| 1 | /* |
| 2 | * Copyright 2020 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "src/core/SkCompressedDataUtils.h" |
| 9 | |
| 10 | #include "include/core/SkColorPriv.h" |
| 11 | #include "include/core/SkData.h" |
| 12 | #include "include/private/SkColorData.h" |
| 13 | #include "src/core/SkMathPriv.h" |
| 14 | #include "src/core/SkMipMap.h" |
| 15 | |
| 16 | struct ETC1Block { |
| 17 | uint32_t fHigh; |
| 18 | uint32_t fLow; |
| 19 | }; |
| 20 | |
| 21 | constexpr uint32_t kFlipBit = 0x1; // set -> T/B sub-blocks; not-set -> L/R sub-blocks |
| 22 | constexpr uint32_t kDiffBit = 0x2; // set -> differential; not-set -> individual |
| 23 | |
| 24 | static inline int extend_4To8bits(int b) { |
| 25 | int c = b & 0xf; |
| 26 | return (c << 4) | c; |
| 27 | } |
| 28 | |
| 29 | static inline int extend_5To8bits(int b) { |
| 30 | int c = b & 0x1f; |
| 31 | return (c << 3) | (c >> 2); |
| 32 | } |
| 33 | |
| 34 | static inline int extend_5plus3To8Bits(int base, int diff) { |
| 35 | static const int kLookup[8] = { 0, 1, 2, 3, -4, -3, -2, -1 }; |
| 36 | |
| 37 | return extend_5To8bits((0x1f & base) + kLookup[0x7 & diff]); |
| 38 | } |
| 39 | |
| 40 | static const int kNumETC1ModifierTables = 8; |
| 41 | static const int kNumETC1PixelIndices = 4; |
| 42 | |
| 43 | // The index of each row in this table is the ETC1 table codeword |
| 44 | // The index of each column in this table is the ETC1 pixel index value |
| 45 | static const int kETC1ModifierTables[kNumETC1ModifierTables][kNumETC1PixelIndices] = { |
| 46 | /* 0 */ { 2, 8, -2, -8 }, |
| 47 | /* 1 */ { 5, 17, -5, -17 }, |
| 48 | /* 2 */ { 9, 29, -9, -29 }, |
| 49 | /* 3 */ { 13, 42, -13, -42 }, |
| 50 | /* 4 */ { 18, 60, -18, -60 }, |
| 51 | /* 5 */ { 24, 80, -24, -80 }, |
| 52 | /* 6 */ { 33, 106, -33, -106 }, |
| 53 | /* 7 */ { 47, 183, -47, -183 } |
| 54 | }; |
| 55 | |
| 56 | static int num_4x4_blocks(int size) { |
| 57 | return ((size + 3) & ~3) >> 2; |
| 58 | } |
| 59 | |
| 60 | // Return which sub-block a given x,y location in the overall 4x4 block belongs to |
| 61 | static int xy_to_subblock_index(int x, int y, bool flip) { |
| 62 | SkASSERT(x >= 0 && x < 4); |
| 63 | SkASSERT(y >= 0 && y < 4); |
| 64 | |
| 65 | if (flip) { |
| 66 | return y < 2 ? 0 : 1; // sub-block 1 is on top of sub-block 2 |
| 67 | } else { |
| 68 | return x < 2 ? 0 : 1; // sub-block 1 is to the left of sub-block 2 |
| 69 | } |
| 70 | } |
| 71 | |
| 72 | struct IColor { |
| 73 | int fR, fG, fB; |
| 74 | }; |
| 75 | |
| 76 | static SkPMColor add_delta_and_clamp(const IColor& col, int delta) { |
| 77 | int r8 = SkTPin(col.fR + delta, 0, 255); |
| 78 | int g8 = SkTPin(col.fG + delta, 0, 255); |
| 79 | int b8 = SkTPin(col.fB + delta, 0, 255); |
| 80 | |
| 81 | return SkPackARGB32(0xFF, r8, g8, b8); |
