1 | /* |
2 | * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved. |
3 | * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. |
4 | * |
5 | * This code is free software; you can redistribute it and/or modify it |
6 | * under the terms of the GNU General Public License version 2 only, as |
7 | * published by the Free Software Foundation. |
8 | * |
9 | * This code is distributed in the hope that it will be useful, but WITHOUT |
10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
12 | * version 2 for more details (a copy is included in the LICENSE file that |
13 | * accompanied this code). |
14 | * |
15 | * You should have received a copy of the GNU General Public License version |
16 | * 2 along with this work; if not, write to the Free Software Foundation, |
17 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. |
18 | * |
19 | * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA |
20 | * or visit www.oracle.com if you need additional information or have any |
21 | * questions. |
22 | * |
23 | */ |
24 | |
25 | #include "precompiled.hpp" |
26 | #include "classfile/systemDictionary.hpp" |
27 | #include "classfile/vmSymbols.hpp" |
28 | #include "memory/resourceArea.hpp" |
29 | #include "oops/oop.inline.hpp" |
30 | #include "runtime/handles.inline.hpp" |
31 | #include "runtime/interfaceSupport.inline.hpp" |
32 | #include "runtime/java.hpp" |
33 | #include "runtime/javaCalls.hpp" |
34 | #include "runtime/mutex.hpp" |
35 | #include "runtime/mutexLocker.hpp" |
36 | #include "services/lowMemoryDetector.hpp" |
37 | #include "services/management.hpp" |
38 | |
39 | volatile bool LowMemoryDetector::_enabled_for_collected_pools = false; |
40 | volatile jint LowMemoryDetector::_disabled_count = 0; |
41 | |
42 | bool LowMemoryDetector::has_pending_requests() { |
43 | assert(Service_lock->owned_by_self(), "Must own Service_lock" ); |
44 | bool has_requests = false; |
45 | int num_memory_pools = MemoryService::num_memory_pools(); |
46 | for (int i = 0; i < num_memory_pools; i++) { |
47 | MemoryPool* pool = MemoryService::get_memory_pool(i); |
48 | SensorInfo* sensor = pool->usage_sensor(); |
49 | if (sensor != NULL) { |
50 | has_requests = has_requests || sensor->has_pending_requests(); |
51 | } |
52 | |
53 | SensorInfo* gc_sensor = pool->gc_usage_sensor(); |
54 | if (gc_sensor != NULL) { |
55 | has_requests = has_requests || gc_sensor->has_pending_requests(); |
56 | } |
57 | } |
58 | return has_requests; |
59 | } |
60 | |
61 | void LowMemoryDetector::process_sensor_changes(TRAPS) { |
62 | ResourceMark rm(THREAD); |
63 | HandleMark hm(THREAD); |
64 | |
65 | // No need to hold Service_lock to call out to Java |
66 | int num_memory_pools = MemoryService::num_memory_pools(); |
67 | for (int i = 0; i < num_memory_pools; i++) { |
68 | MemoryPool* pool = MemoryService::get_memory_pool(i); |
69 | SensorInfo* sensor = pool->usage_sensor(); |
70 | SensorInfo* gc_sensor = pool->gc_usage_sensor(); |
71 | if (sensor != NULL && sensor->has_pending_requests()) { |
72 | sensor->process_pending_requests(CHECK); |
73 | } |
74 | if (gc_sensor != NULL && gc_sensor->has_pending_requests()) { |
75 | gc_sensor->process_pending_requests(CHECK); |
76 | } |
77 | } |
78 | } |
79 | |
80 | // This method could be called from any Java threads |
81 | // and also VMThread. |
82 | void LowMemoryDetector::detect_low_memory() { |
83 | MutexLocker ml(Service_lock, Mutex::_no_safepoint_check_flag); |
84 | |
85 | bool has_pending_requests = false; |
86 | int num_memory_pools = MemoryService::num_memory_pools(); |
87 | for (int i = 0; i < num_memory_pools; i++) { |
88 | MemoryPool* pool = MemoryService::get_memory_pool(i); |
89 | SensorInfo* sensor = pool->usage_sensor(); |
90 | if (sensor != NULL && |
91 | pool->usage_threshold()->is_high_threshold_supported() && |
92 | pool->usage_threshold()->high_threshold() != 0) { |
93 | MemoryUsage usage = pool->get_memory_usage(); |
