1 | //===- llvm/ADT/APFloat.h - Arbitrary Precision Floating Point ---*- C++ -*-==// |
2 | // |
3 | // The LLVM Compiler Infrastructure |
4 | // |
5 | // This file is distributed under the University of Illinois Open Source |
6 | // License. See LICENSE.TXT for details. |
7 | // |
8 | //===----------------------------------------------------------------------===// |
9 | /// |
10 | /// \file |
11 | /// \brief |
12 | /// This file declares a class to represent arbitrary precision floating point |
13 | /// values and provide a variety of arithmetic operations on them. |
14 | /// |
15 | //===----------------------------------------------------------------------===// |
16 | |
17 | #ifndef LLVM_ADT_APFLOAT_H |
18 | #define LLVM_ADT_APFLOAT_H |
19 | |
20 | #include "llvm/ADT/APInt.h" |
21 | #include "llvm/ADT/ArrayRef.h" |
22 | #include "llvm/Support/ErrorHandling.h" |
23 | #include <memory> |
24 | |
25 | #define APFLOAT_DISPATCH_ON_SEMANTICS(METHOD_CALL) \ |
26 | do { \ |
27 | if (usesLayout<IEEEFloat>(getSemantics())) \ |
28 | return U.IEEE.METHOD_CALL; \ |
29 | if (usesLayout<DoubleAPFloat>(getSemantics())) \ |
30 | return U.Double.METHOD_CALL; \ |
31 | llvm_unreachable("Unexpected semantics"); \ |
32 | } while (false) |
33 | |
34 | namespace llvm { |
35 | |
36 | struct fltSemantics; |
37 | class APSInt; |
38 | class StringRef; |
39 | class APFloat; |
40 | class raw_ostream; |
41 | |
42 | template <typename T> class SmallVectorImpl; |
43 | |
44 | /// Enum that represents what fraction of the LSB truncated bits of an fp number |
45 | /// represent. |
46 | /// |
47 | /// This essentially combines the roles of guard and sticky bits. |
48 | enum lostFraction { // Example of truncated bits: |
49 | lfExactlyZero, // 000000 |
50 | lfLessThanHalf, // 0xxxxx x's not all zero |
51 | lfExactlyHalf, // 100000 |
52 | lfMoreThanHalf // 1xxxxx x's not all zero |
53 | }; |
54 | |
55 | /// A self-contained host- and target-independent arbitrary-precision |
56 | /// floating-point software implementation. |
57 | /// |
58 | /// APFloat uses bignum integer arithmetic as provided by static functions in |
59 | /// the APInt class. The library will work with bignum integers whose parts are |
60 | /// any unsigned type at least 16 bits wide, but 64 bits is recommended. |
61 | /// |
62 | /// Written for clarity rather than speed, in particular with a view to use in |
63 | /// the front-end of a cross compiler so that target arithmetic can be correctly |
64 | /// performed on the host. Performance should nonetheless be reasonable, |
65 | /// particularly for its intended use. It may be useful as a base |
66 | /// implementation for a run-time library during development of a faster |
67 | /// target-specific one. |
68 | /// |
69 | /// All 5 rounding modes in the IEEE-754R draft are handled correctly for all |
70 | /// implemented operations. Currently implemented operations are add, subtract, |
71 | /// multiply, divide, fused-multiply-add, conversion-to-float, |
72 | /// conversion-to-integer and conversion-from-integer. New rounding modes |
73 | /// (e.g. away from zero) can be added with three or four lines of code. |
74 | /// |
75 | /// Four formats are built-in: IEEE single precision, double precision, |
76 | /// quadruple precision, and x87 80-bit extended double (when operating with |
77 | /// full extended precision). Adding a new format that obeys IEEE semantics |
78 | /// only requires adding two lines of code: a declaration and definition of the |
79 | /// format. |
80 | /// |
81 | /// All operations return the status of that operation as an exception bit-mask, |
82 | /// so multiple operations can be done consecutively with their results or-ed |
83 | /// together. The returned status can be useful for compiler diagnostics; e.g., |
84 | /// inexact, underflow and overflow can be easily diagnosed on constant folding, |
85 | /// and compiler optimizers can determine what exceptions would be raised by |
86 | /// folding operations and optimize, or perhaps not optimize, accordingly. |
87 | /// |
88 | /// At present, underflow tininess is detected after rounding; it should be |
89 | /// straight forward to add support for the before-rounding case too. |
90 | /// |
91 | /// The library reads hexadecimal floating point numbers as per C99, and |
92 | /// correctly rounds if necessary according to the specified rounding mode. |
93 | /// Syntax is required to have been validated by the caller. It also converts |
94 | /// floating point numbers to hexadecimal text as per the C99 %a and %A |
95 | /// conversions. The output precision (or alternatively the natural minimal |
96 | /// precision) can be specified; if the requested precision is less than the |
97 | /// natural precision the output is correctly rounded for the specified rounding |
98 | /// mode. |
99 | /// |
100 | /// It also reads decimal floating point numbers and correctly rounds according |
101 | /// to the specified rounding mode. |
102 | /// |
103 | /// Conversion to decimal text is not currently implemented. |
104 | /// |
105 | /// Non-zero finite numbers are represented internally as a sign bit, a 16-bit |
106 | /// signed exponent, and the significand as an array of integer parts. After |
107 | /// normalization of a number of precision P the exponent is within the range of |
108 | /// the format, and if the number is not denormal the P-th bit of the |
109 | /// significand is set as an explicit integer bit. For denormals the most |
110 | /// significant bit is shifted right so that the exponent is maintained at the |
111 | /// format's minimum, so that the smallest denormal has just the least |
112 | /// significant bit of the significand set. The sign of zeroes and infinities |
113 | /// is significant; the exponent and significand of such numbers is not stored, |
114 | /// but has a known implicit (deterministic) value: 0 for the significands, 0 |
115 | /// for zero exponent, all 1 bits for infinity exponent. For NaNs the sign and |
116 | /// significand are deterministic, although not really meaningful, and preserved |
117 | /// in non-conversion operations. The exponent is implicitly all 1 bits. |
118 | /// |
119 | /// APFloat does not provide any exception handling beyond default exception |
120 | /// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause |
121 | /// by encoding Signaling NaNs with the first bit of its trailing significand as |
122 | /// 0. |
123 | /// |
124 | /// TODO |
125 | /// ==== |
126 | /// |
127 | /// Some features that may or may not be worth adding: |
128 | /// |
129 | /// Binary to decimal conversion (hard). |
130 | /// |
131 | /// Optional ability to detect underflow tininess before rounding. |
