1 | /* |
2 | Simple DirectMedia Layer |
3 | Copyright (C) 1997-2025 Sam Lantinga <slouken@libsdl.org> |
4 | |
5 | This software is provided 'as-is', without any express or implied |
6 | warranty. In no event will the authors be held liable for any damages |
7 | arising from the use of this software. |
8 | |
9 | Permission is granted to anyone to use this software for any purpose, |
10 | including commercial applications, and to alter it and redistribute it |
11 | freely, subject to the following restrictions: |
12 | |
13 | 1. The origin of this software must not be misrepresented; you must not |
14 | claim that you wrote the original software. If you use this software |
15 | in a product, an acknowledgment in the product documentation would be |
16 | appreciated but is not required. |
17 | 2. Altered source versions must be plainly marked as such, and must not be |
18 | misrepresented as being the original software. |
19 | 3. This notice may not be removed or altered from any source distribution. |
20 | */ |
21 | #include "SDL_internal.h" |
22 | |
23 | #ifdef SDL_HAVE_RLE |
24 | |
25 | /* |
26 | * RLE encoding for software colorkey and alpha-channel acceleration |
27 | * |
28 | * Original version by Sam Lantinga |
29 | * |
30 | * Mattias EngdegÄrd (Yorick): Rewrite. New encoding format, encoder and |
31 | * decoder. Added per-surface alpha blitter. Added per-pixel alpha |
32 | * format, encoder and blitter. |
33 | * |
34 | * Many thanks to Xark and johns for hints, benchmarks and useful comments |
35 | * leading to this code. |
36 | * |
37 | * Welcome to Macro Mayhem. |
38 | */ |
39 | |
40 | /* |
41 | * The encoding translates the image data to a stream of segments of the form |
42 | * |
43 | * <skip> <run> <data> |
44 | * |
45 | * where <skip> is the number of transparent pixels to skip, |
46 | * <run> is the number of opaque pixels to blit, |
47 | * and <data> are the pixels themselves. |
48 | * |
49 | * This basic structure is used both for colorkeyed surfaces, used for simple |
50 | * binary transparency and for per-surface alpha blending, and for surfaces |
51 | * with per-pixel alpha. The details differ, however: |
52 | * |
53 | * Encoding of colorkeyed surfaces: |
54 | * |
55 | * Encoded pixels always have the same format as the target surface. |
56 | * <skip> and <run> are unsigned 8 bit integers, except for 32 bit depth |
57 | * where they are 16 bit. This makes the pixel data aligned at all times. |
58 | * Segments never wrap around from one scan line to the next. |
59 | * |
60 | * The end of the sequence is marked by a zero <skip>,<run> pair at the * |
61 | * beginning of a line. |
62 | * |
63 | * Encoding of surfaces with per-pixel alpha: |
64 | * |
65 | * The sequence begins with an SDL_PixelFormat value describing the target |
66 | * pixel format, to provide reliable un-encoding. |
67 | * |
68 | * Each scan line is encoded twice: First all completely opaque pixels, |
69 | * encoded in the target format as described above, and then all |
70 | * partially transparent (translucent) pixels (where 1 <= alpha <= 254), |
71 | * in the following 32-bit format: |
72 | * |
73 | * For 32-bit targets, each pixel has the target RGB format but with |
74 | * the alpha value occupying the highest 8 bits. The <skip> and <run> |
75 | * counts are 16 bit. |
76 | * |
77 | * For 16-bit targets, each pixel has the target RGB format, but with |
78 | * the middle component (usually green) shifted 16 steps to the left, |
79 | * and the hole filled with the 5 most significant bits of the alpha value. |
80 | * i.e. if the target has the format rrrrrggggggbbbbb, |
81 | * the encoded pixel will be 00000gggggg00000rrrrr0aaaaabbbbb. |
82 | * The <skip> and <run> counts are 8 bit for the opaque lines, 16 bit |
83 | * for the translucent lines. Two padding bytes may be inserted |
84 | * before each translucent line to keep them 32-bit aligned. |
85 | * |
86 | * The end of the sequence is marked by a zero <skip>,<run> pair at the |
87 | * beginning of an opaque line. |
88 | */ |
89 | |
90 | #include "SDL_sysvideo.h" |
91 | #include "SDL_surface_c.h" |
92 | #include "SDL_RLEaccel_c.h" |
93 | |
94 | #define PIXEL_COPY(to, from, len, bpp) \ |
95 | SDL_memcpy(to, from, (size_t)(len) * (bpp)) |
96 | |
97 | /* |
98 | * Various colorkey blit methods, for opaque and per-surface alpha |
99 | */ |
100 | |
101 | #define OPAQUE_BLIT(to, from, length, bpp, alpha) \ |
102 | PIXEL_COPY(to, from, length, bpp) |
103 | |
104 | /* |
105 | * For 32bpp pixels on the form 0x00rrggbb: |
106 | * If we treat the middle component separately, we can process the two |
107 | * remaining in parallel. This is safe to do because of the gap to the left |
108 | * of each component, so the bits from the multiplication don't collide. |
109 | * This can be used for any RGB permutation of course. |
110 | */ |
111 | #define ALPHA_BLIT32_888(to, from, length, bpp, alpha) \ |
112 | do { \ |
113 | int i; \ |
114 | Uint32 *src = (Uint32 *)(from); \ |
115 | Uint32 *dst = (Uint32 *)(to); \ |
116 | for (i = 0; i < (int)(length); i++) { \ |
117 | Uint32 s = *src++; \ |
118 | Uint32 d = *dst; \ |
119 | Uint32 s1 = s & 0xff00ff; \ |
120 | Uint32 d1 = d & 0xff00ff; \ |
121 | d1 = (d1 + ((s1 - d1) * alpha >> 8)) & 0xff00ff; \ |
122 | s &= 0xff00; \ |
123 | d &= 0xff00; \ |
124 | d = (d + ((s - d) * alpha >> 8)) & 0xff00; \ |
125 | *dst++ = d1 | d; \ |
126 | } \ |
127 | } while (0) |
128 | |
129 | /* |
130 | * For 16bpp pixels we can go a step further: put the middle component |
131 | * in the high 16 bits of a 32 bit word, and process all three RGB |
132 | * components at the same time. Since the smallest gap is here just |
133 | * 5 bits, we have to scale alpha down to 5 bits as well. |
134 | */ |
135 | #define ALPHA_BLIT16_565(to, from, length, bpp, alpha) \ |
136 | do { \ |
137 | int i; \ |
138 | Uint16 *src = (Uint16 *)(from); \ |
139 | Uint16 *dst = (Uint16 *)(to); \ |
140 | Uint32 ALPHA = alpha >> 3; \ |
141 | for (i = 0; i < (int)(length); i++) { \ |
142 | Uint32 s = *src++; \ |
143 | Uint32 d = *dst; \ |
144 | s = (s | s << 16) & 0x07e0f81f; \ |
145 | d = (d | d << 16) & 0x07e0f81f; \ |
146 | d += (s - d) * ALPHA >> 5; \ |
147 | d &= 0x07e0f81f; \ |
148 | *dst++ = (Uint16)(d | d >> 16); \ |
149 | } \ |
150 | } while (0) |
151 | |
152 | #define ALPHA_BLIT16_555(to, from, length, bpp, alpha) \ |
153 | do { \ |
