| 1 | /* |
| 2 | * Copyright 2019 Google LLC |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "include/core/SkStream.h" |
| 9 | #include "include/core/SkString.h" |
| 10 | #include "include/private/SkChecksum.h" |
| 11 | #include "include/private/SkSpinlock.h" |
| 12 | #include "include/private/SkTFitsIn.h" |
| 13 | #include "include/private/SkThreadID.h" |
| 14 | #include "include/private/SkVx.h" |
| 15 | #include "src/core/SkColorSpaceXformSteps.h" |
| 16 | #include "src/core/SkCpu.h" |
| 17 | #include "src/core/SkOpts.h" |
| 18 | #include "src/core/SkVM.h" |
| 19 | #include <algorithm> |
| 20 | #include <atomic> |
| 21 | #include <queue> |
| 22 | |
| 23 | #if defined(SKVM_LLVM) |
| 24 | #include <future> |
| 25 | #include <llvm/Bitcode/BitcodeWriter.h> |
| 26 | #include <llvm/ExecutionEngine/ExecutionEngine.h> |
| 27 | #include <llvm/IR/IRBuilder.h> |
| 28 | #include <llvm/IR/Verifier.h> |
| 29 | #include <llvm/Support/TargetSelect.h> |
| 30 | |
| 31 | // Platform-specific intrinsics got their own files in LLVM 10. |
| 32 | #if __has_include(<llvm/IR/IntrinsicsX86.h>) |
| 33 | #include <llvm/IR/IntrinsicsX86.h> |
| 34 | #endif |
| 35 | #endif |
| 36 | |
| 37 | bool gSkVMJITViaDylib{false}; |
| 38 | |
| 39 | // JIT code isn't MSAN-instrumented, so we won't see when it uses |
| 40 | // uninitialized memory, and we'll not see the writes it makes as properly |
| 41 | // initializing memory. Instead force the interpreter, which should let |
| 42 | // MSAN see everything our programs do properly. |
| 43 | // |
| 44 | // Similarly, we can't get ASAN's checks unless we let it instrument our interpreter. |
| 45 | #if defined(__has_feature) |
| 46 | #if __has_feature(memory_sanitizer) || __has_feature(address_sanitizer) |
| 47 | #undef SKVM_JIT |
| 48 | #endif |
| 49 | #endif |
| 50 | |
| 51 | #if defined(SKVM_JIT) |
| 52 | #include <dlfcn.h> // dlopen, dlsym |
| 53 | #include <sys/mman.h> // mmap, mprotect |
| 54 | #endif |
| 55 | |
| 56 | namespace skvm { |
| 57 | |
| 58 | struct Program::Impl { |
| 59 | std::vector<InterpreterInstruction> instructions; |
| 60 | int regs = 0; |
| 61 | int loop = 0; |
| 62 | std::vector<int> strides; |
| 63 | |
| 64 | std::atomic<void*> jit_entry{nullptr}; // TODO: minimal std::memory_orders |
| 65 | size_t jit_size = 0; |
| 66 | void* dylib = nullptr; |
| 67 | |
| 68 | #if defined(SKVM_LLVM) |
| 69 | std::unique_ptr<llvm::LLVMContext> llvm_ctx; |
| 70 | std::unique_ptr<llvm::ExecutionEngine> llvm_ee; |
| 71 | std::future<void> llvm_compiling; |
| 72 | #endif |
| 73 | }; |
| 74 | |
| 75 | // Debugging tools, mostly for printing various data structures out to a stream. |
| 76 | |
| 77 | namespace { |
| 78 | class SkDebugfStream final : public SkWStream { |
| 79 | size_t fBytesWritten = 0; |
| 80 | |
| 81 | bool write(const void* buffer, size_t size) override { |
| 82 | SkDebugf("%.*s" , size, buffer); |
| 83 | fBytesWritten += size; |
| 84 | return true; |
| 85 | } |
| 86 | |
| 87 | size_t bytesWritten() const override { |
| 88 | return fBytesWritten; |
| 89 | } |
| 90 | }; |
| 91 | |
| 92 | struct V { Val id; }; |
| 93 | struct R { Reg id; }; |
| 94 | struct Shift { int bits; }; |
| 95 | struct Splat { int bits; }; |
| 96 | struct Hex { int bits; }; |
| 97 | |
| 98 | static void write(SkWStream* o, const char* s) { |
| 99 | o->writeText(s); |
| 100 | } |
| 101 | |
| 102 | static const char* name(Op op) { |
| 103 | switch (op) { |
| 104 | #define M(x) case Op::x: return #x; |
| 105 | SKVM_OPS(M) |
| 106 | #undef M |
| 107 | } |
| 108 | return "unknown op" ; |
| 109 | } |
| 110 | |
| 111 | static void write(SkWStream* o, Op op) { |
| 112 | const char* raw = name(op); |
| 113 | if (const char* found = strstr(raw, "_imm" )) { |
| 114 | o->write(raw, found-raw); |
| 115 | } else { |
| 116 | o->writeText(raw); |
| 117 | } |
| 118 | } |
| 119 | static void write(SkWStream* o, Arg a) { |
| 120 | write(o, "arg(" ); |
| 121 | o->writeDecAsText(a.ix); |
| 122 | write(o, ")" ); |
| 123 | } |
| 124 | static void write(SkWStream* o, V v) { |
| 125 | write(o, "v" ); |
| 126 | o->writeDecAsText(v.id); |
| 127 | } |
| 128 | static void write(SkWStream* o, R r) { |
| 129 | write(o, "r" ); |
| 130 | o->writeDecAsText(r.id); |
| 131 | } |
| 132 | static void write(SkWStream* o, Shift s) { |
| 133 | o->writeDecAsText(s.bits); |
| 134 | } |
| 135 | static void write(SkWStream* o, Splat s) { |
| 136 | float f; |
| 137 | memcpy(&f, &s.bits, 4); |
| 138 | o->writeHexAsText(s.bits); |
| 139 | write(o, " (" ); |
| 140 | o->writeScalarAsText(f); |
| 141 | write(o, ")" ); |
| 142 | } |
| 143 | static void write(SkWStream* o, Hex h) { |
| 144 | o->writeHexAsText(h.bits); |
| 145 | } |
| 146 | |
| 147 | template <typename T, typename... Ts> |
| 148 | static void write(SkWStream* o, T first, Ts... rest) { |
| 149 | write(o, first); |
| 150 | write(o, " " ); |
| 151 | write(o, rest...); |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | void Builder::dot(SkWStream* o, bool for_jit) const { |
| 156 | SkDebugfStream debug; |
| 157 | if (!o) { o = &debug; } |
| 158 | |
| 159 | std::vector<OptimizedInstruction> optimized = this->optimize(for_jit); |
| 160 | |
| 161 | o->writeText("digraph {\n" ); |
| 162 | for (Val id = 0; id < (Val)optimized.size(); id++) { |
| 163 | auto [op, x,y,z, immy,immz, death,can_hoist,used_in_loop] = optimized[id]; |
| 164 | |
| 165 | switch (op) { |
| 166 | default: |
| 167 | write(o, "\t" , V{id}, " [label = \"" , V{id}, op); |
| 168 | // Not a perfect heuristic; sometimes y/z == NA and there is no immy/z. |
| 169 | // On the other hand, sometimes immy/z=0 is meaningful and should be printed. |
| 170 | if (y == NA) { write(o, "" , Hex{immy}); } |
| 171 | if (z == NA) { write(o, "" , Hex{immz}); } |
| 172 | write(o, "\"]\n" ); |
| 173 | |
| 174 | write(o, "\t" , V{id}, " -> {" ); |
| 175 | // In contrast to the heuristic imm labels, these dependences are exact. |
| 176 | if (x != NA) { write(o, "" , V{x}); } |
| 177 | if (y != NA) { write(o, "" , V{y}); } |
| 178 | if (z != NA) { write(o, "" , V{z}); } |
| 179 | write(o, " }\n" ); |
| 180 | |
| 181 | break; |
| 182 | |
| 183 | // That default: impl works pretty well for most instructions, |
| 184 | // but some are nicer to see with a specialized label. |
| 185 | |
| 186 | case Op::splat: |
| 187 | write(o, "\t" , V{id}, " [label = \"" , V{id}, op, Splat{immy}, "\"]\n" ); |
| 188 | break; |
| 189 | } |
| 190 | } |
| 191 | o->writeText("}\n" ); |
| 192 | } |
| 193 | |
| 194 | void Builder::dump(SkWStream* o) const { |
| 195 | SkDebugfStream debug; |
| 196 | if (!o) { o = &debug; } |
| 197 | |
| 198 | std::vector<OptimizedInstruction> optimized = this->optimize(); |
| 199 | o->writeDecAsText(optimized.size()); |
| 200 | o->writeText(" values (originally " ); |
| 201 | o->writeDecAsText(fProgram.size()); |
| 202 | o->writeText("):\n" ); |
| 203 | for (Val id = 0; id < (Val)optimized.size(); id++) { |
| 204 | const OptimizedInstruction& inst = optimized[id]; |
| 205 | Op op = inst.op; |
| 206 | Val x = inst.x, |
| 207 | y = inst.y, |
| 208 | z = inst.z; |
| 209 | int immy = inst.immy, |
| 210 | immz = inst.immz; |
| 211 | write(o, !inst.can_hoist ? " " : |
| 212 | inst.used_in_loop ? "↑ " : |
| 213 | "↟ " ); |
| 214 | switch (op) { |
| 215 | case Op::assert_true: write(o, op, V{x}, V{y}); break; |
| 216 | |
| 217 | case Op::store8: write(o, op, Arg{immy}, V{x}); break; |
| 218 | case Op::store16: write(o, op, Arg{immy}, V{x}); break; |
| 219 | case Op::store32: write(o, op, Arg{immy}, V{x}); break; |
| 220 | |
| 221 | case Op::index: write(o, V{id}, "=" , op); break; |
| 222 | |
| 223 | case Op::load8: write(o, V{id}, "=" , op, Arg{immy}); break; |
| 224 | case Op::load16: write(o, V{id}, "=" , op, Arg{immy}); break; |
| 225 | case Op::load32: write(o, V{id}, "=" , op, Arg{immy}); break; |
| 226 | |
| 227 | case Op::gather8: write(o, V{id}, "=" , op, Arg{immy}, Hex{immz}, V{x}); break; |
| 228 | case Op::gather16: write(o, V{id}, "=" , op, Arg{immy}, Hex{immz}, V{x}); break; |
| 229 | case Op::gather32: write(o, V{id}, "=" , op, Arg{immy}, Hex{immz}, V{x}); break; |
| 230 | |
| 231 | case Op::uniform8: write(o, V{id}, "=" , op, Arg{immy}, Hex{immz}); break; |
| 232 | case Op::uniform16: write(o, V{id}, "=" , op, Arg{immy}, Hex{immz}); break; |
| 233 | case Op::uniform32: write(o, V{id}, "=" , op, Arg{immy}, Hex{immz}); break; |
| 234 | |
| 235 | case Op::splat: write(o, V{id}, "=" , op, Splat{immy}); break; |
| 236 | |
| 237 | |
| 238 | case Op::add_f32: write(o, V{id}, "=" , op, V{x}, V{y} ); break; |
| 239 | case Op::sub_f32: write(o, V{id}, "=" , op, V{x}, V{y} ); break; |
| 240 | case Op::mul_f32: write(o, V{id}, "=" , op, V{x}, V{y} ); break; |
| 241 | case Op::div_f32: write(o, V{id}, "=" , op, V{x}, V{y} ); break; |
| 242 | case Op::min_f32: write(o, V{id}, "=" , op, V{x}, V{y} ); break; |
| 243 | case Op::max_f32: write(o, V{id}, "=" , op, V{x}, V{y} ); break; |
| 244 | case Op::fma_f32: write(o, V{id}, "=" , op, V{x}, V{y}, V{z}); break; |
| 245 | case Op::fms_f32: write(o, V{id}, "=" , op, V{x}, V{y}, V{z}); break; |
| 246 | case Op::fnma_f32: write(o, V{id}, "=" , op, V{x}, V{y}, V{z}); break; |
| 247 | |
| 248 | |
| 249 | case Op::sqrt_f32: write(o, V{id}, "=" , op, V{x}); break; |
| 250 | |
| 251 | case Op::add_f32_imm: write(o, V{id}, "=" , op, V{x}, Splat{immy}); break; |
| 252 | case Op::sub_f32_imm: write(o, V{id}, "=" , op, V{x}, Splat{immy}); break; |
| 253 | case Op::mul_f32_imm: write(o, V{id}, "=" , op, V{x}, Splat{immy}); break; |
| 254 | case Op::min_f32_imm: write(o, V{id}, "=" , op, V{x}, Splat{immy}); break; |
| 255 | case Op::max_f32_imm: write(o, V{id}, "=" , op, V{x}, Splat{immy}); break; |
| 256 | |
| 257 | case Op:: eq_f32: write(o, V{id}, "=" , op, V{x}, V{y}); break; |
| 258 | case Op::neq_f32: write(o, V{id}, "=" , op, V{x}, V{y}); break; |
| 259 | case Op:: gt_f32: write(o, V{id}, "=" , op, V{x}, V{y}); break; |
| 260 | case Op::gte_f32: write(o, V{id}, "=" , op, V{x}, V{y}); break; |
| 261 | |
| 262 | |
| 263 | case Op::add_i32: write(o, V{id}, "=" , op, V{x}, V{y}); break; |
| 264 | case Op::sub_i32: write(o, V{id}, "=" , op, V{x}, V{y}); break; |
| 265 | case Op::mul_i32: write(o, V{id}, "=" , op, V{x}, V{y}); break; |
| 266 | |
| 267 | case Op::shl_i32: write(o, V{id}, "=" , op, V{x}, Shift{immy}); break; |
| 268 | case Op::shr_i32: write(o, V{id}, "=" , op, V{x}, Shift{immy}); break; |
| 269 | case Op::sra_i32: write(o, V{id}, "=" , op, V{x}, Shift{immy}); break; |
| 270 | |
| 271 | case Op:: eq_i32: write(o, V{id}, "=" , op, V{x}, V{y}); break; |
| 272 | case Op::neq_i32: write(o, V{id}, "=" , op, V{x}, V{y}); break; |
| 273 | case Op:: gt_i32: write(o, V{id}, "=" , op, V{x}, V{y}); break; |
| 274 | case Op::gte_i32: write(o, V{id}, "=" , op, V{x}, V{y}); break; |
| 275 | |
| 276 | case Op::add_i16x2: write(o, V{id}, "=" , op, V{x}, V{y}); break; |
| 277 | case Op::sub_i16x2: write(o, V{id}, "=" , op, V{x}, V{y}); break; |
| 278 | case Op::mul_i16x2: write(o, V{id}, "=" , op, V{x}, V{y}); break; |
| 279 | |
| 280 | case Op::shl_i16x2: write(o, V{id}, "=" , op, V{x}, Shift{immy}); break; |
| 281 | case Op::shr_i16x2: write(o, V{id}, "=" , op, V{x}, Shift{immy}); break; |
| 282 | case Op::sra_i16x2: write(o, V{id}, "=" , op, V{x}, Shift{immy}); break; |
| 283 | |
| 284 | case Op:: eq_i16x2: write(o, V{id}, "=" , op, V{x}, V{y}); break; |
| 285 | case Op::neq_i16x2: write(o, V{id}, "=" , op, V{x}, V{y}); break; |
| 286 | case Op:: gt_i16x2: write(o, V{id}, "=" , op, V{x}, V{y}); break; |
| 287 | case Op::gte_i16x2: write(o, V{id}, "=" , op, V{x}, V{y}); break; |
| 288 | |
| 289 | case Op::bit_and : write(o, V{id}, "=" , op, V{x}, V{y} ); break; |
| 290 | case Op::bit_or : write(o, V{id}, "=" , op, V{x}, V{y} ); break; |
| 291 | case Op::bit_xor : write(o, V{id}, "=" , op, V{x}, V{y} ); break; |
| 292 | case Op::bit_clear: write(o, V{id}, "=" , op, V{x}, V{y} ); break; |
| 293 | |
| 294 | case Op::bit_and_imm: write(o, V{id}, "=" , op, V{x}, Hex{immy}); break; |
| 295 | case Op::bit_or_imm : write(o, V{id}, "=" , op, V{x}, Hex{immy}); break; |
| 296 | case Op::bit_xor_imm: write(o, V{id}, "=" , op, V{x}, Hex{immy}); break; |
| 297 | |
| 298 | case Op::select: write(o, V{id}, "=" , op, V{x}, V{y}, V{z}); break; |
| 299 | case Op::pack: write(o, V{id}, "=" , op, V{x}, V{y}, Shift{immz}); break; |
| 300 | |
| 301 | case Op::floor: write(o, V{id}, "=" , op, V{x}); break; |
| 302 | case Op::to_f32: write(o, V{id}, "=" , op, V{x}); break; |
| 303 | case Op::trunc: write(o, V{id}, "=" , op, V{x}); break; |
| 304 | case Op::round: write(o, V{id}, "=" , op, V{x}); break; |
| 305 | } |
| 306 | |
| 307 | write(o, "\n" ); |
| 308 | } |
| 309 | } |
| 310 | |
| 311 | void Program::dump(SkWStream* o) const { |
| 312 | SkDebugfStream debug; |
| 313 | if (!o) { o = &debug; } |
| 314 | |
| 315 | o->writeDecAsText(fImpl->regs); |
| 316 | o->writeText(" registers, " ); |
| 317 | o->writeDecAsText(fImpl->instructions.size()); |
| 318 | o->writeText(" instructions:\n" ); |
| 319 | for (Val i = 0; i < (Val)fImpl->instructions.size(); i++) { |
| 320 | if (i == fImpl->loop) { write(o, "loop:\n" ); } |
| 321 | o->writeDecAsText(i); |
| 322 | o->writeText("\t" ); |
| 323 | if (i >= fImpl->loop) { write(o, " " ); } |
| 324 | const InterpreterInstruction& inst = fImpl->instructions[i]; |
| 325 | Op op = inst.op; |
| 326 | Reg d = inst.d, |
| 327 | x = inst.x, |
| 328 | y = inst.y, |
| 329 | z = inst.z; |
| 330 | int immy = inst.immy, |
| 331 | immz = inst.immz; |
| 332 | switch (op) { |
| 333 | case Op::assert_true: write(o, op, R{x}, R{y}); break; |
| 334 | |
| 335 | case Op::store8: write(o, op, Arg{immy}, R{x}); break; |
| 336 | case Op::store16: write(o, op, Arg{immy}, R{x}); break; |
| 337 | case Op::store32: write(o, op, Arg{immy}, R{x}); break; |
| 338 | |
| 339 | case Op::index: write(o, R{d}, "=" , op); break; |
| 340 | |
| 341 | case Op::load8: write(o, R{d}, "=" , op, Arg{immy}); break; |
| 342 | case Op::load16: write(o, R{d}, "=" , op, Arg{immy}); break; |
| 343 | case Op::load32: write(o, R{d}, "=" , op, Arg{immy}); break; |
| 344 | |
| 345 | case Op::gather8: write(o, R{d}, "=" , op, Arg{immy}, Hex{immz}, R{x}); break; |
| 346 | case Op::gather16: write(o, R{d}, "=" , op, Arg{immy}, Hex{immz}, R{x}); break; |
| 347 | case Op::gather32: write(o, R{d}, "=" , op, Arg{immy}, Hex{immz}, R{x}); break; |
| 348 | |
| 349 | case Op::uniform8: write(o, R{d}, "=" , op, Arg{immy}, Hex{immz}); break; |
| 350 | case Op::uniform16: write(o, R{d}, "=" , op, Arg{immy}, Hex{immz}); break; |
| 351 | case Op::uniform32: write(o, R{d}, "=" , op, Arg{immy}, Hex{immz}); break; |
| 352 | |
| 353 | case Op::splat: write(o, R{d}, "=" , op, Splat{immy}); break; |
| 354 | |
| 355 | |
| 356 | case Op::add_f32: write(o, R{d}, "=" , op, R{x}, R{y} ); break; |
| 357 | case Op::sub_f32: write(o, R{d}, "=" , op, R{x}, R{y} ); break; |
| 358 | case Op::mul_f32: write(o, R{d}, "=" , op, R{x}, R{y} ); break; |
| 359 | case Op::div_f32: write(o, R{d}, "=" , op, R{x}, R{y} ); break; |
| 360 | case Op::min_f32: write(o, R{d}, "=" , op, R{x}, R{y} ); break; |
| 361 | case Op::max_f32: write(o, R{d}, "=" , op, R{x}, R{y} ); break; |
| 362 | case Op::fma_f32: write(o, R{d}, "=" , op, R{x}, R{y}, R{z}); break; |
| 363 | case Op::fms_f32: write(o, R{d}, "=" , op, R{x}, R{y}, R{z}); break; |
| 364 | case Op::fnma_f32: write(o, R{d}, "=" , op, R{x}, R{y}, R{z}); break; |
| 365 | |
| 366 | case Op::sqrt_f32: write(o, R{d}, "=" , op, R{x}); break; |
| 367 | |
| 368 | case Op::add_f32_imm: write(o, R{d}, "=" , op, R{x}, Splat{immy}); break; |
| 369 | case Op::sub_f32_imm: write(o, R{d}, "=" , op, R{x}, Splat{immy}); break; |
| 370 | case Op::mul_f32_imm: write(o, R{d}, "=" , op, R{x}, Splat{immy}); break; |
| 371 | case Op::min_f32_imm: write(o, R{d}, "=" , op, R{x}, Splat{immy}); break; |
| 372 | case Op::max_f32_imm: write(o, R{d}, "=" , op, R{x}, Splat{immy}); break; |
| 373 | |
| 374 | case Op:: eq_f32: write(o, R{d}, "=" , op, R{x}, R{y}); break; |
| 375 | case Op::neq_f32: write(o, R{d}, "=" , op, R{x}, R{y}); break; |
| 376 | case Op:: gt_f32: write(o, R{d}, "=" , op, R{x}, R{y}); break; |
| 377 | case Op::gte_f32: write(o, R{d}, "=" , op, R{x}, R{y}); break; |
| 378 | |
| 379 | |
| 380 | case Op::add_i32: write(o, R{d}, "=" , op, R{x}, R{y}); break; |
| 381 | case Op::sub_i32: write(o, R{d}, "=" , op, R{x}, R{y}); break; |
| 382 | case Op::mul_i32: write(o, R{d}, "=" , op, R{x}, R{y}); break; |
| 383 | |
| 384 | case Op::shl_i32: write(o, R{d}, "=" , op, R{x}, Shift{immy}); break; |
| 385 | case Op::shr_i32: write(o, R{d}, "=" , op, R{x}, Shift{immy}); break; |
| 386 | case Op::sra_i32: write(o, R{d}, "=" , op, R{x}, Shift{immy}); break; |
| 387 | |
| 388 | case Op:: eq_i32: write(o, R{d}, "=" , op, R{x}, R{y}); break; |
| 389 | case Op::neq_i32: write(o, R{d}, "=" , op, R{x}, R{y}); break; |
| 390 | case Op:: gt_i32: write(o, R{d}, "=" , op, R{x}, R{y}); break; |
| 391 | case Op::gte_i32: write(o, R{d}, "=" , op, R{x}, R{y}); break; |
| 392 | |
| 393 | |
| 394 | case Op::add_i16x2: write(o, R{d}, "=" , op, R{x}, R{y}); break; |
| 395 | case Op::sub_i16x2: write(o, R{d}, "=" , op, R{x}, R{y}); break; |
| 396 | case Op::mul_i16x2: write(o, R{d}, "=" , op, R{x}, R{y}); break; |
| 397 | |
| 398 | case Op::shl_i16x2: write(o, R{d}, "=" , op, R{x}, Shift{immy}); break; |
| 399 | case Op::shr_i16x2: write(o, R{d}, "=" , op, R{x}, Shift{immy}); break; |
| 400 | case Op::sra_i16x2: write(o, R{d}, "=" , op, R{x}, Shift{immy}); break; |
| 401 | |
| 402 | case Op:: eq_i16x2: write(o, R{d}, "=" , op, R{x}, R{y}); break; |
| 403 | case Op::neq_i16x2: write(o, R{d}, "=" , op, R{x}, R{y}); break; |
| 404 | case Op:: gt_i16x2: write(o, R{d}, "=" , op, R{x}, R{y}); break; |
| 405 | case Op::gte_i16x2: write(o, R{d}, "=" , op, R{x}, R{y}); break; |
| 406 | |
| 407 | |
| 408 | case Op::bit_and : write(o, R{d}, "=" , op, R{x}, R{y} ); break; |
| 409 | case Op::bit_or : write(o, R{d}, "=" , op, R{x}, R{y} ); break; |
| 410 | case Op::bit_xor : write(o, R{d}, "=" , op, R{x}, R{y} ); break; |
| 411 | case Op::bit_clear: write(o, R{d}, "=" , op, R{x}, R{y} ); break; |
| 412 | |
| 413 | case Op::bit_and_imm: write(o, R{d}, "=" , op, R{x}, Hex{immy}); break; |
| 414 | case Op::bit_or_imm : write(o, R{d}, "=" , op, R{x}, Hex{immy}); break; |
| 415 | case Op::bit_xor_imm: write(o, R{d}, "=" , op, R{x}, Hex{immy}); break; |
| 416 | |
| 417 | case Op::select: write(o, R{d}, "=" , op, R{x}, R{y}, R{z}); break; |
| 418 | case Op::pack: write(o, R{d}, "=" , op, R{x}, R{y}, Shift{immz}); break; |
| 419 | |
| 420 | case Op::floor: write(o, R{d}, "=" , op, R{x}); break; |
| 421 | case Op::to_f32: write(o, R{d}, "=" , op, R{x}); break; |
| 422 | case Op::trunc: write(o, R{d}, "=" , op, R{x}); break; |
| 423 | case Op::round: write(o, R{d}, "=" , op, R{x}); break; |
| 424 | } |
| 425 | write(o, "\n" ); |
| 426 | } |
| 427 | } |
| 428 | |
| 429 | std::vector<Instruction> specialize_for_jit(std::vector<Instruction> program) { |
| 430 | // We could use a temporary Builder to let new Instructions participate in common |
| 431 | // sub-expression elimination, but we'll never hit anything valuable with the |
| 432 | // specializations we've got today. Worth keeping in mind for the future though. |
| 433 | for (Val i = 0; i < (Val)program.size(); i++) { |
| 434 | #if defined(SK_CPU_X86) |
| 435 | Instruction& inst = program[i]; |
| 436 | |
| 437 | auto is_imm = [&](Val id, int* bits) { |
