| 1 | /* |
| 2 | * QEMU PowerPC sPAPR XIVE interrupt controller model |
| 3 | * |
| 4 | * Copyright (c) 2017-2018, IBM Corporation. |
| 5 | * |
| 6 | * This code is licensed under the GPL version 2 or later. See the |
| 7 | * COPYING file in the top-level directory. |
| 8 | */ |
| 9 | |
| 10 | #include "qemu/osdep.h" |
| 11 | #include "qemu/log.h" |
| 12 | #include "qemu/module.h" |
| 13 | #include "qapi/error.h" |
| 14 | #include "qemu/error-report.h" |
| 15 | #include "target/ppc/cpu.h" |
| 16 | #include "sysemu/cpus.h" |
| 17 | #include "sysemu/reset.h" |
| 18 | #include "migration/vmstate.h" |
| 19 | #include "monitor/monitor.h" |
| 20 | #include "hw/ppc/fdt.h" |
| 21 | #include "hw/ppc/spapr.h" |
| 22 | #include "hw/ppc/spapr_cpu_core.h" |
| 23 | #include "hw/ppc/spapr_xive.h" |
| 24 | #include "hw/ppc/xive.h" |
| 25 | #include "hw/ppc/xive_regs.h" |
| 26 | #include "hw/qdev-properties.h" |
| 27 | |
| 28 | /* |
| 29 | * XIVE Virtualization Controller BAR and Thread Managment BAR that we |
| 30 | * use for the ESB pages and the TIMA pages |
| 31 | */ |
| 32 | #define SPAPR_XIVE_VC_BASE 0x0006010000000000ull |
| 33 | #define SPAPR_XIVE_TM_BASE 0x0006030203180000ull |
| 34 | |
| 35 | /* |
| 36 | * The allocation of VP blocks is a complex operation in OPAL and the |
| 37 | * VP identifiers have a relation with the number of HW chips, the |
| 38 | * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE |
| 39 | * controller model does not have the same constraints and can use a |
| 40 | * simple mapping scheme of the CPU vcpu_id |
| 41 | * |
| 42 | * These identifiers are never returned to the OS. |
| 43 | */ |
| 44 | |
| 45 | #define SPAPR_XIVE_NVT_BASE 0x400 |
| 46 | |
| 47 | /* |
| 48 | * sPAPR NVT and END indexing helpers |
| 49 | */ |
| 50 | static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx) |
| 51 | { |
| 52 | return nvt_idx - SPAPR_XIVE_NVT_BASE; |
| 53 | } |
| 54 | |
| 55 | static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu, |
| 56 | uint8_t *out_nvt_blk, uint32_t *out_nvt_idx) |
| 57 | { |
| 58 | assert(cpu); |
| 59 | |
| 60 | if (out_nvt_blk) { |
| 61 | *out_nvt_blk = SPAPR_XIVE_BLOCK_ID; |
| 62 | } |
| 63 | |
| 64 | if (out_nvt_blk) { |
| 65 | *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id; |
| 66 | } |
| 67 | } |
| 68 | |
| 69 | static int spapr_xive_target_to_nvt(uint32_t target, |
| 70 | uint8_t *out_nvt_blk, uint32_t *out_nvt_idx) |
| 71 | { |
| 72 | PowerPCCPU *cpu = spapr_find_cpu(target); |
| 73 | |
| 74 | if (!cpu) { |
| 75 | return -1; |
| 76 | } |
| 77 | |
| 78 | spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx); |
| 79 | return 0; |
| 80 | } |
| 81 | |
| 82 | /* |
| 83 | * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8 |
| 84 | * priorities per CPU |
| 85 | */ |
| 86 | int spapr_xive_end_to_target(uint8_t end_blk, uint32_t end_idx, |
| 87 | uint32_t *out_server, uint8_t *out_prio) |
| 88 | { |
| 89 | |
| 90 | assert(end_blk == SPAPR_XIVE_BLOCK_ID); |
| 91 | |
| 92 | if (out_server) { |
| 93 | *out_server = end_idx >> 3; |
| 94 | } |
| 95 | |
| 96 | if (out_prio) { |
| 97 | *out_prio = end_idx & 0x7; |
| 98 | } |
| 99 | return 0; |
| 100 | } |
| 101 | |
| 102 | static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio, |
| 103 | uint8_t *out_end_blk, uint32_t *out_end_idx) |
| 104 | { |
| 105 | assert(cpu); |
| 106 | |
| 107 | if (out_end_blk) { |
| 108 | *out_end_blk = SPAPR_XIVE_BLOCK_ID; |
| 109 | } |
| 110 | |
| 111 | if (out_end_idx) { |
| 112 | *out_end_idx = (cpu->vcpu_id << 3) + prio; |
| 113 | } |
| 114 | } |
| 115 | |
| 116 | static int spapr_xive_target_to_end(uint32_t target, uint8_t prio, |
| 117 | uint8_t *out_end_blk, uint32_t *out_end_idx) |
| 118 | { |
| 119 | PowerPCCPU *cpu = spapr_find_cpu(target); |
| 120 | |
| 121 | if (!cpu) { |
| 122 | return -1; |
| 123 | } |
| 124 | |
| 125 | spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx); |
| 126 | return 0; |
| 127 | } |
| 128 | |
| 129 | /* |
| 130 | * On sPAPR machines, use a simplified output for the XIVE END |
| 131 | * structure dumping only the information related to the OS EQ. |
| 132 | */ |
| 133 | static void spapr_xive_end_pic_print_info(SpaprXive *xive, XiveEND *end, |
| 134 | Monitor *mon) |
| 135 | { |
| 136 | uint64_t qaddr_base = xive_end_qaddr(end); |
| 137 | uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); |
| 138 | uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1); |
| 139 | uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); |
| 140 | uint32_t qentries = 1 << (qsize + 10); |
| 141 | uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6); |
| 142 | uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7); |
| 143 | |
| 144 | monitor_printf(mon, "%3d/%d % 6d/%5d @%" PRIx64" ^%d" , |
| 145 | spapr_xive_nvt_to_target(0, nvt), |
| 146 | priority, qindex, qentries, qaddr_base, qgen); |
| 147 | |
| 148 | xive_end_queue_pic_print_info(end, 6, mon); |
| 149 | } |
| 150 | |
| 151 | void spapr_xive_pic_print_info(SpaprXive *xive, Monitor *mon) |
| 152 | { |
| 153 | XiveSource *xsrc = &xive->source; |
| 154 | int i; |
| 155 | |
| 156 | if (kvm_irqchip_in_kernel()) { |
| 157 | Error *local_err = NULL; |
| 158 | |
| 159 | kvmppc_xive_synchronize_state(xive, &local_err); |
| 160 | if (local_err) { |
| 161 | error_report_err(local_err); |
| 162 | return; |
| 163 | } |
| 164 | } |
| 165 | |
| 166 | monitor_printf(mon, " LISN PQ EISN CPU/PRIO EQ\n" ); |
| 167 | |
| 168 | for (i = 0; i < xive->nr_irqs; i++) { |
| 169 | uint8_t pq = xive_source_esb_get(xsrc, i); |
| 170 | XiveEAS *eas = &xive->eat[i]; |
| 171 | |
| 172 | if (!xive_eas_is_valid(eas)) { |
| 173 | continue; |
| 174 | } |
| 175 | |
| 176 | monitor_printf(mon, " %08x %s %c%c%c %s %08x " , i, |
| 177 | xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI" , |
| 178 | pq & XIVE_ESB_VAL_P ? 'P' : '-', |
| 179 | pq & XIVE_ESB_VAL_Q ? 'Q' : '-', |
| 180 | xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ', |
| 181 | xive_eas_is_masked(eas) ? "M" : " " , |
| 182 | (int) xive_get_field64(EAS_END_DATA, eas->w)); |
| 183 | |
| 184 | if (!xive_eas_is_masked(eas)) { |
| 185 | uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w); |
| 186 | XiveEND *end; |
| 187 | |
| 188 | assert(end_idx < xive->nr_ends); |
| 189 | end = &xive->endt[end_idx]; |
| 190 | |
| 191 | if (xive_end_is_valid(end)) { |
| 192 | spapr_xive_end_pic_print_info(xive, end, mon); |
| 193 | } |
| 194 | } |
| 195 | monitor_printf(mon, "\n" ); |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | void spapr_xive_mmio_set_enabled(SpaprXive *xive, bool enable) |
| 200 | { |
| 201 | memory_region_set_enabled(&xive->source.esb_mmio, enable); |
| 202 | memory_region_set_enabled(&xive->tm_mmio, enable); |
| 203 | |
| 204 | /* Disable the END ESBs until a guest OS makes use of them */ |
| 205 | memory_region_set_enabled(&xive->end_source.esb_mmio, false); |
| 206 | } |
| 207 | |
| 208 | /* |
| 209 | * When a Virtual Processor is scheduled to run on a HW thread, the |
| 210 | * hypervisor pushes its identifier in the OS CAM line. Emulate the |
| 211 | * same behavior under QEMU. |
| 212 | */ |
| 213 | void spapr_xive_set_tctx_os_cam(XiveTCTX *tctx) |