154 | int i; \ |
155 | Uint16 *src = (Uint16 *)(from); \ |
156 | Uint16 *dst = (Uint16 *)(to); \ |
157 | Uint32 ALPHA = alpha >> 3; \ |
158 | for (i = 0; i < (int)(length); i++) { \ |
159 | Uint32 s = *src++; \ |
160 | Uint32 d = *dst; \ |
161 | s = (s | s << 16) & 0x03e07c1f; \ |
162 | d = (d | d << 16) & 0x03e07c1f; \ |
163 | d += (s - d) * ALPHA >> 5; \ |
164 | d &= 0x03e07c1f; \ |
165 | *dst++ = (Uint16)(d | d >> 16); \ |
166 | } \ |
167 | } while (0) |
168 | |
169 | /* |
170 | * The general slow catch-all function, for remaining depths and formats |
171 | */ |
172 | #define ALPHA_BLIT_ANY(to, from, length, bpp, alpha) \ |
173 | do { \ |
174 | int i; \ |
175 | Uint8 *src = from; \ |
176 | Uint8 *dst = to; \ |
177 | for (i = 0; i < (int)(length); i++) { \ |
178 | Uint32 s = 0, d = 0; \ |
179 | unsigned rs, gs, bs, rd, gd, bd; \ |
180 | switch (bpp) { \ |
181 | case 2: \ |
182 | s = *(Uint16 *)src; \ |
183 | d = *(Uint16 *)dst; \ |
184 | break; \ |
185 | case 3: \ |
186 | if (SDL_BYTEORDER == SDL_BIG_ENDIAN) { \ |
187 | s = (src[0] << 16) | (src[1] << 8) | src[2]; \ |
188 | d = (dst[0] << 16) | (dst[1] << 8) | dst[2]; \ |
189 | } else { \ |
190 | s = (src[2] << 16) | (src[1] << 8) | src[0]; \ |
191 | d = (dst[2] << 16) | (dst[1] << 8) | dst[0]; \ |
192 | } \ |
193 | break; \ |
194 | case 4: \ |
195 | s = *(Uint32 *)src; \ |
196 | d = *(Uint32 *)dst; \ |
197 | break; \ |
198 | } \ |
199 | RGB_FROM_PIXEL(s, fmt, rs, gs, bs); \ |
200 | RGB_FROM_PIXEL(d, fmt, rd, gd, bd); \ |
201 | rd += (rs - rd) * alpha >> 8; \ |
202 | gd += (gs - gd) * alpha >> 8; \ |
203 | bd += (bs - bd) * alpha >> 8; \ |
204 | PIXEL_FROM_RGB(d, fmt, rd, gd, bd); \ |
205 | switch (bpp) { \ |
206 | case 2: \ |
207 | *(Uint16 *)dst = (Uint16)d; \ |
208 | break; \ |
209 | case 3: \ |
210 | if (SDL_BYTEORDER == SDL_BIG_ENDIAN) { \ |
211 | dst[0] = (Uint8)(d >> 16); \ |
212 | dst[1] = (Uint8)(d >> 8); \ |
213 | dst[2] = (Uint8)(d); \ |
214 | } else { \ |
215 | dst[0] = (Uint8)d; \ |
216 | dst[1] = (Uint8)(d >> 8); \ |
217 | dst[2] = (Uint8)(d >> 16); \ |
218 | } \ |
219 | break; \ |
220 | case 4: \ |
221 | *(Uint32 *)dst = d; \ |
222 | break; \ |
223 | } \ |
224 | src += bpp; \ |
225 | dst += bpp; \ |
226 | } \ |
227 | } while (0) |
228 | |
229 | /* |
230 | * Special case: 50% alpha (alpha=128) |
231 | * This is treated specially because it can be optimized very well, and |
232 | * since it is good for many cases of semi-translucency. |
233 | * The theory is to do all three components at the same time: |
234 | * First zero the lowest bit of each component, which gives us room to |
235 | * add them. Then shift right and add the sum of the lowest bits. |
236 | */ |
237 | #define ALPHA_BLIT32_888_50(to, from, length, bpp, alpha) \ |
238 | do { \ |
239 | int i; \ |
240 | Uint32 *src = (Uint32 *)(from); \ |
241 | Uint32 *dst = (Uint32 *)(to); \ |
242 | for (i = 0; i < (int)(length); i++) { \ |
243 | Uint32 s = *src++; \ |
244 | Uint32 d = *dst; \ |
245 | *dst++ = (((s & 0x00fefefe) + (d & 0x00fefefe)) >> 1) + (s & d & 0x00010101); \ |
246 | } \ |
247 | } while (0) |
248 | |
249 | /* |
250 | * For 16bpp, we can actually blend two pixels in parallel, if we take |
251 | * care to shift before we add, not after. |
252 | */ |
253 | |
254 | // helper: blend a single 16 bit pixel at 50% |
255 | #define BLEND16_50(dst, src, mask) \ |
256 | do { \ |
257 | Uint32 s = *src++; \ |
258 | Uint32 d = *dst; \ |
259 | *dst++ = (Uint16)((((s & mask) + (d & mask)) >> 1) + \ |
260 | (s & d & (~mask & 0xffff))); \ |
261 | } while (0) |
262 | |
263 | // basic 16bpp blender. mask is the pixels to keep when adding. |
264 | #define ALPHA_BLIT16_50(to, from, length, bpp, alpha, mask) \ |
265 | do { \ |
266 | unsigned n = (length); \ |
267 | Uint16 *src = (Uint16 *)(from); \ |
268 | Uint16 *dst = (Uint16 *)(to); \ |
269 | if (((uintptr_t)src ^ (uintptr_t)dst) & 3) { \ |
270 | /* source and destination not in phase, blit one by one */ \ |
271 | while (n--) \ |
272 | BLEND16_50(dst, src, mask); \ |
273 | } else { \ |
274 | if ((uintptr_t)src & 3) { \ |
275 | /* first odd pixel */ \ |
276 | BLEND16_50(dst, src, mask); \ |
277 | n--; \ |
278 | } \ |
279 | for (; n > 1; n -= 2) { \ |
280 | Uint32 s = *(Uint32 *)src; \ |
281 | Uint32 d = *(Uint32 *)dst; \ |
282 | *(Uint32 *)dst = ((s & (mask | mask << 16)) >> 1) + ((d & (mask | mask << 16)) >> 1) + (s & d & (~(mask | mask << 16))); \ |
283 | src += 2; \ |
284 | dst += 2; \ |
285 | } \ |
286 | if (n) \ |
287 | BLEND16_50(dst, src, mask); /* last odd pixel */ \ |
288 | } \ |
289 | } while (0) |
290 | |
291 | #define ALPHA_BLIT16_565_50(to, from, length, bpp, alpha) \ |
292 | ALPHA_BLIT16_50(to, from, length, bpp, alpha, 0xf7deU) |
293 | |
294 | #define ALPHA_BLIT16_555_50(to, from, length, bpp, alpha) \ |
295 | ALPHA_BLIT16_50(to, from, length, bpp, alpha, 0xfbdeU) |
296 | |
297 | #define CHOOSE_BLIT(blitter, alpha, fmt) \ |
298 | do { \ |
299 | if (alpha == 255) { \ |
300 | switch (fmt->bytes_per_pixel) { \ |
301 | case 1: \ |
302 | blitter(1, Uint8, OPAQUE_BLIT); \ |
303 | break; \ |
304 | case 2: \ |
305 | blitter(2, Uint8, OPAQUE_BLIT); \ |
306 | break; \ |
307 | case 3: \ |
308 | blitter(3, Uint8, OPAQUE_BLIT); \ |
309 | break; \ |
310 | case 4: \ |
311 | blitter(4, Uint16, OPAQUE_BLIT); \ |
312 | break; \ |
313 | } \ |
314 | } else { \ |
315 | switch (fmt->bytes_per_pixel) { \ |
316 | case 1: \ |
317 | /* No 8bpp alpha blitting */ \ |
318 | break; \ |
319 | \ |
320 | case 2: \ |
321 | switch (fmt->Rmask | fmt->Gmask | fmt->Bmask) { \ |
322 | case 0xffff: \ |
323 | if (fmt->Gmask == 0x07e0 || fmt->Rmask == 0x07e0 || fmt->Bmask == 0x07e0) { \ |
324 | if (alpha == 128) { \ |
325 | blitter(2, Uint8, ALPHA_BLIT16_565_50); \ |
326 | } else { \ |
327 | blitter(2, Uint8, ALPHA_BLIT16_565); \ |
328 | } \ |
329 | } else { \ |
330 | goto general16; \ |
331 | } \ |
332 | break; \ |
333 | \ |
334 | case 0x7fff: \ |
335 | if (fmt->Gmask == 0x03e0 || fmt->Rmask == 0x03e0 || fmt->Bmask == 0x03e0) { \ |
336 | if (alpha == 128) { \ |
337 | blitter(2, Uint8, ALPHA_BLIT16_555_50); \ |
338 | } else { \ |
339 | blitter(2, Uint8, ALPHA_BLIT16_555); \ |
340 | } \ |
341 | break; \ |
342 | } else { \ |
343 | goto general16; \ |
344 | } \ |
345 | break; \ |
346 | \ |
347 | default: \ |
348 | general16: \ |
349 | blitter(2, Uint8, ALPHA_BLIT_ANY); \ |
350 | } \ |
351 | break; \ |
352 | \ |