94 | sensor->set_gauge_sensor_level(usage, |
95 | pool->usage_threshold()); |
96 | has_pending_requests = has_pending_requests || sensor->has_pending_requests(); |
97 | } |
98 | } |
99 | |
100 | if (has_pending_requests) { |
101 | Service_lock->notify_all(); |
102 | } |
103 | } |
104 | |
105 | // This method could be called from any Java threads |
106 | // and also VMThread. |
107 | void LowMemoryDetector::detect_low_memory(MemoryPool* pool) { |
108 | SensorInfo* sensor = pool->usage_sensor(); |
109 | if (sensor == NULL || |
110 | !pool->usage_threshold()->is_high_threshold_supported() || |
111 | pool->usage_threshold()->high_threshold() == 0) { |
112 | return; |
113 | } |
114 | |
115 | { |
116 | MutexLocker ml(Service_lock, Mutex::_no_safepoint_check_flag); |
117 | |
118 | MemoryUsage usage = pool->get_memory_usage(); |
119 | sensor->set_gauge_sensor_level(usage, |
120 | pool->usage_threshold()); |
121 | if (sensor->has_pending_requests()) { |
122 | // notify sensor state update |
123 | Service_lock->notify_all(); |
124 | } |
125 | } |
126 | } |
127 | |
128 | // Only called by VMThread at GC time |
129 | void LowMemoryDetector::detect_after_gc_memory(MemoryPool* pool) { |
130 | SensorInfo* sensor = pool->gc_usage_sensor(); |
131 | if (sensor == NULL || |
132 | !pool->gc_usage_threshold()->is_high_threshold_supported() || |
133 | pool->gc_usage_threshold()->high_threshold() == 0) { |
134 | return; |
135 | } |
136 | |
137 | { |
138 | MutexLocker ml(Service_lock, Mutex::_no_safepoint_check_flag); |
139 | |
140 | MemoryUsage usage = pool->get_last_collection_usage(); |
141 | sensor->set_counter_sensor_level(usage, pool->gc_usage_threshold()); |
142 | |
143 | if (sensor->has_pending_requests()) { |
144 | // notify sensor state update |
145 | Service_lock->notify_all(); |
146 | } |
147 | } |
148 | } |
149 | |
150 | // recompute enabled flag |
151 | void LowMemoryDetector::recompute_enabled_for_collected_pools() { |
152 | bool enabled = false; |
153 | int num_memory_pools = MemoryService::num_memory_pools(); |
154 | for (int i=0; i<num_memory_pools; i++) { |
155 | MemoryPool* pool = MemoryService::get_memory_pool(i); |
156 | if (pool->is_collected_pool() && is_enabled(pool)) { |
157 | enabled = true; |
158 | break; |
159 | } |
160 | } |
161 | _enabled_for_collected_pools = enabled; |
162 | } |
163 | |
164 | SensorInfo::SensorInfo() { |
165 | _sensor_obj = NULL; |
166 | _sensor_on = false; |
167 | _sensor_count = 0; |
168 | _pending_trigger_count = 0; |
169 | _pending_clear_count = 0; |
170 | } |
171 | |
172 | // When this method is used, the memory usage is monitored |
173 | // as a gauge attribute. Sensor notifications (trigger or |
174 | // clear) is only emitted at the first time it crosses |
175 | // a threshold. |
176 | // |
177 | // High and low thresholds are designed to provide a |
178 | // hysteresis mechanism to avoid repeated triggering |
179 | // of notifications when the attribute value makes small oscillations |
180 | // around the high or low threshold value. |
181 | // |
182 | // The sensor will be triggered if: |
183 | // (1) the usage is crossing above the high threshold and |
184 | // the sensor is currently off and no pending |
185 | // trigger requests; or |
186 | // (2) the usage is crossing above the high threshold and |
187 | // the sensor will be off (i.e. sensor is currently on |
188 | // and has pending clear requests). |
189 | // |
190 | // Subsequent crossings of the high threshold value do not cause |
191 | // any triggers unless the usage becomes less than the low threshold. |
192 | // |
193 | // The sensor will be cleared if: |
194 | // (1) the usage is crossing below the low threshold and |
195 | // the sensor is currently on and no pending |
196 | // clear requests; or |
197 | // (2) the usage is crossing below the low threshold and |
198 | // the sensor will be on (i.e. sensor is currently off |
