) { |
| 1911 | // When exiting this log output is at the Info level. When called |
| 1912 | // at a safepoint, this log output is at the Trace level since |
| 1913 | // there can be a lot of it. |
| 1914 | log_in_use_monitor_details(ls, on_exit); |
| 1915 | } |
| 1916 | |
| 1917 | ls->flush(); |
| 1918 | |
| 1919 | guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d" , error_cnt); |
| 1920 | } |
| 1921 | |
| 1922 | // Check a free monitor entry; log any errors. |
| 1923 | void ObjectSynchronizer::chk_free_entry(JavaThread * jt, ObjectMonitor * n, |
| 1924 | outputStream * out, int *error_cnt_p) { |
| 1925 | stringStream ss; |
| 1926 | if (n->is_busy()) { |
| 1927 | if (jt != NULL) { |
| 1928 | out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT |
| 1929 | ": free per-thread monitor must not be busy: %s" , p2i(jt), |
| 1930 | p2i(n), n->is_busy_to_string(&ss)); |
| 1931 | } else { |
| 1932 | out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor " |
| 1933 | "must not be busy: %s" , p2i(n), n->is_busy_to_string(&ss)); |
| 1934 | } |
| 1935 | *error_cnt_p = *error_cnt_p + 1; |
| 1936 | } |
| 1937 | if (n->header() != NULL) { |
| 1938 | if (jt != NULL) { |
| 1939 | out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT |
| 1940 | ": free per-thread monitor must have NULL _header " |
| 1941 | "field: _header=" INTPTR_FORMAT, p2i(jt), p2i(n), |
| 1942 | p2i(n->header())); |
| 1943 | } else { |
| 1944 | out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor " |
| 1945 | "must have NULL _header field: _header=" INTPTR_FORMAT, |
| 1946 | p2i(n), p2i(n->header())); |
| 1947 | } |
| 1948 | *error_cnt_p = *error_cnt_p + 1; |
| 1949 | } |
| 1950 | if (n->object() != NULL) { |
| 1951 | if (jt != NULL) { |
| 1952 | out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT |
| 1953 | ": free per-thread monitor must have NULL _object " |
| 1954 | "field: _object=" INTPTR_FORMAT, p2i(jt), p2i(n), |
| 1955 | p2i(n->object())); |
| 1956 | } else { |
| 1957 | out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": free global monitor " |
| 1958 | "must have NULL _object field: _object=" INTPTR_FORMAT, |
| 1959 | p2i(n), p2i(n->object())); |
| 1960 | } |
| 1961 | *error_cnt_p = *error_cnt_p + 1; |
| 1962 | } |
| 1963 | } |
| 1964 | |
| 1965 | // Check the global free list and count; log the results of the checks. |
| 1966 | void ObjectSynchronizer::chk_global_free_list_and_count(outputStream * out, |
| 1967 | int *error_cnt_p) { |
| 1968 | int chkMonitorFreeCount = 0; |
| 1969 | for (ObjectMonitor * n = gFreeList; n != NULL; n = n->FreeNext) { |
| 1970 | chk_free_entry(NULL /* jt */, n, out, error_cnt_p); |
| 1971 | chkMonitorFreeCount++; |
| 1972 | } |
| 1973 | if (gMonitorFreeCount == chkMonitorFreeCount) { |
| 1974 | out->print_cr("gMonitorFreeCount=%d equals chkMonitorFreeCount=%d" , |
| 1975 | gMonitorFreeCount, chkMonitorFreeCount); |
| 1976 | } else { |
| 1977 | out->print_cr("ERROR: gMonitorFreeCount=%d is not equal to " |
| 1978 | "chkMonitorFreeCount=%d" , gMonitorFreeCount, |
| 1979 | chkMonitorFreeCount); |
| 1980 | *error_cnt_p = *error_cnt_p + 1; |
| 1981 | } |
| 1982 | } |
| 1983 | |
| 1984 | // Check the global in-use list and count; log the results of the checks. |
| 1985 | void ObjectSynchronizer::chk_global_in_use_list_and_count(outputStream * out, |
| 1986 | int *error_cnt_p) { |