353 | case 3: \ |
354 | blitter(3, Uint8, ALPHA_BLIT_ANY); \ |
355 | break; \ |
356 | \ |
357 | case 4: \ |
358 | if ((fmt->Rmask | fmt->Gmask | fmt->Bmask) == 0x00ffffff && (fmt->Gmask == 0xff00 || fmt->Rmask == 0xff00 || fmt->Bmask == 0xff00)) { \ |
359 | if (alpha == 128) { \ |
360 | blitter(4, Uint16, ALPHA_BLIT32_888_50); \ |
361 | } else { \ |
362 | blitter(4, Uint16, ALPHA_BLIT32_888); \ |
363 | } \ |
364 | } else { \ |
365 | blitter(4, Uint16, ALPHA_BLIT_ANY); \ |
366 | } \ |
367 | break; \ |
368 | } \ |
369 | } \ |
370 | } while (0) |
371 | |
372 | /* |
373 | * Set a pixel value using the given format, except that the alpha value is |
374 | * placed in the top byte. This is the format used for RLE with alpha. |
375 | */ |
376 | #define RLEPIXEL_FROM_RGBA(Pixel, fmt, r, g, b, a) \ |
377 | { \ |
378 | Pixel = ((r >> (8 - fmt->Rbits)) << fmt->Rshift) | \ |
379 | ((g >> (8 - fmt->Gbits)) << fmt->Gshift) | \ |
380 | ((b >> (8 - fmt->Bbits)) << fmt->Bshift) | \ |
381 | (a << 24); \ |
382 | } |
383 | |
384 | /* |
385 | * This takes care of the case when the surface is clipped on the left and/or |
386 | * right. Top clipping has already been taken care of. |
387 | */ |
388 | #define RLECLIPBLIT(bpp, Type, do_blit) \ |
389 | do { \ |
390 | int linecount = srcrect->h; \ |
391 | int ofs = 0; \ |
392 | int left = srcrect->x; \ |
393 | int right = left + srcrect->w; \ |
394 | dstbuf -= left * bpp; \ |
395 | for (;;) { \ |
396 | int run; \ |
397 | ofs += *(Type *)srcbuf; \ |
398 | run = ((Type *)srcbuf)[1]; \ |
399 | srcbuf += 2 * sizeof(Type); \ |
400 | if (run) { \ |
401 | /* clip to left and right borders */ \ |
402 | if (ofs < right) { \ |
403 | int start = 0; \ |
404 | int len = run; \ |
405 | int startcol; \ |
406 | if (left - ofs > 0) { \ |
407 | start = left - ofs; \ |
408 | len -= start; \ |
409 | if (len <= 0) \ |
410 | goto nocopy##bpp##do_blit; \ |
411 | } \ |
412 | startcol = ofs + start; \ |
413 | if (len > right - startcol) \ |
414 | len = right - startcol; \ |
415 | do_blit(dstbuf + startcol * bpp, srcbuf + start * bpp, \ |
416 | len, bpp, alpha); \ |
417 | } \ |
418 | nocopy##bpp##do_blit : srcbuf += run * bpp; \ |
419 | ofs += run; \ |
420 | } else if (!ofs) { \ |
421 | break; \ |
422 | } \ |
423 | \ |
424 | if (ofs == w) { \ |
425 | ofs = 0; \ |
426 | dstbuf += surf_dst->pitch; \ |
427 | if (!--linecount) { \ |
428 | break; \ |
429 | } \ |
430 | } \ |
431 | } \ |
432 | } while (0) |
433 | |
434 | static void RLEClipBlit(int w, Uint8 *srcbuf, SDL_Surface *surf_dst, |
435 | Uint8 *dstbuf, const SDL_Rect *srcrect, unsigned alpha) |
436 | { |
437 | const SDL_PixelFormatDetails *fmt = surf_dst->fmt; |
438 | |
439 | CHOOSE_BLIT(RLECLIPBLIT, alpha, fmt); |
440 | } |
441 | |
442 | #undef RLECLIPBLIT |
443 | |
444 | // blit a colorkeyed RLE surface |
445 | static bool SDLCALL SDL_RLEBlit(SDL_Surface *surf_src, const SDL_Rect *srcrect, |
446 | SDL_Surface *surf_dst, const SDL_Rect *dstrect) |
447 | { |
448 | Uint8 *dstbuf; |
449 | Uint8 *srcbuf; |
450 | int x, y; |
451 | int w = surf_src->w; |
452 | unsigned alpha; |
453 | |
454 | // Lock the destination if necessary |
455 | if (SDL_MUSTLOCK(surf_dst)) { |
456 | if (!SDL_LockSurface(surf_dst)) { |
457 | return false; |
458 | } |
459 | } |
460 | |
461 | // Set up the source and destination pointers |
462 | x = dstrect->x; |
463 | y = dstrect->y; |
464 | dstbuf = (Uint8 *)surf_dst->pixels + y * surf_dst->pitch + x * surf_src->fmt->bytes_per_pixel; |
465 | srcbuf = (Uint8 *)surf_src->map.data + sizeof(SDL_PixelFormat); |
466 | |
467 | { |
468 | // skip lines at the top if necessary |
469 | int vskip = srcrect->y; |
470 | int ofs = 0; |
471 | if (vskip) { |
472 | |
473 | #define RLESKIP(bpp, Type) \ |
474 | for (;;) { \ |
475 | int run; \ |
476 | ofs += *(Type *)srcbuf; \ |
477 | run = ((Type *)srcbuf)[1]; \ |
478 | srcbuf += sizeof(Type) * 2; \ |
479 | if (run) { \ |
480 | srcbuf += run * bpp; \ |
481 | ofs += run; \ |
482 | } else if (!ofs) \ |
483 | goto done; \ |
484 | if (ofs == w) { \ |
485 | ofs = 0; \ |
486 | if (!--vskip) \ |
487 | break; \ |
488 | } \ |
489 | } |
490 | |
491 | switch (surf_src->fmt->bytes_per_pixel) { |
492 | case 1: |
493 | RLESKIP(1, Uint8); |
494 | break; |
495 | case 2: |
496 | RLESKIP(2, Uint8); |
497 | break; |
498 | case 3: |
499 | RLESKIP(3, Uint8); |
500 | break; |
501 | case 4: |
502 | RLESKIP(4, Uint16); |
503 | break; |
504 | } |
505 | |
506 | #undef RLESKIP |
507 | } |
508 | } |
509 | |
510 | alpha = surf_src->map.info.a; |
511 | // if left or right edge clipping needed, call clip blit |
512 | if (srcrect->x || srcrect->w != surf_src->w) { |
513 | RLEClipBlit(w, srcbuf, surf_dst, dstbuf, srcrect, alpha); |
514 | } else { |
515 | const SDL_PixelFormatDetails *fmt = surf_src->fmt; |
516 | |
517 | #define RLEBLIT(bpp, Type, do_blit) \ |
518 | do { \ |
519 | int linecount = srcrect->h; \ |
520 | int ofs = 0; \ |
521 | for (;;) { \ |
522 | unsigned run; \ |
523 | ofs += *(Type *)srcbuf; \ |
524 | run = ((Type *)srcbuf)[1]; \ |
525 | srcbuf += 2 * sizeof(Type); \ |
526 | if (run) { \ |
527 | do_blit(dstbuf + ofs * bpp, srcbuf, run, bpp, alpha); \ |
528 | srcbuf += run * bpp; \ |
529 | ofs += run; \ |
530 | } else if (!ofs) \ |
531 | break; \ |
532 | if (ofs == w) { \ |
533 | ofs = 0; \ |
534 | dstbuf += surf_dst->pitch; \ |
535 | if (!--linecount) \ |
536 | break; \ |
537 | } \ |
538 | } \ |
539 | } while (0) |
540 | |
541 | CHOOSE_BLIT(RLEBLIT, alpha, fmt); |
542 | |
543 | #undef RLEBLIT |
544 | } |
545 | |
546 | done: |
547 | // Unlock the destination if necessary |
548 | if (SDL_MUSTLOCK(surf_dst)) { |
549 | SDL_UnlockSurface(surf_dst); |
550 | } |
551 | return true; |
552 | } |
553 | |
554 | #undef OPAQUE_BLIT |
555 | |
556 | /* |
557 | * Per-pixel blitting macros for translucent pixels: |
558 | * These use the same techniques as the per-surface blitting macros |
559 | */ |
560 | |
561 | /* |
562 | * For 32bpp pixels, we have made sure the alpha is stored in the top |
563 | * 8 bits, so proceed as usual |
564 | */ |
565 | #define BLIT_TRANSL_888(src, dst) \ |
566 | do { \ |
567 | Uint32 s = src; \ |
568 | Uint32 d = dst; \ |
569 | unsigned alpha = s >> 24; \ |
570 | Uint32 s1 = s & 0xff00ff; \ |
571 | Uint32 d1 = d & 0xff00ff; \ |
572 | d1 = (d1 + ((s1 - d1) * alpha >> 8)) & 0xff00ff; \ |
573 | s &= 0xff00; \ |
574 | d &= 0xff00; \ |