| 82 | } |
| 83 | |
| 84 | static bool decompress_etc1(SkISize dimensions, const uint8_t* srcData, SkBitmap* dst) { |
| 85 | const ETC1Block* srcBlocks = reinterpret_cast<const ETC1Block*>(srcData); |
| 86 | |
| 87 | int numXBlocks = num_4x4_blocks(dimensions.width()); |
| 88 | int numYBlocks = num_4x4_blocks(dimensions.height()); |
| 89 | |
| 90 | for (int y = 0; y < numYBlocks; ++y) { |
| 91 | for (int x = 0; x < numXBlocks; ++x) { |
| 92 | const ETC1Block* curBlock1 = &srcBlocks[y * numXBlocks + x]; |
| 93 | uint32_t high = SkBSwap32(curBlock1->fHigh); |
| 94 | uint32_t low = SkBSwap32(curBlock1->fLow); |
| 95 | |
| 96 | bool flipped = SkToBool(high & kFlipBit); |
| 97 | bool differential = SkToBool(high & kDiffBit); |
| 98 | |
| 99 | IColor colors[2]; |
| 100 | |
| 101 | if (differential) { |
| 102 | colors[0].fR = extend_5To8bits(high >> 27); |
| 103 | colors[1].fR = extend_5plus3To8Bits(high >> 27, high >> 24); |
| 104 | colors[0].fG = extend_5To8bits(high >> 19); |
| 105 | colors[1].fG = extend_5plus3To8Bits(high >> 19, high >> 16); |
| 106 | colors[0].fB = extend_5To8bits(high >> 11); |
| 107 | colors[1].fB = extend_5plus3To8Bits(high >> 11, high >> 8); |
| 108 | } else { |
| 109 | colors[0].fR = extend_4To8bits(high >> 28); |
| 110 | colors[1].fR = extend_4To8bits(high >> 24); |
| 111 | colors[0].fG = extend_4To8bits(high >> 20); |
| 112 | colors[1].fG = extend_4To8bits(high >> 16); |
| 113 | colors[0].fB = extend_4To8bits(high >> 12); |
| 114 | colors[1].fB = extend_4To8bits(high >> 8); |
| 115 | } |
| 116 | |
| 117 | int tableIndex0 = (high >> 5) & 0x7; |
| 118 | int tableIndex1 = (high >> 2) & 0x7; |
| 119 | const int* tables[2] = { |
| 120 | kETC1ModifierTables[tableIndex0], |
| 121 | kETC1ModifierTables[tableIndex1] |
| 122 | }; |
| 123 | |
| 124 | int baseShift = 0; |
| 125 | int offsetX = 4 * x, offsetY = 4 * y; |
| 126 | for (int i = 0; i < 4; ++i, ++baseShift) { |
| 127 | for (int j = 0; j < 4; ++j) { |
| 128 | if (offsetX + j >= dst->width() || offsetY + i >= dst->height()) { |
| 129 | // This can happen for the topmost levels of a mipmap and for |
| 130 | // non-multiple of 4 textures |
| 131 | continue; |
| 132 | } |
| 133 | |
| 134 | int subBlockIndex = xy_to_subblock_index(j, i, flipped); |
| 135 | int pixelIndex = ((low >> (baseShift+(j*4))) & 0x1) | |
| 136 | (low >> (baseShift+(j*4)+15) & 0x2); |
| 137 | |
| 138 | SkASSERT(subBlockIndex == 0 || subBlockIndex == 1); |
| 139 | SkASSERT(pixelIndex >= 0 && pixelIndex < 4); |
| 140 | |
| 141 | int delta = tables[subBlockIndex][pixelIndex]; |
| 142 | *dst->getAddr32(offsetX + j, offsetY + i) = |
| 143 | add_delta_and_clamp(colors[subBlockIndex], delta); |
| 144 | } |
| 145 | } |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | return true; |