| 438 | *bits = program[id].immy; |
| 439 | return program[id].op == Op::splat; |
| 440 | }; |
| 441 | |
| 442 | switch (Op imm_op; inst.op) { |
| 443 | default: break; |
| 444 | |
| 445 | case Op::add_f32: imm_op = Op::add_f32_imm; goto try_imm_x_and_y; |
| 446 | case Op::mul_f32: imm_op = Op::mul_f32_imm; goto try_imm_x_and_y; |
| 447 | case Op::bit_and: imm_op = Op::bit_and_imm; goto try_imm_x_and_y; |
| 448 | case Op::bit_or: imm_op = Op::bit_or_imm ; goto try_imm_x_and_y; |
| 449 | case Op::bit_xor: imm_op = Op::bit_xor_imm; goto try_imm_x_and_y; |
| 450 | case Op::min_f32: imm_op = Op::min_f32_imm; goto try_imm_x; |
| 451 | case Op::max_f32: imm_op = Op::max_f32_imm; goto try_imm_x; |
| 452 | case Op::sub_f32: imm_op = Op::sub_f32_imm; goto try_imm_y; |
| 453 | |
| 454 | try_imm_x_and_y: |
| 455 | if (int bits; is_imm(inst.x, &bits)) { |
| 456 | inst.op = imm_op; |
| 457 | inst.x = inst.y; |
| 458 | inst.y = NA; |
| 459 | inst.immy = bits; |
| 460 | } else if (int bits; is_imm(inst.y, &bits)) { |
| 461 | inst.op = imm_op; |
| 462 | inst.y = NA; |
| 463 | inst.immy = bits; |
| 464 | } break; |
| 465 | |
| 466 | try_imm_x: |
| 467 | if (int bits; is_imm(inst.x, &bits)) { |
| 468 | inst.op = imm_op; |
| 469 | inst.x = inst.y; |
| 470 | inst.y = NA; |
| 471 | inst.immy = bits; |
| 472 | } break; |
| 473 | |
| 474 | try_imm_y: |
| 475 | if (int bits; is_imm(inst.y, &bits)) { |
| 476 | inst.op = imm_op; |
| 477 | inst.y = NA; |
| 478 | inst.immy = bits; |
| 479 | } break; |
| 480 | |
| 481 | case Op::bit_clear: |
| 482 | if (int bits; is_imm(inst.y, &bits)) { |
| 483 | inst.op = Op::bit_and_imm; |
| 484 | inst.y = NA; |
| 485 | inst.immy = ~bits; |
| 486 | } break; |
| 487 | } |
| 488 | #endif |
| 489 | } |
| 490 | return program; |
| 491 | } |
| 492 | |
| 493 | std::vector<Instruction> eliminate_dead_code(std::vector<Instruction> program) { |
| 494 | // Determine which Instructions are live by working back from side effects. |
| 495 | std::vector<bool> live(program.size(), false); |
| 496 | auto mark_live = [&](Val id, auto& recurse) -> void { |
| 497 | if (live[id] == false) { |
| 498 | live[id] = true; |
| 499 | Instruction inst = program[id]; |
| 500 | for (Val arg : {inst.x, inst.y, inst.z}) { |
| 501 | if (arg != NA) { recurse(arg, recurse); } |
| 502 | } |
| 503 | } |
| 504 | }; |
| 505 | for (Val id = 0; id < (Val)program.size(); id++) { |
| 506 | if (has_side_effect(program[id].op)) { |
| 507 | mark_live(id, mark_live); |
| 508 | } |
| 509 | } |
| 510 | |
| 511 | // Rewrite the program with only live Instructions: |
| 512 | // - remap IDs in live Instructions to what they'll be once dead Instructions are removed; |
| 513 | // - then actually remove the dead Instructions. |
| 514 | std::vector<Val> new_id(program.size(), NA); |
| 515 | for (Val id = 0, next = 0; id < (Val)program.size(); id++) { |
| 516 | if (live[id]) { |
| 517 | Instruction& inst = program[id]; |
| 518 | for (Val* arg : {&inst.x, &inst.y, &inst.z}) { |
| 519 | if (*arg != NA) { |
| 520 | *arg = new_id[*arg]; |
| 521 | SkASSERT(*arg != NA); |
| 522 | } |
| 523 | } |
| 524 | new_id[id] = next++; |
| 525 | } |
| 526 | } |
| 527 | auto it = std::remove_if(program.begin(), program.end(), [&](const Instruction& inst) { |
| 528 | Val id = (Val)(&inst - program.data()); |
| 529 | return !live[id]; |
| 530 | }); |
| 531 | program.erase(it, program.end()); |
| 532 | |
| 533 | return program; |
| 534 | } |
| 535 | |
| 536 | std::vector<Instruction> schedule(std::vector<Instruction> program) { |
| 537 | Usage usage{program}; |
| 538 | |
| 539 | std::vector<int> uses(program.size()); |
| 540 | for (Val id = 0; id < (Val)program.size(); id++) { |
| 541 | uses[id] = (int)usage[id].size(); |
| 542 | } |
| 543 | |
| 544 | auto pressure_change = [&](Val id) -> int { |
| 545 | Instruction inst = program[id]; |
| 546 | |
| 547 | // If this Instruction is not a sink, its result needs a register. |
| 548 | int change = has_side_effect(inst.op) ? 0 : 1; |
| 549 | |
| 550 | // If this is the final user of an argument, the argument's register becomes free. |
| 551 | for (Val arg : {inst.x, inst.y, inst.z}) { |
| 552 | if (arg != NA && uses[arg] == 1) { change -= 1; } |
| 553 | } |
| 554 | return change; |
| 555 | }; |
| 556 | |
| 557 | auto compare = [&](Val lhs, Val rhs) { |
| 558 | SkASSERT(lhs != rhs); |
| 559 | int lhs_change = pressure_change(lhs); |
| 560 | int rhs_change = pressure_change(rhs); |
| 561 | |
| 562 | // This comparison operator orders instructions from least (likely negative) register |
| 563 | // pressure to most register pressure, breaking ties arbitrarily using original |
| 564 | // program order comparing the instruction index itself. |
| 565 | // |
| 566 | // We'll use this operator with std::{make,push,pop}_heap() to maintain a max heap |
| 567 | // frontier of instructions that are ready to schedule. We iterate backwards through |
| 568 | // the program, scheduling later instruction slots before earlier ones, and that means |
| 569 | // an instruction becomes ready to schedule once all instructions using its result have |
| 570 | // been scheduled (in later slots). |
| 571 | // |
| 572 | // All together that means we'll be issuing the instructions that hurt register pressure |
| 573 | // as late as possible, and issuing the instructions that help register pressure as soon |
| 574 | // as possible. |
| 575 | // |
| 576 | // This heuristic of greedily issuing the instruction that most immediately decreases |
| 577 | // register pressure approximates a more expensive search to find a schedule that |
| 578 | // minimizes the high-water maximum register pressure, the number of registers we'll |
| 579 | // need to run this program. |
| 580 | // |
| 581 | // The tie-breaker heuristic was found through experimentation. |
| 582 | return lhs_change < rhs_change || (lhs_change == rhs_change && lhs > rhs); |
| 583 | }; |
| 584 | |
| 585 | auto ready_to_schedule = [&](Val id) { return uses[id] == 0; }; |
| 586 | |
| 587 | std::vector<Val> frontier; |
| 588 | for (Val id = 0; id < (Val)program.size(); id++) { |
| 589 | Instruction inst = program[id]; |
| 590 | if (has_side_effect(inst.op)) { |
| 591 | frontier.push_back(id); |
| 592 | } |
| 593 | // Having eliminated dead code, the only Instructions that should start |
| 594 | // with no users remaining to schedule are those with side effects. |
| 595 | SkASSERT(has_side_effect(inst.op) == (uses[id] == 0)); |
| 596 | } |
| 597 | std::make_heap(frontier.begin(), frontier.end(), compare); |
| 598 | |
| 599 | // Figure out our new Instruction schedule. |
| 600 | std::vector<Val> new_id(program.size(), NA); |
| 601 | for (Val n = (Val)program.size(); n --> 0;) { |
| 602 | SkASSERT(!frontier.empty()); |
| 603 | std::pop_heap(frontier.begin(), frontier.end(), compare); |
| 604 | Val id = frontier.back(); |
| 605 | frontier.pop_back(); |
| 606 | |
| 607 | SkASSERT(ready_to_schedule(id)); |
| 608 | |
| 609 | Instruction inst = program[id]; |
| 610 | new_id[id] = n; |
| 611 | |
| 612 | for (Val arg : {inst.x, inst.y, inst.z}) { |
| 613 | if (arg != NA) { |
| 614 | uses[arg]--; |
| 615 | if (ready_to_schedule(arg)) { |
| 616 | frontier.push_back(arg); |
| 617 | std::push_heap(frontier.begin(), frontier.end(), compare); |
| 618 | } |
| 619 | } |
| 620 | } |
| 621 | } |
| 622 | SkASSERT(frontier.empty()); |
| 623 | |
| 624 | // Remap each Instruction's arguments to their new IDs. |
| 625 | for (Val id = 0; id < (Val)program.size(); id++) { |
| 626 | Instruction& inst = program[id]; |
| 627 | for (Val* arg : {&inst.x, &inst.y, &inst.z}) { |
| 628 | if (*arg != NA) { |
| 629 | *arg = new_id[*arg]; |
| 630 | SkASSERT(*arg != NA); |
| 631 | } |
| 632 | } |
| 633 | } |
| 634 | |
| 635 | // Finally, reorder the Instructions themselves according to the new schedule. |
| 636 | // This is O(N)... wish I had a good reference link breaking it down. |
| 637 | for (Val id = 0; id < (Val)program.size(); id++) { |
| 638 | while (id != new_id[id]) { |
| 639 | std::swap(program[id], program[new_id[id]]); |
| 640 | std::swap( new_id[id], new_id[new_id[id]]); |
| 641 | } |
| 642 | } |
| 643 | return program; |
| 644 | } |
| 645 | |
| 646 | std::vector<OptimizedInstruction> finalize(const std::vector<Instruction> program) { |
| 647 | std::vector<OptimizedInstruction> optimized(program.size()); |
| 648 | for (Val id = 0; id < (Val)program.size(); id++) { |
| 649 | Instruction inst = program[id]; |
| 650 | optimized[id] = {inst.op, inst.x,inst.y,inst.z, inst.immy,inst.immz, |
| 651 | /*death=*/id, /*can_hoist=*/true, /*used_in_loop=*/false}; |
| 652 | } |
| 653 | |
| 654 | // Each Instruction's inputs need to live at least until that Instruction issues. |
| 655 | for (Val id = 0; id < (Val)optimized.size(); id++) { |
| 656 | OptimizedInstruction& inst = optimized[id]; |
| 657 | for (Val arg : {inst.x, inst.y, inst.z}) { |
| 658 | // (We're walking in order, so this is the same as max()ing with the existing Val.) |
| 659 | if (arg != NA) { optimized[arg].death = id; } |
| 660 | } |
| 661 | } |
| 662 | |
| 663 | // Mark which values don't depend on the loop and can be hoisted. |
| 664 | for (Val id = 0; id < (Val)optimized.size(); id++) { |
| 665 | OptimizedInstruction& inst = optimized[id]; |
| 666 | |
| 667 | // Varying loads (and gathers) and stores cannot be hoisted out of the loop. |
| 668 | if (is_always_varying(inst.op)) { |
| 669 | inst.can_hoist = false; |
| 670 | } |
| 671 | |
| 672 | // If any of an instruction's inputs can't be hoisted, it can't be hoisted itself. |
| 673 | if (inst.can_hoist) { |
| 674 | for (Val arg : {inst.x, inst.y, inst.z}) { |
| 675 | if (arg != NA) { inst.can_hoist &= optimized[arg].can_hoist; } |
| 676 | } |
| 677 | } |
| 678 | |
| 679 | // We'll want to know if hoisted values are used in the loop; |
| 680 | // if not, we can recycle their registers like we do loop values. |
| 681 | if (!inst.can_hoist /*i.e. we're in the loop, so the arguments are used_in_loop*/) { |
| 682 | for (Val arg : {inst.x, inst.y, inst.z}) { |
| 683 | if (arg != NA) { optimized[arg].used_in_loop = true; } |
| 684 | } |
| 685 | } |
| 686 | } |
| 687 | |
| 688 | return optimized; |
| 689 | } |
| 690 | |
| 691 | std::vector<OptimizedInstruction> Builder::optimize(bool for_jit) const { |
| 692 | std::vector<Instruction> program = this->program(); |
| 693 | if (for_jit) { |
| 694 | program = specialize_for_jit(std::move(program)); |
| 695 | } |
| 696 | program = eliminate_dead_code(std::move(program)); |
| 697 | program = schedule (std::move(program)); |
| 698 | return finalize (std::move(program)); |
| 699 | } |
| 700 | |
| 701 | Program Builder::done(const char* debug_name) const { |
| 702 | char buf[64] = "skvm-jit-" ; |
| 703 | if (!debug_name) { |
| 704 | *SkStrAppendU32(buf+9, this->hash()) = '\0'; |
| 705 | debug_name = buf; |
| 706 | } |
| 707 | |
| 708 | #if defined(SKVM_LLVM) || defined(SKVM_JIT) |
| 709 | return {this->optimize(false), this->optimize(true), fStrides, debug_name}; |
| 710 | #else |
| 711 | return {this->optimize(false), fStrides}; |
| 712 | #endif |
| 713 | } |
| 714 | |
| 715 | uint64_t Builder::hash() const { |
| 716 | uint32_t lo = SkOpts::hash(fProgram.data(), fProgram.size() * sizeof(Instruction), 0), |
| 717 | hi = SkOpts::hash(fProgram.data(), fProgram.size() * sizeof(Instruction), 1); |
| 718 | return (uint64_t)lo | (uint64_t)hi << 32; |
| 719 | } |
| 720 | |
| 721 | bool operator==(const Instruction& a, const Instruction& b) { |
| 722 | return a.op == b.op |
| 723 | && a.x == b.x |
| 724 | && a.y == b.y |
| 725 | && a.z == b.z |
| 726 | && a.immy == b.immy |
| 727 | && a.immz == b.immz; |
| 728 | } |
| 729 | |
| 730 | uint32_t InstructionHash::operator()(const Instruction& inst, uint32_t seed) const { |
| 731 | return SkOpts::hash(&inst, sizeof(inst), seed); |
| 732 | } |
| 733 | |
| 734 | |
| 735 | // Most instructions produce a value and return it by ID, |
| 736 | // the value-producing instruction's own index in the program vector. |
| 737 | Val Builder::push(Instruction inst) { |
| 738 | // Basic common subexpression elimination: |
| 739 | // if we've already seen this exact Instruction, use it instead of creating a new one. |
| 740 | if (Val* id = fIndex.find(inst)) { |
| 741 | return *id; |
| 742 | } |
| 743 | Val id = static_cast<Val>(fProgram.size()); |
| 744 | fProgram.push_back(inst); |
| 745 | fIndex.set(inst, id); |
| 746 | return id; |
| 747 | } |
| 748 | |
| 749 | bool Builder::allImm() const { return true; } |
| 750 | |
| 751 | template <typename T, typename... Rest> |
| 752 | bool Builder::allImm(Val id, T* imm, Rest... rest) const { |
| 753 | if (fProgram[id].op == Op::splat) { |
| 754 | static_assert(sizeof(T) == 4); |
| 755 | memcpy(imm, &fProgram[id].immy, 4); |
| 756 | return this->allImm(rest...); |
| 757 | } |
| 758 | return false; |
| 759 | } |
| 760 | |
| 761 | Arg Builder::arg(int stride) { |
| 762 | int ix = (int)fStrides.size(); |
| 763 | fStrides.push_back(stride); |
| 764 | return {ix}; |
| 765 | } |
| 766 | |
| 767 | void Builder::assert_true(I32 cond, I32 debug) { |
| 768 | #ifdef SK_DEBUG |
| 769 | int imm; |
| 770 | if (this->allImm(cond.id,&imm)) { SkASSERT(imm); return; } |
| 771 | (void)push(Op::assert_true, cond.id,debug.id,NA); |
| 772 | #endif |
| 773 | } |
| 774 | |
| 775 | void Builder::store8 (Arg ptr, I32 val) { (void)push(Op::store8 , val.id,NA,NA, ptr.ix); } |
| 776 | void Builder::store16(Arg ptr, I32 val) { (void)push(Op::store16, val.id,NA,NA, ptr.ix); } |
| 777 | void Builder::store32(Arg ptr, I32 val) { (void)push(Op::store32, val.id,NA,NA, ptr.ix); } |
| 778 | |
| 779 | I32 Builder::index() { return {this, push(Op::index , NA,NA,NA,0) }; } |
| 780 | |
| 781 | I32 Builder::load8 (Arg ptr) { return {this, push(Op::load8 , NA,NA,NA, ptr.ix) }; } |
| 782 | I32 Builder::load16(Arg ptr) { return {this, push(Op::load16, NA,NA,NA, ptr.ix) }; } |
| 783 | I32 Builder::load32(Arg ptr) { return {this, push(Op::load32, NA,NA,NA, ptr.ix) }; } |
| 784 | |
| 785 | I32 Builder::gather8 (Arg ptr, int offset, I32 index) { |
| 786 | return {this, push(Op::gather8 , index.id,NA,NA, ptr.ix,offset)}; |
| 787 | } |
| 788 | I32 Builder::gather16(Arg ptr, int offset, I32 index) { |
| 789 | return {this, push(Op::gather16, index.id,NA,NA, ptr.ix,offset)}; |
| 790 | } |
| 791 | I32 Builder::gather32(Arg ptr, int offset, I32 index) { |
| 792 | return {this, push(Op::gather32, index.id,NA,NA, ptr.ix,offset)}; |
| 793 | } |
| 794 | |
| 795 | I32 Builder::uniform8(Arg ptr, int offset) { |
| 796 | return {this, push(Op::uniform8, NA,NA,NA, ptr.ix, offset)}; |
| 797 | } |
| 798 | I32 Builder::uniform16(Arg ptr, int offset) { |
| 799 | return {this, push(Op::uniform16, NA,NA,NA, ptr.ix, offset)}; |
| 800 | } |
| 801 | I32 Builder::uniform32(Arg ptr, int offset) { |
| 802 | return {this, push(Op::uniform32, NA,NA,NA, ptr.ix, offset)}; |
| 803 | } |
| 804 | |
| 805 | // The two splat() functions are just syntax sugar over splatting a 4-byte bit pattern. |
| 806 | I32 Builder::splat(int n) { return {this, push(Op::splat, NA,NA,NA, n) }; } |
| 807 | F32 Builder::splat(float f) { |
| 808 | int bits; |
| 809 | memcpy(&bits, &f, 4); |
| 810 | return {this, push(Op::splat, NA,NA,NA, bits)}; |
| 811 | } |
| 812 | |
| 813 | static bool fma_supported() { |
| 814 | static const bool supported = |
| 815 | #if defined(SK_CPU_X86) |
| 816 | SkCpu::Supports(SkCpu::HSW); |
| 817 | #elif defined(SK_CPU_ARM64) |
| 818 | true; |
| 819 | #else |
| 820 | false; |
| 821 | #endif |
| 822 | return supported; |
| 823 | } |
| 824 | |
| 825 | // Be careful peepholing float math! Transformations you might expect to |
| 826 | // be legal can fail in the face of NaN/Inf, e.g. 0*x is not always 0. |
| 827 | // Float peepholes must pass this equivalence test for all ~4B floats: |
| 828 | // |
| 829 | // bool equiv(float x, float y) { return (x == y) || (isnanf(x) && isnanf(y)); } |
| 830 | // |
| 831 | // unsigned bits = 0; |
| 832 | // do { |
| 833 | // float f; |
| 834 | // memcpy(&f, &bits, 4); |
| 835 | // if (!equiv(f, ...)) { |
| 836 | // abort(); |
| 837 | // } |
| 838 | // } while (++bits != 0); |
| 839 | |
| 840 | F32 Builder::add(F32 x, F32 y) { |
| 841 | if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X+Y); } |
| 842 | if (this->isImm(y.id, 0.0f)) { return x; } // x+0 == x |
| 843 | if (this->isImm(x.id, 0.0f)) { return y; } // 0+y == y |
| 844 | |
| 845 | if (fma_supported()) { |
| 846 | if (fProgram[x.id].op == Op::mul_f32) { |
| 847 | return {this, this->push(Op::fma_f32, fProgram[x.id].x, fProgram[x.id].y, y.id)}; |
| 848 | } |
| 849 | if (fProgram[y.id].op == Op::mul_f32) { |
| 850 | return {this, this->push(Op::fma_f32, fProgram[y.id].x, fProgram[y.id].y, x.id)}; |
| 851 | } |
| 852 | } |
| 853 | return {this, this->push(Op::add_f32, x.id, y.id)}; |
| 854 | } |
| 855 | |
| 856 | F32 Builder::sub(F32 x, F32 y) { |
| 857 | if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X-Y); } |
| 858 | if (this->isImm(y.id, 0.0f)) { return x; } // x-0 == x |
| 859 | if (fma_supported()) { |
| 860 | if (fProgram[x.id].op == Op::mul_f32) { |
| 861 | return {this, this->push(Op::fms_f32, fProgram[x.id].x, fProgram[x.id].y, y.id)}; |
| 862 | } |
| 863 | if (fProgram[y.id].op == Op::mul_f32) { |
| 864 | return {this, this->push(Op::fnma_f32, fProgram[y.id].x, fProgram[y.id].y, x.id)}; |
| 865 | } |
| 866 | } |
| 867 | return {this, this->push(Op::sub_f32, x.id, y.id)}; |
| 868 | } |
| 869 | |
| 870 | F32 Builder::mul(F32 x, F32 y) { |
| 871 | if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X*Y); } |
| 872 | if (this->isImm(y.id, 1.0f)) { return x; } // x*1 == x |
| 873 | if (this->isImm(x.id, 1.0f)) { return y; } // 1*y == y |
| 874 | return {this, this->push(Op::mul_f32, x.id, y.id)}; |
| 875 | } |
| 876 | |
| 877 | F32 Builder::div(F32 x, F32 y) { |
| 878 | if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X/Y); } |
| 879 | if (this->isImm(y.id, 1.0f)) { return x; } // x/1 == x |
| 880 | return {this, this->push(Op::div_f32, x.id, y.id)}; |
| 881 | } |
| 882 | |
| 883 | F32 Builder::sqrt(F32 x) { |
| 884 | if (float X; this->allImm(x.id,&X)) { return splat(std::sqrt(X)); } |
| 885 | return {this, this->push(Op::sqrt_f32, x.id,NA,NA)}; |
| 886 | } |
| 887 | |
| 888 | // See http://www.machinedlearnings.com/2011/06/fast-approximate-logarithm-exponential.html. |
| 889 | F32 Builder::approx_log2(F32 x) { |
| 890 | // e - 127 is a fair approximation of log2(x) in its own right... |
| 891 | F32 e = mul(to_f32(bit_cast(x)), splat(1.0f / (1<<23))); |
| 892 | |
| 893 | // ... but using the mantissa to refine its error is _much_ better. |
| 894 | F32 m = bit_cast(bit_or(bit_and(bit_cast(x), 0x007fffff), |
| 895 | 0x3f000000)); |
| 896 | F32 approx = sub(e, 124.225514990f); |
| 897 | approx = sub(approx, mul(1.498030302f, m)); |
| 898 | approx = sub(approx, div(1.725879990f, add(0.3520887068f, m))); |
| 899 | |
| 900 | return approx; |
| 901 | } |
| 902 | |
| 903 | F32 Builder::approx_pow2(F32 x) { |
| 904 | F32 f = fract(x); |
| 905 | F32 approx = add(x, 121.274057500f); |
| 906 | approx = sub(approx, mul( 1.490129070f, f)); |
| 907 | approx = add(approx, div(27.728023300f, sub(4.84252568f, f))); |
| 908 | |
| 909 | return bit_cast(round(mul(1.0f * (1<<23), approx))); |
| 910 | } |
| 911 | |
| 912 | F32 Builder::approx_powf(F32 x, F32 y) { |
| 913 | auto is_x = bit_or(eq(x, 0.0f), |
| 914 | eq(x, 1.0f)); |
| 915 | return select(is_x, x, approx_pow2(mul(approx_log2(x), y))); |
