1 | /* |
2 | * Copyright 2006 The Android Open Source Project |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #ifndef SkGlyph_DEFINED |
9 | #define SkGlyph_DEFINED |
10 | |
11 | #include "include/core/SkPath.h" |
12 | #include "include/core/SkTypes.h" |
13 | #include "include/private/SkChecksum.h" |
14 | #include "include/private/SkFixed.h" |
15 | #include "include/private/SkTo.h" |
16 | #include "include/private/SkVx.h" |
17 | #include "src/core/SkMask.h" |
18 | |
19 | class SkArenaAlloc; |
20 | class SkScalerContext; |
21 | |
22 | // needs to be != to any valid SkMask::Format |
23 | #define MASK_FORMAT_UNKNOWN (0xFF) |
24 | #define MASK_FORMAT_JUST_ADVANCE MASK_FORMAT_UNKNOWN |
25 | |
26 | // A combination of SkGlyphID and sub-pixel position information. |
27 | struct SkPackedGlyphID { |
28 | static constexpr uint32_t kImpossibleID = ~0u; |
29 | enum { |
30 | // Lengths |
31 | kGlyphIDLen = 16u, |
32 | kSubPixelPosLen = 2u, |
33 | |
34 | // Bit positions |
35 | kSubPixelX = 0u, |
36 | kGlyphID = kSubPixelPosLen, |
37 | kSubPixelY = kGlyphIDLen + kSubPixelPosLen, |
38 | kEndData = kGlyphIDLen + 2 * kSubPixelPosLen, |
39 | |
40 | // Masks |
41 | kGlyphIDMask = (1u << kGlyphIDLen) - 1, |
42 | kSubPixelPosMask = (1u << kSubPixelPosLen) - 1, |
43 | kMaskAll = (1u << kEndData) - 1, |
44 | |
45 | // Location of sub pixel info in a fixed pointer number. |
46 | kFixedPointBinaryPointPos = 16u, |
47 | kFixedPointSubPixelPosBits = kFixedPointBinaryPointPos - kSubPixelPosLen, |
48 | }; |
49 | |
50 | static constexpr SkScalar kSubpixelRound = 1.f / (1u << (SkPackedGlyphID::kSubPixelPosLen + 1)); |
51 | |
52 | static constexpr SkIPoint kXYFieldMask{kSubPixelPosMask << kSubPixelX, |
53 | kSubPixelPosMask << kSubPixelY}; |
54 | |
55 | constexpr explicit SkPackedGlyphID(SkGlyphID glyphID) |
56 | : fID{(uint32_t)glyphID << kGlyphID} { } |
57 | |
58 | constexpr SkPackedGlyphID(SkGlyphID glyphID, SkFixed x, SkFixed y) |
59 | : fID {PackIDXY(glyphID, x, y)} { } |
60 | |
61 | constexpr SkPackedGlyphID(SkGlyphID glyphID, uint32_t x, uint32_t y) |
62 | : fID {PackIDSubXSubY(glyphID, x, y)} { } |
63 | |
64 | SkPackedGlyphID(SkGlyphID glyphID, SkPoint pt, SkIPoint mask) |
65 | : fID{PackIDSkPoint(glyphID, pt, mask)} { } |
66 | |
67 | constexpr explicit SkPackedGlyphID(uint32_t v) : fID{v & kMaskAll} { } |
68 | |
69 | constexpr SkPackedGlyphID() : fID{kImpossibleID} {} |
70 | |
71 | bool operator==(const SkPackedGlyphID& that) const { |
72 | return fID == that.fID; |
73 | } |
74 | bool operator!=(const SkPackedGlyphID& that) const { |
75 | return !(*this == that); |
76 | } |
77 | bool operator<(SkPackedGlyphID that) const { |
78 | return this->fID < that.fID; |
79 | } |
80 | |
81 | SkGlyphID glyphID() const { |
82 | return (fID >> kGlyphID) & kGlyphIDMask; |
83 | } |
84 | |
85 | uint32_t value() const { |
86 | return fID; |
87 | } |
88 | |
89 | SkFixed getSubXFixed() const { |
90 | return this->subToFixed(kSubPixelX); |
91 | } |
92 | |
93 | SkFixed getSubYFixed() const { |
94 | return this->subToFixed(kSubPixelY); |
95 | } |
96 | |
97 | uint32_t hash() const { |
98 | return SkChecksum::CheapMix(fID); |
99 | } |
100 | |
101 | SkString dump() const { |
102 | SkString str; |
103 | str.appendf("glyphID: %d, x: %d, y:%d" , glyphID(), getSubXFixed(), getSubYFixed()); |
104 | return str; |
105 | } |
106 | |
107 | private: |
108 | static constexpr uint32_t PackIDSubXSubY(SkGlyphID glyphID, uint32_t x, uint32_t y) { |
109 | SkASSERT(x < (1u << kSubPixelPosLen)); |
110 | SkASSERT(y < (1u << kSubPixelPosLen)); |
111 | |
112 | return (x << kSubPixelX) | (y << kSubPixelY) | (glyphID << kGlyphID); |
113 | } |
114 | |
115 | // Assumptions: pt is properly rounded. mask is set for the x or y fields. |
