| 1 | /* | 
|---|
| 2 | * Copyright 2019 Google LLC | 
|---|
| 3 | * | 
|---|
| 4 | * Use of this source code is governed by a BSD-style license that can be | 
|---|
| 5 | * found in the LICENSE file. | 
|---|
| 6 | */ | 
|---|
| 7 |  | 
|---|
| 8 | #include "include/core/SkStream.h" | 
|---|
| 9 | #include "include/core/SkString.h" | 
|---|
| 10 | #include "include/private/SkChecksum.h" | 
|---|
| 11 | #include "include/private/SkSpinlock.h" | 
|---|
| 12 | #include "include/private/SkTFitsIn.h" | 
|---|
| 13 | #include "include/private/SkThreadID.h" | 
|---|
| 14 | #include "include/private/SkVx.h" | 
|---|
| 15 | #include "src/core/SkColorSpaceXformSteps.h" | 
|---|
| 16 | #include "src/core/SkCpu.h" | 
|---|
| 17 | #include "src/core/SkOpts.h" | 
|---|
| 18 | #include "src/core/SkVM.h" | 
|---|
| 19 | #include <algorithm> | 
|---|
| 20 | #include <atomic> | 
|---|
| 21 | #include <queue> | 
|---|
| 22 |  | 
|---|
| 23 | #if defined(SKVM_LLVM) | 
|---|
| 24 | #include <future> | 
|---|
| 25 | #include <llvm/Bitcode/BitcodeWriter.h> | 
|---|
| 26 | #include <llvm/ExecutionEngine/ExecutionEngine.h> | 
|---|
| 27 | #include <llvm/IR/IRBuilder.h> | 
|---|
| 28 | #include <llvm/IR/Verifier.h> | 
|---|
| 29 | #include <llvm/Support/TargetSelect.h> | 
|---|
| 30 |  | 
|---|
| 31 | // Platform-specific intrinsics got their own files in LLVM 10. | 
|---|
| 32 | #if __has_include(<llvm/IR/IntrinsicsX86.h>) | 
|---|
| 33 | #include <llvm/IR/IntrinsicsX86.h> | 
|---|
| 34 | #endif | 
|---|
| 35 | #endif | 
|---|
| 36 |  | 
|---|
| 37 | bool gSkVMJITViaDylib{false}; | 
|---|
| 38 |  | 
|---|
| 39 | // JIT code isn't MSAN-instrumented, so we won't see when it uses | 
|---|
| 40 | // uninitialized memory, and we'll not see the writes it makes as properly | 
|---|
| 41 | // initializing memory.  Instead force the interpreter, which should let | 
|---|
| 42 | // MSAN see everything our programs do properly. | 
|---|
| 43 | // | 
|---|
| 44 | // Similarly, we can't get ASAN's checks unless we let it instrument our interpreter. | 
|---|
| 45 | #if defined(__has_feature) | 
|---|
| 46 | #if __has_feature(memory_sanitizer) || __has_feature(address_sanitizer) | 
|---|
| 47 | #undef SKVM_JIT | 
|---|
| 48 | #endif | 
|---|
| 49 | #endif | 
|---|
| 50 |  | 
|---|
| 51 | #if defined(SKVM_JIT) | 
|---|
| 52 | #include <dlfcn.h>      // dlopen, dlsym | 
|---|
| 53 | #include <sys/mman.h>   // mmap, mprotect | 
|---|
| 54 | #endif | 
|---|
| 55 |  | 
|---|
| 56 | namespace skvm { | 
|---|
| 57 |  | 
|---|
| 58 | struct Program::Impl { | 
|---|
| 59 | std::vector<InterpreterInstruction> instructions; | 
|---|
| 60 | int regs = 0; | 
|---|
| 61 | int loop = 0; | 
|---|
| 62 | std::vector<int> strides; | 
|---|
| 63 |  | 
|---|
| 64 | std::atomic<void*> jit_entry{nullptr};   // TODO: minimal std::memory_orders | 
|---|
| 65 | size_t jit_size = 0; | 
|---|
| 66 | void*  dylib    = nullptr; | 
|---|
| 67 |  | 
|---|
| 68 | #if defined(SKVM_LLVM) | 
|---|
| 69 | std::unique_ptr<llvm::LLVMContext>     llvm_ctx; | 
|---|
| 70 | std::unique_ptr<llvm::ExecutionEngine> llvm_ee; | 
|---|
| 71 | std::future<void>                      llvm_compiling; | 
|---|
| 72 | #endif | 
|---|
| 73 | }; | 
|---|
| 74 |  | 
|---|
| 75 | // Debugging tools, mostly for printing various data structures out to a stream. | 
|---|
| 76 |  | 
|---|
| 77 | namespace { | 
|---|
| 78 | class SkDebugfStream final : public SkWStream { | 
|---|
| 79 | size_t fBytesWritten = 0; | 
|---|
| 80 |  | 
|---|