| 916 | } |
| 917 | |
| 918 | // Bhaskara I's sine approximation |
| 919 | // 16x(pi - x) / (5*pi^2 - 4x(pi - x) |
| 920 | // ... divide by 4 |
| 921 | // 4x(pi - x) / 5*pi^2/4 - x(pi - x) |
| 922 | // |
| 923 | // This is a good approximation only for 0 <= x <= pi, so we use symmetries to get |
| 924 | // radians into that range first. |
| 925 | // |
| 926 | F32 Builder::approx_sin(F32 radians) { |
| 927 | constexpr float Pi = SK_ScalarPI; |
| 928 | // x = radians mod 2pi |
| 929 | F32 x = fract(radians * (0.5f/Pi)) * (2*Pi); |
| 930 | I32 neg = x > Pi; // are we pi < x < 2pi --> need to negate result |
| 931 | x = select(neg, x - Pi, x); |
| 932 | |
| 933 | F32 pair = x * (Pi - x); |
| 934 | x = 4.0f * pair / ((5*Pi*Pi/4) - pair); |
| 935 | x = select(neg, -x, x); |
| 936 | return x; |
| 937 | } |
| 938 | |
| 939 | /* "GENERATING ACCURATE VALUES FOR THE TANGENT FUNCTION" |
| 940 | https://mae.ufl.edu/~uhk/ACCURATE-TANGENT.pdf |
| 941 | |
| 942 | approx = x + (1/3)x^3 + (2/15)x^5 + (17/315)x^7 + (62/2835)x^9 |
| 943 | |
| 944 | Some simplifications: |
| 945 | 1. tan(x) is periodic, -PI/2 < x < PI/2 |
| 946 | 2. tan(x) is odd, so tan(-x) = -tan(x) |
| 947 | 3. Our polynomial approximation is best near zero, so we use the following identity |
| 948 | tan(x) + tan(y) |
| 949 | tan(x + y) = ----------------- |
| 950 | 1 - tan(x)*tan(y) |
| 951 | tan(PI/4) = 1 |
| 952 | |
| 953 | So for x > PI/8, we do the following refactor: |
| 954 | x' = x - PI/4 |
| 955 | |
| 956 | 1 + tan(x') |
| 957 | tan(x) = ------------ |
| 958 | 1 - tan(x') |
| 959 | */ |
| 960 | F32 Builder::approx_tan(F32 x) { |
| 961 | constexpr float Pi = SK_ScalarPI; |
| 962 | // periodic between -pi/2 ... pi/2 |
| 963 | // shift to 0...Pi, scale 1/Pi to get into 0...1, then fract, scale-up, shift-back |
| 964 | x = fract((1/Pi)*x + 0.5f) * Pi - (Pi/2); |
| 965 | |
| 966 | I32 neg = (x < 0.0f); |
| 967 | x = select(neg, -x, x); |
| 968 | |
| 969 | // minimize total error by shifting if x > pi/8 |
| 970 | I32 use_quotient = (x > (Pi/8)); |
| 971 | x = select(use_quotient, x - (Pi/4), x); |
| 972 | |
| 973 | // 9th order poly = 4th order(x^2) * x |
| 974 | x = poly(x*x, 62/2835.0f, 17/315.0f, 2/15.0f, 1/3.0f, 1.0f) * x; |
| 975 | x = select(use_quotient, (1+x)/(1-x), x); |
| 976 | x = select(neg, -x, x); |
| 977 | return x; |
| 978 | } |
| 979 | |
| 980 | F32 Builder::min(F32 x, F32 y) { |
| 981 | if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(std::min(X,Y)); } |
| 982 | return {this, this->push(Op::min_f32, x.id, y.id)}; |
| 983 | } |
| 984 | F32 Builder::max(F32 x, F32 y) { |
| 985 | if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(std::max(X,Y)); } |
| 986 | return {this, this->push(Op::max_f32, x.id, y.id)}; |
| 987 | } |
| 988 | |
| 989 | I32 Builder::add(I32 x, I32 y) { |
| 990 | if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X+Y); } |
| 991 | if (this->isImm(x.id, 0)) { return y; } |
| 992 | if (this->isImm(y.id, 0)) { return x; } |
| 993 | return {this, this->push(Op::add_i32, x.id, y.id)}; |
| 994 | } |
| 995 | I32 Builder::sub(I32 x, I32 y) { |
| 996 | if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X-Y); } |
| 997 | if (this->isImm(y.id, 0)) { return x; } |
| 998 | return {this, this->push(Op::sub_i32, x.id, y.id)}; |
| 999 | } |
| 1000 | I32 Builder::mul(I32 x, I32 y) { |
| 1001 | if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X*Y); } |
| 1002 | if (this->isImm(x.id, 0)) { return splat(0); } |
| 1003 | if (this->isImm(y.id, 0)) { return splat(0); } |
| 1004 | if (this->isImm(x.id, 1)) { return y; } |
| 1005 | if (this->isImm(y.id, 1)) { return x; } |
| 1006 | return {this, this->push(Op::mul_i32, x.id, y.id)}; |
| 1007 | } |
| 1008 | |
| 1009 | I32 Builder::add_16x2(I32 x, I32 y) { return {this, this->push(Op::add_i16x2, x.id, y.id)}; } |
| 1010 | I32 Builder::sub_16x2(I32 x, I32 y) { return {this, this->push(Op::sub_i16x2, x.id, y.id)}; } |
| 1011 | I32 Builder::mul_16x2(I32 x, I32 y) { return {this, this->push(Op::mul_i16x2, x.id, y.id)}; } |
| 1012 | |
| 1013 | I32 Builder::shl(I32 x, int bits) { |
| 1014 | if (bits == 0) { return x; } |
| 1015 | if (int X; this->allImm(x.id,&X)) { return splat(X << bits); } |
| 1016 | return {this, this->push(Op::shl_i32, x.id,NA,NA, bits)}; |
| 1017 | } |
| 1018 | I32 Builder::shr(I32 x, int bits) { |
| 1019 | if (bits == 0) { return x; } |
| 1020 | if (int X; this->allImm(x.id,&X)) { return splat(unsigned(X) >> bits); } |
| 1021 | return {this, this->push(Op::shr_i32, x.id,NA,NA, bits)}; |
| 1022 | } |
| 1023 | I32 Builder::sra(I32 x, int bits) { |
| 1024 | if (bits == 0) { return x; } |
| 1025 | if (int X; this->allImm(x.id,&X)) { return splat(X >> bits); } |
| 1026 | return {this, this->push(Op::sra_i32, x.id,NA,NA, bits)}; |
| 1027 | } |
| 1028 | |
| 1029 | I32 Builder::shl_16x2(I32 x, int k) { return {this, this->push(Op::shl_i16x2, x.id,NA,NA, k)}; } |
| 1030 | I32 Builder::shr_16x2(I32 x, int k) { return {this, this->push(Op::shr_i16x2, x.id,NA,NA, k)}; } |
| 1031 | I32 Builder::sra_16x2(I32 x, int k) { return {this, this->push(Op::sra_i16x2, x.id,NA,NA, k)}; } |
| 1032 | |
| 1033 | I32 Builder:: eq(F32 x, F32 y) { |
| 1034 | if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X==Y ? ~0 : 0); } |
| 1035 | return {this, this->push(Op::eq_f32, x.id, y.id)}; |
| 1036 | } |
| 1037 | I32 Builder::neq(F32 x, F32 y) { |
| 1038 | if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X!=Y ? ~0 : 0); } |
| 1039 | return {this, this->push(Op::neq_f32, x.id, y.id)}; |
| 1040 | } |
| 1041 | I32 Builder::lt(F32 x, F32 y) { |
| 1042 | if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(Y> X ? ~0 : 0); } |
| 1043 | return {this, this->push(Op::gt_f32, y.id, x.id)}; |
| 1044 | } |
| 1045 | I32 Builder::lte(F32 x, F32 y) { |
| 1046 | if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(Y>=X ? ~0 : 0); } |
| 1047 | return {this, this->push(Op::gte_f32, y.id, x.id)}; |
| 1048 | } |
| 1049 | I32 Builder::gt(F32 x, F32 y) { |
| 1050 | if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X> Y ? ~0 : 0); } |
| 1051 | return {this, this->push(Op::gt_f32, x.id, y.id)}; |
| 1052 | } |
| 1053 | I32 Builder::gte(F32 x, F32 y) { |
| 1054 | if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X>=Y ? ~0 : 0); } |
| 1055 | return {this, this->push(Op::gte_f32, x.id, y.id)}; |
| 1056 | } |
| 1057 | |
| 1058 | I32 Builder:: eq(I32 x, I32 y) { |
| 1059 | if (x.id == y.id) { return splat(~0); } |
| 1060 | return {this, this->push(Op:: eq_i32, x.id, y.id)}; |
| 1061 | } |
| 1062 | I32 Builder::neq(I32 x, I32 y) { |
| 1063 | return {this, this->push(Op::neq_i32, x.id, y.id)}; |
| 1064 | } |
| 1065 | I32 Builder:: gt(I32 x, I32 y) { |
| 1066 | return {this, this->push(Op:: gt_i32, x.id, y.id)}; |
| 1067 | } |
| 1068 | I32 Builder::gte(I32 x, I32 y) { |
| 1069 | if (x.id == y.id) { return splat(~0); } |
| 1070 | return {this, this->push(Op::gte_i32, x.id, y.id)}; |
| 1071 | } |
| 1072 | I32 Builder:: lt(I32 x, I32 y) { return y>x; } |
| 1073 | I32 Builder::lte(I32 x, I32 y) { return y>=x; } |
| 1074 | |
| 1075 | I32 Builder:: eq_16x2(I32 x, I32 y) { return {this, this->push(Op:: eq_i16x2, x.id, y.id)}; } |
| 1076 | I32 Builder::neq_16x2(I32 x, I32 y) { return {this, this->push(Op::neq_i16x2, x.id, y.id)}; } |
| 1077 | I32 Builder:: lt_16x2(I32 x, I32 y) { return {this, this->push(Op:: gt_i16x2, y.id, x.id)}; } |
| 1078 | I32 Builder::lte_16x2(I32 x, I32 y) { return {this, this->push(Op::gte_i16x2, y.id, x.id)}; } |
| 1079 | I32 Builder:: gt_16x2(I32 x, I32 y) { return {this, this->push(Op:: gt_i16x2, x.id, y.id)}; } |
| 1080 | I32 Builder::gte_16x2(I32 x, I32 y) { return {this, this->push(Op::gte_i16x2, x.id, y.id)}; } |
| 1081 | |
| 1082 | I32 Builder::bit_and(I32 x, I32 y) { |
| 1083 | if (x.id == y.id) { return x; } |
| 1084 | if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X&Y); } |
| 1085 | if (this->isImm(y.id, 0)) { return splat(0); } // (x & false) == false |
| 1086 | if (this->isImm(x.id, 0)) { return splat(0); } // (false & y) == false |
| 1087 | if (this->isImm(y.id,~0)) { return x; } // (x & true) == x |
| 1088 | if (this->isImm(x.id,~0)) { return y; } // (true & y) == y |
| 1089 | return {this, this->push(Op::bit_and, x.id, y.id)}; |
| 1090 | } |
| 1091 | I32 Builder::bit_or(I32 x, I32 y) { |
| 1092 | if (x.id == y.id) { return x; } |
| 1093 | if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X|Y); } |
| 1094 | if (this->isImm(y.id, 0)) { return x; } // (x | false) == x |
| 1095 | if (this->isImm(x.id, 0)) { return y; } // (false | y) == y |
| 1096 | if (this->isImm(y.id,~0)) { return splat(~0); } // (x | true) == true |
| 1097 | if (this->isImm(x.id,~0)) { return splat(~0); } // (true | y) == true |
| 1098 | return {this, this->push(Op::bit_or, x.id, y.id)}; |
| 1099 | } |
| 1100 | I32 Builder::bit_xor(I32 x, I32 y) { |
| 1101 | if (x.id == y.id) { return splat(0); } |
| 1102 | if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X^Y); } |
| 1103 | if (this->isImm(y.id, 0)) { return x; } // (x ^ false) == x |
| 1104 | if (this->isImm(x.id, 0)) { return y; } // (false ^ y) == y |
| 1105 | return {this, this->push(Op::bit_xor, x.id, y.id)}; |
| 1106 | } |
| 1107 | |
| 1108 | I32 Builder::bit_clear(I32 x, I32 y) { |
| 1109 | if (x.id == y.id) { return splat(0); } |
| 1110 | if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X&~Y); } |
| 1111 | if (this->isImm(y.id, 0)) { return x; } // (x & ~false) == x |
| 1112 | if (this->isImm(y.id,~0)) { return splat(0); } // (x & ~true) == false |
| 1113 | if (this->isImm(x.id, 0)) { return splat(0); } // (false & ~y) == false |
| 1114 | return {this, this->push(Op::bit_clear, x.id, y.id)}; |
| 1115 | } |
| 1116 | |
| 1117 | I32 Builder::select(I32 x, I32 y, I32 z) { |
| 1118 | if (y.id == z.id) { return y; } |
| 1119 | if (int X,Y,Z; this->allImm(x.id,&X, y.id,&Y, z.id,&Z)) { return splat(X?Y:Z); } |
| 1120 | if (this->isImm(x.id,~0)) { return y; } // true ? y : z == y |
| 1121 | if (this->isImm(x.id, 0)) { return z; } // false ? y : z == z |
| 1122 | if (this->isImm(y.id, 0)) { return bit_clear(z,x); } // x ? 0 : z == ~x&z |
| 1123 | if (this->isImm(z.id, 0)) { return bit_and (y,x); } // x ? y : 0 == x&y |
| 1124 | return {this, this->push(Op::select, x.id, y.id, z.id)}; |
| 1125 | } |
| 1126 | |
| 1127 | I32 Builder::(I32 x, int bits, I32 z) { |
| 1128 | if (unsigned Z; this->allImm(z.id,&Z) && (~0u>>bits) == Z) { return shr(x, bits); } |
| 1129 | return bit_and(z, shr(x, bits)); |
| 1130 | } |
| 1131 | |
| 1132 | I32 Builder::pack(I32 x, I32 y, int bits) { |
| 1133 | if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X|(Y<<bits)); } |
| 1134 | return {this, this->push(Op::pack, x.id,y.id,NA, 0,bits)}; |
| 1135 | } |
| 1136 | |
| 1137 | F32 Builder::floor(F32 x) { |
| 1138 | if (float X; this->allImm(x.id,&X)) { return splat(floorf(X)); } |
| 1139 | return {this, this->push(Op::floor, x.id)}; |
| 1140 | } |
| 1141 | F32 Builder::to_f32(I32 x) { |
| 1142 | if (int X; this->allImm(x.id,&X)) { return splat((float)X); } |
| 1143 | return {this, this->push(Op::to_f32, x.id)}; |
| 1144 | } |
| 1145 | I32 Builder::trunc(F32 x) { |
| 1146 | if (float X; this->allImm(x.id,&X)) { return splat((int)X); } |
| 1147 | return {this, this->push(Op::trunc, x.id)}; |
| 1148 | } |
| 1149 | I32 Builder::round(F32 x) { |
| 1150 | if (float X; this->allImm(x.id,&X)) { return splat((int)lrintf(X)); } |
| 1151 | return {this, this->push(Op::round, x.id)}; |
| 1152 | } |
| 1153 | |
| 1154 | F32 Builder::from_unorm(int bits, I32 x) { |
| 1155 | F32 limit = splat(1 / ((1<<bits)-1.0f)); |
| 1156 | return mul(to_f32(x), limit); |
| 1157 | } |
| 1158 | I32 Builder::to_unorm(int bits, F32 x) { |
| 1159 | F32 limit = splat((1<<bits)-1.0f); |
| 1160 | return round(mul(x, limit)); |
| 1161 | } |
| 1162 | |
| 1163 | Color Builder::unpack_1010102(I32 rgba) { |
| 1164 | return { |
| 1165 | from_unorm(10, extract(rgba, 0, 0x3ff)), |
| 1166 | from_unorm(10, extract(rgba, 10, 0x3ff)), |
| 1167 | from_unorm(10, extract(rgba, 20, 0x3ff)), |
| 1168 | from_unorm( 2, extract(rgba, 30, 0x3 )), |
| 1169 | }; |
| 1170 | } |
| 1171 | Color Builder::unpack_8888(I32 rgba) { |
| 1172 | return { |
| 1173 | from_unorm(8, extract(rgba, 0, 0xff)), |
| 1174 | from_unorm(8, extract(rgba, 8, 0xff)), |
| 1175 | from_unorm(8, extract(rgba, 16, 0xff)), |
| 1176 | from_unorm(8, extract(rgba, 24, 0xff)), |
| 1177 | }; |
| 1178 | } |
| 1179 | Color Builder::unpack_565(I32 bgr) { |
| 1180 | return { |
| 1181 | from_unorm(5, extract(bgr, 11, 0b011'111)), |
| 1182 | from_unorm(6, extract(bgr, 5, 0b111'111)), |
| 1183 | from_unorm(5, extract(bgr, 0, 0b011'111)), |
| 1184 | splat(1.0f), |
| 1185 | }; |
| 1186 | } |
| 1187 | |
| 1188 | void Builder::unpremul(F32* r, F32* g, F32* b, F32 a) { |
| 1189 | skvm::F32 invA = 1.0f / a, |
| 1190 | inf = bit_cast(splat(0x7f800000)); |
| 1191 | // If a is 0, so are *r,*g,*b, so set invA to 0 to avoid 0*inf=NaN (instead 0*0 = 0). |
| 1192 | invA = select(invA < inf, invA |
| 1193 | , 0.0f); |
| 1194 | *r *= invA; |
| 1195 | *g *= invA; |
| 1196 | *b *= invA; |
| 1197 | } |
| 1198 | |
| 1199 | void Builder::premul(F32* r, F32* g, F32* b, F32 a) { |
| 1200 | *r *= a; |
| 1201 | *g *= a; |
| 1202 | *b *= a; |
| 1203 | } |
| 1204 | |
| 1205 | Color Builder::uniformPremul(SkColor4f color, SkColorSpace* src, |
| 1206 | Uniforms* uniforms, SkColorSpace* dst) { |
| 1207 | SkColorSpaceXformSteps(src, kUnpremul_SkAlphaType, |
| 1208 | dst, kPremul_SkAlphaType).apply(color.vec()); |
| 1209 | return { |
| 1210 | uniformF(uniforms->pushF(color.fR)), |
| 1211 | uniformF(uniforms->pushF(color.fG)), |
| 1212 | uniformF(uniforms->pushF(color.fB)), |
| 1213 | uniformF(uniforms->pushF(color.fA)), |
| 1214 | }; |
| 1215 | } |
| 1216 | |
| 1217 | Color Builder::lerp(Color lo, Color hi, F32 t) { |
| 1218 | return { |
| 1219 | lerp(lo.r, hi.r, t), |
| 1220 | lerp(lo.g, hi.g, t), |
| 1221 | lerp(lo.b, hi.b, t), |
| 1222 | lerp(lo.a, hi.a, t), |
| 1223 | }; |
| 1224 | } |
| 1225 | |
| 1226 | HSLA Builder::to_hsla(Color c) { |
| 1227 | F32 mx = max(max(c.r,c.g),c.b), |
| 1228 | mn = min(min(c.r,c.g),c.b), |
| 1229 | d = mx - mn, |
| 1230 | invd = 1.0f / d, |
| 1231 | g_lt_b = select(c.g < c.b, splat(6.0f) |
| 1232 | , splat(0.0f)); |
| 1233 | |
| 1234 | F32 h = (1/6.0f) * select(mx == mn, 0.0f, |
| 1235 | select(mx == c.r, invd * (c.g - c.b) + g_lt_b, |
| 1236 | select(mx == c.g, invd * (c.b - c.r) + 2.0f |
| 1237 | , invd * (c.r - c.g) + 4.0f))); |
| 1238 | |
| 1239 | F32 sum = mx + mn, |
| 1240 | l = sum * 0.5f, |
| 1241 | s = select(mx == mn, 0.0f |
| 1242 | , d / select(l > 0.5f, 2.0f - sum |
| 1243 | , sum)); |
| 1244 | return {h, s, l, c.a}; |
| 1245 | } |
| 1246 | |
| 1247 | Color Builder::to_rgba(HSLA c) { |
| 1248 | // See GrRGBToHSLFilterEffect.fp |
| 1249 | |
| 1250 | auto [h,s,l,a] = c; |
| 1251 | F32 x = s * (1.0f - abs(l + l - 1.0f)); |
| 1252 | |
| 1253 | auto hue_to_rgb = [&,l=l](auto hue) { |
| 1254 | auto q = abs(6.0f * fract(hue) - 3.0f) - 1.0f; |
| 1255 | return x * (clamp01(q) - 0.5f) + l; |
| 1256 | }; |
| 1257 | |
| 1258 | return { |
| 1259 | hue_to_rgb(h + 0/3.0f), |
| 1260 | hue_to_rgb(h + 2/3.0f), |
| 1261 | hue_to_rgb(h + 1/3.0f), |
| 1262 | c.a, |
| 1263 | }; |
| 1264 | } |
| 1265 | |
| 1266 | // We're basing our implementation of non-separable blend modes on |
| 1267 | // https://www.w3.org/TR/compositing-1/#blendingnonseparable. |
| 1268 | // and |
| 1269 | // https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf |
| 1270 | // They're equivalent, but ES' math has been better simplified. |
| 1271 | // |
| 1272 | // Anything extra we add beyond that is to make the math work with premul inputs. |
| 1273 | |
| 1274 | static skvm::F32 saturation(skvm::F32 r, skvm::F32 g, skvm::F32 b) { |
| 1275 | return max(r, max(g, b)) |
| 1276 | - min(r, min(g, b)); |
| 1277 | } |
| 1278 | |
| 1279 | static skvm::F32 luminance(skvm::F32 r, skvm::F32 g, skvm::F32 b) { |
| 1280 | return r*0.30f + g*0.59f + b*0.11f; |
| 1281 | } |
| 1282 | |
| 1283 | static void set_sat(skvm::F32* r, skvm::F32* g, skvm::F32* b, skvm::F32 s) { |
| 1284 | F32 mn = min(*r, min(*g, *b)), |
| 1285 | mx = max(*r, max(*g, *b)), |
| 1286 | sat = mx - mn; |
| 1287 | |
| 1288 | // Map min channel to 0, max channel to s, and scale the middle proportionally. |
| 1289 | auto scale = [&](auto c) { |
| 1290 | // TODO: better to divide and check for non-finite result? |
| 1291 | return select(sat == 0.0f, 0.0f |
| 1292 | , ((c - mn) * s) / sat); |
| 1293 | }; |
| 1294 | *r = scale(*r); |
| 1295 | *g = scale(*g); |
| 1296 | *b = scale(*b); |
| 1297 | } |
| 1298 | |
| 1299 | static void set_lum(skvm::F32* r, skvm::F32* g, skvm::F32* b, skvm::F32 lu) { |
| 1300 | auto diff = lu - luminance(*r, *g, *b); |
| 1301 | *r += diff; |
| 1302 | *g += diff; |
| 1303 | *b += diff; |
| 1304 | } |
| 1305 | |
| 1306 | static void clip_color(skvm::F32* r, skvm::F32* g, skvm::F32* b, skvm::F32 a) { |
| 1307 | F32 mn = min(*r, min(*g, *b)), |
| 1308 | mx = max(*r, max(*g, *b)), |
| 1309 | lu = luminance(*r, *g, *b); |
| 1310 | |
| 1311 | auto clip = [&](auto c) { |
| 1312 | c = select(mn >= 0, c |
| 1313 | , lu + ((c-lu)*( lu)) / (lu-mn)); |
| 1314 | c = select(mx > a, lu + ((c-lu)*(a-lu)) / (mx-lu) |
| 1315 | , c); |
| 1316 | return clamp01(c); // May be a little negative, or worse, NaN. |
| 1317 | }; |
| 1318 | *r = clip(*r); |
| 1319 | *g = clip(*g); |
| 1320 | *b = clip(*b); |
| 1321 | } |
| 1322 | |
| 1323 | Color Builder::blend(SkBlendMode mode, Color src, Color dst) { |
| 1324 | auto mma = [](skvm::F32 x, skvm::F32 y, skvm::F32 z, skvm::F32 w) { |
| 1325 | return x*y + z*w; |
| 1326 | }; |
| 1327 | |
| 1328 | auto two = [](skvm::F32 x) { return x+x; }; |
| 1329 | |
| 1330 | auto apply_rgba = [&](auto fn) { |
| 1331 | return Color { |
| 1332 | fn(src.r, dst.r), |
| 1333 | fn(src.g, dst.g), |
| 1334 | fn(src.b, dst.b), |
| 1335 | fn(src.a, dst.a), |
| 1336 | }; |
| 1337 | }; |
| 1338 | |
| 1339 | auto apply_rgb_srcover_a = [&](auto fn) { |
| 1340 | return Color { |
| 1341 | fn(src.r, dst.r), |
| 1342 | fn(src.g, dst.g), |
| 1343 | fn(src.b, dst.b), |
| 1344 | mad(dst.a, 1-src.a, src.a), // srcover for alpha |
| 1345 | }; |
| 1346 | }; |
| 1347 | |
| 1348 | auto non_sep = [&](auto R, auto G, auto B) { |
| 1349 | return Color{ |
| 1350 | R + mma(src.r, 1-dst.a, dst.r, 1-src.a), |
| 1351 | G + mma(src.g, 1-dst.a, dst.g, 1-src.a), |
| 1352 | B + mma(src.b, 1-dst.a, dst.b, 1-src.a), |
| 1353 | mad(dst.a, 1-src.a, src.a), // srcover for alpha |
| 1354 | }; |
| 1355 | }; |
| 1356 | |
| 1357 | switch (mode) { |
| 1358 | default: SkASSERT(false); /*but also, for safety, fallthrough*/ |
| 1359 | |
| 1360 | case SkBlendMode::kClear: return { splat(0.0f), splat(0.0f), splat(0.0f), splat(0.0f) }; |
| 1361 | |
| 1362 | case SkBlendMode::kSrc: return src; |
| 1363 | case SkBlendMode::kDst: return dst; |
| 1364 | |
| 1365 | case SkBlendMode::kDstOver: std::swap(src, dst); // fall-through |
| 1366 | case SkBlendMode::kSrcOver: |
| 1367 | return apply_rgba([&](auto s, auto d) { |
| 1368 | return mad(d,1-src.a, s); |
| 1369 | }); |
| 1370 | |
| 1371 | case SkBlendMode::kDstIn: std::swap(src, dst); // fall-through |
| 1372 | case SkBlendMode::kSrcIn: |
| 1373 | return apply_rgba([&](auto s, auto d) { |
| 1374 | return s * dst.a; |
| 1375 | }); |
| 1376 | |
| 1377 | case SkBlendMode::kDstOut: std::swap(src, dst); // fall-through |
| 1378 | case SkBlendMode::kSrcOut: |