132 | /// |
133 | /// New formats: x87 in single and double precision mode (IEEE apart from |
134 | /// extended exponent range) (hard). |
135 | /// |
136 | /// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward. |
137 | /// |
138 | |
139 | // This is the common type definitions shared by APFloat and its internal |
140 | // implementation classes. This struct should not define any non-static data |
141 | // members. |
142 | struct APFloatBase { |
143 | typedef APInt::WordType integerPart; |
144 | static const unsigned integerPartWidth = APInt::APINT_BITS_PER_WORD; |
145 | |
146 | /// A signed type to represent a floating point numbers unbiased exponent. |
147 | typedef signed short ExponentType; |
148 | |
149 | /// \name Floating Point Semantics. |
150 | /// @{ |
151 | |
152 | static const fltSemantics &IEEEhalf() LLVM_READNONE; |
153 | static const fltSemantics &IEEEsingle() LLVM_READNONE; |
154 | static const fltSemantics &IEEEdouble() LLVM_READNONE; |
155 | static const fltSemantics &IEEEquad() LLVM_READNONE; |
156 | static const fltSemantics &PPCDoubleDouble() LLVM_READNONE; |
157 | static const fltSemantics &x87DoubleExtended() LLVM_READNONE; |
158 | |
159 | /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with |
160 | /// anything real. |
161 | static const fltSemantics &Bogus() LLVM_READNONE; |
162 | |
163 | /// @} |
164 | |
165 | /// IEEE-754R 5.11: Floating Point Comparison Relations. |
166 | enum cmpResult { |
167 | cmpLessThan, |
168 | cmpEqual, |
169 | cmpGreaterThan, |
170 | cmpUnordered |
171 | }; |
172 | |
173 | /// IEEE-754R 4.3: Rounding-direction attributes. |
174 | enum roundingMode { |
175 | rmNearestTiesToEven, |
176 | rmTowardPositive, |
177 | rmTowardNegative, |
178 | rmTowardZero, |
179 | rmNearestTiesToAway |
180 | }; |
181 | |
182 | /// IEEE-754R 7: Default exception handling. |
183 | /// |
184 | /// opUnderflow or opOverflow are always returned or-ed with opInexact. |
185 | enum opStatus { |
186 | opOK = 0x00, |
187 | opInvalidOp = 0x01, |
188 | opDivByZero = 0x02, |
189 | opOverflow = 0x04, |
190 | opUnderflow = 0x08, |
191 | opInexact = 0x10 |
192 | }; |
193 | |
194 | /// Category of internally-represented number. |
195 | enum fltCategory { |
196 | fcInfinity, |
197 | fcNaN, |
198 | fcNormal, |
199 | fcZero |
200 | }; |
201 | |
202 | /// Convenience enum used to construct an uninitialized APFloat. |
203 | enum uninitializedTag { |
204 | uninitialized |
205 | }; |
206 | |
207 | /// Enumeration of \c ilogb error results. |
208 | enum IlogbErrorKinds { |
209 | IEK_Zero = INT_MIN + 1, |
210 | IEK_NaN = INT_MIN, |
211 | IEK_Inf = INT_MAX |
212 | }; |
213 | |
214 | static unsigned int semanticsPrecision(const fltSemantics &); |
215 | static ExponentType semanticsMinExponent(const fltSemantics &); |
216 | static ExponentType semanticsMaxExponent(const fltSemantics &); |
217 | static unsigned int semanticsSizeInBits(const fltSemantics &); |
218 | |
219 | /// Returns the size of the floating point number (in bits) in the given |
220 | /// semantics. |
221 | static unsigned getSizeInBits(const fltSemantics &Sem); |
222 | }; |
223 | |
224 | namespace detail { |
225 | |
226 | class IEEEFloat final : public APFloatBase { |
227 | public: |
228 | /// \name Constructors |
229 | /// @{ |
230 | |
231 | IEEEFloat(const fltSemantics &); // Default construct to 0.0 |
232 | IEEEFloat(const fltSemantics &, integerPart); |
233 | IEEEFloat(const fltSemantics &, uninitializedTag); |
234 | IEEEFloat(const fltSemantics &, const APInt &); |
235 | explicit IEEEFloat(double d); |
236 | explicit IEEEFloat(float f); |
237 | IEEEFloat(const IEEEFloat &); |
238 | IEEEFloat(IEEEFloat &&); |
239 | ~IEEEFloat(); |
240 | |
241 | /// @} |
242 | |
243 | /// Returns whether this instance allocated memory. |
244 | bool needsCleanup() const { return partCount() > 1; } |
245 | |
246 | /// \name Convenience "constructors" |
247 | /// @{ |
248 | |
249 | /// @} |
250 | |
251 | /// \name Arithmetic |
252 | /// @{ |
253 | |
254 | opStatus add(const IEEEFloat &, roundingMode); |
255 | opStatus subtract(const IEEEFloat &, roundingMode); |
256 | opStatus multiply(const IEEEFloat &, roundingMode); |
257 | opStatus divide(const IEEEFloat &, roundingMode); |
258 | /// IEEE remainder. |
259 | opStatus remainder(const IEEEFloat &); |
260 | /// C fmod, or llvm frem. |
261 | opStatus mod(const IEEEFloat &); |
262 | opStatus fusedMultiplyAdd(const IEEEFloat &, const IEEEFloat &, roundingMode); |
263 | opStatus roundToIntegral(roundingMode); |
264 | /// IEEE-754R 5.3.1: nextUp/nextDown. |
265 | opStatus next(bool nextDown); |
266 | |
267 | /// @} |
268 | |
269 | /// \name Sign operations. |
270 | /// @{ |
271 | |
272 | void changeSign(); |
273 | |
274 | /// @} |
275 | |
276 | /// \name Conversions |
277 | /// @{ |
278 | |
279 | opStatus convert(const fltSemantics &, roundingMode, bool *); |
280 | opStatus convertToInteger(MutableArrayRef<integerPart>, unsigned int, bool, |
281 | roundingMode, bool *) const; |
282 | opStatus convertFromAPInt(const APInt &, bool, roundingMode); |
283 | opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int, |
284 | bool, roundingMode); |
285 | opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int, |
286 | bool, roundingMode); |
287 | opStatus convertFromString(StringRef, roundingMode); |
288 | APInt bitcastToAPInt() const; |
289 | double convertToDouble() const; |
290 | float convertToFloat() const; |
291 | |
292 | /// @} |
293 | |
294 | /// The definition of equality is not straightforward for floating point, so |
295 | /// we won't use operator==. Use one of the following, or write whatever it |
296 | /// is you really mean. |
297 | bool operator==(const IEEEFloat &) const = delete; |
298 | |
299 | /// IEEE comparison with another floating point number (NaNs compare |
300 | /// unordered, 0==-0). |
301 | cmpResult compare(const IEEEFloat &) const; |
302 | |
303 | /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0). |
304 | bool bitwiseIsEqual(const IEEEFloat &) const; |
305 | |
306 | /// Write out a hexadecimal representation of the floating point value to DST, |
307 | /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d. |
308 | /// Return the number of characters written, excluding the terminating NUL. |
309 | unsigned int convertToHexString(char *dst, unsigned int hexDigits, |
310 | bool upperCase, roundingMode) const; |
311 | |
312 | /// \name IEEE-754R 5.7.2 General operations. |
313 | /// @{ |
314 | |
315 | /// IEEE-754R isSignMinus: Returns true if and only if the current value is |
316 | /// negative. |
317 | /// |
318 | /// This applies to zeros and NaNs as well. |
319 | bool isNegative() const { return sign; } |