| 214 | { |
| 215 | uint8_t nvt_blk; |
| 216 | uint32_t nvt_idx; |
| 217 | uint32_t nvt_cam; |
| 218 | |
| 219 | spapr_xive_cpu_to_nvt(POWERPC_CPU(tctx->cs), &nvt_blk, &nvt_idx); |
| 220 | |
| 221 | nvt_cam = cpu_to_be32(TM_QW1W2_VO | xive_nvt_cam_line(nvt_blk, nvt_idx)); |
| 222 | memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &nvt_cam, 4); |
| 223 | } |
| 224 | |
| 225 | static void spapr_xive_end_reset(XiveEND *end) |
| 226 | { |
| 227 | memset(end, 0, sizeof(*end)); |
| 228 | |
| 229 | /* switch off the escalation and notification ESBs */ |
| 230 | end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q); |
| 231 | } |
| 232 | |
| 233 | static void spapr_xive_reset(void *dev) |
| 234 | { |
| 235 | SpaprXive *xive = SPAPR_XIVE(dev); |
| 236 | int i; |
| 237 | |
| 238 | /* |
| 239 | * The XiveSource has its own reset handler, which mask off all |
| 240 | * IRQs (!P|Q) |
| 241 | */ |
| 242 | |
| 243 | /* Mask all valid EASs in the IRQ number space. */ |
| 244 | for (i = 0; i < xive->nr_irqs; i++) { |
| 245 | XiveEAS *eas = &xive->eat[i]; |
| 246 | if (xive_eas_is_valid(eas)) { |
| 247 | eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED); |
| 248 | } else { |
| 249 | eas->w = 0; |
| 250 | } |
| 251 | } |
| 252 | |
| 253 | /* Clear all ENDs */ |
| 254 | for (i = 0; i < xive->nr_ends; i++) { |
| 255 | spapr_xive_end_reset(&xive->endt[i]); |
| 256 | } |
| 257 | } |
| 258 | |
| 259 | static void spapr_xive_instance_init(Object *obj) |
| 260 | { |
| 261 | SpaprXive *xive = SPAPR_XIVE(obj); |
| 262 | |
| 263 | object_initialize_child(obj, "source" , &xive->source, sizeof(xive->source), |
| 264 | TYPE_XIVE_SOURCE, &error_abort, NULL); |
| 265 | |
| 266 | object_initialize_child(obj, "end_source" , &xive->end_source, |
| 267 | sizeof(xive->end_source), TYPE_XIVE_END_SOURCE, |
| 268 | &error_abort, NULL); |
| 269 | |
| 270 | /* Not connected to the KVM XIVE device */ |
| 271 | xive->fd = -1; |
| 272 | } |
| 273 | |
| 274 | static void spapr_xive_realize(DeviceState *dev, Error **errp) |
| 275 | { |
| 276 | SpaprXive *xive = SPAPR_XIVE(dev); |
| 277 | XiveSource *xsrc = &xive->source; |
| 278 | XiveENDSource *end_xsrc = &xive->end_source; |
| 279 | Error *local_err = NULL; |
| 280 | |
| 281 | if (!xive->nr_irqs) { |
| 282 | error_setg(errp, "Number of interrupt needs to be greater 0" ); |
| 283 | return; |
| 284 | } |
| 285 | |
| 286 | if (!xive->nr_ends) { |
| 287 | error_setg(errp, "Number of interrupt needs to be greater 0" ); |
| 288 | return; |
| 289 | } |
| 290 | |
| 291 | /* |
| 292 | * Initialize the internal sources, for IPIs and virtual devices. |
| 293 | */ |
| 294 | object_property_set_int(OBJECT(xsrc), xive->nr_irqs, "nr-irqs" , |
| 295 | &error_fatal); |
| 296 | object_property_add_const_link(OBJECT(xsrc), "xive" , OBJECT(xive), |
| 297 | &error_fatal); |
| 298 | object_property_set_bool(OBJECT(xsrc), true, "realized" , &local_err); |
| 299 | if (local_err) { |
| 300 | error_propagate(errp, local_err); |
| 301 | return; |
| 302 | } |
| 303 | sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xsrc->esb_mmio); |
| 304 | |
| 305 | /* |
| 306 | * Initialize the END ESB source |
| 307 | */ |
| 308 | object_property_set_int(OBJECT(end_xsrc), xive->nr_irqs, "nr-ends" , |
| 309 | &error_fatal); |
| 310 | object_property_add_const_link(OBJECT(end_xsrc), "xive" , OBJECT(xive), |
| 311 | &error_fatal); |
| 312 | object_property_set_bool(OBJECT(end_xsrc), true, "realized" , &local_err); |
| 313 | if (local_err) { |
| 314 | error_propagate(errp, local_err); |
| 315 | return; |
| 316 | } |
| 317 | sysbus_init_mmio(SYS_BUS_DEVICE(xive), &end_xsrc->esb_mmio); |
| 318 | |
| 319 | /* Set the mapping address of the END ESB pages after the source ESBs */ |
| 320 | xive->end_base = xive->vc_base + (1ull << xsrc->esb_shift) * xsrc->nr_irqs; |
| 321 | |
| 322 | /* |
| 323 | * Allocate the routing tables |
| 324 | */ |
| 325 | xive->eat = g_new0(XiveEAS, xive->nr_irqs); |
| 326 | xive->endt = g_new0(XiveEND, xive->nr_ends); |
| 327 | |
| 328 | xive->nodename = g_strdup_printf("interrupt-controller@%" PRIx64, |
| 329 | xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT)); |
| 330 | |
| 331 | qemu_register_reset(spapr_xive_reset, dev); |
| 332 | |
| 333 | /* TIMA initialization */ |
| 334 | memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &xive_tm_ops, xive, |
| 335 | "xive.tima" , 4ull << TM_SHIFT); |
| 336 | sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xive->tm_mmio); |
| 337 | |
| 338 | /* |
| 339 | * Map all regions. These will be enabled or disabled at reset and |
| 340 | * can also be overridden by KVM memory regions if active |
| 341 | */ |
| 342 | sysbus_mmio_map(SYS_BUS_DEVICE(xive), 0, xive->vc_base); |
| 343 | sysbus_mmio_map(SYS_BUS_DEVICE(xive), 1, xive->end_base); |
| 344 | sysbus_mmio_map(SYS_BUS_DEVICE(xive), 2, xive->tm_base); |
| 345 | } |
| 346 | |
| 347 | static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk, |
| 348 | uint32_t eas_idx, XiveEAS *eas) |
| 349 | { |
| 350 | SpaprXive *xive = SPAPR_XIVE(xrtr); |
| 351 | |
| 352 | if (eas_idx >= xive->nr_irqs) { |
| 353 | return -1; |
| 354 | } |
| 355 | |
| 356 | *eas = xive->eat[eas_idx]; |
| 357 | return 0; |
| 358 | } |
| 359 | |
| 360 | static int spapr_xive_get_end(XiveRouter *xrtr, |
| 361 | uint8_t end_blk, uint32_t end_idx, XiveEND *end) |
| 362 | { |
| 363 | SpaprXive *xive = SPAPR_XIVE(xrtr); |
| 364 | |
| 365 | if (end_idx >= xive->nr_ends) { |
| 366 | return -1; |
| 367 | } |
| 368 | |
| 369 | memcpy(end, &xive->endt[end_idx], sizeof(XiveEND)); |
| 370 | return 0; |
| 371 | } |
| 372 | |
| 373 | static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk, |
| 374 | uint32_t end_idx, XiveEND *end, |
| 375 | uint8_t word_number) |
| 376 | { |
| 377 | SpaprXive *xive = SPAPR_XIVE(xrtr); |
| 378 | |
| 379 | if (end_idx >= xive->nr_ends) { |
| 380 | return -1; |
| 381 | } |
| 382 | |
| 383 | memcpy(&xive->endt[end_idx], end, sizeof(XiveEND)); |
| 384 | return 0; |
| 385 | } |
| 386 | |
| 387 | static int spapr_xive_get_nvt(XiveRouter *xrtr, |
| 388 | uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt) |
| 389 | { |
| 390 | uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx); |
| 391 | PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); |
| 392 | |
| 393 | if (!cpu) { |
| 394 | /* TODO: should we assert() if we can find a NVT ? */ |
| 395 | return -1; |
| 396 | } |
| 397 | |
| 398 | /* |
| 399 | * sPAPR does not maintain a NVT table. Return that the NVT is |
| 400 | * valid if we have found a matching CPU |
| 401 | */ |
| 402 | nvt->w0 = cpu_to_be32(NVT_W0_VALID); |
| 403 | return 0; |
| 404 | } |
| 405 | |
| 406 | static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, |
| 407 | uint32_t nvt_idx, XiveNVT *nvt, |
| 408 | uint8_t word_number) |
| 409 | { |
| 410 | /* |
| 411 | * We don't need to write back to the NVTs because the sPAPR |
| 412 | * machine should never hit a non-scheduled NVT. It should never |
| 413 | * get called. |
| 414 | */ |
| 415 | g_assert_not_reached(); |
| 416 | } |
| 417 | |
| 418 | static XiveTCTX *spapr_xive_get_tctx(XiveRouter *xrtr, CPUState *cs) |