| 1379 | return apply_rgba([&](auto s, auto d) { |
| 1380 | return s * (1-dst.a); |
| 1381 | }); |
| 1382 | |
| 1383 | case SkBlendMode::kDstATop: std::swap(src, dst); // fall-through |
| 1384 | case SkBlendMode::kSrcATop: |
| 1385 | return apply_rgba([&](auto s, auto d) { |
| 1386 | return mma(s, dst.a, d, 1-src.a); |
| 1387 | }); |
| 1388 | |
| 1389 | case SkBlendMode::kXor: |
| 1390 | return apply_rgba([&](auto s, auto d) { |
| 1391 | return mma(s, 1-dst.a, d, 1-src.a); |
| 1392 | }); |
| 1393 | |
| 1394 | case SkBlendMode::kPlus: |
| 1395 | return apply_rgba([&](auto s, auto d) { |
| 1396 | return min(s+d, 1.0f); |
| 1397 | }); |
| 1398 | |
| 1399 | case SkBlendMode::kModulate: |
| 1400 | return apply_rgba([&](auto s, auto d) { |
| 1401 | return s * d; |
| 1402 | }); |
| 1403 | |
| 1404 | case SkBlendMode::kScreen: |
| 1405 | // (s+d)-(s*d) gave us trouble with our "r,g,b <= after blending" asserts. |
| 1406 | // It's kind of plausible that s + (d - sd) keeps more precision? |
| 1407 | return apply_rgba([&](auto s, auto d) { |
| 1408 | return s + (d - s*d); |
| 1409 | }); |
| 1410 | |
| 1411 | case SkBlendMode::kDarken: |
| 1412 | return apply_rgb_srcover_a([&](auto s, auto d) { |
| 1413 | return s + (d - max(s * dst.a, |
| 1414 | d * src.a)); |
| 1415 | }); |
| 1416 | |
| 1417 | case SkBlendMode::kLighten: |
| 1418 | return apply_rgb_srcover_a([&](auto s, auto d) { |
| 1419 | return s + (d - min(s * dst.a, |
| 1420 | d * src.a)); |
| 1421 | }); |
| 1422 | |
| 1423 | case SkBlendMode::kDifference: |
| 1424 | return apply_rgb_srcover_a([&](auto s, auto d) { |
| 1425 | return s + (d - two(min(s * dst.a, |
| 1426 | d * src.a))); |
| 1427 | }); |
| 1428 | |
| 1429 | case SkBlendMode::kExclusion: |
| 1430 | return apply_rgb_srcover_a([&](auto s, auto d) { |
| 1431 | return s + (d - two(s * d)); |
| 1432 | }); |
| 1433 | |
| 1434 | case SkBlendMode::kColorBurn: |
| 1435 | return apply_rgb_srcover_a([&](auto s, auto d) { |
| 1436 | // TODO: divide and check for non-finite result instead of checking for s == 0. |
| 1437 | auto mn = min(dst.a, |
| 1438 | src.a * (dst.a - d) / s), |
| 1439 | burn = src.a * (dst.a - mn) + mma(s, 1-dst.a, d, 1-src.a); |
| 1440 | return select(d == dst.a, s * (1-dst.a) + d, |
| 1441 | select(s == 0.0f , d * (1-src.a) |
| 1442 | , burn)); |
| 1443 | }); |
| 1444 | |
| 1445 | case SkBlendMode::kColorDodge: |
| 1446 | return apply_rgb_srcover_a([&](auto s, auto d) { |
| 1447 | // TODO: divide and check for non-finite result instead of checking for s == sa. |
| 1448 | auto dodge = src.a * min(dst.a, |
| 1449 | d * src.a / (src.a - s)) |
| 1450 | + mma(s, 1-dst.a, d, 1-src.a); |
| 1451 | return select(d == 0.0f , s * (1-dst.a), |
| 1452 | select(s == src.a, d * (1-src.a) + s |
| 1453 | , dodge)); |
| 1454 | }); |
| 1455 | |
| 1456 | case SkBlendMode::kHardLight: |
| 1457 | return apply_rgb_srcover_a([&](auto s, auto d) { |
| 1458 | return mma(s, 1-dst.a, d, 1-src.a) + |
| 1459 | select(two(s) <= src.a, |
| 1460 | two(s * d), |
| 1461 | src.a * dst.a - two((dst.a - d) * (src.a - s))); |
| 1462 | }); |
| 1463 | |
| 1464 | case SkBlendMode::kOverlay: |
| 1465 | return apply_rgb_srcover_a([&](auto s, auto d) { |
| 1466 | return mma(s, 1-dst.a, d, 1-src.a) + |
| 1467 | select(two(d) <= dst.a, |
| 1468 | two(s * d), |
| 1469 | src.a * dst.a - two((dst.a - d) * (src.a - s))); |
| 1470 | }); |
| 1471 | |
| 1472 | case SkBlendMode::kMultiply: |
| 1473 | return apply_rgba([&](auto s, auto d) { |
| 1474 | return mma(s, 1-dst.a, d, 1-src.a) + s * d; |
| 1475 | }); |
| 1476 | |
| 1477 | case SkBlendMode::kSoftLight: |
| 1478 | return apply_rgb_srcover_a([&](auto s, auto d) { |
| 1479 | auto m = select(dst.a > 0.0f, d / dst.a |
| 1480 | , 0.0f), |
| 1481 | s2 = two(s), |
| 1482 | m4 = 4*m; |
| 1483 | |
| 1484 | // The logic forks three ways: |
| 1485 | // 1. dark src? |
| 1486 | // 2. light src, dark dst? |
| 1487 | // 3. light src, light dst? |
| 1488 | |
| 1489 | // Used in case 1 |
| 1490 | auto darkSrc = d * ((s2-src.a) * (1-m) + src.a), |
| 1491 | // Used in case 2 |
| 1492 | darkDst = (m4 * m4 + m4) * (m-1) + 7*m, |
| 1493 | // Used in case 3. |
| 1494 | liteDst = sqrt(m) - m, |
| 1495 | // Used in 2 or 3? |
| 1496 | liteSrc = dst.a * (s2 - src.a) * select(4*d <= dst.a, darkDst |
| 1497 | , liteDst) |
| 1498 | + d * src.a; |
| 1499 | return s * (1-dst.a) + d * (1-src.a) + select(s2 <= src.a, darkSrc |
| 1500 | , liteSrc); |
| 1501 | }); |
| 1502 | |
| 1503 | case SkBlendMode::kHue: { |
| 1504 | skvm::F32 R = src.r * src.a, |
| 1505 | G = src.g * src.a, |
| 1506 | B = src.b * src.a; |
| 1507 | |
| 1508 | set_sat (&R, &G, &B, src.a * saturation(dst.r, dst.g, dst.b)); |
| 1509 | set_lum (&R, &G, &B, src.a * luminance (dst.r, dst.g, dst.b)); |
| 1510 | clip_color(&R, &G, &B, src.a * dst.a); |
| 1511 | |
| 1512 | return non_sep(R, G, B); |
| 1513 | } |
| 1514 | |
| 1515 | case SkBlendMode::kSaturation: { |
| 1516 | skvm::F32 R = dst.r * src.a, |
| 1517 | G = dst.g * src.a, |
| 1518 | B = dst.b * src.a; |
| 1519 | |
| 1520 | set_sat (&R, &G, &B, dst.a * saturation(src.r, src.g, src.b)); |
| 1521 | set_lum (&R, &G, &B, src.a * luminance (dst.r, dst.g, dst.b)); |
| 1522 | clip_color(&R, &G, &B, src.a * dst.a); |
| 1523 | |
| 1524 | return non_sep(R, G, B); |
| 1525 | } |
| 1526 | |
| 1527 | case SkBlendMode::kColor: { |
| 1528 | skvm::F32 R = src.r * dst.a, |
| 1529 | G = src.g * dst.a, |
| 1530 | B = src.b * dst.a; |
| 1531 | |
| 1532 | set_lum (&R, &G, &B, src.a * luminance(dst.r, dst.g, dst.b)); |
| 1533 | clip_color(&R, &G, &B, src.a * dst.a); |
| 1534 | |
| 1535 | return non_sep(R, G, B); |
| 1536 | } |
| 1537 | |
| 1538 | case SkBlendMode::kLuminosity: { |
| 1539 | skvm::F32 R = dst.r * src.a, |
| 1540 | G = dst.g * src.a, |
| 1541 | B = dst.b * src.a; |
| 1542 | |
| 1543 | set_lum (&R, &G, &B, dst.a * luminance(src.r, src.g, src.b)); |
| 1544 | clip_color(&R, &G, &B, dst.a * src.a); |
| 1545 | |
| 1546 | return non_sep(R, G, B); |
| 1547 | } |
| 1548 | } |
| 1549 | } |
| 1550 | |
| 1551 | // For a given program we'll store each Instruction's users contiguously in a table, |
| 1552 | // and track where each Instruction's span of users starts and ends in another index. |
| 1553 | // Here's a simple program that loads x and stores kx+k: |
| 1554 | // |
| 1555 | // v0 = splat(k) |
| 1556 | // v1 = load(...) |
| 1557 | // v2 = mul(v1, v0) |
| 1558 | // v3 = add(v2, v0) |
| 1559 | // v4 = store(..., v3) |
| 1560 | // |
| 1561 | // This program has 5 instructions v0-v4. |
| 1562 | // - v0 is used by v2 and v3 |
| 1563 | // - v1 is used by v2 |
| 1564 | // - v2 is used by v3 |
| 1565 | // - v3 is used by v4 |
| 1566 | // - v4 has a side-effect |
| 1567 | // |
| 1568 | // For this program we fill out these two arrays: |
| 1569 | // table: [v2,v3, v2, v3, v4] |
| 1570 | // index: [0, 2, 3, 4, 5] |
| 1571 | // |
| 1572 | // The table is just those "is used by ..." I wrote out above in order, |
| 1573 | // and the index tracks where an Instruction's span of users starts, table[index[id]]. |
| 1574 | // The span continues up until the start of the next Instruction, table[index[id+1]]. |
| 1575 | SkSpan<const Val> Usage::operator[](Val id) const { |
| 1576 | int begin = fIndex[id]; |
| 1577 | int end = fIndex[id + 1]; |
| 1578 | return SkMakeSpan(fTable.data() + begin, end - begin); |
| 1579 | } |
| 1580 | |
| 1581 | Usage::Usage(const std::vector<Instruction>& program) { |
| 1582 | // uses[id] counts the number of times each Instruction is used. |
| 1583 | std::vector<int> uses(program.size(), 0); |
| 1584 | for (Val id = 0; id < (Val)program.size(); id++) { |
| 1585 | Instruction inst = program[id]; |
| 1586 | if (inst.x != NA) { ++uses[inst.x]; } |
| 1587 | if (inst.y != NA) { ++uses[inst.y]; } |
| 1588 | if (inst.z != NA) { ++uses[inst.z]; } |
| 1589 | } |
| 1590 | |
| 1591 | // Build our index into fTable, with an extra entry marking the final Instruction's end. |
| 1592 | fIndex.reserve(program.size() + 1); |
| 1593 | int total_uses = 0; |
| 1594 | for (int n : uses) { |
| 1595 | fIndex.push_back(total_uses); |
| 1596 | total_uses += n; |
| 1597 | } |
| 1598 | fIndex.push_back(total_uses); |
| 1599 | |
| 1600 | // Tick down each Instruction's uses to fill in fTable. |
| 1601 | fTable.resize(total_uses, NA); |
| 1602 | for (Val id = (Val)program.size(); id --> 0; ) { |
| 1603 | Instruction inst = program[id]; |
| 1604 | if (inst.x != NA) { fTable[fIndex[inst.x] + --uses[inst.x]] = id; } |
| 1605 | if (inst.y != NA) { fTable[fIndex[inst.y] + --uses[inst.y]] = id; } |
| 1606 | if (inst.z != NA) { fTable[fIndex[inst.z] + --uses[inst.z]] = id; } |
| 1607 | } |
| 1608 | for (int n : uses ) { (void)n; SkASSERT(n == 0 ); } |
| 1609 | for (Val id : fTable) { (void)id; SkASSERT(id != NA); } |
| 1610 | } |
| 1611 | |
| 1612 | // ~~~~ Program::eval() and co. ~~~~ // |
| 1613 | |
| 1614 | // Handy references for x86-64 instruction encoding: |
| 1615 | // https://wiki.osdev.org/X86-64_Instruction_Encoding |
| 1616 | // https://www-user.tu-chemnitz.de/~heha/viewchm.php/hs/x86.chm/x64.htm |
| 1617 | // https://www-user.tu-chemnitz.de/~heha/viewchm.php/hs/x86.chm/x86.htm |
| 1618 | // http://ref.x86asm.net/coder64.html |
| 1619 | |
| 1620 | // Used for ModRM / immediate instruction encoding. |
| 1621 | static uint8_t _233(int a, int b, int c) { |
| 1622 | return (a & 3) << 6 |
| 1623 | | (b & 7) << 3 |
| 1624 | | (c & 7) << 0; |
| 1625 | } |
| 1626 | |
| 1627 | // ModRM byte encodes the arguments of an opcode. |
| 1628 | enum class Mod { Indirect, OneByteImm, FourByteImm, Direct }; |
| 1629 | static uint8_t mod_rm(Mod mod, int reg, int rm) { |
| 1630 | return _233((int)mod, reg, rm); |
| 1631 | } |
| 1632 | |
| 1633 | static Mod mod(int imm) { |
| 1634 | if (imm == 0) { return Mod::Indirect; } |
| 1635 | if (SkTFitsIn<int8_t>(imm)) { return Mod::OneByteImm; } |
| 1636 | return Mod::FourByteImm; |
| 1637 | } |
| 1638 | |
| 1639 | static int imm_bytes(Mod mod) { |
| 1640 | switch (mod) { |
| 1641 | case Mod::Indirect: return 0; |
| 1642 | case Mod::OneByteImm: return 1; |
| 1643 | case Mod::FourByteImm: return 4; |
| 1644 | case Mod::Direct: SkUNREACHABLE; |
| 1645 | } |
| 1646 | SkUNREACHABLE; |
| 1647 | } |
| 1648 | |
| 1649 | // SIB byte encodes a memory address, base + (index * scale). |
| 1650 | static uint8_t sib(Assembler::Scale scale, int index, int base) { |
| 1651 | return _233((int)scale, index, base); |
| 1652 | } |
| 1653 | |
| 1654 | // The REX prefix is used to extend most old 32-bit instructions to 64-bit. |
| 1655 | static uint8_t rex(bool W, // If set, operation is 64-bit, otherwise default, usually 32-bit. |
| 1656 | bool R, // Extra top bit to select ModRM reg, registers 8-15. |
| 1657 | bool X, // Extra top bit for SIB index register. |
| 1658 | bool B) { // Extra top bit for SIB base or ModRM rm register. |
| 1659 | return 0b01000000 // Fixed 0100 for top four bits. |
| 1660 | | (W << 3) |
| 1661 | | (R << 2) |
| 1662 | | (X << 1) |
| 1663 | | (B << 0); |
| 1664 | } |
| 1665 | |
| 1666 | |
| 1667 | // The VEX prefix extends SSE operations to AVX. Used generally, even with XMM. |
| 1668 | struct VEX { |
| 1669 | int len; |
| 1670 | uint8_t bytes[3]; |
| 1671 | }; |
| 1672 | |
| 1673 | static VEX vex(bool WE, // Like REX W for int operations, or opcode extension for float? |
| 1674 | bool R, // Same as REX R. Pass high bit of dst register, dst>>3. |
| 1675 | bool X, // Same as REX X. |
| 1676 | bool B, // Same as REX B. Pass y>>3 for 3-arg ops, x>>3 for 2-arg. |
| 1677 | int map, // SSE opcode map selector: 0x0f, 0x380f, 0x3a0f. |
| 1678 | int vvvv, // 4-bit second operand register. Pass our x for 3-arg ops. |
| 1679 | bool L, // Set for 256-bit ymm operations, off for 128-bit xmm. |
| 1680 | int pp) { // SSE mandatory prefix: 0x66, 0xf3, 0xf2, else none. |
| 1681 | |
| 1682 | // Pack x86 opcode map selector to 5-bit VEX encoding. |
| 1683 | map = [map]{ |
| 1684 | switch (map) { |
| 1685 | case 0x0f: return 0b00001; |
| 1686 | case 0x380f: return 0b00010; |
| 1687 | case 0x3a0f: return 0b00011; |
| 1688 | // Several more cases only used by XOP / TBM. |
| 1689 | } |
| 1690 | SkUNREACHABLE; |
| 1691 | }(); |
| 1692 | |
| 1693 | // Pack mandatory SSE opcode prefix byte to 2-bit VEX encoding. |
| 1694 | pp = [pp]{ |
| 1695 | switch (pp) { |
| 1696 | case 0x66: return 0b01; |
| 1697 | case 0xf3: return 0b10; |
| 1698 | case 0xf2: return 0b11; |
| 1699 | } |
| 1700 | return 0b00; |
| 1701 | }(); |
| 1702 | |
| 1703 | VEX vex = {0, {0,0,0}}; |
| 1704 | if (X == 0 && B == 0 && WE == 0 && map == 0b00001) { |
| 1705 | // With these conditions met, we can optionally compress VEX to 2-byte. |
| 1706 | vex.len = 2; |
| 1707 | vex.bytes[0] = 0xc5; |
| 1708 | vex.bytes[1] = (pp & 3) << 0 |
| 1709 | | (L & 1) << 2 |
| 1710 | | (~vvvv & 15) << 3 |
| 1711 | | (~(int)R & 1) << 7; |
| 1712 | } else { |
| 1713 | // We could use this 3-byte VEX prefix all the time if we like. |
| 1714 | vex.len = 3; |
| 1715 | vex.bytes[0] = 0xc4; |
| 1716 | vex.bytes[1] = (map & 31) << 0 |
| 1717 | | (~(int)B & 1) << 5 |
| 1718 | | (~(int)X & 1) << 6 |
| 1719 | | (~(int)R & 1) << 7; |
| 1720 | vex.bytes[2] = (pp & 3) << 0 |
| 1721 | | (L & 1) << 2 |
| 1722 | | (~vvvv & 15) << 3 |
| 1723 | | (WE & 1) << 7; |
| 1724 | } |
| 1725 | return vex; |
| 1726 | } |
| 1727 | |
| 1728 | Assembler::Assembler(void* buf) : fCode((uint8_t*)buf), fCurr(fCode), fSize(0) {} |
| 1729 | |
| 1730 | size_t Assembler::size() const { return fSize; } |
| 1731 | |
| 1732 | void Assembler::bytes(const void* p, int n) { |
| 1733 | if (fCurr) { |
| 1734 | memcpy(fCurr, p, n); |
| 1735 | fCurr += n; |
| 1736 | } |
| 1737 | fSize += n; |
| 1738 | } |
| 1739 | |
| 1740 | void Assembler::byte(uint8_t b) { this->bytes(&b, 1); } |
| 1741 | void Assembler::word(uint32_t w) { this->bytes(&w, 4); } |
| 1742 | |
| 1743 | void Assembler::align(int mod) { |
| 1744 | while (this->size() % mod) { |
| 1745 | this->byte(0x00); |
| 1746 | } |
| 1747 | } |
| 1748 | |
| 1749 | void Assembler::int3() { |
| 1750 | this->byte(0xcc); |
| 1751 | } |
| 1752 | |
| 1753 | void Assembler::vzeroupper() { |
| 1754 | this->byte(0xc5); |
| 1755 | this->byte(0xf8); |
| 1756 | this->byte(0x77); |
| 1757 | } |
| 1758 | void Assembler::ret() { this->byte(0xc3); } |
| 1759 | |
| 1760 | // Common instruction building for 64-bit opcodes with an immediate argument. |
| 1761 | void Assembler::op(int opcode, int opcode_ext, GP64 dst, int imm) { |
| 1762 | opcode |= 0b0000'0001; // low bit set for 64-bit operands |
| 1763 | opcode |= 0b1000'0000; // top bit set for instructions with any immediate |
| 1764 | |
| 1765 | int imm_bytes = 4; |
| 1766 | if (SkTFitsIn<int8_t>(imm)) { |
| 1767 | imm_bytes = 1; |
| 1768 | opcode |= 0b0000'0010; // second bit set for 8-bit immediate, else 32-bit. |
| 1769 | } |
| 1770 | |
| 1771 | this->byte(rex(1,0,0,dst>>3)); |
| 1772 | this->byte(opcode); |
| 1773 | this->byte(mod_rm(Mod::Direct, opcode_ext, dst&7)); |
| 1774 | this->bytes(&imm, imm_bytes); |
| 1775 | } |
| 1776 | |
| 1777 | void Assembler::add(GP64 dst, int imm) { this->op(0,0b000, dst,imm); } |
| 1778 | void Assembler::sub(GP64 dst, int imm) { this->op(0,0b101, dst,imm); } |
| 1779 | void Assembler::cmp(GP64 reg, int imm) { this->op(0,0b111, reg,imm); } |
| 1780 | |
| 1781 | void Assembler::movq(GP64 dst, GP64 src, int off) { |
| 1782 | this->byte(rex(1,dst>>3,0,src>>3)); |
| 1783 | this->byte(0x8b); |
| 1784 | this->byte(mod_rm(mod(off), dst&7, src&7)); |
| 1785 | this->bytes(&off, imm_bytes(mod(off))); |
| 1786 | } |
| 1787 | |
| 1788 | void Assembler::op(int prefix, int map, int opcode, Ymm dst, Ymm x, Ymm y, bool W/*=false*/) { |
| 1789 | VEX v = vex(W, dst>>3, 0, y>>3, |
| 1790 | map, x, 1/*ymm, not xmm*/, prefix); |
| 1791 | this->bytes(v.bytes, v.len); |
| 1792 | this->byte(opcode); |
| 1793 | this->byte(mod_rm(Mod::Direct, dst&7, y&7)); |
| 1794 | } |
| 1795 | |
| 1796 | void Assembler::vpaddd (Ymm dst, Ymm x, YmmOrLabel y) { this->op(0x66, 0x0f,0xfe, dst,x,y); } |
| 1797 | void Assembler::vpsubd (Ymm dst, Ymm x, YmmOrLabel y) { this->op(0x66, 0x0f,0xfa, dst,x,y); } |
| 1798 | void Assembler::vpmulld(Ymm dst, Ymm x, Ymm y) { this->op(0x66,0x380f,0x40, dst,x,y); } |
| 1799 | |
| 1800 | void Assembler::vpsubw (Ymm dst, Ymm x, Ymm y) { this->op(0x66,0x0f,0xf9, dst,x,y); } |
| 1801 | void Assembler::vpmullw(Ymm dst, Ymm x, Ymm y) { this->op(0x66,0x0f,0xd5, dst,x,y); } |
| 1802 | |
| 1803 | void Assembler::vpand (Ymm dst, Ymm x, YmmOrLabel y) { this->op(0x66,0x0f,0xdb, dst,x,y); } |
| 1804 | void Assembler::vpor (Ymm dst, Ymm x, YmmOrLabel y) { this->op(0x66,0x0f,0xeb, dst,x,y); } |
| 1805 | void Assembler::vpxor (Ymm dst, Ymm x, YmmOrLabel y) { this->op(0x66,0x0f,0xef, dst,x,y); } |
| 1806 | void Assembler::vpandn(Ymm dst, Ymm x, Ymm y) { this->op(0x66,0x0f,0xdf, dst,x,y); } |
| 1807 | |
| 1808 | void Assembler::vaddps(Ymm dst, Ymm x, YmmOrLabel y) { this->op(0,0x0f,0x58, dst,x,y); } |
| 1809 | void Assembler::vsubps(Ymm dst, Ymm x, YmmOrLabel y) { this->op(0,0x0f,0x5c, dst,x,y); } |
| 1810 | void Assembler::vmulps(Ymm dst, Ymm x, YmmOrLabel y) { this->op(0,0x0f,0x59, dst,x,y); } |
| 1811 | void Assembler::vdivps(Ymm dst, Ymm x, Ymm y) { this->op(0,0x0f,0x5e, dst,x,y); } |
| 1812 | void Assembler::vminps(Ymm dst, Ymm x, YmmOrLabel y) { this->op(0,0x0f,0x5d, dst,x,y); } |
| 1813 | void Assembler::vmaxps(Ymm dst, Ymm x, YmmOrLabel y) { this->op(0,0x0f,0x5f, dst,x,y); } |
| 1814 | |
| 1815 | void Assembler::vfmadd132ps(Ymm dst, Ymm x, Ymm y) { this->op(0x66,0x380f,0x98, dst,x,y); } |
| 1816 | void Assembler::vfmadd213ps(Ymm dst, Ymm x, Ymm y) { this->op(0x66,0x380f,0xa8, dst,x,y); } |
| 1817 | void Assembler::vfmadd231ps(Ymm dst, Ymm x, Ymm y) { this->op(0x66,0x380f,0xb8, dst,x,y); } |
| 1818 | |
| 1819 | void Assembler::vfmsub132ps(Ymm dst, Ymm x, Ymm y) { this->op(0x66,0x380f,0x9a, dst,x,y); } |
| 1820 | void Assembler::vfmsub213ps(Ymm dst, Ymm x, Ymm y) { this->op(0x66,0x380f,0xaa, dst,x,y); } |
| 1821 | void Assembler::vfmsub231ps(Ymm dst, Ymm x, Ymm y) { this->op(0x66,0x380f,0xba, dst,x,y); } |
| 1822 | |
| 1823 | void Assembler::vfnmadd132ps(Ymm dst, Ymm x, Ymm y) { this->op(0x66,0x380f,0x9c, dst,x,y); } |
| 1824 | void Assembler::vfnmadd213ps(Ymm dst, Ymm x, Ymm y) { this->op(0x66,0x380f,0xac, dst,x,y); } |
| 1825 | void Assembler::vfnmadd231ps(Ymm dst, Ymm x, Ymm y) { this->op(0x66,0x380f,0xbc, dst,x,y); } |
| 1826 | |
| 1827 | void Assembler::vpackusdw(Ymm dst, Ymm x, Ymm y) { this->op(0x66,0x380f,0x2b, dst,x,y); } |
| 1828 | void Assembler::vpackuswb(Ymm dst, Ymm x, Ymm y) { this->op(0x66, 0x0f,0x67, dst,x,y); } |
| 1829 | |
| 1830 | void Assembler::vpcmpeqd(Ymm dst, Ymm x, Ymm y) { this->op(0x66,0x0f,0x76, dst,x,y); } |
| 1831 | void Assembler::vpcmpgtd(Ymm dst, Ymm x, Ymm y) { this->op(0x66,0x0f,0x66, dst,x,y); } |
| 1832 | |
| 1833 | void Assembler::vcmpps(Ymm dst, Ymm x, Ymm y, int imm) { |
| 1834 | this->op(0,0x0f,0xc2, dst,x,y); |
| 1835 | this->byte(imm); |
| 1836 | } |
| 1837 | |
| 1838 | void Assembler::vpblendvb(Ymm dst, Ymm x, Ymm y, Ymm z) { |
| 1839 | int prefix = 0x66, |
| 1840 | map = 0x3a0f, |
| 1841 | opcode = 0x4c; |
| 1842 | VEX v = vex(0, dst>>3, 0, y>>3, |
| 1843 | map, x, /*ymm?*/1, prefix); |
| 1844 | this->bytes(v.bytes, v.len); |
| 1845 | this->byte(opcode); |
| 1846 | this->byte(mod_rm(Mod::Direct, dst&7, y&7)); |
| 1847 | this->byte(z << 4); |
| 1848 | } |
| 1849 | |
| 1850 | // dst = x op /opcode_ext imm |
| 1851 | void Assembler::op(int prefix, int map, int opcode, int opcode_ext, Ymm dst, Ymm x, int imm) { |