320 | |
321 | /// IEEE-754R isNormal: Returns true if and only if the current value is normal. |
322 | /// |
323 | /// This implies that the current value of the float is not zero, subnormal, |
324 | /// infinite, or NaN following the definition of normality from IEEE-754R. |
325 | bool isNormal() const { return !isDenormal() && isFiniteNonZero(); } |
326 | |
327 | /// Returns true if and only if the current value is zero, subnormal, or |
328 | /// normal. |
329 | /// |
330 | /// This means that the value is not infinite or NaN. |
331 | bool isFinite() const { return !isNaN() && !isInfinity(); } |
332 | |
333 | /// Returns true if and only if the float is plus or minus zero. |
334 | bool isZero() const { return category == fcZero; } |
335 | |
336 | /// IEEE-754R isSubnormal(): Returns true if and only if the float is a |
337 | /// denormal. |
338 | bool isDenormal() const; |
339 | |
340 | /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity. |
341 | bool isInfinity() const { return category == fcInfinity; } |
342 | |
343 | /// Returns true if and only if the float is a quiet or signaling NaN. |
344 | bool isNaN() const { return category == fcNaN; } |
345 | |
346 | /// Returns true if and only if the float is a signaling NaN. |
347 | bool isSignaling() const; |
348 | |
349 | /// @} |
350 | |
351 | /// \name Simple Queries |
352 | /// @{ |
353 | |
354 | fltCategory getCategory() const { return category; } |
355 | const fltSemantics &getSemantics() const { return *semantics; } |
356 | bool isNonZero() const { return category != fcZero; } |
357 | bool isFiniteNonZero() const { return isFinite() && !isZero(); } |
358 | bool isPosZero() const { return isZero() && !isNegative(); } |
359 | bool isNegZero() const { return isZero() && isNegative(); } |
360 | |
361 | /// Returns true if and only if the number has the smallest possible non-zero |
362 | /// magnitude in the current semantics. |
363 | bool isSmallest() const; |
364 | |
365 | /// Returns true if and only if the number has the largest possible finite |
366 | /// magnitude in the current semantics. |
367 | bool isLargest() const; |
368 | |
369 | /// Returns true if and only if the number is an exact integer. |
370 | bool isInteger() const; |
371 | |
372 | /// @} |
373 | |
374 | IEEEFloat &operator=(const IEEEFloat &); |
375 | IEEEFloat &operator=(IEEEFloat &&); |
376 | |
377 | /// Overload to compute a hash code for an APFloat value. |
378 | /// |
379 | /// Note that the use of hash codes for floating point values is in general |
380 | /// frought with peril. Equality is hard to define for these values. For |
381 | /// example, should negative and positive zero hash to different codes? Are |
382 | /// they equal or not? This hash value implementation specifically |
383 | /// emphasizes producing different codes for different inputs in order to |
384 | /// be used in canonicalization and memoization. As such, equality is |
385 | /// bitwiseIsEqual, and 0 != -0. |
386 | friend hash_code hash_value(const IEEEFloat &Arg); |
387 | |
388 | /// Converts this value into a decimal string. |
389 | /// |
390 | /// \param FormatPrecision The maximum number of digits of |
391 | /// precision to output. If there are fewer digits available, |
392 | /// zero padding will not be used unless the value is |
393 | /// integral and small enough to be expressed in |
394 | /// FormatPrecision digits. 0 means to use the natural |
395 | /// precision of the number. |
396 | /// \param FormatMaxPadding The maximum number of zeros to |
397 | /// consider inserting before falling back to scientific |
398 | /// notation. 0 means to always use scientific notation. |
399 | /// |
400 | /// \param TruncateZero Indicate whether to remove the trailing zero in |
401 | /// fraction part or not. Also setting this parameter to false forcing |
402 | /// producing of output more similar to default printf behavior. |
403 | /// Specifically the lower e is used as exponent delimiter and exponent |
404 | /// always contains no less than two digits. |
405 | /// |
406 | /// Number Precision MaxPadding Result |
407 | /// ------ --------- ---------- ------ |
408 | /// 1.01E+4 5 2 10100 |
409 | /// 1.01E+4 4 2 1.01E+4 |
410 | /// 1.01E+4 5 1 1.01E+4 |
411 | /// 1.01E-2 5 2 0.0101 |
412 | /// 1.01E-2 4 2 0.0101 |
413 | /// 1.01E-2 4 1 1.01E-2 |
414 | void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0, |
415 | unsigned FormatMaxPadding = 3, bool TruncateZero = true) const; |
416 | |
417 | /// If this value has an exact multiplicative inverse, store it in inv and |
418 | /// return true. |
419 | bool getExactInverse(APFloat *inv) const; |
420 | |
421 | /// Returns the exponent of the internal representation of the APFloat. |
422 | /// |
423 | /// Because the radix of APFloat is 2, this is equivalent to floor(log2(x)). |
424 | /// For special APFloat values, this returns special error codes: |
425 | /// |
426 | /// NaN -> \c IEK_NaN |
427 | /// 0 -> \c IEK_Zero |
428 | /// Inf -> \c IEK_Inf |
429 | /// |
430 | friend int ilogb(const IEEEFloat &Arg); |
431 | |
432 | /// Returns: X * 2^Exp for integral exponents. |
433 | friend IEEEFloat scalbn(IEEEFloat X, int Exp, roundingMode); |
434 | |
435 | friend IEEEFloat frexp(const IEEEFloat &X, int &Exp, roundingMode); |
436 | |
437 | /// \name Special value setters. |
438 | /// @{ |
439 | |
440 | void makeLargest(bool Neg = false); |
441 | void makeSmallest(bool Neg = false); |
442 | void makeNaN(bool SNaN = false, bool Neg = false, |
443 | const APInt *fill = nullptr); |
444 | void makeInf(bool Neg = false); |
445 | void makeZero(bool Neg = false); |
446 | void makeQuiet(); |
447 | |
448 | /// Returns the smallest (by magnitude) normalized finite number in the given |
449 | /// semantics. |
450 | /// |
451 | /// \param Negative - True iff the number should be negative |
452 | void makeSmallestNormalized(bool Negative = false); |
453 | |
454 | /// @} |
455 | |
456 | cmpResult compareAbsoluteValue(const IEEEFloat &) const; |
457 | |
458 | private: |
459 | /// \name Simple Queries |
460 | /// @{ |
461 | |
462 | integerPart *significandParts(); |
463 | const integerPart *significandParts() const; |
464 | unsigned int partCount() const; |
465 | |
466 | /// @} |
467 | |
468 | /// \name Significand operations. |
469 | /// @{ |
470 | |
471 | integerPart addSignificand(const IEEEFloat &); |
472 | integerPart subtractSignificand(const IEEEFloat &, integerPart); |
473 | lostFraction addOrSubtractSignificand(const IEEEFloat &, bool subtract); |
474 | lostFraction multiplySignificand(const IEEEFloat &, const IEEEFloat *); |
475 | lostFraction divideSignificand(const IEEEFloat &); |
476 | void incrementSignificand(); |