575 | d = (d + ((s - d) * alpha >> 8)) & 0xff00; \ |
576 | dst = d1 | d | 0xff000000; \ |
577 | } while (0) |
578 | |
579 | /* |
580 | * For 16bpp pixels, we have stored the 5 most significant alpha bits in |
581 | * bits 5-10. As before, we can process all 3 RGB components at the same time. |
582 | */ |
583 | #define BLIT_TRANSL_565(src, dst) \ |
584 | do { \ |
585 | Uint32 s = src; \ |
586 | Uint32 d = dst; \ |
587 | unsigned alpha = (s & 0x3e0) >> 5; \ |
588 | s &= 0x07e0f81f; \ |
589 | d = (d | d << 16) & 0x07e0f81f; \ |
590 | d += (s - d) * alpha >> 5; \ |
591 | d &= 0x07e0f81f; \ |
592 | dst = (Uint16)(d | d >> 16); \ |
593 | } while (0) |
594 | |
595 | #define BLIT_TRANSL_555(src, dst) \ |
596 | do { \ |
597 | Uint32 s = src; \ |
598 | Uint32 d = dst; \ |
599 | unsigned alpha = (s & 0x3e0) >> 5; \ |
600 | s &= 0x03e07c1f; \ |
601 | d = (d | d << 16) & 0x03e07c1f; \ |
602 | d += (s - d) * alpha >> 5; \ |
603 | d &= 0x03e07c1f; \ |
604 | dst = (Uint16)(d | d >> 16); \ |
605 | } while (0) |
606 | |
607 | // blit a pixel-alpha RLE surface clipped at the right and/or left edges |
608 | static void RLEAlphaClipBlit(int w, Uint8 *srcbuf, SDL_Surface *surf_dst, |
609 | Uint8 *dstbuf, const SDL_Rect *srcrect) |
610 | { |
611 | const SDL_PixelFormatDetails *df = surf_dst->fmt; |
612 | /* |
613 | * clipped blitter: Ptype is the destination pixel type, |
614 | * Ctype the translucent count type, and do_blend the macro |
615 | * to blend one pixel. |
616 | */ |
617 | #define RLEALPHACLIPBLIT(Ptype, Ctype, do_blend) \ |
618 | do { \ |
619 | int linecount = srcrect->h; \ |
620 | int left = srcrect->x; \ |
621 | int right = left + srcrect->w; \ |
622 | dstbuf -= left * sizeof(Ptype); \ |
623 | do { \ |
624 | int ofs = 0; \ |
625 | /* blit opaque pixels on one line */ \ |
626 | do { \ |
627 | unsigned run; \ |
628 | ofs += ((Ctype *)srcbuf)[0]; \ |
629 | run = ((Ctype *)srcbuf)[1]; \ |
630 | srcbuf += 2 * sizeof(Ctype); \ |
631 | if (run) { \ |
632 | /* clip to left and right borders */ \ |
633 | int cofs = ofs; \ |
634 | int crun = run; \ |
635 | if (left - cofs > 0) { \ |
636 | crun -= left - cofs; \ |
637 | cofs = left; \ |
638 | } \ |
639 | if (crun > right - cofs) \ |
640 | crun = right - cofs; \ |
641 | if (crun > 0) \ |
642 | PIXEL_COPY(dstbuf + cofs * sizeof(Ptype), \ |
643 | srcbuf + (cofs - ofs) * sizeof(Ptype), \ |
644 | (unsigned)crun, sizeof(Ptype)); \ |
645 | srcbuf += run * sizeof(Ptype); \ |
646 | ofs += run; \ |
647 | } else if (!ofs) \ |
648 | return; \ |
649 | } while (ofs < w); \ |
650 | /* skip padding if necessary */ \ |
651 | if (sizeof(Ptype) == 2) \ |
652 | srcbuf += (uintptr_t)srcbuf & 2; \ |
653 | /* blit translucent pixels on the same line */ \ |
654 | ofs = 0; \ |
655 | do { \ |
656 | unsigned run; \ |
657 | ofs += ((Uint16 *)srcbuf)[0]; \ |
658 | run = ((Uint16 *)srcbuf)[1]; \ |
659 | srcbuf += 4; \ |
660 | if (run) { \ |
661 | /* clip to left and right borders */ \ |
662 | int cofs = ofs; \ |
663 | int crun = run; \ |
664 | if (left - cofs > 0) { \ |
665 | crun -= left - cofs; \ |
666 | cofs = left; \ |
667 | } \ |
668 | if (crun > right - cofs) \ |
669 | crun = right - cofs; \ |
670 | if (crun > 0) { \ |
671 | Ptype *dst = (Ptype *)dstbuf + cofs; \ |
672 | Uint32 *src = (Uint32 *)srcbuf + (cofs - ofs); \ |
673 | int i; \ |
674 | for (i = 0; i < crun; i++) \ |
675 | do_blend(src[i], dst[i]); \ |
676 | } \ |
677 | srcbuf += run * 4; \ |
678 | ofs += run; \ |
679 | } \ |
680 | } while (ofs < w); \ |
681 | dstbuf += surf_dst->pitch; \ |
682 | } while (--linecount); \ |
683 | } while (0) |
684 | |
685 | switch (df->bytes_per_pixel) { |
686 | case 2: |
687 | if (df->Gmask == 0x07e0 || df->Rmask == 0x07e0 || df->Bmask == 0x07e0) { |
688 | RLEALPHACLIPBLIT(Uint16, Uint8, BLIT_TRANSL_565); |
689 | } else { |
690 | RLEALPHACLIPBLIT(Uint16, Uint8, BLIT_TRANSL_555); |
691 | } |
692 | break; |
693 | case 4: |
694 | RLEALPHACLIPBLIT(Uint32, Uint16, BLIT_TRANSL_888); |
695 | break; |
696 | } |
697 | } |
698 | |
699 | // blit a pixel-alpha RLE surface |
700 | static bool SDLCALL SDL_RLEAlphaBlit(SDL_Surface *surf_src, const SDL_Rect *srcrect, |
701 | SDL_Surface *surf_dst, const SDL_Rect *dstrect) |
702 | { |
703 | int x, y; |
704 | int w = surf_src->w; |
705 | Uint8 *srcbuf, *dstbuf; |
706 | const SDL_PixelFormatDetails *df = surf_dst->fmt; |
707 | |
708 | // Lock the destination if necessary |
709 | if (SDL_MUSTLOCK(surf_dst)) { |
710 | if (!SDL_LockSurface(surf_dst)) { |
711 | return false; |
712 | } |
713 | } |
714 | |
715 | x = dstrect->x; |
716 | y = dstrect->y; |
717 | dstbuf = (Uint8 *)surf_dst->pixels + y * surf_dst->pitch + x * df->bytes_per_pixel; |
718 | srcbuf = (Uint8 *)surf_src->map.data + sizeof(SDL_PixelFormat); |
719 | |
720 | { |
721 | // skip lines at the top if necessary |
722 | int vskip = srcrect->y; |
723 | if (vskip) { |
724 | int ofs; |
725 | if (df->bytes_per_pixel == 2) { |
726 | // the 16/32 interleaved format |
727 | do { |
728 | // skip opaque line |
729 | ofs = 0; |
730 | do { |
731 | int run; |
732 | ofs += srcbuf[0]; |
733 | run = srcbuf[1]; |
734 | srcbuf += 2; |
735 | if (run) { |
736 | srcbuf += 2 * run; |
737 | ofs += run; |
738 | } else if (ofs == 0) { |
739 | goto done; |
740 | } |
741 | } while (ofs < w); |
742 | |
743 | // skip padding |
744 | srcbuf += (uintptr_t)srcbuf & 2; |
745 | |
746 | // skip translucent line |
747 | ofs = 0; |
748 | do { |
749 | int run; |
750 | ofs += ((Uint16 *)srcbuf)[0]; |
751 | run = ((Uint16 *)srcbuf)[1]; |
752 | srcbuf += 4 * (run + 1); |
753 | ofs += run; |
754 | } while (ofs < w); |
755 | } while (--vskip); |
756 | } else { |
757 | // the 32/32 interleaved format |
758 | vskip <<= 1; // opaque and translucent have same format |
759 | do { |
760 | ofs = 0; |
761 | do { |
762 | int run; |
763 | ofs += ((Uint16 *)srcbuf)[0]; |
764 | run = ((Uint16 *)srcbuf)[1]; |
765 | srcbuf += 4; |
766 | if (run) { |
767 | srcbuf += 4 * run; |
768 | ofs += run; |
769 | } else if (ofs == 0) { |
770 | goto done; |
771 | } |
772 | } while (ofs < w); |
773 | } while (--vskip); |
774 | } |
775 | } |
776 | } |
777 | |
778 | // if left or right edge clipping needed, call clip blit |
779 | if (srcrect->x || srcrect->w != surf_src->w) { |
780 | RLEAlphaClipBlit(w, srcbuf, surf_dst, dstbuf, srcrect); |
781 | } else { |
782 | |
783 | /* |
784 | * non-clipped blitter. Ptype is the destination pixel type, |