| 419 | { |
| 420 | PowerPCCPU *cpu = POWERPC_CPU(cs); |
| 421 | |
| 422 | return spapr_cpu_state(cpu)->tctx; |
| 423 | } |
| 424 | |
| 425 | static const VMStateDescription vmstate_spapr_xive_end = { |
| 426 | .name = TYPE_SPAPR_XIVE "/end" , |
| 427 | .version_id = 1, |
| 428 | .minimum_version_id = 1, |
| 429 | .fields = (VMStateField []) { |
| 430 | VMSTATE_UINT32(w0, XiveEND), |
| 431 | VMSTATE_UINT32(w1, XiveEND), |
| 432 | VMSTATE_UINT32(w2, XiveEND), |
| 433 | VMSTATE_UINT32(w3, XiveEND), |
| 434 | VMSTATE_UINT32(w4, XiveEND), |
| 435 | VMSTATE_UINT32(w5, XiveEND), |
| 436 | VMSTATE_UINT32(w6, XiveEND), |
| 437 | VMSTATE_UINT32(w7, XiveEND), |
| 438 | VMSTATE_END_OF_LIST() |
| 439 | }, |
| 440 | }; |
| 441 | |
| 442 | static const VMStateDescription vmstate_spapr_xive_eas = { |
| 443 | .name = TYPE_SPAPR_XIVE "/eas" , |
| 444 | .version_id = 1, |
| 445 | .minimum_version_id = 1, |
| 446 | .fields = (VMStateField []) { |
| 447 | VMSTATE_UINT64(w, XiveEAS), |
| 448 | VMSTATE_END_OF_LIST() |
| 449 | }, |
| 450 | }; |
| 451 | |
| 452 | static int vmstate_spapr_xive_pre_save(void *opaque) |
| 453 | { |
| 454 | if (kvm_irqchip_in_kernel()) { |
| 455 | return kvmppc_xive_pre_save(SPAPR_XIVE(opaque)); |
| 456 | } |
| 457 | |
| 458 | return 0; |
| 459 | } |
| 460 | |
| 461 | /* |
| 462 | * Called by the sPAPR IRQ backend 'post_load' method at the machine |
| 463 | * level. |
| 464 | */ |
| 465 | int spapr_xive_post_load(SpaprXive *xive, int version_id) |
| 466 | { |
| 467 | if (kvm_irqchip_in_kernel()) { |
| 468 | return kvmppc_xive_post_load(xive, version_id); |
| 469 | } |
| 470 | |
| 471 | return 0; |
| 472 | } |
| 473 | |
| 474 | static const VMStateDescription vmstate_spapr_xive = { |
| 475 | .name = TYPE_SPAPR_XIVE, |
| 476 | .version_id = 1, |
| 477 | .minimum_version_id = 1, |
| 478 | .pre_save = vmstate_spapr_xive_pre_save, |
| 479 | .post_load = NULL, /* handled at the machine level */ |
| 480 | .fields = (VMStateField[]) { |
| 481 | VMSTATE_UINT32_EQUAL(nr_irqs, SpaprXive, NULL), |
| 482 | VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, SpaprXive, nr_irqs, |
| 483 | vmstate_spapr_xive_eas, XiveEAS), |
| 484 | VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, SpaprXive, nr_ends, |
| 485 | vmstate_spapr_xive_end, XiveEND), |
| 486 | VMSTATE_END_OF_LIST() |
| 487 | }, |
| 488 | }; |
| 489 | |
| 490 | static Property spapr_xive_properties[] = { |
| 491 | DEFINE_PROP_UINT32("nr-irqs" , SpaprXive, nr_irqs, 0), |
| 492 | DEFINE_PROP_UINT32("nr-ends" , SpaprXive, nr_ends, 0), |
| 493 | DEFINE_PROP_UINT64("vc-base" , SpaprXive, vc_base, SPAPR_XIVE_VC_BASE), |
| 494 | DEFINE_PROP_UINT64("tm-base" , SpaprXive, tm_base, SPAPR_XIVE_TM_BASE), |
| 495 | DEFINE_PROP_END_OF_LIST(), |
| 496 | }; |
| 497 | |
| 498 | static void spapr_xive_class_init(ObjectClass *klass, void *data) |
| 499 | { |
| 500 | DeviceClass *dc = DEVICE_CLASS(klass); |
| 501 | XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass); |
| 502 | |
| 503 | dc->desc = "sPAPR XIVE Interrupt Controller" ; |
| 504 | dc->props = spapr_xive_properties; |
| 505 | dc->realize = spapr_xive_realize; |
| 506 | dc->vmsd = &vmstate_spapr_xive; |
| 507 | |
| 508 | xrc->get_eas = spapr_xive_get_eas; |
| 509 | xrc->get_end = spapr_xive_get_end; |
| 510 | xrc->write_end = spapr_xive_write_end; |
| 511 | xrc->get_nvt = spapr_xive_get_nvt; |
| 512 | xrc->write_nvt = spapr_xive_write_nvt; |
| 513 | xrc->get_tctx = spapr_xive_get_tctx; |
| 514 | } |
| 515 | |
| 516 | static const TypeInfo spapr_xive_info = { |
| 517 | .name = TYPE_SPAPR_XIVE, |
| 518 | .parent = TYPE_XIVE_ROUTER, |
| 519 | .instance_init = spapr_xive_instance_init, |
| 520 | .instance_size = sizeof(SpaprXive), |
| 521 | .class_init = spapr_xive_class_init, |
| 522 | }; |
| 523 | |
| 524 | static void spapr_xive_register_types(void) |
| 525 | { |
| 526 | type_register_static(&spapr_xive_info); |
| 527 | } |
| 528 | |
| 529 | type_init(spapr_xive_register_types) |
| 530 | |
| 531 | bool spapr_xive_irq_claim(SpaprXive *xive, uint32_t lisn, bool lsi) |
| 532 | { |
| 533 | XiveSource *xsrc = &xive->source; |
| 534 | |
| 535 | if (lisn >= xive->nr_irqs) { |
| 536 | return false; |
| 537 | } |
| 538 | |
| 539 | /* |
| 540 | * Set default values when allocating an IRQ number |
| 541 | */ |
| 542 | xive->eat[lisn].w |= cpu_to_be64(EAS_VALID | EAS_MASKED); |
| 543 | if (lsi) { |
| 544 | xive_source_irq_set_lsi(xsrc, lisn); |
| 545 | } |
| 546 | |
| 547 | if (kvm_irqchip_in_kernel()) { |
| 548 | Error *local_err = NULL; |
| 549 | |
| 550 | kvmppc_xive_source_reset_one(xsrc, lisn, &local_err); |
| 551 | if (local_err) { |
| 552 | error_report_err(local_err); |
| 553 | return false; |
| 554 | } |
| 555 | } |
| 556 | |
| 557 | return true; |
| 558 | } |
| 559 | |
| 560 | bool spapr_xive_irq_free(SpaprXive *xive, uint32_t lisn) |
| 561 | { |
| 562 | if (lisn >= xive->nr_irqs) { |
| 563 | return false; |
| 564 | } |
| 565 | |
| 566 | xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID); |
| 567 | return true; |
| 568 | } |
| 569 | |
| 570 | /* |
| 571 | * XIVE hcalls |
| 572 | * |
| 573 | * The terminology used by the XIVE hcalls is the following : |
| 574 | * |
| 575 | * TARGET vCPU number |
| 576 | * EQ Event Queue assigned by OS to receive event data |
| 577 | * ESB page for source interrupt management |
| 578 | * LISN Logical Interrupt Source Number identifying a source in the |
| 579 | * machine |
| 580 | * EISN Effective Interrupt Source Number used by guest OS to |
| 581 | * identify source in the guest |
| 582 | * |
| 583 | * The EAS, END, NVT structures are not exposed. |
| 584 | */ |
| 585 | |
| 586 | /* |
| 587 | * Linux hosts under OPAL reserve priority 7 for their own escalation |
| 588 | * interrupts (DD2.X POWER9). So we only allow the guest to use |
| 589 | * priorities [0..6]. |
| 590 | */ |
| 591 | static bool spapr_xive_priority_is_reserved(uint8_t priority) |
| 592 | { |
| 593 | switch (priority) { |
| 594 | case 0 ... 6: |
| 595 | return false; |
| 596 | case 7: /* OPAL escalation queue */ |
| 597 | default: |
| 598 | return true; |
| 599 | } |
| 600 | } |
| 601 | |
| 602 | /* |
| 603 | * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical |
| 604 | * real address of the MMIO page through which the Event State Buffer |
| 605 | * entry associated with the value of the "lisn" parameter is managed. |
| 606 | * |
| 607 | * Parameters: |
| 608 | * Input |
| 609 | * - R4: "flags" |
| 610 | * Bits 0-63 reserved |
| 611 | * - R5: "lisn" is per "interrupts", "interrupt-map", or |
| 612 | * "ibm,xive-lisn-ranges" properties, or as returned by the |
| 613 | * ibm,query-interrupt-source-number RTAS call, or as returned |
| 614 | * by the H_ALLOCATE_VAS_WINDOW hcall |
| 615 | * |
| 616 | * Output |
| 617 | * - R4: "flags" |
| 618 | * Bits 0-59: Reserved |
| 619 | * Bit 60: H_INT_ESB must be used for Event State Buffer |
| 620 | * management |
| 621 | * Bit 61: 1 == LSI 0 == MSI |
| 622 | * Bit 62: the full function page supports trigger |
| 623 | * Bit 63: Store EOI Supported |
| 624 | * - R5: Logical Real address of full function Event State Buffer |
| 625 | * management page, -1 if H_INT_ESB hcall flag is set to 1. |