477 | void initialize(const fltSemantics *); |
478 | void shiftSignificandLeft(unsigned int); |
479 | lostFraction shiftSignificandRight(unsigned int); |
480 | unsigned int significandLSB() const; |
481 | unsigned int significandMSB() const; |
482 | void zeroSignificand(); |
483 | /// Return true if the significand excluding the integral bit is all ones. |
484 | bool isSignificandAllOnes() const; |
485 | /// Return true if the significand excluding the integral bit is all zeros. |
486 | bool isSignificandAllZeros() const; |
487 | |
488 | /// @} |
489 | |
490 | /// \name Arithmetic on special values. |
491 | /// @{ |
492 | |
493 | opStatus addOrSubtractSpecials(const IEEEFloat &, bool subtract); |
494 | opStatus divideSpecials(const IEEEFloat &); |
495 | opStatus multiplySpecials(const IEEEFloat &); |
496 | opStatus modSpecials(const IEEEFloat &); |
497 | |
498 | /// @} |
499 | |
500 | /// \name Miscellany |
501 | /// @{ |
502 | |
503 | bool convertFromStringSpecials(StringRef str); |
504 | opStatus normalize(roundingMode, lostFraction); |
505 | opStatus addOrSubtract(const IEEEFloat &, roundingMode, bool subtract); |
506 | opStatus handleOverflow(roundingMode); |
507 | bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const; |
508 | opStatus convertToSignExtendedInteger(MutableArrayRef<integerPart>, |
509 | unsigned int, bool, roundingMode, |
510 | bool *) const; |
511 | opStatus convertFromUnsignedParts(const integerPart *, unsigned int, |
512 | roundingMode); |
513 | opStatus convertFromHexadecimalString(StringRef, roundingMode); |
514 | opStatus convertFromDecimalString(StringRef, roundingMode); |
515 | char *convertNormalToHexString(char *, unsigned int, bool, |
516 | roundingMode) const; |
517 | opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int, |
518 | roundingMode); |
519 | |
520 | /// @} |
521 | |
522 | APInt convertHalfAPFloatToAPInt() const; |
523 | APInt convertFloatAPFloatToAPInt() const; |
524 | APInt convertDoubleAPFloatToAPInt() const; |
525 | APInt convertQuadrupleAPFloatToAPInt() const; |
526 | APInt convertF80LongDoubleAPFloatToAPInt() const; |
527 | APInt convertPPCDoubleDoubleAPFloatToAPInt() const; |
528 | void initFromAPInt(const fltSemantics *Sem, const APInt &api); |
529 | void initFromHalfAPInt(const APInt &api); |
530 | void initFromFloatAPInt(const APInt &api); |
531 | void initFromDoubleAPInt(const APInt &api); |
532 | void initFromQuadrupleAPInt(const APInt &api); |
533 | void initFromF80LongDoubleAPInt(const APInt &api); |
534 | void initFromPPCDoubleDoubleAPInt(const APInt &api); |
535 | |
536 | void assign(const IEEEFloat &); |
537 | void copySignificand(const IEEEFloat &); |
538 | void freeSignificand(); |
539 | |
540 | /// Note: this must be the first data member. |
541 | /// The semantics that this value obeys. |
542 | const fltSemantics *semantics; |
543 | |
544 | /// A binary fraction with an explicit integer bit. |
545 | /// |
546 | /// The significand must be at least one bit wider than the target precision. |
547 | union Significand { |
548 | integerPart part; |
549 | integerPart *parts; |
550 | } significand; |
551 | |
552 | /// The signed unbiased exponent of the value. |
553 | ExponentType exponent; |
554 | |
555 | /// What kind of floating point number this is. |
556 | /// |
557 | /// Only 2 bits are required, but VisualStudio incorrectly sign extends it. |
558 | /// Using the extra bit keeps it from failing under VisualStudio. |
559 | fltCategory category : 3; |
560 | |
561 | /// Sign bit of the number. |
562 | unsigned int sign : 1; |
563 | }; |
564 | |
565 | hash_code hash_value(const IEEEFloat &Arg); |
566 | int ilogb(const IEEEFloat &Arg); |
567 | IEEEFloat scalbn(IEEEFloat X, int Exp, IEEEFloat::roundingMode); |
568 | IEEEFloat frexp(const IEEEFloat &Val, int &Exp, IEEEFloat::roundingMode RM); |
569 | |
570 | // This mode implements more precise float in terms of two APFloats. |
571 | // The interface and layout is designed for arbitray underlying semantics, |
572 | // though currently only PPCDoubleDouble semantics are supported, whose |
573 | // corresponding underlying semantics are IEEEdouble. |
574 | class DoubleAPFloat final : public APFloatBase { |
575 | // Note: this must be the first data member. |
576 | const fltSemantics *Semantics; |
577 | std::unique_ptr<APFloat[]> Floats; |
578 | |
579 | opStatus addImpl(const APFloat &a, const APFloat &aa, const APFloat &c, |
580 | const APFloat &cc, roundingMode RM); |
581 | |
582 | opStatus addWithSpecial(const DoubleAPFloat &LHS, const DoubleAPFloat &RHS, |
583 | DoubleAPFloat &Out, roundingMode RM); |
584 | |
585 | public: |
586 | DoubleAPFloat(const fltSemantics &S); |
587 | DoubleAPFloat(const fltSemantics &S, uninitializedTag); |
588 | DoubleAPFloat(const fltSemantics &S, integerPart); |
589 | DoubleAPFloat(const fltSemantics &S, const APInt &I); |
590 | DoubleAPFloat(const fltSemantics &S, APFloat &&First, APFloat &&Second); |
591 | DoubleAPFloat(const DoubleAPFloat &RHS); |
592 | DoubleAPFloat(DoubleAPFloat &&RHS); |
593 | |
594 | DoubleAPFloat &operator=(const DoubleAPFloat &RHS); |
595 | |
596 | DoubleAPFloat &operator=(DoubleAPFloat &&RHS) { |
597 | if (this != &RHS) { |
598 | this->~DoubleAPFloat(); |
599 | new (this) DoubleAPFloat(std::move(RHS)); |
600 | } |
601 | return *this; |
602 | } |
603 | |
604 | bool needsCleanup() const { return Floats != nullptr; } |
605 | |
606 | APFloat &getFirst() { return Floats[0]; } |
607 | const APFloat &getFirst() const { return Floats[0]; } |
608 | APFloat &getSecond() { return Floats[1]; } |
609 | const APFloat &getSecond() const { return Floats[1]; } |
610 | |
611 | opStatus add(const DoubleAPFloat &RHS, roundingMode RM); |
612 | opStatus subtract(const DoubleAPFloat &RHS, roundingMode RM); |
613 | opStatus multiply(const DoubleAPFloat &RHS, roundingMode RM); |
614 | opStatus divide(const DoubleAPFloat &RHS, roundingMode RM); |
615 | opStatus remainder(const DoubleAPFloat &RHS); |
616 | opStatus mod(const DoubleAPFloat &RHS); |
617 | opStatus fusedMultiplyAdd(const DoubleAPFloat &Multiplicand, |
618 | const DoubleAPFloat &Addend, roundingMode RM); |
619 | opStatus roundToIntegral(roundingMode RM); |
620 | void changeSign(); |
621 | cmpResult compareAbsoluteValue(const DoubleAPFloat &RHS) const; |
622 | |
623 | fltCategory getCategory() const; |
624 | bool isNegative() const; |
625 | |
626 | void makeInf(bool Neg); |
627 | void makeZero(bool Neg); |
628 | void makeLargest(bool Neg); |
629 | void makeSmallest(bool Neg); |
630 | void makeSmallestNormalized(bool Neg); |
631 | void makeNaN(bool SNaN, bool Neg, const APInt *fill); |
632 | |
633 | cmpResult compare(const DoubleAPFloat &RHS) const; |