785 | * Ctype the translucent count type, and do_blend the |
786 | * macro to blend one pixel. |
787 | */ |
788 | #define RLEALPHABLIT(Ptype, Ctype, do_blend) \ |
789 | do { \ |
790 | int linecount = srcrect->h; \ |
791 | do { \ |
792 | int ofs = 0; \ |
793 | /* blit opaque pixels on one line */ \ |
794 | do { \ |
795 | unsigned run; \ |
796 | ofs += ((Ctype *)srcbuf)[0]; \ |
797 | run = ((Ctype *)srcbuf)[1]; \ |
798 | srcbuf += 2 * sizeof(Ctype); \ |
799 | if (run) { \ |
800 | PIXEL_COPY(dstbuf + ofs * sizeof(Ptype), srcbuf, \ |
801 | run, sizeof(Ptype)); \ |
802 | srcbuf += run * sizeof(Ptype); \ |
803 | ofs += run; \ |
804 | } else if (!ofs) \ |
805 | goto done; \ |
806 | } while (ofs < w); \ |
807 | /* skip padding if necessary */ \ |
808 | if (sizeof(Ptype) == 2) \ |
809 | srcbuf += (uintptr_t)srcbuf & 2; \ |
810 | /* blit translucent pixels on the same line */ \ |
811 | ofs = 0; \ |
812 | do { \ |
813 | unsigned run; \ |
814 | ofs += ((Uint16 *)srcbuf)[0]; \ |
815 | run = ((Uint16 *)srcbuf)[1]; \ |
816 | srcbuf += 4; \ |
817 | if (run) { \ |
818 | Ptype *dst = (Ptype *)dstbuf + ofs; \ |
819 | unsigned i; \ |
820 | for (i = 0; i < run; i++) { \ |
821 | Uint32 src = *(Uint32 *)srcbuf; \ |
822 | do_blend(src, *dst); \ |
823 | srcbuf += 4; \ |
824 | dst++; \ |
825 | } \ |
826 | ofs += run; \ |
827 | } \ |
828 | } while (ofs < w); \ |
829 | dstbuf += surf_dst->pitch; \ |
830 | } while (--linecount); \ |
831 | } while (0) |
832 | |
833 | switch (df->bytes_per_pixel) { |
834 | case 2: |
835 | if (df->Gmask == 0x07e0 || df->Rmask == 0x07e0 || df->Bmask == 0x07e0) { |
836 | RLEALPHABLIT(Uint16, Uint8, BLIT_TRANSL_565); |
837 | } else { |
838 | RLEALPHABLIT(Uint16, Uint8, BLIT_TRANSL_555); |
839 | } |
840 | break; |
841 | case 4: |
842 | RLEALPHABLIT(Uint32, Uint16, BLIT_TRANSL_888); |
843 | break; |
844 | } |
845 | } |
846 | |
847 | done: |
848 | // Unlock the destination if necessary |
849 | if (SDL_MUSTLOCK(surf_dst)) { |
850 | SDL_UnlockSurface(surf_dst); |
851 | } |
852 | return true; |
853 | } |
854 | |
855 | /* |
856 | * Auxiliary functions: |
857 | * The encoding functions take 32bpp rgb + a, and |
858 | * return the number of bytes copied to the destination. |
859 | * The decoding functions copy to 32bpp rgb + a, and |
860 | * return the number of bytes copied from the source. |
861 | * These are only used in the encoder and un-RLE code and are therefore not |
862 | * highly optimised. |
863 | */ |
864 | |
865 | // encode 32bpp rgb + a into 16bpp rgb, losing alpha |
866 | static int copy_opaque_16(void *dst, const Uint32 *src, int n, |
867 | const SDL_PixelFormatDetails *sfmt, const SDL_PixelFormatDetails *dfmt) |
868 | { |
869 | int i; |
870 | Uint16 *d = (Uint16 *)dst; |
871 | for (i = 0; i < n; i++) { |
872 | unsigned r, g, b; |
873 | RGB_FROM_PIXEL(*src, sfmt, r, g, b); |
874 | PIXEL_FROM_RGB(*d, dfmt, r, g, b); |
875 | src++; |
876 | d++; |
877 | } |
878 | return n * 2; |
879 | } |
880 | |
881 | // decode opaque pixels from 16bpp to 32bpp rgb + a |
882 | static int uncopy_opaque_16(Uint32 *dst, const void *src, int n, |
883 | const SDL_PixelFormatDetails *sfmt, const SDL_PixelFormatDetails *dfmt) |
884 | { |
885 | int i; |
886 | const Uint16 *s = (const Uint16 *)src; |
887 | unsigned alpha = dfmt->Amask ? 255 : 0; |
888 | for (i = 0; i < n; i++) { |
889 | unsigned r, g, b; |
890 | RGB_FROM_PIXEL(*s, sfmt, r, g, b); |
891 | PIXEL_FROM_RGBA(*dst, dfmt, r, g, b, alpha); |
892 | s++; |
893 | dst++; |
894 | } |
895 | return n * 2; |
896 | } |
897 | |
898 | // encode 32bpp rgb + a into 32bpp G0RAB format for blitting into 565 |
899 | static int copy_transl_565(void *dst, const Uint32 *src, int n, |
900 | const SDL_PixelFormatDetails *sfmt, const SDL_PixelFormatDetails *dfmt) |
901 | { |
902 | int i; |
903 | Uint32 *d = (Uint32 *)dst; |
904 | for (i = 0; i < n; i++) { |
905 | unsigned r, g, b, a; |
906 | Uint16 pix; |
907 | RGBA_FROM_8888(*src, sfmt, r, g, b, a); |
908 | PIXEL_FROM_RGB(pix, dfmt, r, g, b); |
909 | *d = ((pix & 0x7e0) << 16) | (pix & 0xf81f) | ((a << 2) & 0x7e0); |
910 | src++; |
911 | d++; |
912 | } |
913 | return n * 4; |
914 | } |
915 | |
916 | // encode 32bpp rgb + a into 32bpp G0RAB format for blitting into 555 |
917 | static int copy_transl_555(void *dst, const Uint32 *src, int n, |
918 | const SDL_PixelFormatDetails *sfmt, const SDL_PixelFormatDetails *dfmt) |
919 | { |
920 | int i; |
921 | Uint32 *d = (Uint32 *)dst; |
922 | for (i = 0; i < n; i++) { |
923 | unsigned r, g, b, a; |
924 | Uint16 pix; |
925 | RGBA_FROM_8888(*src, sfmt, r, g, b, a); |
926 | PIXEL_FROM_RGB(pix, dfmt, r, g, b); |
927 | *d = ((pix & 0x3e0) << 16) | (pix & 0xfc1f) | ((a << 2) & 0x3e0); |
928 | src++; |
929 | d++; |
930 | } |
931 | return n * 4; |
932 | } |
933 | |
934 | // decode translucent pixels from 32bpp GORAB to 32bpp rgb + a |
935 | static int uncopy_transl_16(Uint32 *dst, const void *src, int n, |
936 | const SDL_PixelFormatDetails *sfmt, const SDL_PixelFormatDetails *dfmt) |
937 | { |
938 | int i; |
939 | const Uint32 *s = (const Uint32 *)src; |
940 | for (i = 0; i < n; i++) { |
941 | unsigned r, g, b, a; |
942 | Uint32 pix = *s++; |
943 | a = (pix & 0x3e0) >> 2; |
944 | pix = (pix & ~0x3e0) | pix >> 16; |
945 | RGB_FROM_PIXEL(pix, sfmt, r, g, b); |
946 | PIXEL_FROM_RGBA(*dst, dfmt, r, g, b, a); |
947 | dst++; |
948 | } |
949 | return n * 4; |
950 | } |
951 | |
952 | // encode 32bpp rgba into 32bpp rgba, keeping alpha (dual purpose) |
953 | static int copy_32(void *dst, const Uint32 *src, int n, |
954 | const SDL_PixelFormatDetails *sfmt, const SDL_PixelFormatDetails *dfmt) |
955 | { |
956 | int i; |
957 | Uint32 *d = (Uint32 *)dst; |
958 | for (i = 0; i < n; i++) { |
959 | unsigned r, g, b, a; |
960 | RGBA_FROM_8888(*src, sfmt, r, g, b, a); |
961 | RLEPIXEL_FROM_RGBA(*d, dfmt, r, g, b, a); |
962 | d++; |
963 | src++; |
964 | } |
965 | return n * 4; |
966 | } |
967 | |
968 | // decode 32bpp rgba into 32bpp rgba, keeping alpha (dual purpose) |
969 | static int uncopy_32(Uint32 *dst, const void *src, int n, |
970 | const SDL_PixelFormatDetails *sfmt, const SDL_PixelFormatDetails *dfmt) |
971 | { |
972 | int i; |
973 | const Uint32 *s = (const Uint32 *)src; |
974 | for (i = 0; i < n; i++) { |
975 | unsigned r, g, b, a; |
976 | Uint32 pixel = *s++; |
977 | RGB_FROM_PIXEL(pixel, sfmt, r, g, b); |
978 | a = pixel >> 24; |
979 | PIXEL_FROM_RGBA(*dst, dfmt, r, g, b, a); |