| 626 | * - R6: Logical Real Address of trigger only Event State Buffer |
| 627 | * management page or -1. |
| 628 | * - R7: Power of 2 page size for the ESB management pages returned in |
| 629 | * R5 and R6. |
| 630 | */ |
| 631 | |
| 632 | #define SPAPR_XIVE_SRC_H_INT_ESB PPC_BIT(60) /* ESB manage with H_INT_ESB */ |
| 633 | #define SPAPR_XIVE_SRC_LSI PPC_BIT(61) /* Virtual LSI type */ |
| 634 | #define SPAPR_XIVE_SRC_TRIGGER PPC_BIT(62) /* Trigger and management |
| 635 | on same page */ |
| 636 | #define SPAPR_XIVE_SRC_STORE_EOI PPC_BIT(63) /* Store EOI support */ |
| 637 | |
| 638 | static target_ulong h_int_get_source_info(PowerPCCPU *cpu, |
| 639 | SpaprMachineState *spapr, |
| 640 | target_ulong opcode, |
| 641 | target_ulong *args) |
| 642 | { |
| 643 | SpaprXive *xive = spapr->xive; |
| 644 | XiveSource *xsrc = &xive->source; |
| 645 | target_ulong flags = args[0]; |
| 646 | target_ulong lisn = args[1]; |
| 647 | |
| 648 | if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { |
| 649 | return H_FUNCTION; |
| 650 | } |
| 651 | |
| 652 | if (flags) { |
| 653 | return H_PARAMETER; |
| 654 | } |
| 655 | |
| 656 | if (lisn >= xive->nr_irqs) { |
| 657 | qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n" , |
| 658 | lisn); |
| 659 | return H_P2; |
| 660 | } |
| 661 | |
| 662 | if (!xive_eas_is_valid(&xive->eat[lisn])) { |
| 663 | qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n" , |
| 664 | lisn); |
| 665 | return H_P2; |
| 666 | } |
| 667 | |
| 668 | /* |
| 669 | * All sources are emulated under the main XIVE object and share |
| 670 | * the same characteristics. |
| 671 | */ |
| 672 | args[0] = 0; |
| 673 | if (!xive_source_esb_has_2page(xsrc)) { |
| 674 | args[0] |= SPAPR_XIVE_SRC_TRIGGER; |
| 675 | } |
| 676 | if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) { |
| 677 | args[0] |= SPAPR_XIVE_SRC_STORE_EOI; |
| 678 | } |
| 679 | |
| 680 | /* |
| 681 | * Force the use of the H_INT_ESB hcall in case of an LSI |
| 682 | * interrupt. This is necessary under KVM to re-trigger the |
| 683 | * interrupt if the level is still asserted |
| 684 | */ |
| 685 | if (xive_source_irq_is_lsi(xsrc, lisn)) { |
| 686 | args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI; |
| 687 | } |
| 688 | |
| 689 | if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) { |
| 690 | args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn); |
| 691 | } else { |
| 692 | args[1] = -1; |
| 693 | } |
| 694 | |
| 695 | if (xive_source_esb_has_2page(xsrc) && |
| 696 | !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) { |
| 697 | args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn); |
| 698 | } else { |
| 699 | args[2] = -1; |
| 700 | } |
| 701 | |
| 702 | if (xive_source_esb_has_2page(xsrc)) { |
| 703 | args[3] = xsrc->esb_shift - 1; |
| 704 | } else { |
| 705 | args[3] = xsrc->esb_shift; |
| 706 | } |
| 707 | |
| 708 | return H_SUCCESS; |
| 709 | } |
| 710 | |
| 711 | /* |
| 712 | * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical |
| 713 | * Interrupt Source to a target. The Logical Interrupt Source is |
| 714 | * designated with the "lisn" parameter and the target is designated |
| 715 | * with the "target" and "priority" parameters. Upon return from the |
| 716 | * hcall(), no additional interrupts will be directed to the old EQ. |
| 717 | * |
| 718 | * Parameters: |
| 719 | * Input: |
| 720 | * - R4: "flags" |
| 721 | * Bits 0-61: Reserved |
| 722 | * Bit 62: set the "eisn" in the EAS |
| 723 | * Bit 63: masks the interrupt source in the hardware interrupt |
| 724 | * control structure. An interrupt masked by this mechanism will |
| 725 | * be dropped, but it's source state bits will still be |
| 726 | * set. There is no race-free way of unmasking and restoring the |
| 727 | * source. Thus this should only be used in interrupts that are |
| 728 | * also masked at the source, and only in cases where the |
| 729 | * interrupt is not meant to be used for a large amount of time |
| 730 | * because no valid target exists for it for example |
| 731 | * - R5: "lisn" is per "interrupts", "interrupt-map", or |
| 732 | * "ibm,xive-lisn-ranges" properties, or as returned by the |
| 733 | * ibm,query-interrupt-source-number RTAS call, or as returned by |
| 734 | * the H_ALLOCATE_VAS_WINDOW hcall |
| 735 | * - R6: "target" is per "ibm,ppc-interrupt-server#s" or |
| 736 | * "ibm,ppc-interrupt-gserver#s" |
| 737 | * - R7: "priority" is a valid priority not in |
| 738 | * "ibm,plat-res-int-priorities" |
| 739 | * - R8: "eisn" is the guest EISN associated with the "lisn" |
| 740 | * |
| 741 | * Output: |
| 742 | * - None |
| 743 | */ |
| 744 | |
| 745 | #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62) |
| 746 | #define SPAPR_XIVE_SRC_MASK PPC_BIT(63) |
| 747 | |
| 748 | static target_ulong h_int_set_source_config(PowerPCCPU *cpu, |
| 749 | SpaprMachineState *spapr, |
| 750 | target_ulong opcode, |
| 751 | target_ulong *args) |
| 752 | { |
| 753 | SpaprXive *xive = spapr->xive; |
| 754 | XiveEAS eas, new_eas; |
| 755 | target_ulong flags = args[0]; |
| 756 | target_ulong lisn = args[1]; |
| 757 | target_ulong target = args[2]; |
| 758 | target_ulong priority = args[3]; |
| 759 | target_ulong eisn = args[4]; |
| 760 | uint8_t end_blk; |
| 761 | uint32_t end_idx; |
| 762 | |
| 763 | if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { |
| 764 | return H_FUNCTION; |
| 765 | } |
| 766 | |
| 767 | if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) { |
| 768 | return H_PARAMETER; |
| 769 | } |
| 770 | |
| 771 | if (lisn >= xive->nr_irqs) { |
| 772 | qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n" , |
| 773 | lisn); |
| 774 | return H_P2; |
| 775 | } |
| 776 | |
| 777 | eas = xive->eat[lisn]; |
| 778 | if (!xive_eas_is_valid(&eas)) { |
| 779 | qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n" , |
| 780 | lisn); |
| 781 | return H_P2; |
| 782 | } |
| 783 | |
| 784 | /* priority 0xff is used to reset the EAS */ |
| 785 | if (priority == 0xff) { |
| 786 | new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED); |
| 787 | goto out; |
| 788 | } |
| 789 | |
| 790 | if (flags & SPAPR_XIVE_SRC_MASK) { |
| 791 | new_eas.w = eas.w | cpu_to_be64(EAS_MASKED); |
| 792 | } else { |
| 793 | new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED); |
| 794 | } |
| 795 | |
| 796 | if (spapr_xive_priority_is_reserved(priority)) { |
| 797 | qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld |
| 798 | " is reserved\n" , priority); |
| 799 | return H_P4; |
| 800 | } |
| 801 | |
| 802 | /* |
| 803 | * Validate that "target" is part of the list of threads allocated |
| 804 | * to the partition. For that, find the END corresponding to the |
| 805 | * target. |
| 806 | */ |
| 807 | if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) { |
| 808 | return H_P3; |
| 809 | } |
| 810 | |
| 811 | new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk); |
| 812 | new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx); |
| 813 | |
| 814 | if (flags & SPAPR_XIVE_SRC_SET_EISN) { |
| 815 | new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn); |
| 816 | } |
| 817 | |