| 1852 | // This is a little weird, but if we pass the opcode_ext as if it were the dst register, |
| 1853 | // the dst register as if x, and the x register as if y, all the bits end up where we want. |
| 1854 | this->op(prefix, map, opcode, (Ymm)opcode_ext,dst,x); |
| 1855 | this->byte(imm); |
| 1856 | } |
| 1857 | |
| 1858 | void Assembler::vpslld(Ymm dst, Ymm x, int imm) { this->op(0x66,0x0f,0x72,6, dst,x,imm); } |
| 1859 | void Assembler::vpsrld(Ymm dst, Ymm x, int imm) { this->op(0x66,0x0f,0x72,2, dst,x,imm); } |
| 1860 | void Assembler::vpsrad(Ymm dst, Ymm x, int imm) { this->op(0x66,0x0f,0x72,4, dst,x,imm); } |
| 1861 | |
| 1862 | void Assembler::vpsrlw(Ymm dst, Ymm x, int imm) { this->op(0x66,0x0f,0x71,2, dst,x,imm); } |
| 1863 | |
| 1864 | |
| 1865 | void Assembler::vpermq(Ymm dst, Ymm x, int imm) { |
| 1866 | // A bit unusual among the instructions we use, this is 64-bit operation, so we set W. |
| 1867 | bool W = true; |
| 1868 | this->op(0x66,0x3a0f,0x00, dst,x,W); |
| 1869 | this->byte(imm); |
| 1870 | } |
| 1871 | |
| 1872 | void Assembler::vroundps(Ymm dst, Ymm x, int imm) { |
| 1873 | this->op(0x66,0x3a0f,0x08, dst,x); |
| 1874 | this->byte(imm); |
| 1875 | } |
| 1876 | |
| 1877 | void Assembler::vmovdqa(Ymm dst, Ymm src) { this->op(0x66,0x0f,0x6f, dst,src); } |
| 1878 | |
| 1879 | void Assembler::vcvtdq2ps (Ymm dst, Ymm x) { this->op( 0,0x0f,0x5b, dst,x); } |
| 1880 | void Assembler::vcvttps2dq(Ymm dst, Ymm x) { this->op(0xf3,0x0f,0x5b, dst,x); } |
| 1881 | void Assembler::vcvtps2dq (Ymm dst, Ymm x) { this->op(0x66,0x0f,0x5b, dst,x); } |
| 1882 | void Assembler::vsqrtps (Ymm dst, Ymm x) { this->op( 0,0x0f,0x51, dst,x); } |
| 1883 | |
| 1884 | Assembler::Label Assembler::here() { |
| 1885 | return { (int)this->size(), Label::NotYetSet, {} }; |
| 1886 | } |
| 1887 | |
| 1888 | int Assembler::disp19(Label* l) { |
| 1889 | SkASSERT(l->kind == Label::NotYetSet || |
| 1890 | l->kind == Label::ARMDisp19); |
| 1891 | l->kind = Label::ARMDisp19; |
| 1892 | l->references.push_back(here().offset); |
| 1893 | // ARM 19-bit instruction count, from the beginning of this instruction. |
| 1894 | return (l->offset - here().offset) / 4; |
| 1895 | } |
| 1896 | |
| 1897 | int Assembler::disp32(Label* l) { |
| 1898 | SkASSERT(l->kind == Label::NotYetSet || |
| 1899 | l->kind == Label::X86Disp32); |
| 1900 | l->kind = Label::X86Disp32; |
| 1901 | l->references.push_back(here().offset); |
| 1902 | // x86 32-bit byte count, from the end of this instruction. |
| 1903 | return l->offset - (here().offset + 4); |
| 1904 | } |
| 1905 | |
| 1906 | void Assembler::op(int prefix, int map, int opcode, Ymm dst, Ymm x, Label* l) { |
| 1907 | // IP-relative addressing uses Mod::Indirect with the R/M encoded as-if rbp or r13. |
| 1908 | const int rip = rbp; |
| 1909 | |
| 1910 | VEX v = vex(0, dst>>3, 0, rip>>3, |
| 1911 | map, x, /*ymm?*/1, prefix); |
| 1912 | this->bytes(v.bytes, v.len); |
| 1913 | this->byte(opcode); |
| 1914 | this->byte(mod_rm(Mod::Indirect, dst&7, rip&7)); |
| 1915 | this->word(this->disp32(l)); |
| 1916 | } |
| 1917 | |
| 1918 | void Assembler::op(int prefix, int map, int opcode, Ymm dst, Ymm x, YmmOrLabel y) { |
| 1919 | y.label ? this->op(prefix,map,opcode,dst,x, y.label) |
| 1920 | : this->op(prefix,map,opcode,dst,x, y.ymm ); |
| 1921 | } |
| 1922 | |
| 1923 | void Assembler::vpshufb(Ymm dst, Ymm x, Label* l) { this->op(0x66,0x380f,0x00, dst,x,l); } |
| 1924 | void Assembler::vptest(Ymm dst, Label* l) { this->op(0x66, 0x380f, 0x17, dst, (Ymm)0, l); } |
| 1925 | |
| 1926 | void Assembler::vbroadcastss(Ymm dst, Label* l) { this->op(0x66,0x380f,0x18, dst, (Ymm)0, l); } |
| 1927 | void Assembler::vbroadcastss(Ymm dst, Xmm src) { this->op(0x66,0x380f,0x18, dst, (Ymm)src); } |
| 1928 | void Assembler::vbroadcastss(Ymm dst, GP64 ptr, int off) { |
| 1929 | int prefix = 0x66, |
| 1930 | map = 0x380f, |
| 1931 | opcode = 0x18; |
| 1932 | VEX v = vex(0, dst>>3, 0, ptr>>3, |
| 1933 | map, 0, /*ymm?*/1, prefix); |
| 1934 | this->bytes(v.bytes, v.len); |
| 1935 | this->byte(opcode); |
| 1936 | |
| 1937 | this->byte(mod_rm(mod(off), dst&7, ptr&7)); |
| 1938 | this->bytes(&off, imm_bytes(mod(off))); |
| 1939 | } |
| 1940 | |
| 1941 | void Assembler::jump(uint8_t condition, Label* l) { |
| 1942 | // These conditional jumps can be either 2 bytes (short) or 6 bytes (near): |
| 1943 | // 7? one-byte-disp |
| 1944 | // 0F 8? four-byte-disp |
| 1945 | // We always use the near displacement to make updating labels simpler (no resizing). |
| 1946 | this->byte(0x0f); |
| 1947 | this->byte(condition); |
| 1948 | this->word(this->disp32(l)); |
| 1949 | } |
| 1950 | void Assembler::je (Label* l) { this->jump(0x84, l); } |
| 1951 | void Assembler::jne(Label* l) { this->jump(0x85, l); } |
| 1952 | void Assembler::jl (Label* l) { this->jump(0x8c, l); } |
| 1953 | void Assembler::jc (Label* l) { this->jump(0x82, l); } |
| 1954 | |
| 1955 | void Assembler::jmp(Label* l) { |
| 1956 | // Like above in jump(), we could use 8-bit displacement here, but always use 32-bit. |
| 1957 | this->byte(0xe9); |
| 1958 | this->word(this->disp32(l)); |
| 1959 | } |
| 1960 | |
| 1961 | void Assembler::load_store(int prefix, int map, int opcode, Ymm ymm, GP64 ptr) { |
| 1962 | VEX v = vex(0, ymm>>3, 0, ptr>>3, |
| 1963 | map, 0, /*ymm?*/1, prefix); |
| 1964 | this->bytes(v.bytes, v.len); |
| 1965 | this->byte(opcode); |
| 1966 | this->byte(mod_rm(Mod::Indirect, ymm&7, ptr&7)); |
| 1967 | } |
| 1968 | |
| 1969 | void Assembler::vmovups (Ymm dst, GP64 src) { this->load_store(0 , 0x0f,0x10, dst,src); } |
| 1970 | void Assembler::vpmovzxwd(Ymm dst, GP64 src) { this->load_store(0x66,0x380f,0x33, dst,src); } |
| 1971 | void Assembler::vpmovzxbd(Ymm dst, GP64 src) { this->load_store(0x66,0x380f,0x31, dst,src); } |
| 1972 | |
| 1973 | void Assembler::vmovups (GP64 dst, Ymm src) { this->load_store(0 , 0x0f,0x11, src,dst); } |
| 1974 | void Assembler::vmovups (GP64 dst, Xmm src) { |
| 1975 | // Same as vmovups(GP64,YMM) and load_store() except ymm? is 0. |
| 1976 | int prefix = 0, |
| 1977 | map = 0x0f, |
| 1978 | opcode = 0x11; |
| 1979 | VEX v = vex(0, src>>3, 0, dst>>3, |
| 1980 | map, 0, /*ymm?*/0, prefix); |
| 1981 | this->bytes(v.bytes, v.len); |
| 1982 | this->byte(opcode); |
| 1983 | this->byte(mod_rm(Mod::Indirect, src&7, dst&7)); |
| 1984 | } |
| 1985 | |
| 1986 | void Assembler::stack_load_store(int prefix, int map, int opcode, Ymm ymm, int off) { |
| 1987 | VEX v = vex(0, ymm>>3, 0, rsp>>3/*i.e. 0*/, |
| 1988 | map, 0, /*ymm?*/1, prefix); |
| 1989 | this->bytes(v.bytes, v.len); |
| 1990 | this->byte(opcode); |
| 1991 | this->byte(mod_rm(mod(off), ymm&7, rsp/*use SIB*/)); |
| 1992 | this->byte(sib(ONE, rsp/*no index*/, rsp)); |
| 1993 | this->bytes(&off, imm_bytes(mod(off))); |
| 1994 | } |
| 1995 | void Assembler::vmovups(Ymm dst, int off) { this->stack_load_store(0, 0x0f, 0x10, dst,off); } |
| 1996 | void Assembler::vmovups(int off, Ymm src) { this->stack_load_store(0, 0x0f, 0x11, src,off); } |
| 1997 | |
| 1998 | void Assembler::vmovq(GP64 dst, Xmm src) { |
| 1999 | int prefix = 0x66, |
| 2000 | map = 0x0f, |
| 2001 | opcode = 0xd6; |
| 2002 | VEX v = vex(0, src>>3, 0, dst>>3, |
| 2003 | map, 0, /*ymm?*/0, prefix); |
| 2004 | this->bytes(v.bytes, v.len); |
| 2005 | this->byte(opcode); |
| 2006 | this->byte(mod_rm(Mod::Indirect, src&7, dst&7)); |
| 2007 | } |
| 2008 | |
| 2009 | void Assembler::vmovd(GP64 dst, Xmm src) { |
| 2010 | int prefix = 0x66, |
| 2011 | map = 0x0f, |
| 2012 | opcode = 0x7e; |
| 2013 | VEX v = vex(0, src>>3, 0, dst>>3, |
| 2014 | map, 0, /*ymm?*/0, prefix); |
| 2015 | this->bytes(v.bytes, v.len); |
| 2016 | this->byte(opcode); |
| 2017 | this->byte(mod_rm(Mod::Indirect, src&7, dst&7)); |
| 2018 | } |
| 2019 | |
| 2020 | void Assembler::vmovd_direct(GP64 dst, Xmm src) { |
| 2021 | int prefix = 0x66, |
| 2022 | map = 0x0f, |
| 2023 | opcode = 0x7e; |
| 2024 | VEX v = vex(0, src>>3, 0, dst>>3, |
| 2025 | map, 0, /*ymm?*/0, prefix); |
| 2026 | this->bytes(v.bytes, v.len); |
| 2027 | this->byte(opcode); |
| 2028 | this->byte(mod_rm(Mod::Direct, src&7, dst&7)); |
| 2029 | } |
| 2030 | |
| 2031 | void Assembler::vmovd(Xmm dst, GP64 src) { |
| 2032 | int prefix = 0x66, |
| 2033 | map = 0x0f, |
| 2034 | opcode = 0x6e; |
| 2035 | VEX v = vex(0, dst>>3, 0, src>>3, |
| 2036 | map, 0, /*ymm?*/0, prefix); |
| 2037 | this->bytes(v.bytes, v.len); |
| 2038 | this->byte(opcode); |
| 2039 | this->byte(mod_rm(Mod::Indirect, dst&7, src&7)); |
| 2040 | } |
| 2041 | |
| 2042 | void Assembler::vmovd(Xmm dst, Scale scale, GP64 index, GP64 base) { |
| 2043 | int prefix = 0x66, |
| 2044 | map = 0x0f, |
| 2045 | opcode = 0x6e; |
| 2046 | VEX v = vex(0, dst>>3, index>>3, base>>3, |
| 2047 | map, 0, /*ymm?*/0, prefix); |
| 2048 | this->bytes(v.bytes, v.len); |
| 2049 | this->byte(opcode); |
| 2050 | this->byte(mod_rm(Mod::Indirect, dst&7, rsp/*use SIB*/)); |
| 2051 | this->byte(sib(scale, index&7, base&7)); |
| 2052 | } |
| 2053 | |
| 2054 | void Assembler::vmovd_direct(Xmm dst, GP64 src) { |
| 2055 | int prefix = 0x66, |
| 2056 | map = 0x0f, |
| 2057 | opcode = 0x6e; |
| 2058 | VEX v = vex(0, dst>>3, 0, src>>3, |
| 2059 | map, 0, /*ymm?*/0, prefix); |
| 2060 | this->bytes(v.bytes, v.len); |
| 2061 | this->byte(opcode); |
| 2062 | this->byte(mod_rm(Mod::Direct, dst&7, src&7)); |
| 2063 | } |
| 2064 | |
| 2065 | void Assembler::movzbl(GP64 dst, GP64 src, int off) { |
| 2066 | if ((dst>>3) || (src>>3)) { |
| 2067 | this->byte(rex(0,dst>>3,0,src>>3)); |
| 2068 | } |
| 2069 | this->byte(0x0f); |
| 2070 | this->byte(0xb6); |
| 2071 | this->byte(mod_rm(mod(off), dst&7, src&7)); |
| 2072 | this->bytes(&off, imm_bytes(mod(off))); |
| 2073 | } |
| 2074 | |
| 2075 | |
| 2076 | void Assembler::movb(GP64 dst, GP64 src) { |
| 2077 | if ((dst>>3) || (src>>3)) { |
| 2078 | this->byte(rex(0,src>>3,0,dst>>3)); |
| 2079 | } |
| 2080 | this->byte(0x88); |
| 2081 | this->byte(mod_rm(Mod::Indirect, src&7, dst&7)); |
| 2082 | } |
| 2083 | |
| 2084 | void Assembler::vpinsrw(Xmm dst, Xmm src, GP64 ptr, int imm) { |
| 2085 | int prefix = 0x66, |
| 2086 | map = 0x0f, |
| 2087 | opcode = 0xc4; |
| 2088 | VEX v = vex(0, dst>>3, 0, ptr>>3, |
| 2089 | map, src, /*ymm?*/0, prefix); |
| 2090 | this->bytes(v.bytes, v.len); |
| 2091 | this->byte(opcode); |
| 2092 | this->byte(mod_rm(Mod::Indirect, dst&7, ptr&7)); |
| 2093 | this->byte(imm); |
| 2094 | } |
| 2095 | |
| 2096 | void Assembler::vpinsrb(Xmm dst, Xmm src, GP64 ptr, int imm) { |
| 2097 | int prefix = 0x66, |
| 2098 | map = 0x3a0f, |
| 2099 | opcode = 0x20; |
| 2100 | VEX v = vex(0, dst>>3, 0, ptr>>3, |
| 2101 | map, src, /*ymm?*/0, prefix); |
| 2102 | this->bytes(v.bytes, v.len); |
| 2103 | this->byte(opcode); |
| 2104 | this->byte(mod_rm(Mod::Indirect, dst&7, ptr&7)); |
| 2105 | this->byte(imm); |
| 2106 | } |
| 2107 | |
| 2108 | void Assembler::vpextrw(GP64 ptr, Xmm src, int imm) { |
| 2109 | int prefix = 0x66, |
| 2110 | map = 0x3a0f, |
| 2111 | opcode = 0x15; |
| 2112 | |
| 2113 | VEX v = vex(0, src>>3, 0, ptr>>3, |
| 2114 | map, 0, /*ymm?*/0, prefix); |
| 2115 | this->bytes(v.bytes, v.len); |
| 2116 | this->byte(opcode); |
| 2117 | this->byte(mod_rm(Mod::Indirect, src&7, ptr&7)); |
| 2118 | this->byte(imm); |
| 2119 | } |
| 2120 | void Assembler::vpextrb(GP64 ptr, Xmm src, int imm) { |
| 2121 | int prefix = 0x66, |
| 2122 | map = 0x3a0f, |
| 2123 | opcode = 0x14; |
| 2124 | |
| 2125 | VEX v = vex(0, src>>3, 0, ptr>>3, |
| 2126 | map, 0, /*ymm?*/0, prefix); |
| 2127 | this->bytes(v.bytes, v.len); |
| 2128 | this->byte(opcode); |
| 2129 | this->byte(mod_rm(Mod::Indirect, src&7, ptr&7)); |
| 2130 | this->byte(imm); |
| 2131 | } |
| 2132 | |
| 2133 | void Assembler::vgatherdps(Ymm dst, Scale scale, Ymm ix, GP64 base, Ymm mask) { |
| 2134 | // Unlike most instructions, no aliasing is permitted here. |
| 2135 | SkASSERT(dst != ix); |
| 2136 | SkASSERT(dst != mask); |
| 2137 | SkASSERT(mask != ix); |
| 2138 | |
| 2139 | int prefix = 0x66, |
| 2140 | map = 0x380f, |
| 2141 | opcode = 0x92; |
| 2142 | VEX v = vex(0, dst>>3, ix>>3, base>>3, |
| 2143 | map, mask, /*ymm?*/1, prefix); |
| 2144 | this->bytes(v.bytes, v.len); |
| 2145 | this->byte(opcode); |
| 2146 | this->byte(mod_rm(Mod::Indirect, dst&7, rsp/*use SIB*/)); |
| 2147 | this->byte(sib(scale, ix&7, base&7)); |
| 2148 | } |
| 2149 | |
| 2150 | // https://static.docs.arm.com/ddi0596/a/DDI_0596_ARM_a64_instruction_set_architecture.pdf |
| 2151 | |
| 2152 | static int operator"" _mask(unsigned long long bits) { return (1<<(int)bits)-1; } |
| 2153 | |
| 2154 | void Assembler::op(uint32_t hi, V m, uint32_t lo, V n, V d) { |
| 2155 | this->word( (hi & 11_mask) << 21 |
| 2156 | | (m & 5_mask) << 16 |
| 2157 | | (lo & 6_mask) << 10 |
| 2158 | | (n & 5_mask) << 5 |
| 2159 | | (d & 5_mask) << 0); |
| 2160 | } |
| 2161 | |
| 2162 | void Assembler::and16b(V d, V n, V m) { this->op(0b0'1'0'01110'00'1, m, 0b00011'1, n, d); } |
| 2163 | void Assembler::orr16b(V d, V n, V m) { this->op(0b0'1'0'01110'10'1, m, 0b00011'1, n, d); } |
| 2164 | void Assembler::eor16b(V d, V n, V m) { this->op(0b0'1'1'01110'00'1, m, 0b00011'1, n, d); } |
| 2165 | void Assembler::bic16b(V d, V n, V m) { this->op(0b0'1'0'01110'01'1, m, 0b00011'1, n, d); } |
| 2166 | void Assembler::bsl16b(V d, V n, V m) { this->op(0b0'1'1'01110'01'1, m, 0b00011'1, n, d); } |
| 2167 | void Assembler::not16b(V d, V n) { this->op(0b0'1'1'01110'00'10000'00101'10, n, d); } |
| 2168 | |
| 2169 | void Assembler::add4s(V d, V n, V m) { this->op(0b0'1'0'01110'10'1, m, 0b10000'1, n, d); } |
| 2170 | void Assembler::sub4s(V d, V n, V m) { this->op(0b0'1'1'01110'10'1, m, 0b10000'1, n, d); } |
| 2171 | void Assembler::mul4s(V d, V n, V m) { this->op(0b0'1'0'01110'10'1, m, 0b10011'1, n, d); } |
| 2172 | |
| 2173 | void Assembler::cmeq4s(V d, V n, V m) { this->op(0b0'1'1'01110'10'1, m, 0b10001'1, n, d); } |
| 2174 | void Assembler::cmgt4s(V d, V n, V m) { this->op(0b0'1'0'01110'10'1, m, 0b0011'0'1, n, d); } |
| 2175 | |
| 2176 | void Assembler::sub8h(V d, V n, V m) { this->op(0b0'1'1'01110'01'1, m, 0b10000'1, n, d); } |
| 2177 | void Assembler::mul8h(V d, V n, V m) { this->op(0b0'1'0'01110'01'1, m, 0b10011'1, n, d); } |
| 2178 | |
| 2179 | void Assembler::fadd4s(V d, V n, V m) { this->op(0b0'1'0'01110'0'0'1, m, 0b11010'1, n, d); } |
| 2180 | void Assembler::fsub4s(V d, V n, V m) { this->op(0b0'1'0'01110'1'0'1, m, 0b11010'1, n, d); } |
| 2181 | void Assembler::fmul4s(V d, V n, V m) { this->op(0b0'1'1'01110'0'0'1, m, 0b11011'1, n, d); } |
| 2182 | void Assembler::fdiv4s(V d, V n, V m) { this->op(0b0'1'1'01110'0'0'1, m, 0b11111'1, n, d); } |
| 2183 | void Assembler::fmin4s(V d, V n, V m) { this->op(0b0'1'0'01110'1'0'1, m, 0b11110'1, n, d); } |
| 2184 | void Assembler::fmax4s(V d, V n, V m) { this->op(0b0'1'0'01110'0'0'1, m, 0b11110'1, n, d); } |
| 2185 | void Assembler::fneg4s(V d, V n) { this->op(0b0'1'1'01110'1'0'10000'01111'10, n, d); } |
| 2186 | |
| 2187 | void Assembler::fcmeq4s(V d, V n, V m) { this->op(0b0'1'0'01110'0'0'1, m, 0b1110'0'1, n, d); } |
| 2188 | void Assembler::fcmgt4s(V d, V n, V m) { this->op(0b0'1'1'01110'1'0'1, m, 0b1110'0'1, n, d); } |
| 2189 | void Assembler::fcmge4s(V d, V n, V m) { this->op(0b0'1'1'01110'0'0'1, m, 0b1110'0'1, n, d); } |
| 2190 | |
| 2191 | void Assembler::fmla4s(V d, V n, V m) { this->op(0b0'1'0'01110'0'0'1, m, 0b11001'1, n, d); } |
| 2192 | void Assembler::fmls4s(V d, V n, V m) { this->op(0b0'1'0'01110'1'0'1, m, 0b11001'1, n, d); } |
| 2193 | |
| 2194 | void Assembler::tbl(V d, V n, V m) { this->op(0b0'1'001110'00'0, m, 0b0'00'0'00, n, d); } |
| 2195 | |
| 2196 | void Assembler::op(uint32_t op22, int imm, V n, V d) { |
| 2197 | this->word( (op22 & 22_mask) << 10 |
| 2198 | | imm << 16 // imm is embedded inside op, bit size depends on op |
| 2199 | | (n & 5_mask) << 5 |
| 2200 | | (d & 5_mask) << 0); |
| 2201 | } |
| 2202 | |
| 2203 | void Assembler::sli4s(V d, V n, int imm) { |
| 2204 | this->op(0b0'1'1'011110'0100'000'01010'1, ( imm&31), n, d); |
| 2205 | } |
| 2206 | void Assembler::shl4s(V d, V n, int imm) { |
| 2207 | this->op(0b0'1'0'011110'0100'000'01010'1, ( imm&31), n, d); |
| 2208 | } |
| 2209 | void Assembler::sshr4s(V d, V n, int imm) { |
| 2210 | this->op(0b0'1'0'011110'0100'000'00'0'0'0'1, (-imm&31), n, d); |
| 2211 | } |
| 2212 | void Assembler::ushr4s(V d, V n, int imm) { |
| 2213 | this->op(0b0'1'1'011110'0100'000'00'0'0'0'1, (-imm&31), n, d); |
| 2214 | } |
| 2215 | void Assembler::ushr8h(V d, V n, int imm) { |
| 2216 | this->op(0b0'1'1'011110'0010'000'00'0'0'0'1, (-imm&15), n, d); |
| 2217 | } |
| 2218 | |
| 2219 | void Assembler::scvtf4s (V d, V n) { this->op(0b0'1'0'01110'0'0'10000'11101'10, n,d); } |
| 2220 | void Assembler::fcvtzs4s(V d, V n) { this->op(0b0'1'0'01110'1'0'10000'1101'1'10, n,d); } |
| 2221 | void Assembler::fcvtns4s(V d, V n) { this->op(0b0'1'0'01110'0'0'10000'1101'0'10, n,d); } |
| 2222 | |
| 2223 | void Assembler::xtns2h(V d, V n) { this->op(0b0'0'0'01110'01'10000'10010'10, n,d); } |
| 2224 | void Assembler::xtnh2b(V d, V n) { this->op(0b0'0'0'01110'00'10000'10010'10, n,d); } |
| 2225 | |
| 2226 | void Assembler::uxtlb2h(V d, V n) { this->op(0b0'0'1'011110'0001'000'10100'1, n,d); } |
| 2227 | void Assembler::uxtlh2s(V d, V n) { this->op(0b0'0'1'011110'0010'000'10100'1, n,d); } |
| 2228 | |
| 2229 | void Assembler::uminv4s(V d, V n) { this->op(0b0'1'1'01110'10'11000'1'1010'10, n,d); } |
| 2230 | |
| 2231 | void Assembler::brk(int imm16) { |
| 2232 | this->word(0b11010100'001'0000000000000000'000'00 |
| 2233 | | (imm16 & 16_mask) << 5); |
| 2234 | } |
| 2235 | |
| 2236 | void Assembler::ret(X n) { |
| 2237 | this->word(0b1101011'0'0'10'11111'0000'0'0 << 10 |
| 2238 | | (n & 5_mask) << 5); |
| 2239 | } |
| 2240 | |
| 2241 | void Assembler::add(X d, X n, int imm12) { |
| 2242 | this->word(0b1'0'0'10001'00 << 22 |
| 2243 | | (imm12 & 12_mask) << 10 |
| 2244 | | (n & 5_mask) << 5 |
| 2245 | | (d & 5_mask) << 0); |
| 2246 | } |
| 2247 | void Assembler::sub(X d, X n, int imm12) { |
| 2248 | this->word( 0b1'1'0'10001'00 << 22 |
| 2249 | | (imm12 & 12_mask) << 10 |
| 2250 | | (n & 5_mask) << 5 |
| 2251 | | (d & 5_mask) << 0); |
| 2252 | } |
| 2253 | void Assembler::subs(X d, X n, int imm12) { |
| 2254 | this->word( 0b1'1'1'10001'00 << 22 |
| 2255 | | (imm12 & 12_mask) << 10 |
| 2256 | | (n & 5_mask) << 5 |
| 2257 | | (d & 5_mask) << 0); |
| 2258 | } |
| 2259 | |
| 2260 | void Assembler::b(Condition cond, Label* l) { |
| 2261 | const int imm19 = this->disp19(l); |
| 2262 | this->word( 0b0101010'0 << 24 |
| 2263 | | (imm19 & 19_mask) << 5 |
| 2264 | | ((int)cond & 4_mask) << 0); |
| 2265 | } |
| 2266 | void Assembler::cbz(X t, Label* l) { |
| 2267 | const int imm19 = this->disp19(l); |
| 2268 | this->word( 0b1'011010'0 << 24 |
| 2269 | | (imm19 & 19_mask) << 5 |
| 2270 | | (t & 5_mask) << 0); |
| 2271 | } |
| 2272 | void Assembler::cbnz(X t, Label* l) { |
| 2273 | const int imm19 = this->disp19(l); |
| 2274 | this->word( 0b1'011010'1 << 24 |
| 2275 | | (imm19 & 19_mask) << 5 |
| 2276 | | (t & 5_mask) << 0); |
| 2277 | } |
| 2278 | |
| 2279 | void Assembler::ldrq(V dst, X src) { this->op(0b00'111'1'01'11'000000000000, src, dst); } |
| 2280 | void Assembler::ldrs(V dst, X src) { this->op(0b10'111'1'01'01'000000000000, src, dst); } |
| 2281 | void Assembler::ldrb(V dst, X src) { this->op(0b00'111'1'01'01'000000000000, src, dst); } |
| 2282 | |
| 2283 | void Assembler::strq(V src, X dst) { this->op(0b00'111'1'01'10'000000000000, dst, src); } |