980 | dst++; |
981 | } |
982 | return n * 4; |
983 | } |
984 | |
985 | #define ISOPAQUE(pixel, fmt) ((((pixel)&fmt->Amask) >> fmt->Ashift) == 255) |
986 | |
987 | #define ISTRANSL(pixel, fmt) \ |
988 | ((unsigned)((((pixel)&fmt->Amask) >> fmt->Ashift) - 1U) < 254U) |
989 | |
990 | // convert surface to be quickly alpha-blittable onto dest, if possible |
991 | static bool RLEAlphaSurface(SDL_Surface *surface) |
992 | { |
993 | SDL_Surface *dest; |
994 | const SDL_PixelFormatDetails *df; |
995 | int maxsize = 0; |
996 | int max_opaque_run; |
997 | int max_transl_run = 65535; |
998 | unsigned masksum; |
999 | Uint8 *rlebuf, *dst; |
1000 | int (*copy_opaque)(void *, const Uint32 *, int, |
1001 | const SDL_PixelFormatDetails *, const SDL_PixelFormatDetails *); |
1002 | int (*copy_transl)(void *, const Uint32 *, int, |
1003 | const SDL_PixelFormatDetails *, const SDL_PixelFormatDetails *); |
1004 | |
1005 | dest = surface->map.info.dst_surface; |
1006 | if (!dest) { |
1007 | return false; |
1008 | } |
1009 | df = dest->fmt; |
1010 | if (surface->fmt->bits_per_pixel != 32) { |
1011 | return false; // only 32bpp source supported |
1012 | } |
1013 | |
1014 | /* find out whether the destination is one we support, |
1015 | and determine the max size of the encoded result */ |
1016 | masksum = df->Rmask | df->Gmask | df->Bmask; |
1017 | switch (df->bytes_per_pixel) { |
1018 | case 2: |
1019 | // 16bpp: only support 565 and 555 formats |
1020 | switch (masksum) { |
1021 | case 0xffff: |
1022 | if (df->Gmask == 0x07e0 || df->Rmask == 0x07e0 || df->Bmask == 0x07e0) { |
1023 | copy_opaque = copy_opaque_16; |
1024 | copy_transl = copy_transl_565; |
1025 | } else { |
1026 | return false; |
1027 | } |
1028 | break; |
1029 | case 0x7fff: |
1030 | if (df->Gmask == 0x03e0 || df->Rmask == 0x03e0 || df->Bmask == 0x03e0) { |
1031 | copy_opaque = copy_opaque_16; |
1032 | copy_transl = copy_transl_555; |
1033 | } else { |
1034 | return false; |
1035 | } |
1036 | break; |
1037 | default: |
1038 | return false; |
1039 | } |
1040 | max_opaque_run = 255; // runs stored as bytes |
1041 | |
1042 | /* worst case is alternating opaque and translucent pixels, |
1043 | with room for alignment padding between lines */ |
1044 | maxsize = surface->h * (2 + (4 + 2) * (surface->w + 1)) + 2; |
1045 | break; |
1046 | case 4: |
1047 | if (masksum != 0x00ffffff) { |
1048 | return false; // requires unused high byte |
1049 | } |
1050 | copy_opaque = copy_32; |
1051 | copy_transl = copy_32; |
1052 | max_opaque_run = 255; // runs stored as short ints |
1053 | |
1054 | // worst case is alternating opaque and translucent pixels |
1055 | maxsize = surface->h * 2 * 4 * (surface->w + 1) + 4; |
1056 | break; |
1057 | default: |
1058 | return false; // anything else unsupported right now |
1059 | } |
1060 | |
1061 | maxsize += sizeof(SDL_PixelFormat); |
1062 | rlebuf = (Uint8 *)SDL_malloc(maxsize); |
1063 | if (!rlebuf) { |
1064 | return false; |
1065 | } |
1066 | // save the destination format so we can undo the encoding later |
1067 | *(SDL_PixelFormat *)rlebuf = dest->format; |
1068 | dst = rlebuf + sizeof(SDL_PixelFormat); |
1069 | |
1070 | // Do the actual encoding |
1071 | { |
1072 | int x, y; |
1073 | int h = surface->h, w = surface->w; |
1074 | const SDL_PixelFormatDetails *sf = surface->fmt; |
1075 | Uint32 *src = (Uint32 *)surface->pixels; |
1076 | Uint8 *lastline = dst; // end of last non-blank line |
1077 | |
1078 | // opaque counts are 8 or 16 bits, depending on target depth |
1079 | #define ADD_OPAQUE_COUNTS(n, m) \ |
1080 | if (df->bytes_per_pixel == 4) { \ |
1081 | ((Uint16 *)dst)[0] = (Uint16)n; \ |
1082 | ((Uint16 *)dst)[1] = (Uint16)m; \ |
1083 | dst += 4; \ |
1084 | } else { \ |
1085 | dst[0] = (Uint8)n; \ |
1086 | dst[1] = (Uint8)m; \ |
1087 | dst += 2; \ |
1088 | } |
1089 | |
1090 | // translucent counts are always 16 bit |
1091 | #define ADD_TRANSL_COUNTS(n, m) \ |
1092 | (((Uint16 *)dst)[0] = (Uint16)n, ((Uint16 *)dst)[1] = (Uint16)m, dst += 4) |
1093 | |
1094 | for (y = 0; y < h; y++) { |
1095 | int runstart, skipstart; |
1096 | int blankline = 0; |
1097 | // First encode all opaque pixels of a scan line |
1098 | x = 0; |
1099 | do { |
1100 | int run, skip, len; |
1101 | skipstart = x; |
1102 | while (x < w && !ISOPAQUE(src[x], sf)) { |
1103 | x++; |
1104 | } |
1105 | runstart = x; |
1106 | while (x < w && ISOPAQUE(src[x], sf)) { |
1107 | x++; |
1108 | } |
1109 | skip = runstart - skipstart; |
1110 | if (skip == w) { |
1111 | blankline = 1; |
1112 | } |
1113 | run = x - runstart; |
1114 | while (skip > max_opaque_run) { |
1115 | ADD_OPAQUE_COUNTS(max_opaque_run, 0); |
1116 | skip -= max_opaque_run; |
1117 | } |
1118 | len = SDL_min(run, max_opaque_run); |
1119 | ADD_OPAQUE_COUNTS(skip, len); |
1120 | dst += copy_opaque(dst, src + runstart, len, sf, df); |
1121 | runstart += len; |
1122 | run -= len; |
1123 | while (run) { |
1124 | len = SDL_min(run, max_opaque_run); |
1125 | ADD_OPAQUE_COUNTS(0, len); |
1126 | dst += copy_opaque(dst, src + runstart, len, sf, df); |
1127 | runstart += len; |
1128 | run -= len; |
1129 | } |
1130 | } while (x < w); |
1131 | |
1132 | // Make sure the next output address is 32-bit aligned |
1133 | dst += (uintptr_t)dst & 2; |
1134 | |
1135 | // Next, encode all translucent pixels of the same scan line |
1136 | x = 0; |
1137 | do { |
1138 | int run, skip, len; |
1139 | skipstart = x; |
1140 | while (x < w && !ISTRANSL(src[x], sf)) { |
1141 | x++; |
1142 | } |
1143 | runstart = x; |
1144 | while (x < w && ISTRANSL(src[x], sf)) { |
1145 | x++; |
1146 | } |
1147 | skip = runstart - skipstart; |
1148 | blankline &= (skip == w); |
1149 | run = x - runstart; |
1150 | while (skip > max_transl_run) { |
1151 | ADD_TRANSL_COUNTS(max_transl_run, 0); |
1152 | skip -= max_transl_run; |
1153 | } |
1154 | len = SDL_min(run, max_transl_run); |
1155 | ADD_TRANSL_COUNTS(skip, len); |
1156 | dst += copy_transl(dst, src + runstart, len, sf, df); |
1157 | runstart += len; |
1158 | run -= len; |
1159 | while (run) { |
1160 | len = SDL_min(run, max_transl_run); |
1161 | ADD_TRANSL_COUNTS(0, len); |
1162 | dst += copy_transl(dst, src + runstart, len, sf, df); |
1163 | runstart += len; |
1164 | run -= len; |
1165 | } |
1166 | if (!blankline) { |
1167 | lastline = dst; |
1168 | } |
1169 | } while (x < w); |
1170 | |
1171 | src += surface->pitch >> 2; |