199 | // and has pending trigger requests). |
200 | // |
201 | // Subsequent crossings of the low threshold value do not cause |
202 | // any clears unless the usage becomes greater than or equal |
203 | // to the high threshold. |
204 | // |
205 | // If the current level is between high and low threshold, no change. |
206 | // |
207 | void SensorInfo::set_gauge_sensor_level(MemoryUsage usage, ThresholdSupport* high_low_threshold) { |
208 | assert(Service_lock->owned_by_self(), "Must own Service_lock" ); |
209 | assert(high_low_threshold->is_high_threshold_supported(), "just checking" ); |
210 | |
211 | bool is_over_high = high_low_threshold->is_high_threshold_crossed(usage); |
212 | bool is_below_low = high_low_threshold->is_low_threshold_crossed(usage); |
213 | |
214 | assert(!(is_over_high && is_below_low), "Can't be both true" ); |
215 | |
216 | if (is_over_high && |
217 | ((!_sensor_on && _pending_trigger_count == 0) || |
218 | _pending_clear_count > 0)) { |
219 | // low memory detected and need to increment the trigger pending count |
220 | // if the sensor is off or will be off due to _pending_clear_ > 0 |
221 | // Request to trigger the sensor |
222 | _pending_trigger_count++; |
223 | _usage = usage; |
224 | |
225 | if (_pending_clear_count > 0) { |
226 | // non-zero pending clear requests indicates that there are |
227 | // pending requests to clear this sensor. |
228 | // This trigger request needs to clear this clear count |
229 | // since the resulting sensor flag should be on. |
230 | _pending_clear_count = 0; |
231 | } |
232 | } else if (is_below_low && |
233 | ((_sensor_on && _pending_clear_count == 0) || |
234 | (_pending_trigger_count > 0 && _pending_clear_count == 0))) { |
235 | // memory usage returns below the threshold |
236 | // Request to clear the sensor if the sensor is on or will be on due to |
237 | // _pending_trigger_count > 0 and also no clear request |
238 | _pending_clear_count++; |
239 | } |
240 | } |
241 | |
242 | // When this method is used, the memory usage is monitored as a |
243 | // simple counter attribute. The sensor will be triggered |
244 | // whenever the usage is crossing the threshold to keep track |
245 | // of the number of times the VM detects such a condition occurs. |
246 | // |
247 | // High and low thresholds are designed to provide a |
248 | // hysteresis mechanism to avoid repeated triggering |
249 | // of notifications when the attribute value makes small oscillations |
250 | // around the high or low threshold value. |
251 | // |
252 | // The sensor will be triggered if: |
253 | // - the usage is crossing above the high threshold regardless |
254 | // of the current sensor state. |
255 | // |
256 | // The sensor will be cleared if: |
257 | // (1) the usage is crossing below the low threshold and |
258 | // the sensor is currently on; or |
259 | // (2) the usage is crossing below the low threshold and |
260 | // the sensor will be on (i.e. sensor is currently off |
261 | // and has pending trigger requests). |
262 | void SensorInfo::set_counter_sensor_level(MemoryUsage usage, ThresholdSupport* counter_threshold) { |
263 | assert(Service_lock->owned_by_self(), "Must own Service_lock" ); |
264 | assert(counter_threshold->is_high_threshold_supported(), "just checking" ); |
265 | |
266 | bool is_over_high = counter_threshold->is_high_threshold_crossed(usage); |
267 | bool is_below_low = counter_threshold->is_low_threshold_crossed(usage); |
268 | |
269 | assert(!(is_over_high && is_below_low), "Can't be both true" ); |
270 | |
271 | if (is_over_high) { |
272 | _pending_trigger_count++; |
273 | _usage = usage; |
274 | _pending_clear_count = 0; |
275 | } else if (is_below_low && (_sensor_on || _pending_trigger_count > 0)) { |
276 | _pending_clear_count++; |
277 | } |
278 | } |
279 | |
280 | void SensorInfo::oops_do(OopClosure* f) { |
281 | f->do_oop((oop*) &_sensor_obj); |