634 | bool bitwiseIsEqual(const DoubleAPFloat &RHS) const; |
635 | APInt bitcastToAPInt() const; |
636 | opStatus convertFromString(StringRef, roundingMode); |
637 | opStatus next(bool nextDown); |
638 | |
639 | opStatus convertToInteger(MutableArrayRef<integerPart> Input, |
640 | unsigned int Width, bool IsSigned, roundingMode RM, |
641 | bool *IsExact) const; |
642 | opStatus convertFromAPInt(const APInt &Input, bool IsSigned, roundingMode RM); |
643 | opStatus convertFromSignExtendedInteger(const integerPart *Input, |
644 | unsigned int InputSize, bool IsSigned, |
645 | roundingMode RM); |
646 | opStatus convertFromZeroExtendedInteger(const integerPart *Input, |
647 | unsigned int InputSize, bool IsSigned, |
648 | roundingMode RM); |
649 | unsigned int convertToHexString(char *DST, unsigned int HexDigits, |
650 | bool UpperCase, roundingMode RM) const; |
651 | |
652 | bool isDenormal() const; |
653 | bool isSmallest() const; |
654 | bool isLargest() const; |
655 | bool isInteger() const; |
656 | |
657 | void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision, |
658 | unsigned FormatMaxPadding, bool TruncateZero = true) const; |
659 | |
660 | bool getExactInverse(APFloat *inv) const; |
661 | |
662 | friend int ilogb(const DoubleAPFloat &Arg); |
663 | friend DoubleAPFloat scalbn(DoubleAPFloat X, int Exp, roundingMode); |
664 | friend DoubleAPFloat frexp(const DoubleAPFloat &X, int &Exp, roundingMode); |
665 | friend hash_code hash_value(const DoubleAPFloat &Arg); |
666 | }; |
667 | |
668 | hash_code hash_value(const DoubleAPFloat &Arg); |
669 | |
670 | } // End detail namespace |
671 | |
672 | // This is a interface class that is currently forwarding functionalities from |
673 | // detail::IEEEFloat. |
674 | class APFloat : public APFloatBase { |
675 | typedef detail::IEEEFloat IEEEFloat; |
676 | typedef detail::DoubleAPFloat DoubleAPFloat; |
677 | |
678 | static_assert(std::is_standard_layout<IEEEFloat>::value, "" ); |
679 | |
680 | union Storage { |
681 | const fltSemantics *semantics; |
682 | IEEEFloat IEEE; |
683 | DoubleAPFloat Double; |
684 | |
685 | explicit Storage(IEEEFloat F, const fltSemantics &S); |
686 | explicit Storage(DoubleAPFloat F, const fltSemantics &S) |
687 | : Double(std::move(F)) { |
688 | assert(&S == &PPCDoubleDouble()); |
689 | } |
690 | |
691 | template <typename... ArgTypes> |
692 | Storage(const fltSemantics &Semantics, ArgTypes &&... Args) { |
693 | if (usesLayout<IEEEFloat>(Semantics)) { |
694 | new (&IEEE) IEEEFloat(Semantics, std::forward<ArgTypes>(Args)...); |
695 | return; |
696 | } |
697 | if (usesLayout<DoubleAPFloat>(Semantics)) { |
698 | new (&Double) DoubleAPFloat(Semantics, std::forward<ArgTypes>(Args)...); |
699 | return; |
700 | } |
701 | llvm_unreachable("Unexpected semantics" ); |
702 | } |
703 | |
704 | ~Storage() { |
705 | if (usesLayout<IEEEFloat>(*semantics)) { |
706 | IEEE.~IEEEFloat(); |
707 | return; |
708 | } |
709 | if (usesLayout<DoubleAPFloat>(*semantics)) { |
710 | Double.~DoubleAPFloat(); |
711 | return; |
712 | } |
713 | llvm_unreachable("Unexpected semantics" ); |
714 | } |
715 | |
716 | Storage(const Storage &RHS) { |
717 | if (usesLayout<IEEEFloat>(*RHS.semantics)) { |
718 | new (this) IEEEFloat(RHS.IEEE); |
719 | return; |
720 | } |
721 | if (usesLayout<DoubleAPFloat>(*RHS.semantics)) { |
722 | new (this) DoubleAPFloat(RHS.Double); |
723 | return; |
724 | } |
725 | llvm_unreachable("Unexpected semantics" ); |
726 | } |
727 | |
728 | Storage(Storage &&RHS) { |
729 | if (usesLayout<IEEEFloat>(*RHS.semantics)) { |
730 | new (this) IEEEFloat(std::move(RHS.IEEE)); |
731 | return; |
732 | } |
733 | if (usesLayout<DoubleAPFloat>(*RHS.semantics)) { |
734 | new (this) DoubleAPFloat(std::move(RHS.Double)); |
735 | return; |
736 | } |
737 | llvm_unreachable("Unexpected semantics" ); |
738 | } |
739 | |
740 | Storage &operator=(const Storage &RHS) { |
741 | if (usesLayout<IEEEFloat>(*semantics) && |
742 | usesLayout<IEEEFloat>(*RHS.semantics)) { |
743 | IEEE = RHS.IEEE; |
744 | } else if (usesLayout<DoubleAPFloat>(*semantics) && |
745 | usesLayout<DoubleAPFloat>(*RHS.semantics)) { |
746 | Double = RHS.Double; |
747 | } else if (this != &RHS) { |
748 | this->~Storage(); |
749 | new (this) Storage(RHS); |
750 | } |
751 | return *this; |
752 | } |
753 | |
754 | Storage &operator=(Storage &&RHS) { |
755 | if (usesLayout<IEEEFloat>(*semantics) && |
756 | usesLayout<IEEEFloat>(*RHS.semantics)) { |
757 | IEEE = std::move(RHS.IEEE); |
758 | } else if (usesLayout<DoubleAPFloat>(*semantics) && |
759 | usesLayout<DoubleAPFloat>(*RHS.semantics)) { |
760 | Double = std::move(RHS.Double); |
761 | } else if (this != &RHS) { |
762 | this->~Storage(); |
763 | new (this) Storage(std::move(RHS)); |
764 | } |
765 | return *this; |
766 | } |
767 | } U; |
768 | |
769 | template <typename T> static bool usesLayout(const fltSemantics &Semantics) { |
770 | static_assert(std::is_same<T, IEEEFloat>::value || |
771 | std::is_same<T, DoubleAPFloat>::value, "" ); |
772 | if (std::is_same<T, DoubleAPFloat>::value) { |
773 | return &Semantics == &PPCDoubleDouble(); |
774 | } |
775 | return &Semantics != &PPCDoubleDouble(); |
776 | } |
777 | |
778 | IEEEFloat &getIEEE() { |
779 | if (usesLayout<IEEEFloat>(*U.semantics)) |
780 | return U.IEEE; |
781 | if (usesLayout<DoubleAPFloat>(*U.semantics)) |
782 | return U.Double.getFirst().U.IEEE; |
783 | llvm_unreachable("Unexpected semantics" ); |
784 | } |
785 | |
786 | const IEEEFloat &getIEEE() const { |
787 | if (usesLayout<IEEEFloat>(*U.semantics)) |
788 | return U.IEEE; |
789 | if (usesLayout<DoubleAPFloat>(*U.semantics)) |
790 | return U.Double.getFirst().U.IEEE; |
791 | llvm_unreachable("Unexpected semantics" ); |
792 | } |
793 | |
794 | void makeZero(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeZero(Neg)); } |
795 | |
796 | void makeInf(bool Neg) { APFLOAT_DISPATCH_ON_SEMANTICS(makeInf(Neg)); } |
797 | |
798 | void makeNaN(bool SNaN, bool Neg, const APInt *fill) { |
799 | APFLOAT_DISPATCH_ON_SEMANTICS(makeNaN(SNaN, Neg, fill)); |
800 | } |
801 | |
802 | void makeLargest(bool Neg) { |
803 | APFLOAT_DISPATCH_ON_SEMANTICS(makeLargest(Neg)); |
804 | } |
805 | |
806 | void makeSmallest(bool Neg) { |
807 | APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallest(Neg)); |
808 | } |
809 | |
810 | void makeSmallestNormalized(bool Neg) { |
811 | APFLOAT_DISPATCH_ON_SEMANTICS(makeSmallestNormalized(Neg)); |
812 | } |
813 | |
814 | // FIXME: This is due to clang 3.3 (or older version) always checks for the |
815 | // default constructor in an array aggregate initialization, even if no |
816 | // elements in the array is default initialized. |
817 | APFloat() : U(IEEEdouble()) { |
