1 | /* |
2 | * Copyright 2006 The Android Open Source Project |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #ifndef SkAnalyticEdge_DEFINED |
9 | #define SkAnalyticEdge_DEFINED |
10 | |
11 | #include "include/private/SkTo.h" |
12 | #include "src/core/SkEdge.h" |
13 | |
14 | #include <utility> |
15 | |
16 | struct SkAnalyticEdge { |
17 | // Similar to SkEdge, the conic edges will be converted to quadratic edges |
18 | enum Type { |
19 | kLine_Type, |
20 | kQuad_Type, |
21 | kCubic_Type |
22 | }; |
23 | |
24 | SkAnalyticEdge* fNext; |
25 | SkAnalyticEdge* fPrev; |
26 | |
27 | // During aaa_walk_edges, if this edge is a left edge, |
28 | // then fRiteE is its corresponding right edge. Otherwise it's nullptr. |
29 | SkAnalyticEdge* fRiteE; |
30 | |
31 | SkFixed fX; |
32 | SkFixed fDX; |
33 | SkFixed fUpperX; // The x value when y = fUpperY |
34 | SkFixed fY; // The current y |
35 | SkFixed fUpperY; // The upper bound of y (our edge is from y = fUpperY to y = fLowerY) |
36 | SkFixed fLowerY; // The lower bound of y (our edge is from y = fUpperY to y = fLowerY) |
37 | SkFixed fDY; // abs(1/fDX); may be SK_MaxS32 when fDX is close to 0. |
38 | // fDY is only used for blitting trapezoids. |
39 | |
40 | SkFixed fSavedX; // For deferred blitting |
41 | SkFixed fSavedY; // For deferred blitting |
42 | SkFixed fSavedDY; // For deferred blitting |
43 | |
44 | int8_t fCurveCount; // only used by kQuad(+) and kCubic(-) |
45 | uint8_t fCurveShift; // appled to all Dx/DDx/DDDx except for fCubicDShift exception |
46 | uint8_t fCubicDShift; // applied to fCDx and fCDy only in cubic |
47 | int8_t fWinding; // 1 or -1 |
48 | |
49 | static const int kDefaultAccuracy = 2; // default accuracy for snapping |
50 | |
51 | static inline SkFixed SnapY(SkFixed y) { |
52 | const int accuracy = kDefaultAccuracy; |
53 | // This approach is safer than left shift, round, then right shift |
54 | return ((unsigned)y + (SK_Fixed1 >> (accuracy + 1))) >> (16 - accuracy) << (16 - accuracy); |
55 | } |
56 | |
57 | // Update fX, fY of this edge so fY = y |
58 | inline void goY(SkFixed y) { |
59 | if (y == fY + SK_Fixed1) { |
60 | fX = fX + fDX; |
61 | fY = y; |
62 | } else if (y != fY) { |
63 | // Drop lower digits as our alpha only has 8 bits |
64 | // (fDX and y - fUpperY may be greater than SK_Fixed1) |
65 | fX = fUpperX + SkFixedMul(fDX, y - fUpperY); |
66 | fY = y; |
67 | } |
68 | } |
69 | |
70 | inline void goY(SkFixed y, int yShift) { |
71 | SkASSERT(yShift >= 0 && yShift <= kDefaultAccuracy); |
72 | SkASSERT(fDX == 0 || y - fY == SK_Fixed1 >> yShift); |
73 | fY = y; |
74 | fX += fDX >> yShift; |
75 | } |
76 | |
77 | inline void saveXY(SkFixed x, SkFixed y, SkFixed dY) { |
78 | fSavedX = x; |
79 | fSavedY = y; |
80 | fSavedDY = dY; |
81 | } |
82 | |
83 | bool setLine(const SkPoint& p0, const SkPoint& p1); |
84 | bool updateLine(SkFixed ax, SkFixed ay, SkFixed bx, SkFixed by, SkFixed slope); |
85 | |
86 | // return true if we're NOT done with this edge |
87 | bool update(SkFixed last_y, bool sortY = true); |
88 | |
89 | #ifdef SK_DEBUG |
90 | void dump() const { |
91 | SkDebugf("edge: upperY:%d lowerY:%d y:%g x:%g dx:%g w:%d\n" , |
92 | fUpperY, fLowerY, SkFixedToFloat(fY), SkFixedToFloat(fX), |
93 | SkFixedToFloat(fDX), fWinding); |
94 | } |
95 | |
96 | void validate() const { |
97 | SkASSERT(fPrev && fNext); |
98 | SkASSERT(fPrev->fNext == this); |