| 818 | if (kvm_irqchip_in_kernel()) { |
| 819 | Error *local_err = NULL; |
| 820 | |
| 821 | kvmppc_xive_set_source_config(xive, lisn, &new_eas, &local_err); |
| 822 | if (local_err) { |
| 823 | error_report_err(local_err); |
| 824 | return H_HARDWARE; |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | out: |
| 829 | xive->eat[lisn] = new_eas; |
| 830 | return H_SUCCESS; |
| 831 | } |
| 832 | |
| 833 | /* |
| 834 | * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which |
| 835 | * target/priority pair is assigned to the specified Logical Interrupt |
| 836 | * Source. |
| 837 | * |
| 838 | * Parameters: |
| 839 | * Input: |
| 840 | * - R4: "flags" |
| 841 | * Bits 0-63 Reserved |
| 842 | * - R5: "lisn" is per "interrupts", "interrupt-map", or |
| 843 | * "ibm,xive-lisn-ranges" properties, or as returned by the |
| 844 | * ibm,query-interrupt-source-number RTAS call, or as |
| 845 | * returned by the H_ALLOCATE_VAS_WINDOW hcall |
| 846 | * |
| 847 | * Output: |
| 848 | * - R4: Target to which the specified Logical Interrupt Source is |
| 849 | * assigned |
| 850 | * - R5: Priority to which the specified Logical Interrupt Source is |
| 851 | * assigned |
| 852 | * - R6: EISN for the specified Logical Interrupt Source (this will be |
| 853 | * equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG) |
| 854 | */ |
| 855 | static target_ulong h_int_get_source_config(PowerPCCPU *cpu, |
| 856 | SpaprMachineState *spapr, |
| 857 | target_ulong opcode, |
| 858 | target_ulong *args) |
| 859 | { |
| 860 | SpaprXive *xive = spapr->xive; |
| 861 | target_ulong flags = args[0]; |
| 862 | target_ulong lisn = args[1]; |
| 863 | XiveEAS eas; |
| 864 | XiveEND *end; |
| 865 | uint8_t nvt_blk; |
| 866 | uint32_t end_idx, nvt_idx; |
| 867 | |
| 868 | if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { |
| 869 | return H_FUNCTION; |
| 870 | } |
| 871 | |
| 872 | if (flags) { |
| 873 | return H_PARAMETER; |
| 874 | } |
| 875 | |
| 876 | if (lisn >= xive->nr_irqs) { |
| 877 | qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n" , |
| 878 | lisn); |
| 879 | return H_P2; |
| 880 | } |
| 881 | |
| 882 | eas = xive->eat[lisn]; |
| 883 | if (!xive_eas_is_valid(&eas)) { |
| 884 | qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n" , |
| 885 | lisn); |
| 886 | return H_P2; |
| 887 | } |
| 888 | |
| 889 | /* EAS_END_BLOCK is unused on sPAPR */ |
| 890 | end_idx = xive_get_field64(EAS_END_INDEX, eas.w); |
| 891 | |
| 892 | assert(end_idx < xive->nr_ends); |
| 893 | end = &xive->endt[end_idx]; |
| 894 | |
| 895 | nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6); |
| 896 | nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6); |
| 897 | args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx); |
| 898 | |
| 899 | if (xive_eas_is_masked(&eas)) { |
| 900 | args[1] = 0xff; |
| 901 | } else { |
| 902 | args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7); |
| 903 | } |
| 904 | |
| 905 | args[2] = xive_get_field64(EAS_END_DATA, eas.w); |
| 906 | |
| 907 | return H_SUCCESS; |
| 908 | } |
| 909 | |
| 910 | /* |
| 911 | * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real |
| 912 | * address of the notification management page associated with the |
| 913 | * specified target and priority. |
| 914 | * |
| 915 | * Parameters: |
| 916 | * Input: |
| 917 | * - R4: "flags" |
| 918 | * Bits 0-63 Reserved |
| 919 | * - R5: "target" is per "ibm,ppc-interrupt-server#s" or |
| 920 | * "ibm,ppc-interrupt-gserver#s" |
| 921 | * - R6: "priority" is a valid priority not in |
| 922 | * "ibm,plat-res-int-priorities" |
| 923 | * |
| 924 | * Output: |
| 925 | * - R4: Logical real address of notification page |
| 926 | * - R5: Power of 2 page size of the notification page |
| 927 | */ |
| 928 | static target_ulong h_int_get_queue_info(PowerPCCPU *cpu, |
| 929 | SpaprMachineState *spapr, |
| 930 | target_ulong opcode, |
| 931 | target_ulong *args) |
| 932 | { |
| 933 | SpaprXive *xive = spapr->xive; |
| 934 | XiveENDSource *end_xsrc = &xive->end_source; |
| 935 | target_ulong flags = args[0]; |
| 936 | target_ulong target = args[1]; |
| 937 | target_ulong priority = args[2]; |
| 938 | XiveEND *end; |
| 939 | uint8_t end_blk; |
| 940 | uint32_t end_idx; |
| 941 | |
| 942 | if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { |
| 943 | return H_FUNCTION; |
| 944 | } |
| 945 | |
| 946 | if (flags) { |
| 947 | return H_PARAMETER; |
| 948 | } |
| 949 | |
| 950 | /* |
| 951 | * H_STATE should be returned if a H_INT_RESET is in progress. |
| 952 | * This is not needed when running the emulation under QEMU |
| 953 | */ |
| 954 | |
| 955 | if (spapr_xive_priority_is_reserved(priority)) { |
| 956 | qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld |
| 957 | " is reserved\n" , priority); |
| 958 | return H_P3; |
| 959 | } |
| 960 | |
| 961 | /* |
| 962 | * Validate that "target" is part of the list of threads allocated |
| 963 | * to the partition. For that, find the END corresponding to the |
| 964 | * target. |
| 965 | */ |
| 966 | if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) { |
| 967 | return H_P2; |
| 968 | } |
| 969 | |
| 970 | assert(end_idx < xive->nr_ends); |
| 971 | end = &xive->endt[end_idx]; |
| 972 | |
| 973 | args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx; |
| 974 | if (xive_end_is_enqueue(end)) { |
| 975 | args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12; |
| 976 | } else { |
| 977 | args[1] = 0; |
| 978 | } |
| 979 | |
| 980 | return H_SUCCESS; |
| 981 | } |
| 982 | |
| 983 | /* |
| 984 | * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for |
| 985 | * a given "target" and "priority". It is also used to set the |
| 986 | * notification config associated with the EQ. An EQ size of 0 is |
| 987 | * used to reset the EQ config for a given target and priority. If |
| 988 | * resetting the EQ config, the END associated with the given "target" |
| 989 | * and "priority" will be changed to disable queueing. |
| 990 | * |
| 991 | * Upon return from the hcall(), no additional interrupts will be |
| 992 | * directed to the old EQ (if one was set). The old EQ (if one was |
| 993 | * set) should be investigated for interrupts that occurred prior to |
| 994 | * or during the hcall(). |
| 995 | * |
| 996 | * Parameters: |
| 997 | * Input: |
| 998 | * - R4: "flags" |
| 999 | * Bits 0-62: Reserved |
| 1000 | * Bit 63: Unconditional Notify (n) per the XIVE spec |
| 1001 | * - R5: "target" is per "ibm,ppc-interrupt-server#s" or |
| 1002 | * "ibm,ppc-interrupt-gserver#s" |
| 1003 | * - R6: "priority" is a valid priority not in |
| 1004 | * "ibm,plat-res-int-priorities" |
| 1005 | * - R7: "eventQueue": The logical real address of the start of the EQ |
| 1006 | * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes" |
| 1007 | * |
| 1008 | * Output: |
| 1009 | * - None |
| 1010 | */ |
| 1011 | |
| 1012 | #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63) |
| 1013 | |
| 1014 | static target_ulong h_int_set_queue_config(PowerPCCPU *cpu, |
| 1015 | SpaprMachineState *spapr, |
| 1016 | target_ulong opcode, |
| 1017 | target_ulong *args) |
| 1018 | { |
| 1019 | SpaprXive *xive = spapr->xive; |