| 1987 | int chkOmInUseCount = 0; |
| 1988 | for (ObjectMonitor * n = gOmInUseList; n != NULL; n = n->FreeNext) { |
| 1989 | chk_in_use_entry(NULL /* jt */, n, out, error_cnt_p); |
| 1990 | chkOmInUseCount++; |
| 1991 | } |
| 1992 | if (gOmInUseCount == chkOmInUseCount) { |
| 1993 | out->print_cr("gOmInUseCount=%d equals chkOmInUseCount=%d" , gOmInUseCount, |
| 1994 | chkOmInUseCount); |
| 1995 | } else { |
| 1996 | out->print_cr("ERROR: gOmInUseCount=%d is not equal to chkOmInUseCount=%d" , |
| 1997 | gOmInUseCount, chkOmInUseCount); |
| 1998 | *error_cnt_p = *error_cnt_p + 1; |
| 1999 | } |
| 2000 | } |
| 2001 | |
| 2002 | // Check an in-use monitor entry; log any errors. |
| 2003 | void ObjectSynchronizer::chk_in_use_entry(JavaThread * jt, ObjectMonitor * n, |
| 2004 | outputStream * out, int *error_cnt_p) { |
| 2005 | if (n->header() == NULL) { |
| 2006 | if (jt != NULL) { |
| 2007 | out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT |
| 2008 | ": in-use per-thread monitor must have non-NULL _header " |
| 2009 | "field." , p2i(jt), p2i(n)); |
| 2010 | } else { |
| 2011 | out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor " |
| 2012 | "must have non-NULL _header field." , p2i(n)); |
| 2013 | } |
| 2014 | *error_cnt_p = *error_cnt_p + 1; |
| 2015 | } |
| 2016 | if (n->object() == NULL) { |
| 2017 | if (jt != NULL) { |
| 2018 | out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT |
| 2019 | ": in-use per-thread monitor must have non-NULL _object " |
| 2020 | "field." , p2i(jt), p2i(n)); |
| 2021 | } else { |
| 2022 | out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global monitor " |
| 2023 | "must have non-NULL _object field." , p2i(n)); |
| 2024 | } |
| 2025 | *error_cnt_p = *error_cnt_p + 1; |
| 2026 | } |
| 2027 | const oop obj = (oop)n->object(); |
| 2028 | const markOop mark = obj->mark(); |
| 2029 | if (!mark->has_monitor()) { |
| 2030 | if (jt != NULL) { |
| 2031 | out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT |
| 2032 | ": in-use per-thread monitor's object does not think " |
| 2033 | "it has a monitor: obj=" INTPTR_FORMAT ", mark=" |
| 2034 | INTPTR_FORMAT, p2i(jt), p2i(n), p2i(obj), p2i(mark)); |
| 2035 | } else { |
| 2036 | out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global " |
| 2037 | "monitor's object does not think it has a monitor: obj=" |
| 2038 | INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n), |
| 2039 | p2i(obj), p2i(mark)); |
| 2040 | } |
| 2041 | *error_cnt_p = *error_cnt_p + 1; |
| 2042 | } |
| 2043 | ObjectMonitor * const obj_mon = mark->monitor(); |
| 2044 | if (n != obj_mon) { |
| 2045 | if (jt != NULL) { |
| 2046 | out->print_cr("ERROR: jt=" INTPTR_FORMAT ", monitor=" INTPTR_FORMAT |
| 2047 | ": in-use per-thread monitor's object does not refer " |
| 2048 | "to the same monitor: obj=" INTPTR_FORMAT ", mark=" |
| 2049 | INTPTR_FORMAT ", obj_mon=" INTPTR_FORMAT, p2i(jt), |
| 2050 | p2i(n), p2i(obj), p2i(mark), p2i(obj_mon)); |
| 2051 | } else { |
| 2052 | out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use global " |
| 2053 | "monitor's object does not refer to the same monitor: obj=" |
| 2054 | INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon=" |
| 2055 | INTPTR_FORMAT, p2i(n), p2i(obj), p2i(mark), p2i(obj_mon)); |
| 2056 | } |
| 2057 | *error_cnt_p = *error_cnt_p + 1; |
| 2058 | } |