99 | SkASSERT(fNext->fPrev == this); |
100 | |
101 | SkASSERT(fUpperY < fLowerY); |
102 | SkASSERT(SkAbs32(fWinding) == 1); |
103 | } |
104 | #endif |
105 | }; |
106 | |
107 | struct SkAnalyticQuadraticEdge : public SkAnalyticEdge { |
108 | SkQuadraticEdge fQEdge; |
109 | |
110 | // snap y to integer points in the middle of the curve to accelerate AAA path filling |
111 | SkFixed fSnappedX, fSnappedY; |
112 | |
113 | bool setQuadratic(const SkPoint pts[3]); |
114 | bool updateQuadratic(); |
115 | inline void keepContinuous() { |
116 | // We use fX as the starting x to ensure the continuouty. |
117 | // Without it, we may break the sorted edge list. |
118 | SkASSERT(SkAbs32(fX - SkFixedMul(fY - fSnappedY, fDX) - fSnappedX) < SK_Fixed1); |
119 | SkASSERT(SkAbs32(fY - fSnappedY) < SK_Fixed1); // This may differ due to smooth jump |
120 | fSnappedX = fX; |
121 | fSnappedY = fY; |
122 | } |
123 | }; |
124 | |
125 | struct SkAnalyticCubicEdge : public SkAnalyticEdge { |
126 | SkCubicEdge fCEdge; |
127 | |
128 | SkFixed fSnappedY; // to make sure that y is increasing with smooth jump and snapping |
129 | |
130 | bool setCubic(const SkPoint pts[4], bool sortY = true); |
131 | bool updateCubic(bool sortY = true); |
132 | inline void keepContinuous() { |
133 | SkASSERT(SkAbs32(fX - SkFixedMul(fDX, fY - SnapY(fCEdge.fCy)) - fCEdge.fCx) < SK_Fixed1); |
134 | fCEdge.fCx = fX; |
135 | fSnappedY = fY; |
136 | } |
137 | }; |
138 | |
139 | struct SkBezier { |
140 | int fCount; // 2 line, 3 quad, 4 cubic |
141 | SkPoint fP0; |
142 | SkPoint fP1; |
143 | |
144 | // See if left shift, covert to SkFDot6, and round has the same top and bottom y. |
145 | // If so, the edge will be empty. |
146 | static inline bool IsEmpty(SkScalar y0, SkScalar y1, int shift = 2) { |
147 | #ifdef SK_RASTERIZE_EVEN_ROUNDING |
148 | return SkScalarRoundToFDot6(y0, shift) == SkScalarRoundToFDot6(y1, shift); |
149 | #else |
150 | SkScalar scale = (1 << (shift + 6)); |
151 | return SkFDot6Round(int(y0 * scale)) == SkFDot6Round(int(y1 * scale)); |
152 | #endif |
153 | } |
154 | }; |
155 | |
156 | struct SkLine : public SkBezier { |
157 | bool set(const SkPoint pts[2]){ |
158 | if (IsEmpty(pts[0].fY, pts[1].fY)) { |
159 | return false; |
160 | } |
161 | fCount = 2; |
162 | fP0 = pts[0]; |
163 | fP1 = pts[1]; |
164 | return true; |
165 | } |
166 | }; |
167 | |
168 | struct SkQuad : public SkBezier { |
169 | SkPoint fP2; |
170 | |
171 | bool set(const SkPoint pts[3]){ |
172 | if (IsEmpty(pts[0].fY, pts[2].fY)) { |
173 | return false; |
174 | } |
175 | fCount = 3; |
176 | fP0 = pts[0]; |
177 | fP1 = pts[1]; |
178 | fP2 = pts[2]; |
179 | return true; |
180 | } |
181 | }; |
182 | |
183 | struct SkCubic : public SkBezier { |
184 | SkPoint fP2; |
185 | SkPoint fP3; |
186 | |
187 | bool set(const SkPoint pts[4]){ |
188 | // We do not chop at y extrema for cubics so pts[0], pts[1], pts[2], pts[3] may not be |
189 | // monotonic. Therefore, we have to check the emptiness for all three pairs, instead of just |
190 | // checking IsEmpty(pts[0].fY, pts[3].fY). |
191 | if (IsEmpty(pts[0].fY, pts[1].fY) && IsEmpty(pts[1].fY, pts[2].fY) && |
192 | IsEmpty(pts[2].fY, pts[3].fY)) { |
193 | return false; |
194 | } |
195 | fCount = 4; |
196 | fP0 = pts[0]; |
197 | fP1 = pts[1]; |
198 | fP2 = pts[2]; |
199 | fP3 = pts[3]; |
200 | return true; |
201 | } |
202 | }; |
203 | |
204 | #endif |
205 | |