116 | // |
117 | // A sub-pixel field is a number on the interval [2^kSubPixel, 2^(kSubPixel + kSubPixelPosLen)). |
118 | // Where kSubPixel is either kSubPixelX or kSubPixelY. Given a number x on [0, 1) we can |
119 | // generate a sub-pixel field using: |
120 | // sub-pixel-field = x * 2^(kSubPixel + kSubPixelPosLen) |
121 | // |
122 | // We can generate the integer sub-pixel field by &-ing the integer part of sub-filed with the |
123 | // sub-pixel field mask. |
124 | // int-sub-pixel-field = int(sub-pixel-field) & (kSubPixelPosMask << kSubPixel) |
125 | // |
126 | // The last trick is to extend the range from [0, 1) to [0, 2). The extend range is |
127 | // necessary because the modulo 1 calculation (pt - floor(pt)) generates numbers on [-1, 1). |
128 | // This does not round (floor) properly when converting to integer. Adding one to the range |
129 | // causes truncation and floor to be the same. Coincidentally, masking to produce the field also |
130 | // removes the +1. |
131 | static uint32_t PackIDSkPoint(SkGlyphID glyphID, SkPoint pt, SkIPoint mask) { |
132 | #if 0 |
133 | // TODO: why does this code not work on GCC 8.3 x86 Debug builds? |
134 | using namespace skvx; |
135 | using XY = Vec<2, float>; |
136 | using SubXY = Vec<2, int>; |
137 | |
138 | const XY magic = {1.f * (1u << (kSubPixelPosLen + kSubPixelX)), |
139 | 1.f * (1u << (kSubPixelPosLen + kSubPixelY))}; |
140 | XY pos{pt.x(), pt.y()}; |
141 | XY subPos = (pos - floor(pos)) + 1.0f; |
142 | SubXY sub = cast<int>(subPos * magic) & SubXY{mask.x(), mask.y()}; |
143 | #else |
144 | const float magicX = 1.f * (1u << (kSubPixelPosLen + kSubPixelX)), |
145 | magicY = 1.f * (1u << (kSubPixelPosLen + kSubPixelY)); |
146 | |
147 | float x = pt.x(), |
148 | y = pt.y(); |
149 | x = (x - floorf(x)) + 1.0f; |
150 | y = (y - floorf(y)) + 1.0f; |
151 | int sub[] = { |
152 | (int)(x * magicX) & mask.x(), |
153 | (int)(y * magicY) & mask.y(), |
154 | }; |
155 | #endif |
156 | |
157 | SkASSERT(sub[0] / (1u << kSubPixelX) < (1u << kSubPixelPosLen)); |
158 | SkASSERT(sub[1] / (1u << kSubPixelY) < (1u << kSubPixelPosLen)); |
159 | return (glyphID << kGlyphID) | sub[0] | sub[1]; |
160 | } |
161 | |
162 | static constexpr uint32_t PackIDXY(SkGlyphID glyphID, SkFixed x, SkFixed y) { |
163 | return PackIDSubXSubY(glyphID, FixedToSub(x), FixedToSub(y)); |
164 | } |
165 | |
166 | static constexpr uint32_t FixedToSub(SkFixed n) { |
167 | return ((uint32_t)n >> kFixedPointSubPixelPosBits) & kSubPixelPosMask; |
168 | } |
169 | |
170 | constexpr SkFixed subToFixed(uint32_t subPixelPosBit) const { |
171 | uint32_t subPixelPosition = (fID >> subPixelPosBit) & kSubPixelPosMask; |
172 | return subPixelPosition << kFixedPointSubPixelPosBits; |
173 | } |
174 | |
175 | uint32_t fID; |
176 | }; |
177 | |
178 | struct SkGlyphPrototype; |
179 | |
180 | class SkGlyph { |
181 | public: |
182 | // SkGlyph() is used for testing. |
183 | constexpr SkGlyph() : fID{SkPackedGlyphID()} { } |
184 | constexpr explicit SkGlyph(SkPackedGlyphID id) : fID{id} { } |
185 | |
186 | SkVector advanceVector() const { return SkVector{fAdvanceX, fAdvanceY}; } |
187 | SkScalar advanceX() const { return fAdvanceX; } |
188 | SkScalar advanceY() const { return fAdvanceY; } |
189 | |
190 | SkGlyphID getGlyphID() const { return fID.glyphID(); } |
191 | SkPackedGlyphID getPackedID() const { return fID; } |
192 | SkFixed getSubXFixed() const { return fID.getSubXFixed(); } |
193 | SkFixed getSubYFixed() const { return fID.getSubYFixed(); } |
194 | |
195 | size_t rowBytes() const; |
196 | size_t rowBytesUsingFormat(SkMask::Format format) const; |
197 | |
198 | // Call this to set all of the metrics fields to 0 (e.g. if the scaler |