| 2059 | } |
| 2060 | |
| 2061 | // Check the thread's free list and count; log the results of the checks. |
| 2062 | void ObjectSynchronizer::chk_per_thread_free_list_and_count(JavaThread *jt, |
| 2063 | outputStream * out, |
| 2064 | int *error_cnt_p) { |
| 2065 | int chkOmFreeCount = 0; |
| 2066 | for (ObjectMonitor * n = jt->omFreeList; n != NULL; n = n->FreeNext) { |
| 2067 | chk_free_entry(jt, n, out, error_cnt_p); |
| 2068 | chkOmFreeCount++; |
| 2069 | } |
| 2070 | if (jt->omFreeCount == chkOmFreeCount) { |
| 2071 | out->print_cr("jt=" INTPTR_FORMAT ": omFreeCount=%d equals " |
| 2072 | "chkOmFreeCount=%d" , p2i(jt), jt->omFreeCount, chkOmFreeCount); |
| 2073 | } else { |
| 2074 | out->print_cr("ERROR: jt=" INTPTR_FORMAT ": omFreeCount=%d is not " |
| 2075 | "equal to chkOmFreeCount=%d" , p2i(jt), jt->omFreeCount, |
| 2076 | chkOmFreeCount); |
| 2077 | *error_cnt_p = *error_cnt_p + 1; |
| 2078 | } |
| 2079 | } |
| 2080 | |
| 2081 | // Check the thread's in-use list and count; log the results of the checks. |
| 2082 | void ObjectSynchronizer::chk_per_thread_in_use_list_and_count(JavaThread *jt, |
| 2083 | outputStream * out, |
| 2084 | int *error_cnt_p) { |
| 2085 | int chkOmInUseCount = 0; |
| 2086 | for (ObjectMonitor * n = jt->omInUseList; n != NULL; n = n->FreeNext) { |
| 2087 | chk_in_use_entry(jt, n, out, error_cnt_p); |
| 2088 | chkOmInUseCount++; |
| 2089 | } |
| 2090 | if (jt->omInUseCount == chkOmInUseCount) { |
| 2091 | out->print_cr("jt=" INTPTR_FORMAT ": omInUseCount=%d equals " |
| 2092 | "chkOmInUseCount=%d" , p2i(jt), jt->omInUseCount, |
| 2093 | chkOmInUseCount); |
| 2094 | } else { |
| 2095 | out->print_cr("ERROR: jt=" INTPTR_FORMAT ": omInUseCount=%d is not " |
| 2096 | "equal to chkOmInUseCount=%d" , p2i(jt), jt->omInUseCount, |
| 2097 | chkOmInUseCount); |
| 2098 | *error_cnt_p = *error_cnt_p + 1; |
| 2099 | } |
| 2100 | } |
| 2101 | |
| 2102 | // Log details about ObjectMonitors on the in-use lists. The 'BHL' |
| 2103 | // flags indicate why the entry is in-use, 'object' and 'object type' |
| 2104 | // indicate the associated object and its type. |
| 2105 | void ObjectSynchronizer::log_in_use_monitor_details(outputStream * out, |
| 2106 | bool on_exit) { |
| 2107 | if (!on_exit) { |
| 2108 | // Not at VM exit so grab the global list lock. |
| 2109 | Thread::muxAcquire(&gListLock, "log_in_use_monitor_details" ); |
| 2110 | } |
| 2111 | |
| 2112 | stringStream ss; |
| 2113 | if (gOmInUseCount > 0) { |
| 2114 | out->print_cr("In-use global monitor info:" ); |
| 2115 | out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)" ); |
| 2116 | out->print_cr("%18s %s %18s %18s" , |
| 2117 | "monitor" , "BHL" , "object" , "object type" ); |
| 2118 | out->print_cr("================== === ================== ==================" ); |
| 2119 | for (ObjectMonitor * n = gOmInUseList; n != NULL; n = n->FreeNext) { |
| 2120 | const oop obj = (oop) n->object(); |
| 2121 | const markOop mark = n->header(); |
| 2122 | ResourceMark rm; |
| 2123 | out->print(INTPTR_FORMAT " %d%d%d " INTPTR_FORMAT " %s" , p2i(n), |
| 2124 | n->is_busy() != 0, mark->hash() != 0, n->owner() != NULL, |
| 2125 | p2i(obj), obj->klass()->external_name()); |
| 2126 | if (n->is_busy() != 0) { |
| 2127 | out->print(" (%s)" , n->is_busy_to_string(&ss)); |
| 2128 | ss.reset(); |
| 2129 | } |
| 2130 | out->cr(); |
| 2131 | } |