| 81 | bool write(const void* buffer, size_t size) override { | 
|---|
| 82 | SkDebugf( "%.*s", size, buffer); | 
|---|
| 83 | fBytesWritten += size; | 
|---|
| 84 | return true; | 
|---|
| 85 | } | 
|---|
| 86 |  | 
|---|
| 87 | size_t bytesWritten() const override { | 
|---|
| 88 | return fBytesWritten; | 
|---|
| 89 | } | 
|---|
| 90 | }; | 
|---|
| 91 |  | 
|---|
| 92 | struct V { Val id; }; | 
|---|
| 93 | struct R { Reg id; }; | 
|---|
| 94 | struct Shift { int bits; }; | 
|---|
| 95 | struct Splat { int bits; }; | 
|---|
| 96 | struct Hex   { int bits; }; | 
|---|
| 97 |  | 
|---|
| 98 | static void write(SkWStream* o, const char* s) { | 
|---|
| 99 | o->writeText(s); | 
|---|
| 100 | } | 
|---|
| 101 |  | 
|---|
| 102 | static const char* name(Op op) { | 
|---|
| 103 | switch (op) { | 
|---|
| 104 | #define M(x) case Op::x: return #x; | 
|---|
| 105 | SKVM_OPS(M) | 
|---|
| 106 | #undef M | 
|---|
| 107 | } | 
|---|
| 108 | return "unknown op"; | 
|---|
| 109 | } | 
|---|
| 110 |  | 
|---|
| 111 | static void write(SkWStream* o, Op op) { | 
|---|
| 112 | const char* raw = name(op); | 
|---|
| 113 | if (const char* found = strstr(raw, "_imm")) { | 
|---|
| 114 | o->write(raw, found-raw); | 
|---|
| 115 | } else { | 
|---|
| 116 | o->writeText(raw); | 
|---|
| 117 | } | 
|---|
| 118 | } | 
|---|
| 119 | static void write(SkWStream* o, Arg a) { | 
|---|
| 120 | write(o, "arg("); | 
|---|
| 121 | o->writeDecAsText(a.ix); | 
|---|
| 122 | write(o, ")"); | 
|---|
| 123 | } | 
|---|
| 124 | static void write(SkWStream* o, V v) { | 
|---|
| 125 | write(o, "v"); | 
|---|
| 126 | o->writeDecAsText(v.id); | 
|---|
| 127 | } | 
|---|
| 128 | static void write(SkWStream* o, R r) { | 
|---|
| 129 | write(o, "r"); | 
|---|
| 130 | o->writeDecAsText(r.id); | 
|---|
| 131 | } | 
|---|
| 132 | static void write(SkWStream* o, Shift s) { | 
|---|
| 133 | o->writeDecAsText(s.bits); | 
|---|
| 134 | } | 
|---|
| 135 | static void write(SkWStream* o, Splat s) { | 
|---|
| 136 | float f; | 
|---|
| 137 | memcpy(&f, &s.bits, 4); | 
|---|
| 138 | o->writeHexAsText(s.bits); | 
|---|
| 139 | write(o, " ("); | 
|---|
| 140 | o->writeScalarAsText(f); | 
|---|
| 141 | write(o, ")"); | 
|---|
| 142 | } | 
|---|
| 143 | static void write(SkWStream* o, Hex h) { | 
|---|
| 144 | o->writeHexAsText(h.bits); | 
|---|
| 145 | } | 
|---|
| 146 |  | 
|---|
| 147 | template <typename T, typename... Ts> | 
|---|
| 148 | static void write(SkWStream* o, T first, Ts... rest) { | 
|---|
| 149 | write(o, first); | 
|---|
| 150 | write(o, " "); | 
|---|
| 151 | write(o, rest...); | 
|---|
| 152 | } | 
|---|
| 153 | } | 
|---|
| 154 |  | 
|---|
| 155 | void Builder::dot(SkWStream* o, bool for_jit) const { | 
|---|
| 156 | SkDebugfStream debug; | 
|---|
| 157 | if (!o) { o = &debug; } | 
|---|
| 158 |  | 
|---|
| 159 | std::vector<OptimizedInstruction> optimized = this->optimize(for_jit); | 
|---|
| 160 |  | 
|---|
| 161 | o->writeText( "digraph {\n"); | 
|---|
| 162 | for (Val id = 0; id < (Val)optimized.size(); id++) { | 
|---|
| 163 | auto [op, x,y,z, immy,immz, death,can_hoist,used_in_loop] = optimized[id]; | 
|---|
| 164 |  | 
|---|
| 165 | switch (op) { | 
|---|
| 166 | default: | 
|---|
| 167 | write(o, "\t", V{id}, " [label = \"", V{id}, op); | 
|---|
| 168 | // Not a perfect heuristic; sometimes y/z == NA and there is no immy/z. | 
|---|
| 169 | // On the other hand, sometimes immy/z=0 is meaningful and should be printed. | 
|---|
| 170 | if (y == NA) { write(o, "", Hex{immy}); } | 
|---|
| 171 | if (z == NA) { write(o, "", Hex{immz}); } | 