199 | // encounters an error measuring a glyph). Note: this does not alter the |
200 | // fImage, fPath, fID, fMaskFormat fields. |
201 | void zeroMetrics(); |
202 | |
203 | SkMask mask() const; |
204 | |
205 | SkMask mask(SkPoint position) const; |
206 | |
207 | // Image |
208 | // If we haven't already tried to associate an image with this glyph |
209 | // (i.e. setImageHasBeenCalled() returns false), then use the |
210 | // SkScalerContext or const void* argument to set the image. |
211 | bool setImage(SkArenaAlloc* alloc, SkScalerContext* scalerContext); |
212 | bool setImage(SkArenaAlloc* alloc, const void* image); |
213 | |
214 | // Merge the from glyph into this glyph using alloc to allocate image data. Return true if |
215 | // image data was allocated. If the image for this glyph has not been initialized, then copy |
216 | // the width, height, top, left, format, and image into this glyph making a copy of the image |
217 | // using the alloc. |
218 | bool setMetricsAndImage(SkArenaAlloc* alloc, const SkGlyph& from); |
219 | |
220 | // Returns true if the image has been set. |
221 | bool setImageHasBeenCalled() const { |
222 | return fImage != nullptr || this->isEmpty() || this->imageTooLarge(); |
223 | } |
224 | |
225 | // Return a pointer to the path if the image exists, otherwise return nullptr. |
226 | const void* image() const { SkASSERT(this->setImageHasBeenCalled()); return fImage; } |
227 | |
228 | // Return the size of the image. |
229 | size_t imageSize() const; |
230 | |
231 | // Path |
232 | // If we haven't already tried to associate a path to this glyph |
233 | // (i.e. setPathHasBeenCalled() returns false), then use the |
234 | // SkScalerContext or SkPath argument to try to do so. N.B. this |
235 | // may still result in no path being associated with this glyph, |
236 | // e.g. if you pass a null SkPath or the typeface is bitmap-only. |
237 | // |
238 | // This setPath() call is sticky... once you call it, the glyph |
239 | // stays in its state permanently, ignoring any future calls. |
240 | // |
241 | // Returns true if this is the first time you called setPath() |
242 | // and there actually is a path; call path() to get it. |
243 | bool setPath(SkArenaAlloc* alloc, SkScalerContext* scalerContext); |
244 | bool setPath(SkArenaAlloc* alloc, const SkPath* path); |
245 | |
246 | // Returns true if that path has been set. |
247 | bool setPathHasBeenCalled() const { return fPathData != nullptr; } |
248 | |
249 | // Return a pointer to the path if it exists, otherwise return nullptr. Only works if the |
250 | // path was previously set. |
251 | const SkPath* path() const; |
252 | |
253 | // Format |
254 | bool isColor() const { return fMaskFormat == SkMask::kARGB32_Format; } |
255 | SkMask::Format maskFormat() const { return static_cast<SkMask::Format>(fMaskFormat); } |
256 | size_t formatAlignment() const; |
257 | |
258 | // Bounds |
259 | int maxDimension() const { return std::max(fWidth, fHeight); } |
260 | SkIRect iRect() const { return SkIRect::MakeXYWH(fLeft, fTop, fWidth, fHeight); } |
261 | SkRect rect() const { return SkRect::MakeXYWH(fLeft, fTop, fWidth, fHeight); } |
262 | int left() const { return fLeft; } |
263 | int top() const { return fTop; } |
264 | int width() const { return fWidth; } |
265 | int height() const { return fHeight; } |
266 | bool isEmpty() const { |
267 | // fHeight == 0 -> fWidth == 0; |
268 | SkASSERT(fHeight != 0 || fWidth == 0); |
269 | return fWidth == 0; |
270 | } |
271 | bool imageTooLarge() const { return fWidth >= kMaxGlyphWidth; } |
272 | |
273 | // Make sure that the intercept information is on the glyph and return it, or return it if it |
274 | // already exists. |