818 | llvm_unreachable("This is a workaround for old clang." ); |
819 | } |
820 | |
821 | explicit APFloat(IEEEFloat F, const fltSemantics &S) : U(std::move(F), S) {} |
822 | explicit APFloat(DoubleAPFloat F, const fltSemantics &S) |
823 | : U(std::move(F), S) {} |
824 | |
825 | cmpResult compareAbsoluteValue(const APFloat &RHS) const { |
826 | assert(&getSemantics() == &RHS.getSemantics() && |
827 | "Should only compare APFloats with the same semantics" ); |
828 | if (usesLayout<IEEEFloat>(getSemantics())) |
829 | return U.IEEE.compareAbsoluteValue(RHS.U.IEEE); |
830 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
831 | return U.Double.compareAbsoluteValue(RHS.U.Double); |
832 | llvm_unreachable("Unexpected semantics" ); |
833 | } |
834 | |
835 | public: |
836 | APFloat(const fltSemantics &Semantics) : U(Semantics) {} |
837 | APFloat(const fltSemantics &Semantics, StringRef S); |
838 | APFloat(const fltSemantics &Semantics, integerPart I) : U(Semantics, I) {} |
839 | // TODO: Remove this constructor. This isn't faster than the first one. |
840 | APFloat(const fltSemantics &Semantics, uninitializedTag) |
841 | : U(Semantics, uninitialized) {} |
842 | APFloat(const fltSemantics &Semantics, const APInt &I) : U(Semantics, I) {} |
843 | explicit APFloat(double d) : U(IEEEFloat(d), IEEEdouble()) {} |
844 | explicit APFloat(float f) : U(IEEEFloat(f), IEEEsingle()) {} |
845 | APFloat(const APFloat &RHS) = default; |
846 | APFloat(APFloat &&RHS) = default; |
847 | |
848 | ~APFloat() = default; |
849 | |
850 | bool needsCleanup() const { APFLOAT_DISPATCH_ON_SEMANTICS(needsCleanup()); } |
851 | |
852 | /// Factory for Positive and Negative Zero. |
853 | /// |
854 | /// \param Negative True iff the number should be negative. |
855 | static APFloat getZero(const fltSemantics &Sem, bool Negative = false) { |
856 | APFloat Val(Sem, uninitialized); |
857 | Val.makeZero(Negative); |
858 | return Val; |
859 | } |
860 | |
861 | /// Factory for Positive and Negative Infinity. |
862 | /// |
863 | /// \param Negative True iff the number should be negative. |
864 | static APFloat getInf(const fltSemantics &Sem, bool Negative = false) { |
865 | APFloat Val(Sem, uninitialized); |
866 | Val.makeInf(Negative); |
867 | return Val; |
868 | } |
869 | |
870 | /// Factory for NaN values. |
871 | /// |
872 | /// \param Negative - True iff the NaN generated should be negative. |
873 | /// \param payload - The unspecified fill bits for creating the NaN, 0 by |
874 | /// default. The value is truncated as necessary. |
875 | static APFloat getNaN(const fltSemantics &Sem, bool Negative = false, |
876 | uint64_t payload = 0) { |
877 | if (payload) { |
878 | APInt intPayload(64, payload); |
879 | return getQNaN(Sem, Negative, &intPayload); |
880 | } else { |
881 | return getQNaN(Sem, Negative, nullptr); |
882 | } |
883 | } |
884 | |
885 | /// Factory for QNaN values. |
886 | static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false, |
887 | const APInt *payload = nullptr) { |
888 | APFloat Val(Sem, uninitialized); |
889 | Val.makeNaN(false, Negative, payload); |
890 | return Val; |
891 | } |
892 | |
893 | /// Factory for SNaN values. |
894 | static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false, |
895 | const APInt *payload = nullptr) { |
896 | APFloat Val(Sem, uninitialized); |
897 | Val.makeNaN(true, Negative, payload); |
898 | return Val; |
899 | } |
900 | |
901 | /// Returns the largest finite number in the given semantics. |
902 | /// |
903 | /// \param Negative - True iff the number should be negative |
904 | static APFloat getLargest(const fltSemantics &Sem, bool Negative = false) { |
905 | APFloat Val(Sem, uninitialized); |
906 | Val.makeLargest(Negative); |
907 | return Val; |
908 | } |
909 | |
910 | /// Returns the smallest (by magnitude) finite number in the given semantics. |
911 | /// Might be denormalized, which implies a relative loss of precision. |
912 | /// |
913 | /// \param Negative - True iff the number should be negative |
914 | static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false) { |
915 | APFloat Val(Sem, uninitialized); |
916 | Val.makeSmallest(Negative); |
917 | return Val; |
918 | } |
919 | |
920 | /// Returns the smallest (by magnitude) normalized finite number in the given |
921 | /// semantics. |
922 | /// |
923 | /// \param Negative - True iff the number should be negative |
924 | static APFloat getSmallestNormalized(const fltSemantics &Sem, |
925 | bool Negative = false) { |
926 | APFloat Val(Sem, uninitialized); |
927 | Val.makeSmallestNormalized(Negative); |
928 | return Val; |
929 | } |
930 | |
931 | /// Returns a float which is bitcasted from an all one value int. |
932 | /// |
933 | /// \param BitWidth - Select float type |
934 | /// \param isIEEE - If 128 bit number, select between PPC and IEEE |
935 | static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE = false); |
936 | |
937 | /// Used to insert APFloat objects, or objects that contain APFloat objects, |
938 | /// into FoldingSets. |
939 | void Profile(FoldingSetNodeID &NID) const; |
940 | |
941 | opStatus add(const APFloat &RHS, roundingMode RM) { |
942 | assert(&getSemantics() == &RHS.getSemantics() && |
943 | "Should only call on two APFloats with the same semantics" ); |
944 | if (usesLayout<IEEEFloat>(getSemantics())) |
945 | return U.IEEE.add(RHS.U.IEEE, RM); |
946 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
947 | return U.Double.add(RHS.U.Double, RM); |
948 | llvm_unreachable("Unexpected semantics" ); |
949 | } |
950 | opStatus subtract(const APFloat &RHS, roundingMode RM) { |
951 | assert(&getSemantics() == &RHS.getSemantics() && |
952 | "Should only call on two APFloats with the same semantics" ); |
953 | if (usesLayout<IEEEFloat>(getSemantics())) |
954 | return U.IEEE.subtract(RHS.U.IEEE, RM); |
955 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
956 | return U.Double.subtract(RHS.U.Double, RM); |
957 | llvm_unreachable("Unexpected semantics" ); |
958 | } |
959 | opStatus multiply(const APFloat &RHS, roundingMode RM) { |
960 | assert(&getSemantics() == &RHS.getSemantics() && |
961 | "Should only call on two APFloats with the same semantics" ); |
962 | if (usesLayout<IEEEFloat>(getSemantics())) |
963 | return U.IEEE.multiply(RHS.U.IEEE, RM); |
964 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
965 | return U.Double.multiply(RHS.U.Double, RM); |
966 | llvm_unreachable("Unexpected semantics" ); |
967 | } |
968 | opStatus divide(const APFloat &RHS, roundingMode RM) { |
969 | assert(&getSemantics() == &RHS.getSemantics() && |
970 | "Should only call on two APFloats with the same semantics" ); |
971 | if (usesLayout<IEEEFloat>(getSemantics())) |