| 2132 | } |
| 2133 | |
| 2134 | if (!on_exit) { |
| 2135 | Thread::muxRelease(&gListLock); |
| 2136 | } |
| 2137 | |
| 2138 | out->print_cr("In-use per-thread monitor info:" ); |
| 2139 | out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)" ); |
| 2140 | out->print_cr("%18s %18s %s %18s %18s" , |
| 2141 | "jt" , "monitor" , "BHL" , "object" , "object type" ); |
| 2142 | out->print_cr("================== ================== === ================== ==================" ); |
| 2143 | for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) { |
| 2144 | for (ObjectMonitor * n = jt->omInUseList; n != NULL; n = n->FreeNext) { |
| 2145 | const oop obj = (oop) n->object(); |
| 2146 | const markOop mark = n->header(); |
| 2147 | ResourceMark rm; |
| 2148 | out->print(INTPTR_FORMAT " " INTPTR_FORMAT " %d%d%d " INTPTR_FORMAT |
| 2149 | " %s" , p2i(jt), p2i(n), n->is_busy() != 0, |
| 2150 | mark->hash() != 0, n->owner() != NULL, p2i(obj), |
| 2151 | obj->klass()->external_name()); |
| 2152 | if (n->is_busy() != 0) { |
| 2153 | out->print(" (%s)" , n->is_busy_to_string(&ss)); |
| 2154 | ss.reset(); |
| 2155 | } |
| 2156 | out->cr(); |
| 2157 | } |
| 2158 | } |
| 2159 | |
| 2160 | out->flush(); |
| 2161 | } |
| 2162 | |
| 2163 | // Log counts for the global and per-thread monitor lists and return |
| 2164 | // the population count. |
| 2165 | int ObjectSynchronizer::log_monitor_list_counts(outputStream * out) { |
| 2166 | int popCount = 0; |
| 2167 | out->print_cr("%18s %10s %10s %10s" , |
| 2168 | "Global Lists:" , "InUse" , "Free" , "Total" ); |
| 2169 | out->print_cr("================== ========== ========== ==========" ); |
| 2170 | out->print_cr("%18s %10d %10d %10d" , "" , |
| 2171 | gOmInUseCount, gMonitorFreeCount, gMonitorPopulation); |
| 2172 | popCount += gOmInUseCount + gMonitorFreeCount; |
| 2173 | |
| 2174 | out->print_cr("%18s %10s %10s %10s" , |
| 2175 | "Per-Thread Lists:" , "InUse" , "Free" , "Provision" ); |
| 2176 | out->print_cr("================== ========== ========== ==========" ); |
| 2177 | |
| 2178 | for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) { |
| 2179 | out->print_cr(INTPTR_FORMAT " %10d %10d %10d" , p2i(jt), |
| 2180 | jt->omInUseCount, jt->omFreeCount, jt->omFreeProvision); |
| 2181 | popCount += jt->omInUseCount + jt->omFreeCount; |
| 2182 | } |
| 2183 | return popCount; |
| 2184 | } |
| 2185 | |
| 2186 | #ifndef PRODUCT |
| 2187 | |
| 2188 | // Check if monitor belongs to the monitor cache |
| 2189 | // The list is grow-only so it's *relatively* safe to traverse |
| 2190 | // the list of extant blocks without taking a lock. |
| 2191 | |
| 2192 | int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) { |
| 2193 | PaddedEnd<ObjectMonitor> * block = OrderAccess::load_acquire(&gBlockList); |
| 2194 | while (block != NULL) { |
| 2195 | assert(block->object() == CHAINMARKER, "must be a block header" ); |
| 2196 | if (monitor > &block[0] && monitor < &block[_BLOCKSIZE]) { |
| 2197 | address mon = (address)monitor; |
| 2198 | address blk = (address)block; |
| 2199 | size_t diff = mon - blk; |
| 2200 | assert((diff % sizeof(PaddedEnd<ObjectMonitor>)) == 0, "must be aligned" ); |
| 2201 | return 1; |
| 2202 | } |
| 2203 | block = (PaddedEnd<ObjectMonitor> *)block->FreeNext; |
| 2204 | } |
| 2205 | return 0; |
| 2206 | } |
| 2207 | |
| 2208 | #endif |
| 2209 | |