1 | /* |
2 | * Copyright 2018 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "include/core/SkCubicMap.h" |
9 | #include "include/private/SkNx.h" |
10 | #include "src/core/SkOpts.h" |
11 | |
12 | //#define CUBICMAP_TRACK_MAX_ERROR |
13 | |
14 | #ifdef CUBICMAP_TRACK_MAX_ERROR |
15 | #include "src/pathops/SkPathOpsCubic.h" |
16 | #endif |
17 | |
18 | static inline bool nearly_zero(SkScalar x) { |
19 | SkASSERT(x >= 0); |
20 | return x <= 0.0000000001f; |
21 | } |
22 | |
23 | #ifdef CUBICMAP_TRACK_MAX_ERROR |
24 | static int max_iters; |
25 | #endif |
26 | |
27 | #ifdef CUBICMAP_TRACK_MAX_ERROR |
28 | static float compute_slow(float A, float B, float C, float x) { |
29 | double roots[3]; |
30 | SkDEBUGCODE(int count =) SkDCubic::RootsValidT(A, B, C, -x, roots); |
31 | SkASSERT(count == 1); |
32 | return (float)roots[0]; |
33 | } |
34 | |
35 | static float max_err; |
36 | #endif |
37 | |
38 | static float compute_t_from_x(float A, float B, float C, float x) { |
39 | #ifdef CUBICMAP_TRACK_MAX_ERROR |
40 | float answer = compute_slow(A, B, C, x); |
41 | #endif |
42 | float answer2 = SkOpts::cubic_solver(A, B, C, -x); |
43 | |
44 | #ifdef CUBICMAP_TRACK_MAX_ERROR |
45 | float err = sk_float_abs(answer - answer2); |
46 | if (err > max_err) { |
47 | max_err = err; |
48 | SkDebugf("max error %g\n" , max_err); |
49 | } |
50 | #endif |
51 | return answer2; |
52 | } |
53 | |
54 | float SkCubicMap::computeYFromX(float x) const { |
55 | x = SkTPin(x, 0.0f, 1.0f); |
56 | |
57 | if (nearly_zero(x) || nearly_zero(1 - x)) { |
58 | return x; |
59 | } |
60 | if (fType == kLine_Type) { |
61 | return x; |
62 | } |
63 | float t; |
64 | if (fType == kCubeRoot_Type) { |
65 | t = sk_float_pow(x / fCoeff[0].fX, 1.0f / 3); |
66 | } else { |
67 | t = compute_t_from_x(fCoeff[0].fX, fCoeff[1].fX, fCoeff[2].fX, x); |
68 | } |
69 | float a = fCoeff[0].fY; |
70 | float b = fCoeff[1].fY; |
71 | float c = fCoeff[2].fY; |
72 | float y = ((a * t + b) * t + c) * t; |
73 | |
74 | return y; |
75 | } |
76 | |
77 | static inline bool coeff_nearly_zero(float delta) { |
78 | return sk_float_abs(delta) <= 0.0000001f; |
79 | } |
80 | |
81 | SkCubicMap::SkCubicMap(SkPoint p1, SkPoint p2) { |
82 | // Clamp X values only (we allow Ys outside [0..1]). |
83 | p1.fX = std::min(std::max(p1.fX, 0.0f), 1.0f); |
84 | p2.fX = std::min(std::max(p2.fX, 0.0f), 1.0f); |
85 | |
86 | Sk2s s1 = Sk2s::Load(&p1) * 3; |
87 | Sk2s s2 = Sk2s::Load(&p2) * 3; |
88 | |
89 | (Sk2s(1) + s1 - s2).store(&fCoeff[0]); |
90 | (s2 - s1 - s1).store(&fCoeff[1]); |
91 | s1.store(&fCoeff[2]); |
92 | |
93 | fType = kSolver_Type; |
94 | if (SkScalarNearlyEqual(p1.fX, p1.fY) && SkScalarNearlyEqual(p2.fX, p2.fY)) { |
95 | fType = kLine_Type; |
96 | } else if (coeff_nearly_zero(fCoeff[1].fX) && coeff_nearly_zero(fCoeff[2].fX)) { |
97 | fType = kCubeRoot_Type; |
98 | } |
99 | } |
100 | |
101 | SkPoint SkCubicMap::computeFromT(float t) const { |
102 | Sk2s a = Sk2s::Load(&fCoeff[0]); |
103 | Sk2s b = Sk2s::Load(&fCoeff[1]); |
104 | Sk2s c = Sk2s::Load(&fCoeff[2]); |
105 | |
106 | SkPoint result; |
107 | (((a * t + b) * t + c) * t).store(&result); |
108 | return result; |
109 | } |
110 | |