| 150 | } |
| 151 | |
| 152 | //------------------------------------------------------------------------------------------------ |
| 153 | struct BC1Block { |
| 154 | uint16_t fColor0; |
| 155 | uint16_t fColor1; |
| 156 | uint32_t fIndices; |
| 157 | }; |
| 158 | |
| 159 | static SkPMColor from565(uint16_t rgb565) { |
| 160 | uint8_t r8 = SkR16ToR32((rgb565 >> 11) & 0x1F); |
| 161 | uint8_t g8 = SkG16ToG32((rgb565 >> 5) & 0x3F); |
| 162 | uint8_t b8 = SkB16ToB32(rgb565 & 0x1F); |
| 163 | |
| 164 | return SkPackARGB32(0xFF, r8, g8, b8); |
| 165 | } |
| 166 | |
| 167 | // return t*col0 + (1-t)*col1 |
| 168 | static SkPMColor lerp(float t, SkPMColor col0, SkPMColor col1) { |
| 169 | SkASSERT(SkGetPackedA32(col0) == 0xFF && SkGetPackedA32(col1) == 0xFF); |
| 170 | |
| 171 | // TODO: given 't' is only either 1/3 or 2/3 this could be done faster |
| 172 | uint8_t r8 = SkScalarRoundToInt(t * SkGetPackedR32(col0) + (1.0f - t) * SkGetPackedR32(col1)); |
| 173 | uint8_t g8 = SkScalarRoundToInt(t * SkGetPackedG32(col0) + (1.0f - t) * SkGetPackedG32(col1)); |
| 174 | uint8_t b8 = SkScalarRoundToInt(t * SkGetPackedB32(col0) + (1.0f - t) * SkGetPackedB32(col1)); |
| 175 | return SkPackARGB32(0xFF, r8, g8, b8); |
| 176 | } |
| 177 | |
| 178 | static bool decompress_bc1(SkISize dimensions, const uint8_t* srcData, |
| 179 | bool isOpaque, SkBitmap* dst) { |
| 180 | const BC1Block* srcBlocks = reinterpret_cast<const BC1Block*>(srcData); |
| 181 | |
| 182 | int numXBlocks = num_4x4_blocks(dimensions.width()); |
| 183 | int numYBlocks = num_4x4_blocks(dimensions.height()); |
| 184 | |
| 185 | SkPMColor colors[4]; |
| 186 | |
| 187 | for (int y = 0; y < numYBlocks; ++y) { |
| 188 | for (int x = 0; x < numXBlocks; ++x) { |
| 189 | const BC1Block* curBlock = &srcBlocks[y * numXBlocks + x]; |
| 190 | |
| 191 | colors[0] = from565(curBlock->fColor0); |
| 192 | colors[1] = from565(curBlock->fColor1); |
| 193 | if (curBlock->fColor0 <= curBlock->fColor1) { // signal for a transparent block |
| 194 | colors[2] = SkPackARGB32( |
| 195 | 0xFF, |
| 196 | (SkGetPackedR32(colors[0]) + SkGetPackedR32(colors[1])) >> 1, |
| 197 | (SkGetPackedG32(colors[0]) + SkGetPackedG32(colors[1])) >> 1, |
| 198 | (SkGetPackedB32(colors[0]) + SkGetPackedB32(colors[1])) >> 1); |
| 199 | // The opacity of the overall texture trumps the per-block transparency |
| 200 | colors[3] = SkPackARGB32(isOpaque ? 0xFF : 0, 0, 0, 0); |
| 201 | } else { |
| 202 | colors[2] = lerp(2.0f/3.0f, colors[0], colors[1]); |
| 203 | colors[3] = lerp(1.0f/3.0f, colors[0], colors[1]); |
| 204 | } |
| 205 | |
| 206 | int shift = 0; |
| 207 | int offsetX = 4 * x, offsetY = 4 * y; |
| 208 | for (int i = 0; i < 4; ++i) { |
| 209 | for (int j = 0; j < 4; ++j, shift += 2) { |