| 1020 | target_ulong flags = args[0]; |
| 1021 | target_ulong target = args[1]; |
| 1022 | target_ulong priority = args[2]; |
| 1023 | target_ulong qpage = args[3]; |
| 1024 | target_ulong qsize = args[4]; |
| 1025 | XiveEND end; |
| 1026 | uint8_t end_blk, nvt_blk; |
| 1027 | uint32_t end_idx, nvt_idx; |
| 1028 | |
| 1029 | if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { |
| 1030 | return H_FUNCTION; |
| 1031 | } |
| 1032 | |
| 1033 | if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) { |
| 1034 | return H_PARAMETER; |
| 1035 | } |
| 1036 | |
| 1037 | /* |
| 1038 | * H_STATE should be returned if a H_INT_RESET is in progress. |
| 1039 | * This is not needed when running the emulation under QEMU |
| 1040 | */ |
| 1041 | |
| 1042 | if (spapr_xive_priority_is_reserved(priority)) { |
| 1043 | qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld |
| 1044 | " is reserved\n" , priority); |
| 1045 | return H_P3; |
| 1046 | } |
| 1047 | |
| 1048 | /* |
| 1049 | * Validate that "target" is part of the list of threads allocated |
| 1050 | * to the partition. For that, find the END corresponding to the |
| 1051 | * target. |
| 1052 | */ |
| 1053 | |
| 1054 | if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) { |
| 1055 | return H_P2; |
| 1056 | } |
| 1057 | |
| 1058 | assert(end_idx < xive->nr_ends); |
| 1059 | memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND)); |
| 1060 | |
| 1061 | switch (qsize) { |
| 1062 | case 12: |
| 1063 | case 16: |
| 1064 | case 21: |
| 1065 | case 24: |
| 1066 | if (!QEMU_IS_ALIGNED(qpage, 1ul << qsize)) { |
| 1067 | qemu_log_mask(LOG_GUEST_ERROR, "XIVE: EQ @0x%" HWADDR_PRIx |
| 1068 | " is not naturally aligned with %" HWADDR_PRIx "\n" , |
| 1069 | qpage, (hwaddr)1 << qsize); |
| 1070 | return H_P4; |
| 1071 | } |
| 1072 | end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff); |
| 1073 | end.w3 = cpu_to_be32(qpage & 0xffffffff); |
| 1074 | end.w0 |= cpu_to_be32(END_W0_ENQUEUE); |
| 1075 | end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12); |
| 1076 | break; |
| 1077 | case 0: |
| 1078 | /* reset queue and disable queueing */ |
| 1079 | spapr_xive_end_reset(&end); |
| 1080 | goto out; |
| 1081 | |
| 1082 | default: |
| 1083 | qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %" PRIx64"\n" , |
| 1084 | qsize); |
| 1085 | return H_P5; |
| 1086 | } |
| 1087 | |
| 1088 | if (qsize) { |
| 1089 | hwaddr plen = 1 << qsize; |
| 1090 | void *eq; |
| 1091 | |
| 1092 | /* |
| 1093 | * Validate the guest EQ. We should also check that the queue |
| 1094 | * has been zeroed by the OS. |
| 1095 | */ |
| 1096 | eq = address_space_map(CPU(cpu)->as, qpage, &plen, true, |
| 1097 | MEMTXATTRS_UNSPECIFIED); |
| 1098 | if (plen != 1 << qsize) { |
| 1099 | qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%" |
| 1100 | HWADDR_PRIx "\n" , qpage); |
| 1101 | return H_P4; |
| 1102 | } |
| 1103 | address_space_unmap(CPU(cpu)->as, eq, plen, true, plen); |
| 1104 | } |
| 1105 | |
| 1106 | /* "target" should have been validated above */ |
| 1107 | if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) { |
| 1108 | g_assert_not_reached(); |
| 1109 | } |
| 1110 | |
| 1111 | /* |
| 1112 | * Ensure the priority and target are correctly set (they will not |
| 1113 | * be right after allocation) |
| 1114 | */ |
| 1115 | end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) | |
| 1116 | xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx); |
| 1117 | end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority); |
| 1118 | |
| 1119 | if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) { |
| 1120 | end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY); |
| 1121 | } else { |
| 1122 | end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY); |
| 1123 | } |
| 1124 | |
| 1125 | /* |
| 1126 | * The generation bit for the END starts at 1 and The END page |
| 1127 | * offset counter starts at 0. |
| 1128 | */ |
| 1129 | end.w1 = cpu_to_be32(END_W1_GENERATION) | |
| 1130 | xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul); |
| 1131 | end.w0 |= cpu_to_be32(END_W0_VALID); |
| 1132 | |
| 1133 | /* |
| 1134 | * TODO: issue syncs required to ensure all in-flight interrupts |
| 1135 | * are complete on the old END |
| 1136 | */ |
| 1137 | |
| 1138 | out: |
| 1139 | if (kvm_irqchip_in_kernel()) { |
| 1140 | Error *local_err = NULL; |
| 1141 | |
| 1142 | kvmppc_xive_set_queue_config(xive, end_blk, end_idx, &end, &local_err); |
| 1143 | if (local_err) { |
| 1144 | error_report_err(local_err); |
| 1145 | return H_HARDWARE; |
| 1146 | } |
| 1147 | } |
| 1148 | |
| 1149 | /* Update END */ |
| 1150 | memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND)); |
| 1151 | return H_SUCCESS; |
| 1152 | } |
| 1153 | |
| 1154 | /* |
| 1155 | * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given |
| 1156 | * target and priority. |
| 1157 | * |
| 1158 | * Parameters: |
| 1159 | * Input: |
| 1160 | * - R4: "flags" |
| 1161 | * Bits 0-62: Reserved |
| 1162 | * Bit 63: Debug: Return debug data |
| 1163 | * - R5: "target" is per "ibm,ppc-interrupt-server#s" or |
| 1164 | * "ibm,ppc-interrupt-gserver#s" |
| 1165 | * - R6: "priority" is a valid priority not in |
| 1166 | * "ibm,plat-res-int-priorities" |
| 1167 | * |
| 1168 | * Output: |
| 1169 | * - R4: "flags": |
| 1170 | * Bits 0-61: Reserved |
| 1171 | * Bit 62: The value of Event Queue Generation Number (g) per |
| 1172 | * the XIVE spec if "Debug" = 1 |
| 1173 | * Bit 63: The value of Unconditional Notify (n) per the XIVE spec |
| 1174 | * - R5: The logical real address of the start of the EQ |
| 1175 | * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes" |
| 1176 | * - R7: The value of Event Queue Offset Counter per XIVE spec |
| 1177 | * if "Debug" = 1, else 0 |
| 1178 | * |
| 1179 | */ |
| 1180 | |
| 1181 | #define SPAPR_XIVE_END_DEBUG PPC_BIT(63) |
| 1182 | |
| 1183 | static target_ulong h_int_get_queue_config(PowerPCCPU *cpu, |
| 1184 | SpaprMachineState *spapr, |
| 1185 | target_ulong opcode, |
| 1186 | target_ulong *args) |
| 1187 | { |
| 1188 | SpaprXive *xive = spapr->xive; |
| 1189 | target_ulong flags = args[0]; |
| 1190 | target_ulong target = args[1]; |
| 1191 | target_ulong priority = args[2]; |
| 1192 | XiveEND *end; |
| 1193 | uint8_t end_blk; |
| 1194 | uint32_t end_idx; |
| 1195 | |
| 1196 | if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { |
| 1197 | return H_FUNCTION; |
| 1198 | } |
| 1199 | |
| 1200 | if (flags & ~SPAPR_XIVE_END_DEBUG) { |
| 1201 | return H_PARAMETER; |
| 1202 | } |
| 1203 | |
| 1204 | /* |
| 1205 | * H_STATE should be returned if a H_INT_RESET is in progress. |
| 1206 | * This is not needed when running the emulation under QEMU |
| 1207 | */ |
| 1208 | |
| 1209 | if (spapr_xive_priority_is_reserved(priority)) { |
| 1210 | qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld |
| 1211 | " is reserved\n" , priority); |
| 1212 | return H_P3; |
| 1213 | } |
| 1214 | |
| 1215 | /* |
| 1216 | * Validate that "target" is part of the list of threads allocated |
| 1217 | * to the partition. For that, find the END corresponding to the |
| 1218 | * target. |
| 1219 | */ |