275 | // * bounds - either end of the gap for the character. |
276 | // * scale, xPos - information about how wide the gap is. |
277 | // * array - accumulated gaps for many characters if not null. |
278 | // * count - the number of gaps. |
279 | void ensureIntercepts(const SkScalar bounds[2], SkScalar scale, SkScalar xPos, |
280 | SkScalar* array, int* count, SkArenaAlloc* alloc); |
281 | |
282 | private: |
283 | // There are two sides to an SkGlyph, the scaler side (things that create glyph data) have |
284 | // access to all the fields. Scalers are assumed to maintain all the SkGlyph invariants. The |
285 | // consumer side has a tighter interface. |
286 | friend class RandomScalerContext; |
287 | friend class SkScalerContext; |
288 | friend class SkScalerContextProxy; |
289 | friend class SkScalerContext_Empty; |
290 | friend class SkScalerContext_FreeType; |
291 | friend class SkScalerContext_FreeType_Base; |
292 | friend class SkScalerContext_DW; |
293 | friend class SkScalerContext_GDI; |
294 | friend class SkScalerContext_Mac; |
295 | friend class SkStrikeClient; |
296 | friend class SkStrikeServer; |
297 | friend class SkTestScalerContext; |
298 | friend class SkTestSVGScalerContext; |
299 | friend class TestSVGTypeface; |
300 | friend class TestTypeface; |
301 | |
302 | static constexpr uint16_t kMaxGlyphWidth = 1u << 13u; |
303 | |
304 | // Support horizontal and vertical skipping strike-through / underlines. |
305 | // The caller walks the linked list looking for a match. For a horizontal underline, |
306 | // the fBounds contains the top and bottom of the underline. The fInterval pair contains the |
307 | // beginning and end of of the intersection of the bounds and the glyph's path. |
308 | // If interval[0] >= interval[1], no intersection was found. |
309 | struct Intercept { |
310 | Intercept* fNext; |
311 | SkScalar fBounds[2]; // for horz underlines, the boundaries in Y |
312 | SkScalar fInterval[2]; // the outside intersections of the axis and the glyph |
313 | }; |
314 | |
315 | struct PathData { |
316 | Intercept* fIntercept{nullptr}; |
317 | SkPath fPath; |
318 | bool fHasPath{false}; |
319 | }; |
320 | |
321 | size_t allocImage(SkArenaAlloc* alloc); |
322 | |
323 | // path == nullptr indicates that there is no path. |
324 | void installPath(SkArenaAlloc* alloc, const SkPath* path); |
325 | |
326 | // The width and height of the glyph mask. |
327 | uint16_t fWidth = 0, |
328 | fHeight = 0; |
329 | |
330 | // The offset from the glyphs origin on the baseline to the top left of the glyph mask. |
331 | int16_t fTop = 0, |
332 | fLeft = 0; |
333 | |
334 | // fImage must remain null if the glyph is empty or if width > kMaxGlyphWidth. |
335 | void* fImage = nullptr; |
336 | |
337 | // Path data has tricky state. If the glyph isEmpty, then fPathData should always be nullptr, |
338 | // else if fPathData is not null, then a path has been requested. The fPath field of fPathData |
339 | // may still be null after the request meaning that there is no path for this glyph. |
340 | PathData* fPathData = nullptr; |
341 | |
342 | // The advance for this glyph. |
343 | float fAdvanceX = 0, |
344 | fAdvanceY = 0; |
345 | |
346 | // This is a combination of SkMask::Format and SkGlyph state. The SkGlyph can be in one of two |
347 | // states, just the advances have been calculated, and all the metrics are available. The |
348 | // illegal mask format is used to signal that only the advances are available. |
349 | uint8_t fMaskFormat = MASK_FORMAT_UNKNOWN; |
350 | |
351 | // Used by the DirectWrite scaler to track state. |
352 | int8_t fForceBW = 0; |
353 | |
354 | const SkPackedGlyphID fID; |
355 | }; |
356 | |
357 | #endif |
358 | |