972 | return U.IEEE.divide(RHS.U.IEEE, RM); |
973 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
974 | return U.Double.divide(RHS.U.Double, RM); |
975 | llvm_unreachable("Unexpected semantics" ); |
976 | } |
977 | opStatus remainder(const APFloat &RHS) { |
978 | assert(&getSemantics() == &RHS.getSemantics() && |
979 | "Should only call on two APFloats with the same semantics" ); |
980 | if (usesLayout<IEEEFloat>(getSemantics())) |
981 | return U.IEEE.remainder(RHS.U.IEEE); |
982 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
983 | return U.Double.remainder(RHS.U.Double); |
984 | llvm_unreachable("Unexpected semantics" ); |
985 | } |
986 | opStatus mod(const APFloat &RHS) { |
987 | assert(&getSemantics() == &RHS.getSemantics() && |
988 | "Should only call on two APFloats with the same semantics" ); |
989 | if (usesLayout<IEEEFloat>(getSemantics())) |
990 | return U.IEEE.mod(RHS.U.IEEE); |
991 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
992 | return U.Double.mod(RHS.U.Double); |
993 | llvm_unreachable("Unexpected semantics" ); |
994 | } |
995 | opStatus fusedMultiplyAdd(const APFloat &Multiplicand, const APFloat &Addend, |
996 | roundingMode RM) { |
997 | assert(&getSemantics() == &Multiplicand.getSemantics() && |
998 | "Should only call on APFloats with the same semantics" ); |
999 | assert(&getSemantics() == &Addend.getSemantics() && |
1000 | "Should only call on APFloats with the same semantics" ); |
1001 | if (usesLayout<IEEEFloat>(getSemantics())) |
1002 | return U.IEEE.fusedMultiplyAdd(Multiplicand.U.IEEE, Addend.U.IEEE, RM); |
1003 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
1004 | return U.Double.fusedMultiplyAdd(Multiplicand.U.Double, Addend.U.Double, |
1005 | RM); |
1006 | llvm_unreachable("Unexpected semantics" ); |
1007 | } |
1008 | opStatus roundToIntegral(roundingMode RM) { |
1009 | APFLOAT_DISPATCH_ON_SEMANTICS(roundToIntegral(RM)); |
1010 | } |
1011 | |
1012 | // TODO: bool parameters are not readable and a source of bugs. |
1013 | // Do something. |
1014 | opStatus next(bool nextDown) { |
1015 | APFLOAT_DISPATCH_ON_SEMANTICS(next(nextDown)); |
1016 | } |
1017 | |
1018 | /// Add two APFloats, rounding ties to the nearest even. |
1019 | /// No error checking. |
1020 | APFloat operator+(const APFloat &RHS) const { |
1021 | APFloat Result(*this); |
1022 | (void)Result.add(RHS, rmNearestTiesToEven); |
1023 | return Result; |
1024 | } |
1025 | |
1026 | /// Subtract two APFloats, rounding ties to the nearest even. |
1027 | /// No error checking. |
1028 | APFloat operator-(const APFloat &RHS) const { |
1029 | APFloat Result(*this); |
1030 | (void)Result.subtract(RHS, rmNearestTiesToEven); |
1031 | return Result; |
1032 | } |
1033 | |
1034 | /// Multiply two APFloats, rounding ties to the nearest even. |
1035 | /// No error checking. |
1036 | APFloat operator*(const APFloat &RHS) const { |
1037 | APFloat Result(*this); |
1038 | (void)Result.multiply(RHS, rmNearestTiesToEven); |
1039 | return Result; |
1040 | } |
1041 | |
1042 | /// Divide the first APFloat by the second, rounding ties to the nearest even. |
1043 | /// No error checking. |
1044 | APFloat operator/(const APFloat &RHS) const { |
1045 | APFloat Result(*this); |
1046 | (void)Result.divide(RHS, rmNearestTiesToEven); |
1047 | return Result; |
1048 | } |
1049 | |
1050 | void changeSign() { APFLOAT_DISPATCH_ON_SEMANTICS(changeSign()); } |
1051 | void clearSign() { |
1052 | if (isNegative()) |
1053 | changeSign(); |
1054 | } |
1055 | void copySign(const APFloat &RHS) { |
1056 | if (isNegative() != RHS.isNegative()) |
1057 | changeSign(); |
1058 | } |
1059 | |
1060 | /// A static helper to produce a copy of an APFloat value with its sign |
1061 | /// copied from some other APFloat. |
1062 | static APFloat copySign(APFloat Value, const APFloat &Sign) { |
1063 | Value.copySign(Sign); |
1064 | return Value; |
1065 | } |
1066 | |
1067 | opStatus convert(const fltSemantics &ToSemantics, roundingMode RM, |
1068 | bool *losesInfo); |
1069 | opStatus convertToInteger(MutableArrayRef<integerPart> Input, |
1070 | unsigned int Width, bool IsSigned, roundingMode RM, |
1071 | bool *IsExact) const { |
1072 | APFLOAT_DISPATCH_ON_SEMANTICS( |
1073 | convertToInteger(Input, Width, IsSigned, RM, IsExact)); |
1074 | } |
1075 | opStatus convertToInteger(APSInt &Result, roundingMode RM, |
1076 | bool *IsExact) const; |
1077 | opStatus convertFromAPInt(const APInt &Input, bool IsSigned, |
1078 | roundingMode RM) { |
1079 | APFLOAT_DISPATCH_ON_SEMANTICS(convertFromAPInt(Input, IsSigned, RM)); |
1080 | } |
1081 | opStatus convertFromSignExtendedInteger(const integerPart *Input, |
1082 | unsigned int InputSize, bool IsSigned, |
1083 | roundingMode RM) { |
1084 | APFLOAT_DISPATCH_ON_SEMANTICS( |
1085 | convertFromSignExtendedInteger(Input, InputSize, IsSigned, RM)); |
1086 | } |
1087 | opStatus convertFromZeroExtendedInteger(const integerPart *Input, |
1088 | unsigned int InputSize, bool IsSigned, |
1089 | roundingMode RM) { |
1090 | APFLOAT_DISPATCH_ON_SEMANTICS( |
1091 | convertFromZeroExtendedInteger(Input, InputSize, IsSigned, RM)); |
1092 | } |
1093 | opStatus convertFromString(StringRef, roundingMode); |
1094 | APInt bitcastToAPInt() const { |
1095 | APFLOAT_DISPATCH_ON_SEMANTICS(bitcastToAPInt()); |
1096 | } |
1097 | double convertToDouble() const { return getIEEE().convertToDouble(); } |
1098 | float convertToFloat() const { return getIEEE().convertToFloat(); } |
1099 | |
1100 | bool operator==(const APFloat &) const = delete; |
1101 | |
1102 | cmpResult compare(const APFloat &RHS) const { |
1103 | assert(&getSemantics() == &RHS.getSemantics() && |
1104 | "Should only compare APFloats with the same semantics" ); |
1105 | if (usesLayout<IEEEFloat>(getSemantics())) |
1106 | return U.IEEE.compare(RHS.U.IEEE); |
1107 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
1108 | return U.Double.compare(RHS.U.Double); |
1109 | llvm_unreachable("Unexpected semantics" ); |
1110 | } |
1111 | |
1112 | bool bitwiseIsEqual(const APFloat &RHS) const { |
1113 | if (&getSemantics() != &RHS.getSemantics()) |
1114 | return false; |
1115 | if (usesLayout<IEEEFloat>(getSemantics())) |
1116 | return U.IEEE.bitwiseIsEqual(RHS.U.IEEE); |
1117 | if (usesLayout<DoubleAPFloat>(getSemantics())) |
1118 | return U.Double.bitwiseIsEqual(RHS.U.Double); |
1119 | llvm_unreachable("Unexpected semantics" ); |
1120 | } |
1121 | |
1122 | /// We don't rely on operator== working on double values, as |
1123 | /// it returns true for things that are clearly not equal, like -0.0 and 0.0. |
1124 | /// As such, this method can be used to do an exact bit-for-bit comparison of |
1125 | /// two floating point values. |
1126 | /// |