| 2284 | void Assembler::strs(V src, X dst) { this->op(0b10'111'1'01'00'000000000000, dst, src); } |
| 2285 | void Assembler::strb(V src, X dst) { this->op(0b00'111'1'01'00'000000000000, dst, src); } |
| 2286 | |
| 2287 | void Assembler::fmovs(X dst, V src) { |
| 2288 | this->word(0b0'0'0'11110'00'1'00'110'000000 << 10 |
| 2289 | | (src & 5_mask) << 5 |
| 2290 | | (dst & 5_mask) << 0); |
| 2291 | } |
| 2292 | |
| 2293 | void Assembler::ldrq(V dst, Label* l) { |
| 2294 | const int imm19 = this->disp19(l); |
| 2295 | this->word( 0b10'011'1'00 << 24 |
| 2296 | | (imm19 & 19_mask) << 5 |
| 2297 | | (dst & 5_mask) << 0); |
| 2298 | } |
| 2299 | |
| 2300 | void Assembler::label(Label* l) { |
| 2301 | if (fCode) { |
| 2302 | // The instructions all currently point to l->offset. |
| 2303 | // We'll want to add a delta to point them to here(). |
| 2304 | int delta = here().offset - l->offset; |
| 2305 | l->offset = here().offset; |
| 2306 | |
| 2307 | if (l->kind == Label::ARMDisp19) { |
| 2308 | for (int ref : l->references) { |
| 2309 | // ref points to a 32-bit instruction with 19-bit displacement in instructions. |
| 2310 | uint32_t inst; |
| 2311 | memcpy(&inst, fCode + ref, 4); |
| 2312 | |
| 2313 | // [ 8 bits to preserve] [ 19 bit signed displacement ] [ 5 bits to preserve ] |
| 2314 | int disp = (int)(inst << 8) >> 13; |
| 2315 | |
| 2316 | disp += delta/4; // delta is in bytes, we want instructions. |
| 2317 | |
| 2318 | // Put it all back together, preserving the high 8 bits and low 5. |
| 2319 | inst = ((disp << 5) & (19_mask << 5)) |
| 2320 | | ((inst ) & ~(19_mask << 5)); |
| 2321 | |
| 2322 | memcpy(fCode + ref, &inst, 4); |
| 2323 | } |
| 2324 | } |
| 2325 | |
| 2326 | if (l->kind == Label::X86Disp32) { |
| 2327 | for (int ref : l->references) { |
| 2328 | // ref points to a 32-bit displacement in bytes. |
| 2329 | int disp; |
| 2330 | memcpy(&disp, fCode + ref, 4); |
| 2331 | |
| 2332 | disp += delta; |
| 2333 | |
| 2334 | memcpy(fCode + ref, &disp, 4); |
| 2335 | } |
| 2336 | } |
| 2337 | } |
| 2338 | } |
| 2339 | |
| 2340 | void Program::eval(int n, void* args[]) const { |
| 2341 | #define SKVM_JIT_STATS 0 |
| 2342 | #if SKVM_JIT_STATS |
| 2343 | static std::atomic<int64_t> calls{0}, jits{0}, |
| 2344 | pixels{0}, fast{0}; |
| 2345 | pixels += n; |
| 2346 | if (0 == calls++) { |
| 2347 | atexit([]{ |
| 2348 | int64_t num = jits .load(), |
| 2349 | den = calls.load(); |
| 2350 | SkDebugf("%.3g%% of %lld eval() calls went through JIT.\n" , (100.0 * num)/den, den); |
| 2351 | num = fast .load(); |
| 2352 | den = pixels.load(); |
| 2353 | SkDebugf("%.3g%% of %lld pixels went through JIT.\n" , (100.0 * num)/den, den); |
| 2354 | }); |
| 2355 | } |
| 2356 | #endif |
| 2357 | // This may fail either simply because we can't JIT, or when using LLVM, |
| 2358 | // because the work represented by fImpl->llvm_compiling hasn't finished yet. |
| 2359 | if (const void* b = fImpl->jit_entry.load()) { |
| 2360 | #if SKVM_JIT_STATS |
| 2361 | jits++; |
| 2362 | fast += n; |
| 2363 | #endif |
| 2364 | void** a = args; |
| 2365 | switch (fImpl->strides.size()) { |
| 2366 | case 0: return ((void(*)(int ))b)(n ); |
| 2367 | case 1: return ((void(*)(int,void* ))b)(n,a[0] ); |
| 2368 | case 2: return ((void(*)(int,void*,void* ))b)(n,a[0],a[1] ); |
| 2369 | case 3: return ((void(*)(int,void*,void*,void* ))b)(n,a[0],a[1],a[2] ); |
| 2370 | case 4: return ((void(*)(int,void*,void*,void*,void*))b)(n,a[0],a[1],a[2],a[3]); |
| 2371 | case 5: return ((void(*)(int,void*,void*,void*,void*,void*))b) |
| 2372 | (n,a[0],a[1],a[2],a[3],a[4]); |
| 2373 | default: SkUNREACHABLE; // TODO |
| 2374 | } |
| 2375 | } |
| 2376 | |
| 2377 | // So we'll sometimes use the interpreter here even if later calls will use the JIT. |
| 2378 | SkOpts::interpret_skvm(fImpl->instructions.data(), (int)fImpl->instructions.size(), |
| 2379 | this->nregs(), this->loop(), fImpl->strides.data(), this->nargs(), |
| 2380 | n, args); |
| 2381 | } |
| 2382 | |
| 2383 | #if defined(SKVM_LLVM) |
| 2384 | void Program::setupLLVM(const std::vector<OptimizedInstruction>& instructions, |
| 2385 | const char* debug_name) { |
| 2386 | auto ctx = std::make_unique<llvm::LLVMContext>(); |
| 2387 | |
| 2388 | auto mod = std::make_unique<llvm::Module>("" , *ctx); |
| 2389 | // All the scary bare pointers from here on are owned by ctx or mod, I think. |
| 2390 | |
| 2391 | // Everything I've tested runs faster at K=8 (using ymm) than K=16 (zmm) on SKX machines. |
| 2392 | const int K = (true && SkCpu::Supports(SkCpu::HSW)) ? 8 : 4; |
| 2393 | |
| 2394 | llvm::Type *ptr = llvm::Type::getInt8Ty(*ctx)->getPointerTo(), |
| 2395 | *i32 = llvm::Type::getInt32Ty(*ctx); |
| 2396 | |
| 2397 | std::vector<llvm::Type*> arg_types = { i32 }; |
| 2398 | for (size_t i = 0; i < fImpl->strides.size(); i++) { |
| 2399 | arg_types.push_back(ptr); |
| 2400 | } |
| 2401 | |
| 2402 | llvm::FunctionType* fn_type = llvm::FunctionType::get(llvm::Type::getVoidTy(*ctx), |
| 2403 | arg_types, /*vararg?=*/false); |
| 2404 | llvm::Function* fn |
| 2405 | = llvm::Function::Create(fn_type, llvm::GlobalValue::ExternalLinkage, debug_name, *mod); |
| 2406 | for (size_t i = 0; i < fImpl->strides.size(); i++) { |
| 2407 | fn->addParamAttr(i+1, llvm::Attribute::NoAlias); |
| 2408 | } |
| 2409 | |
| 2410 | llvm::BasicBlock *enter = llvm::BasicBlock::Create(*ctx, "enter" , fn), |
| 2411 | *hoistK = llvm::BasicBlock::Create(*ctx, "hoistK" , fn), |
| 2412 | *testK = llvm::BasicBlock::Create(*ctx, "testK" , fn), |
| 2413 | *loopK = llvm::BasicBlock::Create(*ctx, "loopK" , fn), |
| 2414 | *hoist1 = llvm::BasicBlock::Create(*ctx, "hoist1" , fn), |
| 2415 | *test1 = llvm::BasicBlock::Create(*ctx, "test1" , fn), |
| 2416 | *loop1 = llvm::BasicBlock::Create(*ctx, "loop1" , fn), |
| 2417 | *leave = llvm::BasicBlock::Create(*ctx, "leave" , fn); |
| 2418 | |
| 2419 | using IRBuilder = llvm::IRBuilder<>; |
| 2420 | |
| 2421 | llvm::PHINode* n; |
| 2422 | std::vector<llvm::PHINode*> args; |
| 2423 | std::vector<llvm::Value*> vals(instructions.size()); |
| 2424 | |
| 2425 | auto emit = [&](size_t i, bool scalar, IRBuilder* b) { |
| 2426 | auto [op, x,y,z, immy,immz, death,can_hoist,used_in_loop] = instructions[i]; |
| 2427 | |
| 2428 | llvm::Type *i1 = llvm::Type::getInt1Ty (*ctx), |
| 2429 | *i8 = llvm::Type::getInt8Ty (*ctx), |
| 2430 | *i16 = llvm::Type::getInt16Ty(*ctx), |
| 2431 | *i16x2 = llvm::VectorType::get(i16, 2), |
| 2432 | *f32 = llvm::Type::getFloatTy(*ctx), |
| 2433 | *I1 = scalar ? i1 : llvm::VectorType::get(i1 , K ), |
| 2434 | *I8 = scalar ? i8 : llvm::VectorType::get(i8 , K ), |
| 2435 | *I16 = scalar ? i16 : llvm::VectorType::get(i16, K ), |
| 2436 | *I16x2 = scalar ? i16x2 : llvm::VectorType::get(i16, K*2), |
| 2437 | *I32 = scalar ? i32 : llvm::VectorType::get(i32, K ), |
| 2438 | *F32 = scalar ? f32 : llvm::VectorType::get(f32, K ); |
| 2439 | |
| 2440 | auto I = [&](llvm::Value* v) { return b->CreateBitCast(v, I32 ); }; |
| 2441 | auto F = [&](llvm::Value* v) { return b->CreateBitCast(v, F32 ); }; |
| 2442 | auto x2 = [&](llvm::Value* v) { return b->CreateBitCast(v, I16x2); }; |
| 2443 | |
| 2444 | auto S = [&](llvm::Type* dst, llvm::Value* v) { return b->CreateSExt(v, dst); }; |
| 2445 | |
| 2446 | switch (llvm::Type* t = nullptr; op) { |
| 2447 | default: |
| 2448 | SkDebugf("can't llvm %s (%d)\n" , name(op), op); |
| 2449 | return false; |
| 2450 | |
| 2451 | case Op::assert_true: /*TODO*/ break; |
| 2452 | |
| 2453 | case Op::index: |
| 2454 | if (I32->isVectorTy()) { |
| 2455 | std::vector<llvm::Constant*> iota(K); |
| 2456 | for (int j = 0; j < K; j++) { |
| 2457 | iota[j] = b->getInt32(j); |
| 2458 | } |
| 2459 | vals[i] = b->CreateSub(b->CreateVectorSplat(K, n), |
| 2460 | llvm::ConstantVector::get(iota)); |
| 2461 | } else { |
| 2462 | vals[i] = n; |
| 2463 | } break; |
| 2464 | |
| 2465 | case Op::load8: t = I8 ; goto load; |
| 2466 | case Op::load16: t = I16; goto load; |
| 2467 | case Op::load32: t = I32; goto load; |
| 2468 | load: { |
| 2469 | llvm::Value* ptr = b->CreateBitCast(args[immy], t->getPointerTo()); |
| 2470 | vals[i] = b->CreateZExt(b->CreateAlignedLoad(ptr, 1), I32); |
| 2471 | } break; |
| 2472 | |
| 2473 | |
| 2474 | case Op::splat: vals[i] = llvm::ConstantInt::get(I32, immy); break; |
| 2475 | |
| 2476 | case Op::uniform8: t = i8 ; goto uniform; |
| 2477 | case Op::uniform16: t = i16; goto uniform; |
| 2478 | case Op::uniform32: t = i32; goto uniform; |
| 2479 | uniform: { |
| 2480 | llvm::Value* ptr = b->CreateBitCast(b->CreateConstInBoundsGEP1_32(nullptr, |
| 2481 | args[immy], |
| 2482 | immz), |
| 2483 | t->getPointerTo()); |
| 2484 | llvm::Value* val = b->CreateZExt(b->CreateAlignedLoad(ptr, 1), i32); |
| 2485 | vals[i] = I32->isVectorTy() ? b->CreateVectorSplat(K, val) |
| 2486 | : val; |
| 2487 | } break; |
| 2488 | |
| 2489 | case Op::gather8: t = i8 ; goto gather; |
| 2490 | case Op::gather16: t = i16; goto gather; |
| 2491 | case Op::gather32: t = i32; goto gather; |
| 2492 | gather: { |
| 2493 | // Our gather base pointer is immz bytes off of uniform immy. |
| 2494 | llvm::Value* base = |
| 2495 | b->CreateLoad(b->CreateBitCast(b->CreateConstInBoundsGEP1_32(nullptr, |
| 2496 | args[immy], |
| 2497 | immz), |
| 2498 | t->getPointerTo()->getPointerTo())); |
| 2499 | |
| 2500 | llvm::Value* ptr = b->CreateInBoundsGEP(nullptr, base, vals[x]); |
| 2501 | llvm::Value* gathered; |
| 2502 | if (ptr->getType()->isVectorTy()) { |
| 2503 | gathered = b->CreateMaskedGather(ptr, 1); |
| 2504 | } else { |
| 2505 | gathered = b->CreateAlignedLoad(ptr, 1); |
| 2506 | } |
| 2507 | vals[i] = b->CreateZExt(gathered, I32); |
| 2508 | } break; |
| 2509 | |
| 2510 | case Op::store8: t = I8 ; goto store; |
| 2511 | case Op::store16: t = I16; goto store; |
| 2512 | case Op::store32: t = I32; goto store; |
| 2513 | store: { |
| 2514 | llvm::Value* val = b->CreateTrunc(vals[x], t); |
| 2515 | llvm::Value* ptr = b->CreateBitCast(args[immy], |
| 2516 | val->getType()->getPointerTo()); |
| 2517 | vals[i] = b->CreateAlignedStore(val, ptr, 1); |
| 2518 | } break; |
| 2519 | |
| 2520 | case Op::bit_and: vals[i] = b->CreateAnd(vals[x], vals[y]); break; |
| 2521 | case Op::bit_or : vals[i] = b->CreateOr (vals[x], vals[y]); break; |
| 2522 | case Op::bit_xor: vals[i] = b->CreateXor(vals[x], vals[y]); break; |
| 2523 | case Op::bit_clear: vals[i] = b->CreateAnd(vals[x], b->CreateNot(vals[y])); break; |
| 2524 | |
| 2525 | case Op::pack: vals[i] = b->CreateOr(vals[x], b->CreateShl(vals[y], immz)); break; |
| 2526 | |
| 2527 | case Op::select: |
| 2528 | vals[i] = b->CreateSelect(b->CreateTrunc(vals[x], I1), vals[y], vals[z]); |
| 2529 | break; |
| 2530 | |
| 2531 | case Op::add_i32: vals[i] = b->CreateAdd(vals[x], vals[y]); break; |
| 2532 | case Op::sub_i32: vals[i] = b->CreateSub(vals[x], vals[y]); break; |
| 2533 | case Op::mul_i32: vals[i] = b->CreateMul(vals[x], vals[y]); break; |
| 2534 | |
| 2535 | case Op::shl_i32: vals[i] = b->CreateShl (vals[x], immy); break; |
| 2536 | case Op::sra_i32: vals[i] = b->CreateAShr(vals[x], immy); break; |
| 2537 | case Op::shr_i32: vals[i] = b->CreateLShr(vals[x], immy); break; |
| 2538 | |
| 2539 | case Op:: eq_i32: vals[i] = S(I32, b->CreateICmpEQ (vals[x], vals[y])); break; |
| 2540 | case Op::neq_i32: vals[i] = S(I32, b->CreateICmpNE (vals[x], vals[y])); break; |
| 2541 | case Op:: gt_i32: vals[i] = S(I32, b->CreateICmpSGT(vals[x], vals[y])); break; |
| 2542 | case Op::gte_i32: vals[i] = S(I32, b->CreateICmpSGE(vals[x], vals[y])); break; |
| 2543 | |
| 2544 | case Op::add_f32: vals[i] = I(b->CreateFAdd(F(vals[x]), F(vals[y]))); break; |
| 2545 | case Op::sub_f32: vals[i] = I(b->CreateFSub(F(vals[x]), F(vals[y]))); break; |
| 2546 | case Op::mul_f32: vals[i] = I(b->CreateFMul(F(vals[x]), F(vals[y]))); break; |
| 2547 | case Op::div_f32: vals[i] = I(b->CreateFDiv(F(vals[x]), F(vals[y]))); break; |
| 2548 | |
| 2549 | case Op:: eq_f32: vals[i] = S(I32, b->CreateFCmpOEQ(F(vals[x]), F(vals[y]))); break; |
| 2550 | case Op::neq_f32: vals[i] = S(I32, b->CreateFCmpUNE(F(vals[x]), F(vals[y]))); break; |
| 2551 | case Op:: gt_f32: vals[i] = S(I32, b->CreateFCmpOGT(F(vals[x]), F(vals[y]))); break; |
| 2552 | case Op::gte_f32: vals[i] = S(I32, b->CreateFCmpOGE(F(vals[x]), F(vals[y]))); break; |
| 2553 | |
| 2554 | case Op::fma_f32: |
| 2555 | vals[i] = I(b->CreateIntrinsic(llvm::Intrinsic::fma, {F32}, |
| 2556 | {F(vals[x]), F(vals[y]), F(vals[z])})); |
| 2557 | break; |
| 2558 | |
| 2559 | case Op::fms_f32: |
| 2560 | vals[i] = I(b->CreateIntrinsic(llvm::Intrinsic::fma, {F32}, |
| 2561 | {F(vals[x]), F(vals[y]), |
| 2562 | b->CreateFNeg(F(vals[z]))})); |
| 2563 | break; |
| 2564 | |
| 2565 | case Op::fnma_f32: |
| 2566 | vals[i] = I(b->CreateIntrinsic(llvm::Intrinsic::fma, {F32}, |
| 2567 | {b->CreateFNeg(F(vals[x])), F(vals[y]), |
| 2568 | F(vals[z])})); |
| 2569 | break; |
| 2570 | |
| 2571 | case Op::floor: |
| 2572 | vals[i] = I(b->CreateUnaryIntrinsic(llvm::Intrinsic::floor, F(vals[x]))); |
| 2573 | break; |
| 2574 | |
| 2575 | case Op::max_f32: |
| 2576 | vals[i] = I(b->CreateSelect(b->CreateFCmpOLT(F(vals[x]), F(vals[y])), |
| 2577 | F(vals[y]), F(vals[x]))); |
| 2578 | break; |
| 2579 | case Op::min_f32: |
| 2580 | vals[i] = I(b->CreateSelect(b->CreateFCmpOLT(F(vals[y]), F(vals[x])), |
| 2581 | F(vals[y]), F(vals[x]))); |
| 2582 | break; |
| 2583 | |
| 2584 | case Op::sqrt_f32: |
| 2585 | vals[i] = I(b->CreateUnaryIntrinsic(llvm::Intrinsic::sqrt, F(vals[x]))); |
| 2586 | break; |
| 2587 | |
| 2588 | case Op::to_f32: vals[i] = I(b->CreateSIToFP( vals[x] , F32)); break; |
| 2589 | case Op::trunc : vals[i] = b->CreateFPToSI(F(vals[x]), I32) ; break; |
| 2590 | case Op::round : { |
| 2591 | // Basic impl when we can't use cvtps2dq and co. |
| 2592 | auto round = b->CreateUnaryIntrinsic(llvm::Intrinsic::rint, F(vals[x])); |
| 2593 | vals[i] = b->CreateFPToSI(round, I32); |
| 2594 | |
| 2595 | #if 1 && defined(SK_CPU_X86) |
| 2596 | // Using b->CreateIntrinsic(..., {}, {...}) to avoid name mangling. |
| 2597 | if (scalar) { |
| 2598 | // cvtss2si is float x4 -> int, ignoring input lanes 1,2,3. ¯\_(ツ)_/¯ |
| 2599 | llvm::Value* v = llvm::UndefValue::get(llvm::VectorType::get(f32, 4)); |
| 2600 | v = b->CreateInsertElement(v, F(vals[x]), (uint64_t)0); |
| 2601 | vals[i] = b->CreateIntrinsic(llvm::Intrinsic::x86_sse_cvtss2si, {}, {v}); |
| 2602 | } else { |
| 2603 | SkASSERT(K == 4 || K == 8); |
| 2604 | auto intr = K == 4 ? llvm::Intrinsic::x86_sse2_cvtps2dq : |
| 2605 | /* K == 8 ?*/ llvm::Intrinsic::x86_avx_cvt_ps2dq_256; |
| 2606 | vals[i] = b->CreateIntrinsic(intr, {}, {F(vals[x])}); |
| 2607 | } |
| 2608 | #endif |
| 2609 | } break; |
| 2610 | |
| 2611 | case Op::add_i16x2: vals[i] = I(b->CreateAdd(x2(vals[x]), x2(vals[y]))); break; |
| 2612 | case Op::sub_i16x2: vals[i] = I(b->CreateSub(x2(vals[x]), x2(vals[y]))); break; |
| 2613 | case Op::mul_i16x2: vals[i] = I(b->CreateMul(x2(vals[x]), x2(vals[y]))); break; |
| 2614 | |
| 2615 | case Op::shl_i16x2: vals[i] = I(b->CreateShl (x2(vals[x]), immy)); break; |
| 2616 | case Op::sra_i16x2: vals[i] = I(b->CreateAShr(x2(vals[x]), immy)); break; |
| 2617 | case Op::shr_i16x2: vals[i] = I(b->CreateLShr(x2(vals[x]), immy)); break; |
| 2618 | |
| 2619 | case Op:: eq_i16x2: |
| 2620 | vals[i] = I(S(I16x2, b->CreateICmpEQ (x2(vals[x]), x2(vals[y])))); |
| 2621 | break; |
| 2622 | case Op::neq_i16x2: |
| 2623 | vals[i] = I(S(I16x2, b->CreateICmpNE (x2(vals[x]), x2(vals[y])))); |
| 2624 | break; |
| 2625 | case Op:: gt_i16x2: |
| 2626 | vals[i] = I(S(I16x2, b->CreateICmpSGT(x2(vals[x]), x2(vals[y])))); |
| 2627 | break; |
| 2628 | case Op::gte_i16x2: |
| 2629 | vals[i] = I(S(I16x2, b->CreateICmpSGE(x2(vals[x]), x2(vals[y])))); |
| 2630 | break; |
| 2631 | } |
| 2632 | return true; |
| 2633 | }; |
| 2634 | |
| 2635 | { |
| 2636 | IRBuilder b(enter); |
| 2637 | b.CreateBr(hoistK); |
| 2638 | } |
| 2639 | |
| 2640 | // hoistK: emit each hoistable vector instruction; goto testK; |
| 2641 | // LLVM can do this sort of thing itself, but we've got the information cheap, |
| 2642 | // and pointer aliasing makes it easier to manually hoist than teach LLVM it's safe. |
| 2643 | { |
| 2644 | IRBuilder b(hoistK); |
| 2645 | |
| 2646 | // Hoisted instructions will need args (think, uniforms), so set that up now. |
| 2647 | // These phi nodes are degenerate... they'll always be the passed-in args from enter. |
| 2648 | // Later on when we start looping the phi nodes will start looking useful. |
| 2649 | llvm::Argument* arg = fn->arg_begin(); |
| 2650 | (void)arg++; // Leave n as nullptr... it'd be a bug to use n in a hoisted instruction. |
| 2651 | for (size_t i = 0; i < fImpl->strides.size(); i++) { |
| 2652 | args.push_back(b.CreatePHI(arg->getType(), 1)); |
| 2653 | args.back()->addIncoming(arg++, enter); |
| 2654 | } |
| 2655 | |
| 2656 | for (size_t i = 0; i < instructions.size(); i++) { |
| 2657 | if (instructions[i].can_hoist && !emit(i, false, &b)) { |
| 2658 | return; |
| 2659 | } |
| 2660 | } |
| 2661 | |
| 2662 | b.CreateBr(testK); |
| 2663 | } |
| 2664 | |
| 2665 | // testK: if (N >= K) goto loopK; else goto hoist1; |
| 2666 | { |
| 2667 | IRBuilder b(testK); |
| 2668 | |
| 2669 | // New phi nodes for `n` and each pointer argument from hoistK; later we'll add loopK. |
| 2670 | // These also start as the initial function arguments; hoistK can't have changed them. |
| 2671 | llvm::Argument* arg = fn->arg_begin(); |
| 2672 | |
| 2673 | n = b.CreatePHI(arg->getType(), 2); |
| 2674 | n->addIncoming(arg++, hoistK); |
| 2675 | |
| 2676 | for (size_t i = 0; i < fImpl->strides.size(); i++) { |
| 2677 | args[i] = b.CreatePHI(arg->getType(), 2); |
| 2678 | args[i]->addIncoming(arg++, hoistK); |
| 2679 | } |
| 2680 | |
| 2681 | b.CreateCondBr(b.CreateICmpSGE(n, b.getInt32(K)), loopK, hoist1); |
| 2682 | } |
| 2683 | |
| 2684 | // loopK: ... insts on K x T vectors; N -= K, args += K*stride; goto testK; |
| 2685 | { |
| 2686 | IRBuilder b(loopK); |
| 2687 | for (size_t i = 0; i < instructions.size(); i++) { |
| 2688 | if (!instructions[i].can_hoist && !emit(i, false, &b)) { |
| 2689 | return; |
| 2690 | } |
| 2691 | } |
| 2692 | |
| 2693 | // n -= K |
| 2694 | llvm::Value* n_next = b.CreateSub(n, b.getInt32(K)); |
| 2695 | n->addIncoming(n_next, loopK); |
| 2696 | |
| 2697 | // Each arg ptr += K |
| 2698 | for (size_t i = 0; i < fImpl->strides.size(); i++) { |
| 2699 | llvm::Value* arg_next |
| 2700 | = b.CreateConstInBoundsGEP1_32(nullptr, args[i], K*fImpl->strides[i]); |
| 2701 | args[i]->addIncoming(arg_next, loopK); |
| 2702 | } |
| 2703 | b.CreateBr(testK); |
| 2704 | } |
| 2705 | |
| 2706 | // hoist1: emit each hoistable scalar instruction; goto test1; |
| 2707 | { |
| 2708 | IRBuilder b(hoist1); |
| 2709 | for (size_t i = 0; i < instructions.size(); i++) { |
| 2710 | if (instructions[i].can_hoist && !emit(i, true, &b)) { |
| 2711 | return; |
| 2712 | } |
| 2713 | } |
| 2714 | b.CreateBr(test1); |
| 2715 | } |
| 2716 | |
| 2717 | // test1: if (N >= 1) goto loop1; else goto leave; |
| 2718 | { |
| 2719 | IRBuilder b(test1); |
| 2720 | |
| 2721 | // Set up new phi nodes for `n` and each pointer argument, now from hoist1 and loop1. |
| 2722 | llvm::PHINode* n_new = b.CreatePHI(n->getType(), 2); |
| 2723 | n_new->addIncoming(n, hoist1); |
| 2724 | n = n_new; |
| 2725 | |
| 2726 | for (size_t i = 0; i < fImpl->strides.size(); i++) { |
| 2727 | llvm::PHINode* arg_new = b.CreatePHI(args[i]->getType(), 2); |