| 1220 | if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) { |
| 1221 | return H_P2; |
| 1222 | } |
| 1223 | |
| 1224 | assert(end_idx < xive->nr_ends); |
| 1225 | end = &xive->endt[end_idx]; |
| 1226 | |
| 1227 | args[0] = 0; |
| 1228 | if (xive_end_is_notify(end)) { |
| 1229 | args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY; |
| 1230 | } |
| 1231 | |
| 1232 | if (xive_end_is_enqueue(end)) { |
| 1233 | args[1] = xive_end_qaddr(end); |
| 1234 | args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12; |
| 1235 | } else { |
| 1236 | args[1] = 0; |
| 1237 | args[2] = 0; |
| 1238 | } |
| 1239 | |
| 1240 | if (kvm_irqchip_in_kernel()) { |
| 1241 | Error *local_err = NULL; |
| 1242 | |
| 1243 | kvmppc_xive_get_queue_config(xive, end_blk, end_idx, end, &local_err); |
| 1244 | if (local_err) { |
| 1245 | error_report_err(local_err); |
| 1246 | return H_HARDWARE; |
| 1247 | } |
| 1248 | } |
| 1249 | |
| 1250 | /* TODO: do we need any locking on the END ? */ |
| 1251 | if (flags & SPAPR_XIVE_END_DEBUG) { |
| 1252 | /* Load the event queue generation number into the return flags */ |
| 1253 | args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62; |
| 1254 | |
| 1255 | /* Load R7 with the event queue offset counter */ |
| 1256 | args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1); |
| 1257 | } else { |
| 1258 | args[3] = 0; |
| 1259 | } |
| 1260 | |
| 1261 | return H_SUCCESS; |
| 1262 | } |
| 1263 | |
| 1264 | /* |
| 1265 | * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the |
| 1266 | * reporting cache line pair for the calling thread. The reporting |
| 1267 | * cache lines will contain the OS interrupt context when the OS |
| 1268 | * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS |
| 1269 | * interrupt. The reporting cache lines can be reset by inputting -1 |
| 1270 | * in "reportingLine". Issuing the CI store byte without reporting |
| 1271 | * cache lines registered will result in the data not being accessible |
| 1272 | * to the OS. |
| 1273 | * |
| 1274 | * Parameters: |
| 1275 | * Input: |
| 1276 | * - R4: "flags" |
| 1277 | * Bits 0-63: Reserved |
| 1278 | * - R5: "reportingLine": The logical real address of the reporting cache |
| 1279 | * line pair |
| 1280 | * |
| 1281 | * Output: |
| 1282 | * - None |
| 1283 | */ |
| 1284 | static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu, |
| 1285 | SpaprMachineState *spapr, |
| 1286 | target_ulong opcode, |
| 1287 | target_ulong *args) |
| 1288 | { |
| 1289 | if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { |
| 1290 | return H_FUNCTION; |
| 1291 | } |
| 1292 | |
| 1293 | /* |
| 1294 | * H_STATE should be returned if a H_INT_RESET is in progress. |
| 1295 | * This is not needed when running the emulation under QEMU |
| 1296 | */ |
| 1297 | |
| 1298 | /* TODO: H_INT_SET_OS_REPORTING_LINE */ |
| 1299 | return H_FUNCTION; |
| 1300 | } |
| 1301 | |
| 1302 | /* |
| 1303 | * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical |
| 1304 | * real address of the reporting cache line pair set for the input |
| 1305 | * "target". If no reporting cache line pair has been set, -1 is |
| 1306 | * returned. |
| 1307 | * |
| 1308 | * Parameters: |
| 1309 | * Input: |
| 1310 | * - R4: "flags" |
| 1311 | * Bits 0-63: Reserved |
| 1312 | * - R5: "target" is per "ibm,ppc-interrupt-server#s" or |
| 1313 | * "ibm,ppc-interrupt-gserver#s" |
| 1314 | * - R6: "reportingLine": The logical real address of the reporting |
| 1315 | * cache line pair |
| 1316 | * |
| 1317 | * Output: |
| 1318 | * - R4: The logical real address of the reporting line if set, else -1 |
| 1319 | */ |
| 1320 | static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu, |
| 1321 | SpaprMachineState *spapr, |
| 1322 | target_ulong opcode, |
| 1323 | target_ulong *args) |
| 1324 | { |
| 1325 | if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { |
| 1326 | return H_FUNCTION; |
| 1327 | } |
| 1328 | |
| 1329 | /* |
| 1330 | * H_STATE should be returned if a H_INT_RESET is in progress. |
| 1331 | * This is not needed when running the emulation under QEMU |
| 1332 | */ |
| 1333 | |
| 1334 | /* TODO: H_INT_GET_OS_REPORTING_LINE */ |
| 1335 | return H_FUNCTION; |
| 1336 | } |
| 1337 | |
| 1338 | /* |
| 1339 | * The H_INT_ESB hcall() is used to issue a load or store to the ESB |
| 1340 | * page for the input "lisn". This hcall is only supported for LISNs |
| 1341 | * that have the ESB hcall flag set to 1 when returned from hcall() |
| 1342 | * H_INT_GET_SOURCE_INFO. |
| 1343 | * |
| 1344 | * Parameters: |
| 1345 | * Input: |
| 1346 | * - R4: "flags" |
| 1347 | * Bits 0-62: Reserved |
| 1348 | * bit 63: Store: Store=1, store operation, else load operation |
| 1349 | * - R5: "lisn" is per "interrupts", "interrupt-map", or |
| 1350 | * "ibm,xive-lisn-ranges" properties, or as returned by the |
| 1351 | * ibm,query-interrupt-source-number RTAS call, or as |
| 1352 | * returned by the H_ALLOCATE_VAS_WINDOW hcall |
| 1353 | * - R6: "esbOffset" is the offset into the ESB page for the load or |
| 1354 | * store operation |
| 1355 | * - R7: "storeData" is the data to write for a store operation |
| 1356 | * |
| 1357 | * Output: |
| 1358 | * - R4: The value of the load if load operation, else -1 |
| 1359 | */ |
| 1360 | |
| 1361 | #define SPAPR_XIVE_ESB_STORE PPC_BIT(63) |
| 1362 | |
| 1363 | static target_ulong h_int_esb(PowerPCCPU *cpu, |
| 1364 | SpaprMachineState *spapr, |
| 1365 | target_ulong opcode, |
| 1366 | target_ulong *args) |
| 1367 | { |
| 1368 | SpaprXive *xive = spapr->xive; |
| 1369 | XiveEAS eas; |
| 1370 | target_ulong flags = args[0]; |
| 1371 | target_ulong lisn = args[1]; |
| 1372 | target_ulong offset = args[2]; |
| 1373 | target_ulong data = args[3]; |
| 1374 | hwaddr mmio_addr; |
| 1375 | XiveSource *xsrc = &xive->source; |
| 1376 | |
| 1377 | if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { |
| 1378 | return H_FUNCTION; |
| 1379 | } |
| 1380 | |
| 1381 | if (flags & ~SPAPR_XIVE_ESB_STORE) { |
| 1382 | return H_PARAMETER; |
| 1383 | } |
| 1384 | |
| 1385 | if (lisn >= xive->nr_irqs) { |
| 1386 | qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n" , |
| 1387 | lisn); |
| 1388 | return H_P2; |
| 1389 | } |
| 1390 | |
| 1391 | eas = xive->eat[lisn]; |
| 1392 | if (!xive_eas_is_valid(&eas)) { |
| 1393 | qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n" , |
| 1394 | lisn); |
| 1395 | return H_P2; |
| 1396 | } |
| 1397 | |
| 1398 | if (offset > (1ull << xsrc->esb_shift)) { |
| 1399 | return H_P3; |
| 1400 | } |
| 1401 | |
| 1402 | if (kvm_irqchip_in_kernel()) { |
| 1403 | args[0] = kvmppc_xive_esb_rw(xsrc, lisn, offset, data, |
| 1404 | flags & SPAPR_XIVE_ESB_STORE); |
| 1405 | } else { |
| 1406 | mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset; |
| 1407 | |
| 1408 | if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8, |
| 1409 | (flags & SPAPR_XIVE_ESB_STORE))) { |
| 1410 | qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%" |
| 1411 | HWADDR_PRIx "\n" , mmio_addr); |
| 1412 | return H_HARDWARE; |
| 1413 | } |
| 1414 | args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data; |
| 1415 | } |
| 1416 | return H_SUCCESS; |