282 | } |
283 | |
284 | void SensorInfo::process_pending_requests(TRAPS) { |
285 | int pending_count = pending_trigger_count(); |
286 | if (pending_clear_count() > 0) { |
287 | clear(pending_count, CHECK); |
288 | } else { |
289 | trigger(pending_count, CHECK); |
290 | } |
291 | |
292 | } |
293 | |
294 | void SensorInfo::trigger(int count, TRAPS) { |
295 | assert(count <= _pending_trigger_count, "just checking" ); |
296 | if (_sensor_obj != NULL) { |
297 | InstanceKlass* sensorKlass = Management::sun_management_Sensor_klass(CHECK); |
298 | Handle sensor_h(THREAD, _sensor_obj); |
299 | |
300 | Symbol* trigger_method_signature; |
301 | |
302 | JavaValue result(T_VOID); |
303 | JavaCallArguments args(sensor_h); |
304 | args.push_int((int) count); |
305 | |
306 | Handle usage_h = MemoryService::create_MemoryUsage_obj(_usage, THREAD); |
307 | // Call Sensor::trigger(int, MemoryUsage) to send notification to listeners. |
308 | // When OOME occurs and fails to allocate MemoryUsage object, call |
309 | // Sensor::trigger(int) instead. The pending request will be processed |
310 | // but no notification will be sent. |
311 | if (HAS_PENDING_EXCEPTION) { |
312 | assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOME here" ); |
313 | CLEAR_PENDING_EXCEPTION; |
314 | trigger_method_signature = vmSymbols::int_void_signature(); |
315 | } else { |
316 | trigger_method_signature = vmSymbols::trigger_method_signature(); |
317 | args.push_oop(usage_h); |
318 | } |
319 | |
320 | JavaCalls::call_virtual(&result, |
321 | sensorKlass, |
322 | vmSymbols::trigger_name(), |
323 | trigger_method_signature, |
324 | &args, |
325 | THREAD); |
326 | |
327 | if (HAS_PENDING_EXCEPTION) { |
328 | // We just clear the OOM pending exception that we might have encountered |
329 | // in Java's tiggerAction(), and continue with updating the counters since |
330 | // the Java counters have been updated too. |
331 | assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOME here" ); |
332 | CLEAR_PENDING_EXCEPTION; |
333 | } |
334 | } |
335 | |
336 | { |
337 | // Holds Service_lock and update the sensor state |
338 | MutexLocker ml(Service_lock, Mutex::_no_safepoint_check_flag); |
339 | assert(_pending_trigger_count > 0, "Must have pending trigger" ); |
340 | _sensor_on = true; |
341 | _sensor_count += count; |
342 | _pending_trigger_count = _pending_trigger_count - count; |
343 | } |
344 | } |
345 | |
346 | void SensorInfo::clear(int count, TRAPS) { |
347 | { |
348 | // Holds Service_lock and update the sensor state |
349 | MutexLocker ml(Service_lock, Mutex::_no_safepoint_check_flag); |
350 | if (_pending_clear_count == 0) { |
351 | // Bail out if we lost a race to set_*_sensor_level() which may have |
352 | // reactivated the sensor in the meantime because it was triggered again. |
353 | return; |
354 | } |
355 | _sensor_on = false; |
356 | _sensor_count += count; |
357 | _pending_clear_count = 0; |
358 | _pending_trigger_count = _pending_trigger_count - count; |
359 | } |
360 | |
361 | if (_sensor_obj != NULL) { |
362 | InstanceKlass* sensorKlass = Management::sun_management_Sensor_klass(CHECK); |
363 | Handle sensor(THREAD, _sensor_obj); |
364 | |
365 | JavaValue result(T_VOID); |
366 | JavaCallArguments args(sensor); |
367 | args.push_int((int) count); |
368 | JavaCalls::call_virtual(&result, |
369 | sensorKlass, |
370 | vmSymbols::clear_name(), |
371 | vmSymbols::int_void_signature(), |
372 | &args, |
373 | CHECK); |
374 | } |
375 | } |
376 | |
377 | //-------------------------------------------------------------- |
378 | // Non-product code |
379 | |
380 | #ifndef PRODUCT |
381 | void SensorInfo::print() { |
382 | tty->print_cr("%s count = " SIZE_FORMAT " pending_triggers = %d pending_clears = %d" , |
383 | (_sensor_on ? "on" : "off" ), |
384 | _sensor_count, _pending_trigger_count, _pending_clear_count); |
385 | } |
386 | |
387 | #endif // PRODUCT |
388 | |