| 2728 | arg_new->addIncoming(args[i], hoist1); |
| 2729 | args[i] = arg_new; |
| 2730 | } |
| 2731 | |
| 2732 | b.CreateCondBr(b.CreateICmpSGE(n, b.getInt32(1)), loop1, leave); |
| 2733 | } |
| 2734 | |
| 2735 | // loop1: ... insts on scalars; N -= 1, args += stride; goto test1; |
| 2736 | { |
| 2737 | IRBuilder b(loop1); |
| 2738 | for (size_t i = 0; i < instructions.size(); i++) { |
| 2739 | if (!instructions[i].can_hoist && !emit(i, true, &b)) { |
| 2740 | return; |
| 2741 | } |
| 2742 | } |
| 2743 | |
| 2744 | // n -= 1 |
| 2745 | llvm::Value* n_next = b.CreateSub(n, b.getInt32(1)); |
| 2746 | n->addIncoming(n_next, loop1); |
| 2747 | |
| 2748 | // Each arg ptr += K |
| 2749 | for (size_t i = 0; i < fImpl->strides.size(); i++) { |
| 2750 | llvm::Value* arg_next |
| 2751 | = b.CreateConstInBoundsGEP1_32(nullptr, args[i], fImpl->strides[i]); |
| 2752 | args[i]->addIncoming(arg_next, loop1); |
| 2753 | } |
| 2754 | b.CreateBr(test1); |
| 2755 | } |
| 2756 | |
| 2757 | // leave: ret |
| 2758 | { |
| 2759 | IRBuilder b(leave); |
| 2760 | b.CreateRetVoid(); |
| 2761 | } |
| 2762 | |
| 2763 | SkASSERT(false == llvm::verifyModule(*mod, &llvm::outs())); |
| 2764 | |
| 2765 | if (true) { |
| 2766 | SkString path = SkStringPrintf("/tmp/%s.bc" , debug_name); |
| 2767 | std::error_code err; |
| 2768 | llvm::raw_fd_ostream os(path.c_str(), err); |
| 2769 | if (err) { |
| 2770 | return; |
| 2771 | } |
| 2772 | llvm::WriteBitcodeToFile(*mod, os); |
| 2773 | } |
| 2774 | |
| 2775 | static SkOnce once; |
| 2776 | once([]{ |
| 2777 | SkAssertResult(false == llvm::InitializeNativeTarget()); |
| 2778 | SkAssertResult(false == llvm::InitializeNativeTargetAsmPrinter()); |
| 2779 | }); |
| 2780 | |
| 2781 | if (llvm::ExecutionEngine* ee = llvm::EngineBuilder(std::move(mod)) |
| 2782 | .setEngineKind(llvm::EngineKind::JIT) |
| 2783 | .setMCPU(llvm::sys::getHostCPUName()) |
| 2784 | .create()) { |
| 2785 | fImpl->llvm_ctx = std::move(ctx); |
| 2786 | fImpl->llvm_ee.reset(ee); |
| 2787 | |
| 2788 | // We have to be careful here about what we close over and how, in case fImpl moves. |
| 2789 | // fImpl itself may change, but its pointee fields won't, so close over them by value. |
| 2790 | // Also, debug_name will almost certainly leave scope, so copy it. |
| 2791 | fImpl->llvm_compiling = std::async(std::launch::async, [dst = &fImpl->jit_entry, |
| 2792 | ee = fImpl->llvm_ee.get(), |
| 2793 | name = std::string(debug_name)]{ |
| 2794 | // std::atomic<void*>* dst; |
| 2795 | // llvm::ExecutionEngine* ee; |
| 2796 | // std::string name; |
| 2797 | dst->store( (void*)ee->getFunctionAddress(name.c_str()) ); |
| 2798 | }); |
| 2799 | } |
| 2800 | } |
| 2801 | #endif |
| 2802 | |
| 2803 | void Program::waitForLLVM() const { |
| 2804 | #if defined(SKVM_LLVM) |
| 2805 | if (fImpl->llvm_compiling.valid()) { |
| 2806 | fImpl->llvm_compiling.wait(); |
| 2807 | } |
| 2808 | #endif |
| 2809 | } |
| 2810 | |
| 2811 | bool Program::hasJIT() const { |
| 2812 | // Program::hasJIT() is really just a debugging / test aid, |
| 2813 | // so we don't mind adding a sync point here to wait for compilation. |
| 2814 | this->waitForLLVM(); |
| 2815 | |
| 2816 | return fImpl->jit_entry.load() != nullptr; |
| 2817 | } |
| 2818 | |
| 2819 | void Program::dropJIT() { |
| 2820 | #if defined(SKVM_LLVM) |
| 2821 | this->waitForLLVM(); |
| 2822 | fImpl->llvm_ee .reset(nullptr); |
| 2823 | fImpl->llvm_ctx.reset(nullptr); |
| 2824 | #elif defined(SKVM_JIT) |
| 2825 | if (fImpl->dylib) { |
| 2826 | dlclose(fImpl->dylib); |
| 2827 | } else if (auto jit_entry = fImpl->jit_entry.load()) { |
| 2828 | munmap(jit_entry, fImpl->jit_size); |
| 2829 | } |
| 2830 | #else |
| 2831 | SkASSERT(!this->hasJIT()); |
| 2832 | #endif |
| 2833 | |
| 2834 | fImpl->jit_entry.store(nullptr); |
| 2835 | fImpl->jit_size = 0; |
| 2836 | fImpl->dylib = nullptr; |
| 2837 | } |
| 2838 | |
| 2839 | Program::Program() : fImpl(std::make_unique<Impl>()) {} |
| 2840 | |
| 2841 | Program::~Program() { |
| 2842 | // Moved-from Programs may have fImpl == nullptr. |
| 2843 | if (fImpl) { |
| 2844 | this->dropJIT(); |
| 2845 | } |
| 2846 | } |
| 2847 | |
| 2848 | Program::Program(Program&& other) : fImpl(std::move(other.fImpl)) {} |
| 2849 | |
| 2850 | Program& Program::operator=(Program&& other) { |
| 2851 | fImpl = std::move(other.fImpl); |
| 2852 | return *this; |
| 2853 | } |
| 2854 | |
| 2855 | Program::Program(const std::vector<OptimizedInstruction>& interpreter, |
| 2856 | const std::vector<int>& strides) : Program() { |
| 2857 | fImpl->strides = strides; |
| 2858 | this->setupInterpreter(interpreter); |
| 2859 | } |
| 2860 | |
| 2861 | Program::Program(const std::vector<OptimizedInstruction>& interpreter, |
| 2862 | const std::vector<OptimizedInstruction>& jit, |
| 2863 | const std::vector<int>& strides, |
| 2864 | const char* debug_name) : Program() { |
| 2865 | fImpl->strides = strides; |
| 2866 | #if 1 && defined(SKVM_LLVM) |
| 2867 | this->setupLLVM(interpreter, debug_name); |
| 2868 | #elif 1 && defined(SKVM_JIT) |
| 2869 | this->setupJIT(jit, debug_name); |
| 2870 | #endif |
| 2871 | |
| 2872 | // Might as well do this after setupLLVM() to get a little more time to compile. |
| 2873 | this->setupInterpreter(interpreter); |
| 2874 | } |
| 2875 | |
| 2876 | std::vector<InterpreterInstruction> Program::instructions() const { return fImpl->instructions; } |
| 2877 | int Program::nargs() const { return (int)fImpl->strides.size(); } |
| 2878 | int Program::nregs() const { return fImpl->regs; } |
| 2879 | int Program::loop () const { return fImpl->loop; } |
| 2880 | bool Program::empty() const { return fImpl->instructions.empty(); } |
| 2881 | |
| 2882 | // Translate OptimizedInstructions to InterpreterInstructions. |
| 2883 | void Program::setupInterpreter(const std::vector<OptimizedInstruction>& instructions) { |
| 2884 | // Register each instruction is assigned to. |
| 2885 | std::vector<Reg> reg(instructions.size()); |
| 2886 | |
| 2887 | // This next bit is a bit more complicated than strictly necessary; |
| 2888 | // we could just assign every instruction to its own register. |
| 2889 | // |
| 2890 | // But recycling registers is fairly cheap, and good practice for the |
| 2891 | // JITs where minimizing register pressure really is important. |
| 2892 | // |
| 2893 | // Since we have effectively infinite registers, we hoist any value we can. |
| 2894 | // (The JIT may choose a more complex policy to reduce register pressure.) |
| 2895 | auto hoisted = [&](Val id) { return instructions[id].can_hoist; }; |
| 2896 | |
| 2897 | fImpl->regs = 0; |
| 2898 | std::vector<Reg> avail; |
| 2899 | |
| 2900 | // Assign this value to a register, recycling them where we can. |
| 2901 | auto assign_register = [&](Val id) { |
| 2902 | const OptimizedInstruction& inst = instructions[id]; |
| 2903 | |
| 2904 | // If this is a real input and it's lifetime ends at this instruction, |
| 2905 | // we can recycle the register it's occupying. |
| 2906 | auto maybe_recycle_register = [&](Val input) { |
| 2907 | if (input != NA |
| 2908 | && instructions[input].death == id |
| 2909 | && !(hoisted(input) && instructions[input].used_in_loop)) { |
| 2910 | avail.push_back(reg[input]); |
| 2911 | } |
| 2912 | }; |
| 2913 | |
| 2914 | // Take care to not recycle the same register twice. |
| 2915 | if (true ) { maybe_recycle_register(inst.x); } |
| 2916 | if (inst.y != inst.x ) { maybe_recycle_register(inst.y); } |
| 2917 | if (inst.z != inst.x && inst.z != inst.y) { maybe_recycle_register(inst.z); } |
| 2918 | |
| 2919 | // Instructions that die at themselves (stores) don't need a register. |
| 2920 | if (inst.death != id) { |
| 2921 | // Allocate a register if we have to, preferring to reuse anything available. |
| 2922 | if (avail.empty()) { |
| 2923 | reg[id] = fImpl->regs++; |
| 2924 | } else { |
| 2925 | reg[id] = avail.back(); |
| 2926 | avail.pop_back(); |
| 2927 | } |
| 2928 | } |
| 2929 | }; |
| 2930 | |
| 2931 | // Assign a register to each hoisted instruction, then each non-hoisted loop instruction. |
| 2932 | for (Val id = 0; id < (Val)instructions.size(); id++) { |
| 2933 | if ( hoisted(id)) { assign_register(id); } |
| 2934 | } |
| 2935 | for (Val id = 0; id < (Val)instructions.size(); id++) { |
| 2936 | if (!hoisted(id)) { assign_register(id); } |
| 2937 | } |
| 2938 | |
| 2939 | // Translate OptimizedInstructions to InterpreterIstructions by mapping values to |
| 2940 | // registers. This will be two passes, first hoisted instructions, then inside the loop. |
| 2941 | |
| 2942 | // The loop begins at the fImpl->loop'th Instruction. |
| 2943 | fImpl->loop = 0; |
| 2944 | fImpl->instructions.reserve(instructions.size()); |
| 2945 | |
| 2946 | // Add a dummy mapping for the N/A sentinel Val to any arbitrary register |
| 2947 | // so lookups don't have to know which arguments are used by which Ops. |
| 2948 | auto lookup_register = [&](Val id) { |
| 2949 | return id == NA ? (Reg)0 |
| 2950 | : reg[id]; |
| 2951 | }; |
| 2952 | |
| 2953 | auto push_instruction = [&](Val id, const OptimizedInstruction& inst) { |
| 2954 | InterpreterInstruction pinst{ |
| 2955 | inst.op, |
| 2956 | lookup_register(id), |
| 2957 | lookup_register(inst.x), |
| 2958 | {lookup_register(inst.y)}, |
| 2959 | {lookup_register(inst.z)}, |
| 2960 | }; |
| 2961 | if (inst.y == NA) { pinst.immy = inst.immy; } |
| 2962 | if (inst.z == NA) { pinst.immz = inst.immz; } |
| 2963 | fImpl->instructions.push_back(pinst); |
| 2964 | }; |
| 2965 | |
| 2966 | for (Val id = 0; id < (Val)instructions.size(); id++) { |
| 2967 | const OptimizedInstruction& inst = instructions[id]; |
| 2968 | if (hoisted(id)) { |
| 2969 | push_instruction(id, inst); |
| 2970 | fImpl->loop++; |
| 2971 | } |
| 2972 | } |
| 2973 | for (Val id = 0; id < (Val)instructions.size(); id++) { |
| 2974 | const OptimizedInstruction& inst = instructions[id]; |
| 2975 | if (!hoisted(id)) { |
| 2976 | push_instruction(id, inst); |
| 2977 | } |
| 2978 | } |
| 2979 | } |
| 2980 | |
| 2981 | #if defined(SKVM_JIT) |
| 2982 | |
| 2983 | bool Program::jit(const std::vector<OptimizedInstruction>& instructions, |
| 2984 | const JITMode mode, |
| 2985 | Assembler* a) const { |
| 2986 | using A = Assembler; |
| 2987 | const bool try_hoisting = mode != JITMode::RegisterNoHoist; |
| 2988 | |
| 2989 | auto debug_dump = [&] { |
| 2990 | #if 0 |
| 2991 | SkDebugfStream stream; |
| 2992 | this->dump(&stream); |
| 2993 | return true; |
| 2994 | #else |
| 2995 | return false; |
| 2996 | #endif |
| 2997 | }; |
| 2998 | |
| 2999 | #if defined(__x86_64__) |
| 3000 | if (!SkCpu::Supports(SkCpu::HSW)) { |
| 3001 | return false; |
| 3002 | } |
| 3003 | const int K = 8; |
| 3004 | const bool stack_only = mode == JITMode::Stack; |
| 3005 | A::GP64 N = A::rdi, |
| 3006 | scratch = A::rax, |
| 3007 | scratch2 = A::r11, |
| 3008 | arg[] = { A::rsi, A::rdx, A::rcx, A::r8, A::r9 }; |
| 3009 | |
| 3010 | // All 16 ymm registers are available to use. |
| 3011 | using Reg = A::Ymm; |
| 3012 | const uint32_t all_regs = 0xffff; |
| 3013 | uint32_t avail = all_regs; |
| 3014 | |
| 3015 | #elif defined(__aarch64__) |
| 3016 | const int K = 4; |
| 3017 | const bool stack_only = false; // TODO |
| 3018 | A::X N = A::x0, |
| 3019 | scratch = A::x8, |
| 3020 | arg[] = { A::x1, A::x2, A::x3, A::x4, A::x5, A::x6, A::x7 }; |
| 3021 | |
| 3022 | // We can use v0-v7 and v16-v31 freely; we'd need to preserve v8-v15. |
| 3023 | using Reg = A::V; |
| 3024 | const uint32_t all_regs = 0xffff00ff; |
| 3025 | uint32_t avail = all_regs; |
| 3026 | #endif |
| 3027 | |
| 3028 | if (SK_ARRAY_COUNT(arg) < fImpl->strides.size()) { |
| 3029 | return false; |
| 3030 | } |
| 3031 | |
| 3032 | auto hoisted = [&](Val id) { return try_hoisting && instructions[id].can_hoist; }; |
| 3033 | |
| 3034 | std::vector<Reg> r(instructions.size()); |
| 3035 | |
| 3036 | struct LabelAndReg { |
| 3037 | A::Label label; |
| 3038 | Reg reg; |
| 3039 | }; |
| 3040 | SkTHashMap<int, LabelAndReg> constants; // All constants share the same pool. |
| 3041 | LabelAndReg iota; // Exists _only_ to vary per-lane. |
| 3042 | |
| 3043 | auto emit = [&](Val id, bool scalar) { |
| 3044 | if (stack_only) { |
| 3045 | SkASSERT(avail == all_regs); |
| 3046 | } |
| 3047 | |
| 3048 | const OptimizedInstruction& inst = instructions[id]; |
| 3049 | Op op = inst.op; |
| 3050 | Val x = inst.x, |
| 3051 | y = inst.y, |
| 3052 | z = inst.z; |
| 3053 | int immy = inst.immy, |
| 3054 | immz = inst.immz; |
| 3055 | |
| 3056 | // Most (but not all) ops create an output value and need a register to hold it, dst. |
| 3057 | // We track each instruction's dst in r[] so we can thread it through as an input |
| 3058 | // to any future instructions needing that value. |
| 3059 | // |
| 3060 | // And some ops may need a temporary register, tmp. Some need both tmp and dst. |
| 3061 | // |
| 3062 | // tmp and dst are very similar and can and will often be assigned the same register, |
| 3063 | // but tmp may never alias any of the instructions's inputs, while dst may when this |
| 3064 | // instruction consumes that input, i.e. if the input reaches its end of life here. |
| 3065 | // |
| 3066 | // We'll assign both registers lazily to keep register pressure as low as possible. |
| 3067 | bool tmp_is_set = false, |
| 3068 | dst_is_set = false; |
| 3069 | Reg tmp_reg = (Reg)0; // This initial value won't matter... anything legal is fine. |
| 3070 | |
| 3071 | bool ok = true; // Set to false if we need to assign a register and none's available. |
| 3072 | |
| 3073 | if (stack_only) { |
| 3074 | // Move each unique argument into a temporary register. |
| 3075 | auto load_from_stack = [&](Val arg) { |
| 3076 | if (int found = __builtin_ffs(avail)) { |
| 3077 | Reg reg = (Reg)(found - 1); |
| 3078 | avail ^= 1 << reg; |
| 3079 | r[arg] = reg; |
| 3080 | #if defined(__x86_64__) |
| 3081 | a->vmovups(r[arg], arg*K*4); |
| 3082 | #else |
| 3083 | SkASSERT(false); // TODO |
| 3084 | #endif |
| 3085 | } else { |
| 3086 | if (debug_dump()) { |
| 3087 | SkDebugf("\nCould not find temporary register for %d\n" , arg); |
| 3088 | } |
| 3089 | ok = false; |
| 3090 | } |
| 3091 | }; |
| 3092 | if (x != NA ) { load_from_stack(x); } |
| 3093 | if (y != NA && y != x ) { load_from_stack(y); } |
| 3094 | if (z != NA && z != x && z != y) { load_from_stack(z); } |
| 3095 | } |
| 3096 | |
| 3097 | // First lock in how to choose tmp if we need to based on the registers |
| 3098 | // available before this instruction, not including any of its input registers. |
| 3099 | auto tmp = [&,avail/*important, closing over avail's current value*/]{ |
| 3100 | if (!tmp_is_set) { |
| 3101 | tmp_is_set = true; |
| 3102 | if (int found = __builtin_ffs(avail)) { |
| 3103 | // This is a temporary register just for this op, |
| 3104 | // so we leave it marked available for future ops. |
| 3105 | tmp_reg = (Reg)(found - 1); |
| 3106 | } else { |
| 3107 | // We needed a tmp register but couldn't find one available. :'( |
| 3108 | // This will cause emit() to return false, in turn causing jit() to fail. |
| 3109 | if (debug_dump()) { |
| 3110 | SkDebugf("\nCould not find a register to hold tmp\n" ); |
| 3111 | } |
| 3112 | ok = false; |
| 3113 | } |
| 3114 | } |
| 3115 | return tmp_reg; |
| 3116 | }; |
| 3117 | |
| 3118 | // Now make available any registers that are consumed by this instruction. |
| 3119 | // (The register pool we can pick dst from is >= the pool for tmp, adding any of these.) |
| 3120 | auto maybe_recycle_register = [&](Val input) { |
| 3121 | if (input != NA |
| 3122 | && instructions[input].death == id |
| 3123 | && !(hoisted(input) && instructions[input].used_in_loop)) { |
| 3124 | avail |= 1 << r[input]; |
| 3125 | } |
| 3126 | }; |
| 3127 | maybe_recycle_register(x); |
| 3128 | maybe_recycle_register(y); |
| 3129 | maybe_recycle_register(z); |
| 3130 | // set_dst() and dst() will work read/write with this perhaps-just-updated avail. |
| 3131 | |
| 3132 | // Some ops may decide dst on their own to best fit the instruction (see Op::fma_f32). |
| 3133 | auto set_dst = [&](Reg reg){ |
| 3134 | SkASSERT(dst_is_set == false); |
| 3135 | dst_is_set = true; |
| 3136 | |
| 3137 | SkASSERT(avail & (1<<reg)); |
| 3138 | avail ^= 1<<reg; |
| 3139 | |
| 3140 | r[id] = reg; |
| 3141 | }; |
| 3142 | |
| 3143 | // Thanks to AVX and NEON's 3-argument instruction sets, |
| 3144 | // most ops can use any register as dst. |
| 3145 | auto dst = [&]{ |
| 3146 | if (!dst_is_set) { |
| 3147 | if (int found = __builtin_ffs(avail)) { |
| 3148 | set_dst((Reg)(found-1)); |
| 3149 | } else { |
| 3150 | // Same deal as with tmp... all the registers are occupied. Time to fail! |
| 3151 | if (debug_dump()) { |
| 3152 | SkDebugf("\nCould not find a register to hold value %d\n" , id); |
| 3153 | } |
| 3154 | ok = false; |
| 3155 | } |
| 3156 | } |
| 3157 | return r[id]; |
| 3158 | }; |
| 3159 | |
| 3160 | // Because we use the same logic to pick an arbitrary dst and to pick tmp, |
| 3161 | // and we know that tmp will never overlap any of the inputs, `dst() == tmp()` |
| 3162 | // is a simple idiom to check that the destination does not overlap any of the inputs. |
| 3163 | // Sometimes we can use this knowledge to do better instruction selection. |
| 3164 | |
| 3165 | // Ok! Keep in mind that we haven't assigned tmp or dst yet, |
| 3166 | // just laid out hooks for how to do so if we need them, depending on the instruction. |
| 3167 | // |
| 3168 | // Now let's actually assemble the instruction! |
| 3169 | switch (op) { |
| 3170 | default: |
| 3171 | if (debug_dump()) { |
| 3172 | SkDEBUGFAILF("\nOp::%s (%d) not yet implemented\n" , name(op), op); |
| 3173 | } |
| 3174 | return false; // TODO: many new ops |
| 3175 | |
| 3176 | #if defined(__x86_64__) |
| 3177 | case Op::assert_true: { |
| 3178 | a->vptest (r[x], &constants[0xffffffff].label); |
| 3179 | A::Label all_true; |
| 3180 | a->jc(&all_true); |
| 3181 | a->int3(); |
| 3182 | a->label(&all_true); |
| 3183 | } break; |
| 3184 | |
| 3185 | case Op::store8: if (scalar) { a->vpextrb (arg[immy], (A::Xmm)r[x], 0); } |
| 3186 | else { a->vpackusdw(tmp(), r[x], r[x]); |
| 3187 | a->vpermq (tmp(), tmp(), 0xd8); |
| 3188 | a->vpackuswb(tmp(), tmp(), tmp()); |
| 3189 | a->vmovq (arg[immy], (A::Xmm)tmp()); } |
| 3190 | break; |
| 3191 | |
| 3192 | case Op::store16: if (scalar) { a->vpextrw (arg[immy], (A::Xmm)r[x], 0); } |
| 3193 | else { a->vpackusdw(tmp(), r[x], r[x]); |
| 3194 | a->vpermq (tmp(), tmp(), 0xd8); |
| 3195 | a->vmovups (arg[immy], (A::Xmm)tmp()); } |
| 3196 | break; |
| 3197 | |
| 3198 | case Op::store32: if (scalar) { a->vmovd (arg[immy], (A::Xmm)r[x]); } |
| 3199 | else { a->vmovups(arg[immy], r[x]); } |
| 3200 | break; |
| 3201 | |
| 3202 | case Op::load8: if (scalar) { |
| 3203 | a->vpxor (dst(), dst(), dst()); |
| 3204 | a->vpinsrb((A::Xmm)dst(), (A::Xmm)dst(), arg[immy], 0); |
| 3205 | } else { |
| 3206 | a->vpmovzxbd(dst(), arg[immy]); |
| 3207 | } break; |
| 3208 | |
| 3209 | case Op::load16: if (scalar) { |
| 3210 | a->vpxor (dst(), dst(), dst()); |
| 3211 | a->vpinsrw((A::Xmm)dst(), (A::Xmm)dst(), arg[immy], 0); |
| 3212 | } else { |
| 3213 | a->vpmovzxwd(dst(), arg[immy]); |
| 3214 | } break; |
| 3215 | |
| 3216 | case Op::load32: if (scalar) { a->vmovd ((A::Xmm)dst(), arg[immy]); } |
| 3217 | else { a->vmovups( dst(), arg[immy]); } |
| 3218 | break; |
| 3219 | |
| 3220 | case Op::gather32: |
| 3221 | if (scalar) { |
| 3222 | auto base = scratch, |