| 1417 | } |
| 1418 | |
| 1419 | /* |
| 1420 | * The H_INT_SYNC hcall() is used to issue hardware syncs that will |
| 1421 | * ensure any in flight events for the input lisn are in the event |
| 1422 | * queue. |
| 1423 | * |
| 1424 | * Parameters: |
| 1425 | * Input: |
| 1426 | * - R4: "flags" |
| 1427 | * Bits 0-63: Reserved |
| 1428 | * - R5: "lisn" is per "interrupts", "interrupt-map", or |
| 1429 | * "ibm,xive-lisn-ranges" properties, or as returned by the |
| 1430 | * ibm,query-interrupt-source-number RTAS call, or as |
| 1431 | * returned by the H_ALLOCATE_VAS_WINDOW hcall |
| 1432 | * |
| 1433 | * Output: |
| 1434 | * - None |
| 1435 | */ |
| 1436 | static target_ulong h_int_sync(PowerPCCPU *cpu, |
| 1437 | SpaprMachineState *spapr, |
| 1438 | target_ulong opcode, |
| 1439 | target_ulong *args) |
| 1440 | { |
| 1441 | SpaprXive *xive = spapr->xive; |
| 1442 | XiveEAS eas; |
| 1443 | target_ulong flags = args[0]; |
| 1444 | target_ulong lisn = args[1]; |
| 1445 | |
| 1446 | if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { |
| 1447 | return H_FUNCTION; |
| 1448 | } |
| 1449 | |
| 1450 | if (flags) { |
| 1451 | return H_PARAMETER; |
| 1452 | } |
| 1453 | |
| 1454 | if (lisn >= xive->nr_irqs) { |
| 1455 | qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n" , |
| 1456 | lisn); |
| 1457 | return H_P2; |
| 1458 | } |
| 1459 | |
| 1460 | eas = xive->eat[lisn]; |
| 1461 | if (!xive_eas_is_valid(&eas)) { |
| 1462 | qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n" , |
| 1463 | lisn); |
| 1464 | return H_P2; |
| 1465 | } |
| 1466 | |
| 1467 | /* |
| 1468 | * H_STATE should be returned if a H_INT_RESET is in progress. |
| 1469 | * This is not needed when running the emulation under QEMU |
| 1470 | */ |
| 1471 | |
| 1472 | /* |
| 1473 | * This is not real hardware. Nothing to be done unless when |
| 1474 | * under KVM |
| 1475 | */ |
| 1476 | |
| 1477 | if (kvm_irqchip_in_kernel()) { |
| 1478 | Error *local_err = NULL; |
| 1479 | |
| 1480 | kvmppc_xive_sync_source(xive, lisn, &local_err); |
| 1481 | if (local_err) { |
| 1482 | error_report_err(local_err); |
| 1483 | return H_HARDWARE; |
| 1484 | } |
| 1485 | } |
| 1486 | return H_SUCCESS; |
| 1487 | } |
| 1488 | |
| 1489 | /* |
| 1490 | * The H_INT_RESET hcall() is used to reset all of the partition's |
| 1491 | * interrupt exploitation structures to their initial state. This |
| 1492 | * means losing all previously set interrupt state set via |
| 1493 | * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG. |
| 1494 | * |
| 1495 | * Parameters: |
| 1496 | * Input: |
| 1497 | * - R4: "flags" |
| 1498 | * Bits 0-63: Reserved |
| 1499 | * |
| 1500 | * Output: |
| 1501 | * - None |
| 1502 | */ |
| 1503 | static target_ulong h_int_reset(PowerPCCPU *cpu, |
| 1504 | SpaprMachineState *spapr, |
| 1505 | target_ulong opcode, |
| 1506 | target_ulong *args) |
| 1507 | { |
| 1508 | SpaprXive *xive = spapr->xive; |
| 1509 | target_ulong flags = args[0]; |
| 1510 | |
| 1511 | if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) { |
| 1512 | return H_FUNCTION; |
| 1513 | } |
| 1514 | |
| 1515 | if (flags) { |
| 1516 | return H_PARAMETER; |
| 1517 | } |
| 1518 | |
| 1519 | device_reset(DEVICE(xive)); |
| 1520 | |
| 1521 | if (kvm_irqchip_in_kernel()) { |
| 1522 | Error *local_err = NULL; |
| 1523 | |
| 1524 | kvmppc_xive_reset(xive, &local_err); |
| 1525 | if (local_err) { |
| 1526 | error_report_err(local_err); |
| 1527 | return H_HARDWARE; |
| 1528 | } |
| 1529 | } |
| 1530 | return H_SUCCESS; |
| 1531 | } |
| 1532 | |
| 1533 | void spapr_xive_hcall_init(SpaprMachineState *spapr) |
| 1534 | { |
| 1535 | spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info); |
| 1536 | spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config); |
| 1537 | spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config); |
| 1538 | spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info); |
| 1539 | spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config); |
| 1540 | spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config); |
| 1541 | spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE, |
| 1542 | h_int_set_os_reporting_line); |
| 1543 | spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE, |
| 1544 | h_int_get_os_reporting_line); |
| 1545 | spapr_register_hypercall(H_INT_ESB, h_int_esb); |
| 1546 | spapr_register_hypercall(H_INT_SYNC, h_int_sync); |
| 1547 | spapr_register_hypercall(H_INT_RESET, h_int_reset); |
| 1548 | } |
| 1549 | |
| 1550 | void spapr_dt_xive(SpaprMachineState *spapr, uint32_t nr_servers, void *fdt, |
| 1551 | uint32_t phandle) |
| 1552 | { |
| 1553 | SpaprXive *xive = spapr->xive; |
| 1554 | int node; |
| 1555 | uint64_t timas[2 * 2]; |
| 1556 | /* Interrupt number ranges for the IPIs */ |
| 1557 | uint32_t lisn_ranges[] = { |
| 1558 | cpu_to_be32(0), |
| 1559 | cpu_to_be32(nr_servers), |
| 1560 | }; |
| 1561 | /* |
| 1562 | * EQ size - the sizes of pages supported by the system 4K, 64K, |
| 1563 | * 2M, 16M. We only advertise 64K for the moment. |
| 1564 | */ |
| 1565 | uint32_t eq_sizes[] = { |
| 1566 | cpu_to_be32(16), /* 64K */ |
| 1567 | }; |
| 1568 | /* |
| 1569 | * The following array is in sync with the reserved priorities |
| 1570 | * defined by the 'spapr_xive_priority_is_reserved' routine. |
| 1571 | */ |
| 1572 | uint32_t plat_res_int_priorities[] = { |
| 1573 | cpu_to_be32(7), /* start */ |
| 1574 | cpu_to_be32(0xf8), /* count */ |
| 1575 | }; |
| 1576 | |
| 1577 | /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */ |
| 1578 | timas[0] = cpu_to_be64(xive->tm_base + |
| 1579 | XIVE_TM_USER_PAGE * (1ull << TM_SHIFT)); |
| 1580 | timas[1] = cpu_to_be64(1ull << TM_SHIFT); |
| 1581 | timas[2] = cpu_to_be64(xive->tm_base + |
| 1582 | XIVE_TM_OS_PAGE * (1ull << TM_SHIFT)); |
| 1583 | timas[3] = cpu_to_be64(1ull << TM_SHIFT); |
| 1584 | |
| 1585 | _FDT(node = fdt_add_subnode(fdt, 0, xive->nodename)); |
| 1586 | |
| 1587 | _FDT(fdt_setprop_string(fdt, node, "device_type" , "power-ivpe" )); |
| 1588 | _FDT(fdt_setprop(fdt, node, "reg" , timas, sizeof(timas))); |
| 1589 | |
| 1590 | _FDT(fdt_setprop_string(fdt, node, "compatible" , "ibm,power-ivpe" )); |
| 1591 | _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes" , eq_sizes, |
| 1592 | sizeof(eq_sizes))); |
| 1593 | _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges" , lisn_ranges, |
| 1594 | sizeof(lisn_ranges))); |
| 1595 | |
| 1596 | /* For Linux to link the LSIs to the interrupt controller. */ |
| 1597 | _FDT(fdt_setprop(fdt, node, "interrupt-controller" , NULL, 0)); |
| 1598 | _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells" , 2)); |
| 1599 | |
| 1600 | /* For SLOF */ |
| 1601 | _FDT(fdt_setprop_cell(fdt, node, "linux,phandle" , phandle)); |
| 1602 | _FDT(fdt_setprop_cell(fdt, node, "phandle" , phandle)); |
| 1603 | |
| 1604 | /* |
| 1605 | * The "ibm,plat-res-int-priorities" property defines the priority |
| 1606 | * ranges reserved by the hypervisor |
| 1607 | */ |
| 1608 | _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities" , |
| 1609 | plat_res_int_priorities, sizeof(plat_res_int_priorities))); |
| 1610 | } |
| 1611 | |