1172 | } |
1173 | dst = lastline; // back up past trailing blank lines |
1174 | ADD_OPAQUE_COUNTS(0, 0); |
1175 | } |
1176 | |
1177 | #undef ADD_OPAQUE_COUNTS |
1178 | #undef ADD_TRANSL_COUNTS |
1179 | |
1180 | // Now that we have it encoded, release the original pixels |
1181 | if (!(surface->flags & SDL_SURFACE_PREALLOCATED)) { |
1182 | if (surface->flags & SDL_SURFACE_SIMD_ALIGNED) { |
1183 | SDL_aligned_free(surface->pixels); |
1184 | surface->flags &= ~SDL_SURFACE_SIMD_ALIGNED; |
1185 | } else { |
1186 | SDL_free(surface->pixels); |
1187 | } |
1188 | surface->pixels = NULL; |
1189 | } |
1190 | |
1191 | // reallocate the buffer to release unused memory |
1192 | { |
1193 | Uint8 *p = (Uint8 *)SDL_realloc(rlebuf, dst - rlebuf); |
1194 | if (!p) { |
1195 | p = rlebuf; |
1196 | } |
1197 | surface->map.data = p; |
1198 | } |
1199 | |
1200 | return true; |
1201 | } |
1202 | |
1203 | static Uint32 getpix_8(const Uint8 *srcbuf) |
1204 | { |
1205 | return *srcbuf; |
1206 | } |
1207 | |
1208 | static Uint32 getpix_16(const Uint8 *srcbuf) |
1209 | { |
1210 | return *(const Uint16 *)srcbuf; |
1211 | } |
1212 | |
1213 | static Uint32 getpix_24(const Uint8 *srcbuf) |
1214 | { |
1215 | #if SDL_BYTEORDER == SDL_LIL_ENDIAN |
1216 | return srcbuf[0] + (srcbuf[1] << 8) + (srcbuf[2] << 16); |
1217 | #else |
1218 | return (srcbuf[0] << 16) + (srcbuf[1] << 8) + srcbuf[2]; |
1219 | #endif |
1220 | } |
1221 | |
1222 | static Uint32 getpix_32(const Uint8 *srcbuf) |
1223 | { |
1224 | return *(const Uint32 *)srcbuf; |
1225 | } |
1226 | |
1227 | typedef Uint32 (*getpix_func)(const Uint8 *); |
1228 | |
1229 | static const getpix_func getpixes[4] = { |
1230 | getpix_8, getpix_16, getpix_24, getpix_32 |
1231 | }; |
1232 | |
1233 | static bool RLEColorkeySurface(SDL_Surface *surface) |
1234 | { |
1235 | SDL_Surface *dest; |
1236 | Uint8 *rlebuf, *dst; |
1237 | int maxn; |
1238 | int y; |
1239 | Uint8 *srcbuf, *lastline; |
1240 | int maxsize = 0; |
1241 | const int bpp = surface->fmt->bytes_per_pixel; |
1242 | getpix_func getpix; |
1243 | Uint32 ckey, rgbmask; |
1244 | int w, h; |
1245 | |
1246 | dest = surface->map.info.dst_surface; |
1247 | if (!dest) { |
1248 | return false; |
1249 | } |
1250 | |
1251 | // calculate the worst case size for the compressed surface |
1252 | switch (bpp) { |
1253 | case 1: |
1254 | /* worst case is alternating opaque and transparent pixels, |
1255 | starting with an opaque pixel */ |
1256 | maxsize = surface->h * 3 * (surface->w / 2 + 1) + 2; |
1257 | break; |
1258 | case 2: |
1259 | case 3: |
1260 | // worst case is solid runs, at most 255 pixels wide |
1261 | maxsize = surface->h * (2 * (surface->w / 255 + 1) + surface->w * bpp) + 2; |
1262 | break; |
1263 | case 4: |
1264 | // worst case is solid runs, at most 65535 pixels wide |
1265 | maxsize = surface->h * (4 * (surface->w / 65535 + 1) + surface->w * 4) + 4; |
1266 | break; |
1267 | |
1268 | default: |
1269 | return false; |
1270 | } |
1271 | |
1272 | maxsize += sizeof(SDL_PixelFormat); |
1273 | rlebuf = (Uint8 *)SDL_malloc(maxsize); |
1274 | if (!rlebuf) { |
1275 | return false; |
1276 | } |
1277 | // save the destination format so we can undo the encoding later |
1278 | *(SDL_PixelFormat *)rlebuf = dest->format; |
1279 | |
1280 | // Set up the conversion |
1281 | srcbuf = (Uint8 *)surface->pixels; |
1282 | maxn = bpp == 4 ? 65535 : 255; |
1283 | dst = rlebuf + sizeof(SDL_PixelFormat); |
1284 | rgbmask = ~surface->fmt->Amask; |
1285 | ckey = surface->map.info.colorkey & rgbmask; |
1286 | lastline = dst; |
1287 | getpix = getpixes[bpp - 1]; |
1288 | w = surface->w; |
1289 | h = surface->h; |
1290 | |
1291 | #define ADD_COUNTS(n, m) \ |
1292 | if (bpp == 4) { \ |
1293 | ((Uint16 *)dst)[0] = (Uint16)n; \ |
1294 | ((Uint16 *)dst)[1] = (Uint16)m; \ |
1295 | dst += 4; \ |
1296 | } else { \ |
1297 | dst[0] = (Uint8)n; \ |
1298 | dst[1] = (Uint8)m; \ |
1299 | dst += 2; \ |
1300 | } |
1301 | |
1302 | for (y = 0; y < h; y++) { |
1303 | int x = 0; |
1304 | int blankline = 0; |
1305 | do { |
1306 | int run, skip; |
1307 | int len; |
1308 | int runstart; |
1309 | int skipstart = x; |
1310 | |
1311 | // find run of transparent, then opaque pixels |
1312 | while (x < w && (getpix(srcbuf + x * bpp) & rgbmask) == ckey) { |
1313 | x++; |
1314 | } |
1315 | runstart = x; |
1316 | while (x < w && (getpix(srcbuf + x * bpp) & rgbmask) != ckey) { |
1317 | x++; |
1318 | } |
1319 | skip = runstart - skipstart; |
1320 | if (skip == w) { |
1321 | blankline = 1; |
1322 | } |
1323 | run = x - runstart; |
1324 | |
1325 | // encode segment |
1326 | while (skip > maxn) { |
1327 | ADD_COUNTS(maxn, 0); |
1328 | skip -= maxn; |
1329 | } |
1330 | len = SDL_min(run, maxn); |
1331 | ADD_COUNTS(skip, len); |
1332 | SDL_memcpy(dst, srcbuf + runstart * bpp, (size_t)len * bpp); |
1333 | dst += len * bpp; |
1334 | run -= len; |
1335 | runstart += len; |
1336 | while (run) { |
1337 | len = SDL_min(run, maxn); |
1338 | ADD_COUNTS(0, len); |
1339 | SDL_memcpy(dst, srcbuf + runstart * bpp, (size_t)len * bpp); |
1340 | dst += len * bpp; |
1341 | runstart += len; |
1342 | run -= len; |
1343 | } |
1344 | if (!blankline) { |
1345 | lastline = dst; |
1346 | } |
1347 | } while (x < w); |
1348 | |
1349 | srcbuf += surface->pitch; |
1350 | } |
1351 | dst = lastline; // back up bast trailing blank lines |
1352 | ADD_COUNTS(0, 0); |
1353 | |
1354 | #undef ADD_COUNTS |
1355 | |
1356 | // Now that we have it encoded, release the original pixels |
1357 | if (!(surface->flags & SDL_SURFACE_PREALLOCATED)) { |
1358 | if (surface->flags & SDL_SURFACE_SIMD_ALIGNED) { |
1359 | SDL_aligned_free(surface->pixels); |
1360 | surface->flags &= ~SDL_SURFACE_SIMD_ALIGNED; |
1361 | } else { |
1362 | SDL_free(surface->pixels); |
1363 | } |
1364 | surface->pixels = NULL; |
1365 | } |
1366 | |
1367 | // reallocate the buffer to release unused memory |
1368 | { |
1369 | // If SDL_realloc returns NULL, the original block is left intact |
1370 | Uint8 *p = (Uint8 *)SDL_realloc(rlebuf, dst - rlebuf); |
1371 | if (!p) { |
1372 | p = rlebuf; |
1373 | } |
1374 | surface->map.data = p; |
1375 | } |
1376 | |
1377 | return true; |
1378 | } |
1379 | |
1380 | bool SDL_RLESurface(SDL_Surface *surface) |
1381 | { |
1382 | int flags; |
1383 | |
1384 | // Clear any previous RLE conversion |
1385 | if (surface->internal_flags & SDL_INTERNAL_SURFACE_RLEACCEL) { |