| 3223 | index = scratch2; |
| 3224 | // Our gather base pointer is immz bytes off of uniform immy. |
| 3225 | a->movq(base, arg[immy], immz); |
| 3226 | |
| 3227 | // Grab our index from lane 0 of the index argument. |
| 3228 | a->vmovd_direct(index, (A::Xmm)r[x]); |
| 3229 | |
| 3230 | // dst = *(base + 4*index) |
| 3231 | a->vmovd((A::Xmm)dst(), A::FOUR, index, base); |
| 3232 | } else { |
| 3233 | // We may not let any of dst(), index, or mask use the same register, |
| 3234 | // so we must allocate registers manually and very carefully. |
| 3235 | |
| 3236 | // index is argument x and has already been maybe_recycle_register()'d, |
| 3237 | // so we explicitly ignore its availability during this op. |
| 3238 | A::Ymm index = r[x]; |
| 3239 | uint32_t avail_during_gather = avail & ~(1<<index); |
| 3240 | |
| 3241 | // Choose dst() to not overlap with index. |
| 3242 | if (int found = __builtin_ffs(avail_during_gather)) { |
| 3243 | set_dst((A::Ymm)(found-1)); |
| 3244 | avail_during_gather ^= (1<<dst()); |
| 3245 | } else { |
| 3246 | ok = false; |
| 3247 | break; |
| 3248 | } |
| 3249 | |
| 3250 | // Choose (temporary) mask to not overlap with dst() or index. |
| 3251 | A::Ymm mask; |
| 3252 | if (int found = __builtin_ffs(avail_during_gather)) { |
| 3253 | mask = (A::Ymm)(found-1); |
| 3254 | } else { |
| 3255 | ok = false; |
| 3256 | break; |
| 3257 | } |
| 3258 | |
| 3259 | // Our gather base pointer is immz bytes off of uniform immy. |
| 3260 | auto base = scratch; |
| 3261 | a->movq(base, arg[immy], immz); |
| 3262 | a->vpcmpeqd(mask, mask, mask); // (All lanes enabled.) |
| 3263 | a->vgatherdps(dst(), A::FOUR, index, base, mask); |
| 3264 | } |
| 3265 | break; |
| 3266 | |
| 3267 | case Op::uniform8: a->movzbl(scratch, arg[immy], immz); |
| 3268 | a->vmovd_direct((A::Xmm)dst(), scratch); |
| 3269 | a->vbroadcastss(dst(), (A::Xmm)dst()); |
| 3270 | break; |
| 3271 | |
| 3272 | case Op::uniform32: a->vbroadcastss(dst(), arg[immy], immz); |
| 3273 | break; |
| 3274 | |
| 3275 | case Op::index: a->vmovd_direct((A::Xmm)tmp(), N); |
| 3276 | a->vbroadcastss(tmp(), (A::Xmm)tmp()); |
| 3277 | a->vpsubd(dst(), tmp(), &iota.label); |
| 3278 | break; |
| 3279 | |
| 3280 | case Op::splat: if (immy) { a->vbroadcastss(dst(), &constants[immy].label); } |
| 3281 | else { a->vpxor(dst(), dst(), dst()); } |
| 3282 | break; |
| 3283 | |
| 3284 | case Op::add_f32: a->vaddps(dst(), r[x], r[y]); break; |
| 3285 | case Op::sub_f32: a->vsubps(dst(), r[x], r[y]); break; |
| 3286 | case Op::mul_f32: a->vmulps(dst(), r[x], r[y]); break; |
| 3287 | case Op::div_f32: a->vdivps(dst(), r[x], r[y]); break; |
| 3288 | case Op::min_f32: a->vminps(dst(), r[y], r[x]); break; // Order matters, |
| 3289 | case Op::max_f32: a->vmaxps(dst(), r[y], r[x]); break; // see test SkVM_min_max. |
| 3290 | |
| 3291 | case Op::fma_f32: |
| 3292 | if (avail & (1<<r[x])) { set_dst(r[x]); a->vfmadd132ps(r[x], r[z], r[y]); } |
| 3293 | else if (avail & (1<<r[y])) { set_dst(r[y]); a->vfmadd213ps(r[y], r[x], r[z]); } |
| 3294 | else if (avail & (1<<r[z])) { set_dst(r[z]); a->vfmadd231ps(r[z], r[x], r[y]); } |
| 3295 | else { SkASSERT(dst() == tmp()); |
| 3296 | a->vmovdqa (dst(),r[x]); |
| 3297 | a->vfmadd132ps(dst(),r[z], r[y]); } |
| 3298 | break; |
| 3299 | |
| 3300 | case Op::fms_f32: |
| 3301 | if (avail & (1<<r[x])) { set_dst(r[x]); a->vfmsub132ps(r[x], r[z], r[y]); } |
| 3302 | else if (avail & (1<<r[y])) { set_dst(r[y]); a->vfmsub213ps(r[y], r[x], r[z]); } |
| 3303 | else if (avail & (1<<r[z])) { set_dst(r[z]); a->vfmsub231ps(r[z], r[x], r[y]); } |
| 3304 | else { SkASSERT(dst() == tmp()); |
| 3305 | a->vmovdqa (dst(),r[x]); |
| 3306 | a->vfmsub132ps(dst(),r[z], r[y]); } |
| 3307 | break; |
| 3308 | |
| 3309 | case Op::fnma_f32: |
| 3310 | if (avail & (1<<r[x])) { set_dst(r[x]); a->vfnmadd132ps(r[x],r[z], r[y]); } |
| 3311 | else if (avail & (1<<r[y])) { set_dst(r[y]); a->vfnmadd213ps(r[y],r[x], r[z]); } |
| 3312 | else if (avail & (1<<r[z])) { set_dst(r[z]); a->vfnmadd231ps(r[z],r[x], r[y]); } |
| 3313 | else { SkASSERT(dst() == tmp()); |
| 3314 | a->vmovdqa (dst(),r[x]); |
| 3315 | a->vfnmadd132ps(dst(),r[z],r[y]); } |
| 3316 | break; |
| 3317 | |
| 3318 | case Op::sqrt_f32: a->vsqrtps(dst(), r[x]); break; |
| 3319 | |
| 3320 | case Op::add_f32_imm: a->vaddps(dst(), r[x], &constants[immy].label); break; |
| 3321 | case Op::sub_f32_imm: a->vsubps(dst(), r[x], &constants[immy].label); break; |
| 3322 | case Op::mul_f32_imm: a->vmulps(dst(), r[x], &constants[immy].label); break; |
| 3323 | case Op::min_f32_imm: a->vminps(dst(), r[x], &constants[immy].label); break; |
| 3324 | case Op::max_f32_imm: a->vmaxps(dst(), r[x], &constants[immy].label); break; |
| 3325 | |
| 3326 | case Op::add_i32: a->vpaddd (dst(), r[x], r[y]); break; |
| 3327 | case Op::sub_i32: a->vpsubd (dst(), r[x], r[y]); break; |
| 3328 | case Op::mul_i32: a->vpmulld(dst(), r[x], r[y]); break; |
| 3329 | |
| 3330 | case Op::sub_i16x2: a->vpsubw (dst(), r[x], r[y]); break; |
| 3331 | case Op::mul_i16x2: a->vpmullw(dst(), r[x], r[y]); break; |
| 3332 | case Op::shr_i16x2: a->vpsrlw (dst(), r[x], immy); break; |
| 3333 | |
| 3334 | case Op::bit_and : a->vpand (dst(), r[x], r[y]); break; |
| 3335 | case Op::bit_or : a->vpor (dst(), r[x], r[y]); break; |
| 3336 | case Op::bit_xor : a->vpxor (dst(), r[x], r[y]); break; |
| 3337 | case Op::bit_clear: a->vpandn(dst(), r[y], r[x]); break; // Notice, y then x. |
| 3338 | case Op::select : a->vpblendvb(dst(), r[z], r[y], r[x]); break; |
| 3339 | |
| 3340 | case Op::bit_and_imm: a->vpand (dst(), r[x], &constants[immy].label); break; |
| 3341 | case Op::bit_or_imm : a->vpor (dst(), r[x], &constants[immy].label); break; |
| 3342 | case Op::bit_xor_imm: a->vpxor (dst(), r[x], &constants[immy].label); break; |
| 3343 | |
| 3344 | case Op::shl_i32: a->vpslld(dst(), r[x], immy); break; |
| 3345 | case Op::shr_i32: a->vpsrld(dst(), r[x], immy); break; |
| 3346 | case Op::sra_i32: a->vpsrad(dst(), r[x], immy); break; |
| 3347 | |
| 3348 | case Op::eq_i32: a->vpcmpeqd(dst(), r[x], r[y]); break; |
| 3349 | case Op::gt_i32: a->vpcmpgtd(dst(), r[x], r[y]); break; |
| 3350 | |
| 3351 | case Op:: eq_f32: a->vcmpeqps (dst(), r[x], r[y]); break; |
| 3352 | case Op::neq_f32: a->vcmpneqps(dst(), r[x], r[y]); break; |
| 3353 | case Op:: gt_f32: a->vcmpltps (dst(), r[y], r[x]); break; |
| 3354 | case Op::gte_f32: a->vcmpleps (dst(), r[y], r[x]); break; |
| 3355 | |
| 3356 | case Op::pack: a->vpslld(tmp(), r[y], immz); |
| 3357 | a->vpor (dst(), tmp(), r[x]); |
| 3358 | break; |
| 3359 | |
| 3360 | case Op::floor : a->vroundps (dst(), r[x], Assembler::FLOOR); break; |
| 3361 | case Op::to_f32: a->vcvtdq2ps (dst(), r[x]); break; |
| 3362 | case Op::trunc : a->vcvttps2dq(dst(), r[x]); break; |
| 3363 | case Op::round : a->vcvtps2dq (dst(), r[x]); break; |
| 3364 | |
| 3365 | #elif defined(__aarch64__) |
| 3366 | case Op::assert_true: { |
| 3367 | a->uminv4s(tmp(), r[x]); // uminv acts like an all() across the vector. |
| 3368 | a->fmovs(scratch, tmp()); |
| 3369 | A::Label all_true; |
| 3370 | a->cbnz(scratch, &all_true); |
| 3371 | a->brk(0); |
| 3372 | a->label(&all_true); |
| 3373 | } break; |
| 3374 | |
| 3375 | case Op::store8: a->xtns2h(tmp(), r[x]); |
| 3376 | a->xtnh2b(tmp(), tmp()); |
| 3377 | if (scalar) { a->strb (tmp(), arg[immy]); } |
| 3378 | else { a->strs (tmp(), arg[immy]); } |
| 3379 | break; |
| 3380 | // TODO: another case where it'd be okay to alias r[x] and tmp if r[x] dies here. |
| 3381 | |
| 3382 | case Op::store32: if (scalar) { a->strs(r[x], arg[immy]); } |
| 3383 | else { a->strq(r[x], arg[immy]); } |
| 3384 | break; |
| 3385 | |
| 3386 | case Op::load8: if (scalar) { a->ldrb(tmp(), arg[immy]); } |
| 3387 | else { a->ldrs(tmp(), arg[immy]); } |
| 3388 | a->uxtlb2h(tmp(), tmp()); |
| 3389 | a->uxtlh2s(dst(), tmp()); |
| 3390 | break; |
| 3391 | |
| 3392 | case Op::load32: if (scalar) { a->ldrs(dst(), arg[immy]); } |
| 3393 | else { a->ldrq(dst(), arg[immy]); } |
| 3394 | break; |
| 3395 | |
| 3396 | case Op::splat: if (immy) { a->ldrq(dst(), &constants[immy].label); } |
| 3397 | else { a->eor16b(dst(), dst(), dst()); } |
| 3398 | break; |
| 3399 | // TODO: If we hoist these, pack 4 values in each register |
| 3400 | // and use vector/lane operations, cutting the register |
| 3401 | // pressure cost of hoisting by 4? |
| 3402 | |
| 3403 | case Op::add_f32: a->fadd4s(dst(), r[x], r[y]); break; |
| 3404 | case Op::sub_f32: a->fsub4s(dst(), r[x], r[y]); break; |
| 3405 | case Op::mul_f32: a->fmul4s(dst(), r[x], r[y]); break; |
| 3406 | case Op::div_f32: a->fdiv4s(dst(), r[x], r[y]); break; |
| 3407 | |
| 3408 | case Op::fma_f32: // fmla.4s is z += x*y |
| 3409 | if (avail & (1<<r[z])) { set_dst(r[z]); a->fmla4s( r[z], r[x], r[y]); } |
| 3410 | else { a->orr16b(tmp(), r[z], r[z]); |
| 3411 | a->fmla4s(tmp(), r[x], r[y]); |
| 3412 | if(dst() != tmp()) { a->orr16b(dst(), tmp(), tmp()); } } |
| 3413 | break; |
| 3414 | |
| 3415 | case Op::fnma_f32: // fmls.4s is z -= x*y |
| 3416 | if (avail & (1<<r[z])) { set_dst(r[z]); a->fmls4s( r[z], r[x], r[y]); } |
| 3417 | else { a->orr16b(tmp(), r[z], r[z]); |
| 3418 | a->fmls4s(tmp(), r[x], r[y]); |
| 3419 | if(dst() != tmp()) { a->orr16b(dst(), tmp(), tmp()); } } |
| 3420 | break; |
| 3421 | |
| 3422 | case Op::fms_f32: |
| 3423 | // first dst() = xy - z as if fnma_f32 |
| 3424 | if (avail & (1<<r[z])) { set_dst(r[z]); a->fmls4s( r[z], r[x], r[y]); } |
| 3425 | else { a->orr16b(tmp(), r[z], r[z]); |
| 3426 | a->fmls4s(tmp(), r[x], r[y]); |
| 3427 | if(dst() != tmp()) { a->orr16b(dst(), tmp(), tmp()); } } |
| 3428 | // then dst() = -dst() (i.e. z - xy) |
| 3429 | a->fneg4s(dst(), dst()); |
| 3430 | break; |
| 3431 | |
| 3432 | // These _imm instructions are all x86/JIT only. |
| 3433 | case Op::add_f32_imm : |
| 3434 | case Op::sub_f32_imm : |
| 3435 | case Op::mul_f32_imm : |
| 3436 | case Op::min_f32_imm : |
| 3437 | case Op::max_f32_imm : |
| 3438 | case Op::bit_and_imm : |
| 3439 | case Op::bit_or_imm : |
| 3440 | case Op::bit_xor_imm : SkUNREACHABLE; break; |
| 3441 | |
| 3442 | case Op:: gt_f32: a->fcmgt4s (dst(), r[x], r[y]); break; |
| 3443 | case Op::gte_f32: a->fcmge4s (dst(), r[x], r[y]); break; |
| 3444 | case Op:: eq_f32: a->fcmeq4s (dst(), r[x], r[y]); break; |
| 3445 | case Op::neq_f32: a->fcmeq4s (tmp(), r[x], r[y]); |
| 3446 | a->not16b (dst(), tmp()); break; |
| 3447 | |
| 3448 | |
| 3449 | case Op::add_i32: a->add4s(dst(), r[x], r[y]); break; |
| 3450 | case Op::sub_i32: a->sub4s(dst(), r[x], r[y]); break; |
| 3451 | case Op::mul_i32: a->mul4s(dst(), r[x], r[y]); break; |
| 3452 | |
| 3453 | case Op::sub_i16x2: a->sub8h (dst(), r[x], r[y]); break; |
| 3454 | case Op::mul_i16x2: a->mul8h (dst(), r[x], r[y]); break; |
| 3455 | case Op::shr_i16x2: a->ushr8h(dst(), r[x], immy); break; |
| 3456 | |
| 3457 | case Op::bit_and : a->and16b(dst(), r[x], r[y]); break; |
| 3458 | case Op::bit_or : a->orr16b(dst(), r[x], r[y]); break; |
| 3459 | case Op::bit_xor : a->eor16b(dst(), r[x], r[y]); break; |
| 3460 | case Op::bit_clear: a->bic16b(dst(), r[x], r[y]); break; |
| 3461 | |
| 3462 | case Op::select: // bsl16b is x = x ? y : z |
| 3463 | if (avail & (1<<r[x])) { set_dst(r[x]); a->bsl16b( r[x], r[y], r[z]); } |
| 3464 | else { a->orr16b(tmp(), r[x], r[x]); |
| 3465 | a->bsl16b(tmp(), r[y], r[z]); |
| 3466 | if(dst() != tmp()) { a->orr16b(dst(), tmp(), tmp()); } } |
| 3467 | break; |
| 3468 | |
| 3469 | // fmin4s and fmax4s don't work the way we want with NaN, |
| 3470 | // so we write them the long way: |
| 3471 | case Op::min_f32: // min(x,y) = y<x ? y : x |
| 3472 | a->fcmgt4s(tmp(), r[x],r[y]); |
| 3473 | a->bsl16b (tmp(), r[y],r[x]); |
| 3474 | if(dst() != tmp()) { a->orr16b(dst(), tmp(), tmp()); } |
| 3475 | break; |
| 3476 | |
| 3477 | case Op::max_f32: // max(x,y) = x<y ? y : x |
| 3478 | a->fcmgt4s(tmp(), r[y],r[x]); |
| 3479 | a->bsl16b (tmp(), r[y],r[x]); |
| 3480 | if(dst() != tmp()) { a->orr16b(dst(), tmp(), tmp()); } |
| 3481 | break; |
| 3482 | |
| 3483 | case Op::shl_i32: a-> shl4s(dst(), r[x], immy); break; |
| 3484 | case Op::shr_i32: a->ushr4s(dst(), r[x], immy); break; |
| 3485 | case Op::sra_i32: a->sshr4s(dst(), r[x], immy); break; |
| 3486 | |
| 3487 | case Op::eq_i32: a->cmeq4s(dst(), r[x], r[y]); break; |
| 3488 | case Op::gt_i32: a->cmgt4s(dst(), r[x], r[y]); break; |
| 3489 | |
| 3490 | case Op::pack: |
| 3491 | if (avail & (1<<r[x])) { set_dst(r[x]); a->sli4s ( r[x], r[y], immz); } |
| 3492 | else { a->shl4s (tmp(), r[y], immz); |
| 3493 | a->orr16b(dst(), tmp(), r[x]); } |
| 3494 | break; |
| 3495 | |
| 3496 | case Op::to_f32: a->scvtf4s (dst(), r[x]); break; |
| 3497 | case Op::trunc: a->fcvtzs4s(dst(), r[x]); break; |
| 3498 | case Op::round: a->fcvtns4s(dst(), r[x]); break; |
| 3499 | // TODO: fcvtns.4s rounds to nearest even. |
| 3500 | // I think we actually want frintx -> fcvtzs to round to current mode. |
| 3501 | #endif |
| 3502 | } |
| 3503 | |
| 3504 | if (stack_only) { |
| 3505 | if (dst_is_set) { |
| 3506 | #if defined(__x86_64__) |
| 3507 | a->vmovups(id*K*4, r[id]); |
| 3508 | #else |
| 3509 | SkASSERT(false); // TODO |
| 3510 | #endif |
| 3511 | avail |= 1 << r[id]; |
| 3512 | } |
| 3513 | for (Val arg : {x,y,z}) { |
| 3514 | if (arg != NA) { |
| 3515 | avail |= 1 << r[arg]; |
| 3516 | } |
| 3517 | } |
| 3518 | SkASSERT(avail == all_regs); |
| 3519 | } |
| 3520 | |
| 3521 | // Calls to tmp() or dst() might have flipped this false from its default true state. |
| 3522 | return ok; |
| 3523 | }; |
| 3524 | |
| 3525 | |
| 3526 | #if defined(__x86_64__) |
| 3527 | auto jump_if_less = [&](A::Label* l) { a->jl (l); }; |
| 3528 | auto jump = [&](A::Label* l) { a->jmp(l); }; |
| 3529 | |
| 3530 | auto add = [&](A::GP64 gp, int imm) { a->add(gp, imm); }; |
| 3531 | auto sub = [&](A::GP64 gp, int imm) { a->sub(gp, imm); }; |
| 3532 | |
| 3533 | auto enter = [&]{ a->sub(A::rsp, instructions.size()*K*4); }; |
| 3534 | auto exit = [&]{ a->add(A::rsp, instructions.size()*K*4); a->vzeroupper(); a->ret(); }; |
| 3535 | #elif defined(__aarch64__) |
| 3536 | auto jump_if_less = [&](A::Label* l) { a->blt(l); }; |
| 3537 | auto jump = [&](A::Label* l) { a->b (l); }; |
| 3538 | |
| 3539 | auto add = [&](A::X gp, int imm) { a->add(gp, gp, imm); }; |
| 3540 | auto sub = [&](A::X gp, int imm) { a->sub(gp, gp, imm); }; |
| 3541 | |
| 3542 | auto enter = [&]{}; |
| 3543 | auto exit = [&]{ a->ret(A::x30); }; |
| 3544 | #endif |
| 3545 | |
| 3546 | A::Label body, |
| 3547 | tail, |
| 3548 | done; |
| 3549 | |
| 3550 | enter(); |
| 3551 | for (Val id = 0; id < (Val)instructions.size(); id++) { |
| 3552 | if (hoisted(id) && !emit(id, /*scalar=*/false)) { |
| 3553 | return false; |
| 3554 | } |
| 3555 | } |
| 3556 | |
| 3557 | a->label(&body); |
| 3558 | { |
| 3559 | a->cmp(N, K); |
| 3560 | jump_if_less(&tail); |
| 3561 | for (Val id = 0; id < (Val)instructions.size(); id++) { |
| 3562 | if (!hoisted(id) && !emit(id, /*scalar=*/false)) { |
| 3563 | return false; |
| 3564 | } |
| 3565 | } |
| 3566 | for (int i = 0; i < (int)fImpl->strides.size(); i++) { |
| 3567 | if (fImpl->strides[i]) { |
| 3568 | add(arg[i], K*fImpl->strides[i]); |
| 3569 | } |
| 3570 | } |
| 3571 | sub(N, K); |
| 3572 | jump(&body); |
| 3573 | } |
| 3574 | |
| 3575 | a->label(&tail); |
| 3576 | { |
| 3577 | a->cmp(N, 1); |
| 3578 | jump_if_less(&done); |
| 3579 | for (Val id = 0; id < (Val)instructions.size(); id++) { |
| 3580 | if (!hoisted(id) && !emit(id, /*scalar=*/true)) { |
| 3581 | return false; |
| 3582 | } |
| 3583 | } |
| 3584 | for (int i = 0; i < (int)fImpl->strides.size(); i++) { |
| 3585 | if (fImpl->strides[i]) { |
| 3586 | add(arg[i], 1*fImpl->strides[i]); |
| 3587 | } |
| 3588 | } |
| 3589 | sub(N, 1); |
| 3590 | jump(&tail); |
| 3591 | } |
| 3592 | |
| 3593 | a->label(&done); |
| 3594 | { |
| 3595 | exit(); |
| 3596 | } |
| 3597 | |
| 3598 | // Except for explicit aligned load and store instructions, AVX allows |
| 3599 | // memory operands to be unaligned. So even though we're creating 16 |
| 3600 | // byte patterns on ARM or 32-byte patterns on x86, we only need to |
| 3601 | // align to 4 bytes, the element size and alignment requirement. |
| 3602 | |
| 3603 | constants.foreach([&](int imm, LabelAndReg* entry) { |
| 3604 | a->align(4); |
| 3605 | a->label(&entry->label); |
| 3606 | for (int i = 0; i < K; i++) { |
| 3607 | a->word(imm); |
| 3608 | } |
| 3609 | }); |
| 3610 | |
| 3611 | if (!iota.label.references.empty()) { |
| 3612 | a->align(4); |
| 3613 | a->label(&iota.label); |
| 3614 | for (int i = 0; i < K; i++) { |
| 3615 | a->word(i); |
| 3616 | } |
| 3617 | } |
| 3618 | |
| 3619 | return true; |
| 3620 | } |
| 3621 | |
| 3622 | void Program::setupJIT(const std::vector<OptimizedInstruction>& instructions, |
| 3623 | const char* debug_name) { |
| 3624 | // Assemble with no buffer to determine a.size(), the number of bytes we'll assemble. |
| 3625 | Assembler a{nullptr}; |
| 3626 | |
| 3627 | // First try allowing code hoisting (faster code) |
| 3628 | // then again without if that fails (lower register pressure). |
| 3629 | JITMode mode = JITMode::Register; |
| 3630 | bool ok = false; |
| 3631 | for (JITMode m : {JITMode::Register, JITMode::RegisterNoHoist, JITMode::Stack}) { |
| 3632 | if (this->jit(instructions, m, &a)) { |
| 3633 | ok = true; |
| 3634 | mode = m; |
| 3635 | break; |
| 3636 | } |
| 3637 | } |
| 3638 | if (!ok) { return; } |
| 3639 | |
| 3640 | // Allocate space that we can remap as executable. |
| 3641 | const size_t page = sysconf(_SC_PAGESIZE); |
| 3642 | |
| 3643 | // mprotect works at page granularity. |
| 3644 | fImpl->jit_size = ((a.size() + page - 1) / page) * page; |
| 3645 | |
| 3646 | void* jit_entry |
| 3647 | = mmap(nullptr,fImpl->jit_size, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1,0); |
| 3648 | fImpl->jit_entry.store(jit_entry); |
| 3649 | |
| 3650 | // Assemble the program for real. |
| 3651 | a = Assembler{jit_entry}; |
| 3652 | SkAssertResult(this->jit(instructions, mode, &a)); |
| 3653 | SkASSERT(a.size() <= fImpl->jit_size); |
| 3654 | |
| 3655 | // Remap as executable, and flush caches on platforms that need that. |
| 3656 | mprotect(jit_entry, fImpl->jit_size, PROT_READ|PROT_EXEC); |
| 3657 | __builtin___clear_cache((char*)jit_entry, |
| 3658 | (char*)jit_entry + fImpl->jit_size); |
| 3659 | |
| 3660 | // For profiling and debugging, it's helpful to have this code loaded |
| 3661 | // dynamically rather than just jumping info fImpl->jit_entry. |
| 3662 | if (gSkVMJITViaDylib) { |
| 3663 | // Dump the raw program binary. |
| 3664 | SkString path = SkStringPrintf("/tmp/%s.XXXXXX" , debug_name); |
| 3665 | int fd = mkstemp(path.writable_str()); |
| 3666 | ::write(fd, jit_entry, a.size()); |
| 3667 | close(fd); |
| 3668 | |
| 3669 | this->dropJIT(); // (unmap and null out fImpl->jit_entry.) |
| 3670 | |
| 3671 | // Convert it in-place to a dynamic library with a single symbol "skvm_jit": |
| 3672 | SkString cmd = SkStringPrintf( |
| 3673 | "echo '.global _skvm_jit\n_skvm_jit: .incbin \"%s\"'" |
| 3674 | " | clang -x assembler -shared - -o %s" , |
| 3675 | path.c_str(), path.c_str()); |
| 3676 | system(cmd.c_str()); |
| 3677 | |
| 3678 | // Load that dynamic library and look up skvm_jit(). |
| 3679 | fImpl->dylib = dlopen(path.c_str(), RTLD_NOW|RTLD_LOCAL); |
| 3680 | fImpl->jit_entry.store(dlsym(fImpl->dylib, "skvm_jit" )); |
| 3681 | } |
| 3682 | } |
| 3683 | #endif |
| 3684 | |
| 3685 | } // namespace skvm |
| 3686 | |