| 210 | if (offsetX + j >= dst->width() || offsetY + i >= dst->height()) { |
| 211 | // This can happen for the topmost levels of a mipmap and for |
| 212 | // non-multiple of 4 textures |
| 213 | continue; |
| 214 | } |
| 215 | |
| 216 | int index = (curBlock->fIndices >> shift) & 0x3; |
| 217 | *dst->getAddr32(offsetX + j, offsetY + i) = colors[index]; |
| 218 | } |
| 219 | } |
| 220 | } |
| 221 | } |
| 222 | |
| 223 | return true; |
| 224 | } |
| 225 | |
| 226 | bool SkDecompress(sk_sp<SkData> data, |
| 227 | SkISize dimensions, |
| 228 | SkImage::CompressionType compressionType, |
| 229 | SkBitmap* dst) { |
| 230 | using Type = SkImage::CompressionType; |
| 231 | |
| 232 | const uint8_t* bytes = data->bytes(); |
| 233 | switch (compressionType) { |
| 234 | case Type::kNone: return false; |
| 235 | case Type::kETC2_RGB8_UNORM: return decompress_etc1(dimensions, bytes, dst); |
| 236 | case Type::kBC1_RGB8_UNORM: return decompress_bc1(dimensions, bytes, true, dst); |
| 237 | case Type::kBC1_RGBA8_UNORM: return decompress_bc1(dimensions, bytes, false, dst); |
| 238 | } |
| 239 | |
| 240 | SkUNREACHABLE; |
| 241 | return false; |
| 242 | } |
| 243 | |
| 244 | size_t SkCompressedDataSize(SkImage::CompressionType type, SkISize dimensions, |
| 245 | SkTArray<size_t>* individualMipOffsets, bool mipMapped) { |
| 246 | SkASSERT(!individualMipOffsets || !individualMipOffsets->count()); |
| 247 | |
| 248 | int numMipLevels = 1; |
| 249 | if (mipMapped) { |
| 250 | numMipLevels = SkMipMap::ComputeLevelCount(dimensions.width(), dimensions.height()) + 1; |
| 251 | } |
| 252 | |
| 253 | size_t totalSize = 0; |
| 254 | switch (type) { |
| 255 | case SkImage::CompressionType::kNone: |
| 256 | break; |
| 257 | case SkImage::CompressionType::kETC2_RGB8_UNORM: |
| 258 | case SkImage::CompressionType::kBC1_RGB8_UNORM: |
| 259 | case SkImage::CompressionType::kBC1_RGBA8_UNORM: { |
| 260 | for (int i = 0; i < numMipLevels; ++i) { |
| 261 | int numBlocks = num_4x4_blocks(dimensions.width()) * |
| 262 | num_4x4_blocks(dimensions.height()); |
| 263 | |
| 264 | if (individualMipOffsets) { |
| 265 | individualMipOffsets->push_back(totalSize); |
| 266 | } |
| 267 | |
| 268 | static_assert(sizeof(ETC1Block) == sizeof(BC1Block)); |
| 269 | totalSize += numBlocks * sizeof(ETC1Block); |
| 270 | |
| 271 | dimensions = {std::max(1, dimensions.width()/2), std::max(1, dimensions.height()/2)}; |
| 272 | } |
| 273 | break; |
| 274 | } |
| 275 | } |
| 276 | |
| 277 | return totalSize; |
| 278 | } |
| 279 | |
| 280 | size_t SkCompressedFormatDataSize(SkImage::CompressionType compressionType, |
| 281 | SkISize dimensions, bool mipMapped) { |
| 282 | return SkCompressedDataSize(compressionType, dimensions, nullptr, mipMapped); |
| 283 | } |
| 284 | |