1386 | SDL_UnRLESurface(surface, true); |
1387 | } |
1388 | |
1389 | // We don't support RLE encoding of bitmaps |
1390 | if (SDL_BITSPERPIXEL(surface->format) < 8) { |
1391 | return false; |
1392 | } |
1393 | |
1394 | // Make sure the pixels are available |
1395 | if (!surface->pixels) { |
1396 | return false; |
1397 | } |
1398 | |
1399 | flags = surface->map.info.flags; |
1400 | if (flags & SDL_COPY_COLORKEY) { |
1401 | // ok |
1402 | } else if ((flags & SDL_COPY_BLEND) && SDL_ISPIXELFORMAT_ALPHA(surface->format)) { |
1403 | // ok |
1404 | } else { |
1405 | // If we don't have colorkey or blending, nothing to do... |
1406 | return false; |
1407 | } |
1408 | |
1409 | // Pass on combinations not supported |
1410 | if ((flags & SDL_COPY_MODULATE_COLOR) || |
1411 | ((flags & SDL_COPY_MODULATE_ALPHA) && SDL_ISPIXELFORMAT_ALPHA(surface->format)) || |
1412 | (flags & (SDL_COPY_BLEND_PREMULTIPLIED | SDL_COPY_ADD | SDL_COPY_ADD_PREMULTIPLIED | SDL_COPY_MOD | SDL_COPY_MUL)) || |
1413 | (flags & SDL_COPY_NEAREST)) { |
1414 | return false; |
1415 | } |
1416 | |
1417 | // Encode and set up the blit |
1418 | if (!SDL_ISPIXELFORMAT_ALPHA(surface->format) || !(flags & SDL_COPY_BLEND)) { |
1419 | if (!surface->map.identity) { |
1420 | return false; |
1421 | } |
1422 | if (!RLEColorkeySurface(surface)) { |
1423 | return false; |
1424 | } |
1425 | surface->map.blit = SDL_RLEBlit; |
1426 | surface->map.info.flags |= SDL_COPY_RLE_COLORKEY; |
1427 | } else { |
1428 | if (!RLEAlphaSurface(surface)) { |
1429 | return false; |
1430 | } |
1431 | surface->map.blit = SDL_RLEAlphaBlit; |
1432 | surface->map.info.flags |= SDL_COPY_RLE_ALPHAKEY; |
1433 | } |
1434 | |
1435 | // The surface is now accelerated |
1436 | surface->internal_flags |= SDL_INTERNAL_SURFACE_RLEACCEL; |
1437 | |
1438 | return true; |
1439 | } |
1440 | |
1441 | /* |
1442 | * Un-RLE a surface with pixel alpha |
1443 | * This may not give back exactly the image before RLE-encoding; all |
1444 | * completely transparent pixels will be lost, and color and alpha depth |
1445 | * may have been reduced (when encoding for 16bpp targets). |
1446 | */ |
1447 | static bool UnRLEAlpha(SDL_Surface *surface) |
1448 | { |
1449 | Uint8 *srcbuf; |
1450 | Uint32 *dst; |
1451 | const SDL_PixelFormatDetails *sf = surface->fmt; |
1452 | const SDL_PixelFormatDetails *df = SDL_GetPixelFormatDetails(*(SDL_PixelFormat *)surface->map.data); |
1453 | int (*uncopy_opaque)(Uint32 *, const void *, int, |
1454 | const SDL_PixelFormatDetails *, const SDL_PixelFormatDetails *); |
1455 | int (*uncopy_transl)(Uint32 *, const void *, int, |
1456 | const SDL_PixelFormatDetails *, const SDL_PixelFormatDetails *); |
1457 | int w = surface->w; |
1458 | int bpp = df->bytes_per_pixel; |
1459 | size_t size; |
1460 | |
1461 | if (bpp == 2) { |
1462 | uncopy_opaque = uncopy_opaque_16; |
1463 | uncopy_transl = uncopy_transl_16; |
1464 | } else { |
1465 | uncopy_opaque = uncopy_transl = uncopy_32; |
1466 | } |
1467 | |
1468 | if (!SDL_size_mul_check_overflow(surface->h, surface->pitch, &size)) { |
1469 | return false; |
1470 | } |
1471 | |
1472 | surface->pixels = SDL_aligned_alloc(SDL_GetSIMDAlignment(), size); |
1473 | if (!surface->pixels) { |
1474 | return false; |
1475 | } |
1476 | surface->flags |= SDL_SURFACE_SIMD_ALIGNED; |
1477 | // fill background with transparent pixels |
1478 | SDL_memset(surface->pixels, 0, (size_t)surface->h * surface->pitch); |
1479 | |
1480 | dst = (Uint32 *)surface->pixels; |
1481 | srcbuf = (Uint8 *)surface->map.data + sizeof(SDL_PixelFormat); |
1482 | for (;;) { |
1483 | // copy opaque pixels |
1484 | int ofs = 0; |
1485 | do { |
1486 | unsigned run; |
1487 | if (bpp == 2) { |
1488 | ofs += srcbuf[0]; |
1489 | run = srcbuf[1]; |
1490 | srcbuf += 2; |
1491 | } else { |
1492 | ofs += ((Uint16 *)srcbuf)[0]; |
1493 | run = ((Uint16 *)srcbuf)[1]; |
1494 | srcbuf += 4; |
1495 | } |
1496 | if (run) { |
1497 | srcbuf += uncopy_opaque(dst + ofs, srcbuf, run, df, sf); |
1498 | ofs += run; |
1499 | } else if (!ofs) { |
1500 | goto end_function; |
1501 | } |
1502 | } while (ofs < w); |
1503 | |
1504 | // skip padding if needed |
1505 | if (bpp == 2) { |
1506 | srcbuf += (uintptr_t)srcbuf & 2; |
1507 | } |
1508 | |
1509 | // copy translucent pixels |
1510 | ofs = 0; |
1511 | do { |
1512 | unsigned run; |
1513 | ofs += ((Uint16 *)srcbuf)[0]; |
1514 | run = ((Uint16 *)srcbuf)[1]; |
1515 | srcbuf += 4; |
1516 | if (run) { |
1517 | srcbuf += uncopy_transl(dst + ofs, srcbuf, run, df, sf); |
1518 | ofs += run; |
1519 | } |
1520 | } while (ofs < w); |
1521 | dst += surface->pitch >> 2; |
1522 | } |
1523 | |
1524 | end_function: |
1525 | return true; |
1526 | } |
1527 | |
1528 | void SDL_UnRLESurface(SDL_Surface *surface, bool recode) |
1529 | { |
1530 | if (surface->internal_flags & SDL_INTERNAL_SURFACE_RLEACCEL) { |
1531 | surface->internal_flags &= ~SDL_INTERNAL_SURFACE_RLEACCEL; |
1532 | |
1533 | if (recode && !(surface->flags & SDL_SURFACE_PREALLOCATED)) { |
1534 | if (surface->map.info.flags & SDL_COPY_RLE_COLORKEY) { |
1535 | SDL_Rect full; |
1536 | size_t size; |
1537 | |
1538 | // re-create the original surface |
1539 | if (!SDL_size_mul_check_overflow(surface->h, surface->pitch, &size)) { |
1540 | // Memory corruption? |
1541 | surface->internal_flags |= SDL_INTERNAL_SURFACE_RLEACCEL; |
1542 | return; |
1543 | } |
1544 | surface->pixels = SDL_aligned_alloc(SDL_GetSIMDAlignment(), size); |
1545 | if (!surface->pixels) { |
1546 | // Oh crap... |
1547 | surface->internal_flags |= SDL_INTERNAL_SURFACE_RLEACCEL; |
1548 | return; |
1549 | } |
1550 | surface->flags |= SDL_SURFACE_SIMD_ALIGNED; |
1551 | |
1552 | // fill it with the background color |
1553 | SDL_FillSurfaceRect(surface, NULL, surface->map.info.colorkey); |
1554 | |
1555 | // now render the encoded surface |
1556 | full.x = full.y = 0; |
1557 | full.w = surface->w; |
1558 | full.h = surface->h; |
1559 | SDL_RLEBlit(surface, &full, surface, &full); |
1560 | } else { |
1561 | if (!UnRLEAlpha(surface)) { |
1562 | // Oh crap... |
1563 | surface->internal_flags |= SDL_INTERNAL_SURFACE_RLEACCEL; |
1564 | return; |
1565 | } |
1566 | } |
1567 | } |
1568 | surface->map.info.flags &= |
1569 | ~(SDL_COPY_RLE_COLORKEY | SDL_COPY_RLE_ALPHAKEY); |
1570 | |
1571 | SDL_free(surface->map.data); |
1572 | surface->map.data = NULL; |
1573 | } |
1574 | } |
1575 | |
1576 | #endif // SDL_HAVE_RLE |
1577 | |