1127 | /// We leave the version with the double argument here because it's just so |
1128 | /// convenient to write "2.0" and the like. Without this function we'd |
1129 | /// have to duplicate its logic everywhere it's called. |
1130 | bool isExactlyValue(double V) const { |
1131 | bool ignored; |
1132 | APFloat Tmp(V); |
1133 | Tmp.convert(getSemantics(), APFloat::rmNearestTiesToEven, &ignored); |
1134 | return bitwiseIsEqual(Tmp); |
1135 | } |
1136 | |
1137 | unsigned int convertToHexString(char *DST, unsigned int HexDigits, |
1138 | bool UpperCase, roundingMode RM) const { |
1139 | APFLOAT_DISPATCH_ON_SEMANTICS( |
1140 | convertToHexString(DST, HexDigits, UpperCase, RM)); |
1141 | } |
1142 | |
1143 | bool isZero() const { return getCategory() == fcZero; } |
1144 | bool isInfinity() const { return getCategory() == fcInfinity; } |
1145 | bool isNaN() const { return getCategory() == fcNaN; } |
1146 | |
1147 | bool isNegative() const { return getIEEE().isNegative(); } |
1148 | bool isDenormal() const { APFLOAT_DISPATCH_ON_SEMANTICS(isDenormal()); } |
1149 | bool isSignaling() const { return getIEEE().isSignaling(); } |
1150 | |
1151 | bool isNormal() const { return !isDenormal() && isFiniteNonZero(); } |
1152 | bool isFinite() const { return !isNaN() && !isInfinity(); } |
1153 | |
1154 | fltCategory getCategory() const { return getIEEE().getCategory(); } |
1155 | const fltSemantics &getSemantics() const { return *U.semantics; } |
1156 | bool isNonZero() const { return !isZero(); } |
1157 | bool isFiniteNonZero() const { return isFinite() && !isZero(); } |
1158 | bool isPosZero() const { return isZero() && !isNegative(); } |
1159 | bool isNegZero() const { return isZero() && isNegative(); } |
1160 | bool isSmallest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isSmallest()); } |
1161 | bool isLargest() const { APFLOAT_DISPATCH_ON_SEMANTICS(isLargest()); } |
1162 | bool isInteger() const { APFLOAT_DISPATCH_ON_SEMANTICS(isInteger()); } |
1163 | |
1164 | APFloat &operator=(const APFloat &RHS) = default; |
1165 | APFloat &operator=(APFloat &&RHS) = default; |
1166 | |
1167 | void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0, |
1168 | unsigned FormatMaxPadding = 3, bool TruncateZero = true) const { |
1169 | APFLOAT_DISPATCH_ON_SEMANTICS( |
1170 | toString(Str, FormatPrecision, FormatMaxPadding, TruncateZero)); |
1171 | } |
1172 | |
1173 | void print(raw_ostream &) const; |
1174 | void dump() const; |
1175 | |
1176 | bool getExactInverse(APFloat *inv) const { |
1177 | APFLOAT_DISPATCH_ON_SEMANTICS(getExactInverse(inv)); |
1178 | } |
1179 | |
1180 | friend hash_code hash_value(const APFloat &Arg); |
1181 | friend int ilogb(const APFloat &Arg) { return ilogb(Arg.getIEEE()); } |
1182 | friend APFloat scalbn(APFloat X, int Exp, roundingMode RM); |
1183 | friend APFloat frexp(const APFloat &X, int &Exp, roundingMode RM); |
1184 | friend IEEEFloat; |
1185 | friend DoubleAPFloat; |
1186 | }; |
1187 | |
1188 | /// See friend declarations above. |
1189 | /// |
1190 | /// These additional declarations are required in order to compile LLVM with IBM |
1191 | /// xlC compiler. |
1192 | hash_code hash_value(const APFloat &Arg); |
1193 | inline APFloat scalbn(APFloat X, int Exp, APFloat::roundingMode RM) { |
1194 | if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics())) |
1195 | return APFloat(scalbn(X.U.IEEE, Exp, RM), X.getSemantics()); |
1196 | if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics())) |
1197 | return APFloat(scalbn(X.U.Double, Exp, RM), X.getSemantics()); |
1198 | llvm_unreachable("Unexpected semantics" ); |
1199 | } |
1200 | |
1201 | /// Equivalent of C standard library function. |
1202 | /// |
1203 | /// While the C standard says Exp is an unspecified value for infinity and nan, |
1204 | /// this returns INT_MAX for infinities, and INT_MIN for NaNs. |
1205 | inline APFloat frexp(const APFloat &X, int &Exp, APFloat::roundingMode RM) { |
1206 | if (APFloat::usesLayout<detail::IEEEFloat>(X.getSemantics())) |
1207 | return APFloat(frexp(X.U.IEEE, Exp, RM), X.getSemantics()); |
1208 | if (APFloat::usesLayout<detail::DoubleAPFloat>(X.getSemantics())) |
1209 | return APFloat(frexp(X.U.Double, Exp, RM), X.getSemantics()); |
1210 | llvm_unreachable("Unexpected semantics" ); |
1211 | } |
1212 | /// Returns the absolute value of the argument. |
1213 | inline APFloat abs(APFloat X) { |
1214 | X.clearSign(); |
1215 | return X; |
1216 | } |
1217 | |
1218 | /// Returns the negated value of the argument. |
1219 | inline APFloat neg(APFloat X) { |
1220 | X.changeSign(); |
1221 | return X; |
1222 | } |
1223 | |
1224 | /// Implements IEEE minNum semantics. Returns the smaller of the 2 arguments if |
1225 | /// both are not NaN. If either argument is a NaN, returns the other argument. |
1226 | LLVM_READONLY |
1227 | inline APFloat minnum(const APFloat &A, const APFloat &B) { |
1228 | if (A.isNaN()) |
1229 | return B; |
1230 | if (B.isNaN()) |
1231 | return A; |
1232 | return (B.compare(A) == APFloat::cmpLessThan) ? B : A; |
1233 | } |
1234 | |
1235 | /// Implements IEEE maxNum semantics. Returns the larger of the 2 arguments if |
1236 | /// both are not NaN. If either argument is a NaN, returns the other argument. |
1237 | LLVM_READONLY |
1238 | inline APFloat maxnum(const APFloat &A, const APFloat &B) { |
1239 | if (A.isNaN()) |
1240 | return B; |
1241 | if (B.isNaN()) |
1242 | return A; |
1243 | return (A.compare(B) == APFloat::cmpLessThan) ? B : A; |
1244 | } |
1245 | |
1246 | /// Implements IEEE 754-2018 minimum semantics. Returns the smaller of 2 |
1247 | /// arguments, propagating NaNs and treating -0 as less than +0. |
1248 | LLVM_READONLY |
1249 | inline APFloat minimum(const APFloat &A, const APFloat &B) { |
1250 | if (A.isNaN()) |
1251 | return A; |
1252 | if (B.isNaN()) |
1253 | return B; |
1254 | if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative())) |
1255 | return A.isNegative() ? A : B; |
1256 | return (B.compare(A) == APFloat::cmpLessThan) ? B : A; |
1257 | } |
1258 | |
1259 | /// Implements IEEE 754-2018 maximum semantics. Returns the larger of 2 |
1260 | /// arguments, propagating NaNs and treating -0 as less than +0. |
1261 | LLVM_READONLY |
1262 | inline APFloat maximum(const APFloat &A, const APFloat &B) { |
1263 | if (A.isNaN()) |
1264 | return A; |
1265 | if (B.isNaN()) |
1266 | return B; |
1267 | if (A.isZero() && B.isZero() && (A.isNegative() != B.isNegative())) |
1268 | return A.isNegative() ? B : A; |
1269 | return (A.compare(B) == APFloat::cmpLessThan) ? B : A; |
1270 | } |
1271 | |
1272 | } // namespace llvm |
1273 | |
1274 | #undef APFLOAT_DISPATCH_ON_SEMANTICS |
1275 | #endif // LLVM_ADT_APFLOAT_H |
1276 | |