|---|
| 172 | write(o, "\"]\n"); | 
|---|
| 173 |  | 
|---|
| 174 | write(o, "\t", V{id}, " -> {"); | 
|---|
| 175 | // In contrast to the heuristic imm labels, these dependences are exact. | 
|---|
| 176 | if (x != NA) { write(o, "", V{x}); } | 
|---|
| 177 | if (y != NA) { write(o, "", V{y}); } | 
|---|
| 178 | if (z != NA) { write(o, "", V{z}); } | 
|---|
| 179 | write(o, " }\n"); | 
|---|
| 180 |  | 
|---|
| 181 | break; | 
|---|
| 182 |  | 
|---|
| 183 | // That default: impl works pretty well for most instructions, | 
|---|
| 184 | // but some are nicer to see with a specialized label. | 
|---|
| 185 |  | 
|---|
| 186 | case Op::splat: | 
|---|
| 187 | write(o, "\t", V{id}, " [label = \"", V{id}, op, Splat{immy}, "\"]\n"); | 
|---|
| 188 | break; | 
|---|
| 189 | } | 
|---|
| 190 | } | 
|---|
| 191 | o->writeText( "}\n"); | 
|---|
| 192 | } | 
|---|
| 193 |  | 
|---|
| 194 | void Builder::dump(SkWStream* o) const { | 
|---|
| 195 | SkDebugfStream debug; | 
|---|
| 196 | if (!o) { o = &debug; } | 
|---|
| 197 |  | 
|---|
| 198 | std::vector<OptimizedInstruction> optimized = this->optimize(); | 
|---|
| 199 | o->writeDecAsText(optimized.size()); | 
|---|
| 200 | o->writeText( " values (originally "); | 
|---|
| 201 | o->writeDecAsText(fProgram.size()); | 
|---|
| 202 | o->writeText( "):\n"); | 
|---|
| 203 | for (Val id = 0; id < (Val)optimized.size(); id++) { | 
|---|
| 204 | const OptimizedInstruction& inst = optimized[id]; | 
|---|
| 205 | Op  op = inst.op; | 
|---|
| 206 | Val  x = inst.x, | 
|---|
| 207 | y = inst.y, | 
|---|
| 208 | z = inst.z; | 
|---|
| 209 | int immy = inst.immy, | 
|---|
| 210 | immz = inst.immz; | 
|---|
| 211 | write(o, !inst.can_hoist    ? "  ": | 
|---|
| 212 | inst.used_in_loop ? "↑ ": | 
|---|
| 213 | "↟ "); | 
|---|
| 214 | switch (op) { | 
|---|
| 215 | case Op::assert_true: write(o, op, V{x}, V{y}); break; | 
|---|
| 216 |  | 
|---|
| 217 | case Op::store8:  write(o, op, Arg{immy}, V{x}); break; | 
|---|
| 218 | case Op::store16: write(o, op, Arg{immy}, V{x}); break; | 
|---|
| 219 | case Op::store32: write(o, op, Arg{immy}, V{x}); break; | 
|---|
| 220 |  | 
|---|
| 221 | case Op::index: write(o, V{id}, "=", op); break; | 
|---|
| 222 |  | 
|---|
| 223 | case Op::load8:  write(o, V{id}, "=", op, Arg{immy}); break; | 
|---|
| 224 | case Op::load16: write(o, V{id}, "=", op, Arg{immy}); break; | 
|---|
| 225 | case Op::load32: write(o, V{id}, "=", op, Arg{immy}); break; | 
|---|
| 226 |  | 
|---|
| 227 | case Op::gather8:  write(o, V{id}, "=", op, Arg{immy}, Hex{immz}, V{x}); break; | 
|---|
| 228 | case Op::gather16: write(o, V{id}, "=", op, Arg{immy}, Hex{immz}, V{x}); break; | 
|---|
| 229 | case Op::gather32: write(o, V{id}, "=", op, Arg{immy}, Hex{immz}, V{x}); break; | 
|---|
| 230 |  | 
|---|
| 231 | case Op::uniform8:  write(o, V{id}, "=", op, Arg{immy}, Hex{immz}); break; | 
|---|
| 232 | case Op::uniform16: write(o, V{id}, "=", op, Arg{immy}, Hex{immz}); break; | 
|---|
| 233 | case Op::uniform32: write(o, V{id}, "=", op, Arg{immy}, Hex{immz}); break; | 
|---|
| 234 |  | 
|---|
| 235 | case Op::splat:  write(o, V{id}, "=", op, Splat{immy}); break; | 
|---|
| 236 |  | 
|---|
| 237 |  | 
|---|
| 238 | case Op::add_f32: write(o, V{id}, "=", op, V{x}, V{y}      ); break; | 
|---|
| 239 | case Op::sub_f32: write(o, V{id}, "=", op, V{x}, V{y}      ); break; | 
|---|
| 240 | case Op::mul_f32: write(o, V{id}, "=", op, V{x}, V{y}      ); break; | 
|---|
| 241 | case Op::div_f32: write(o, V{id}, "=", op, V{x}, V{y}      ); break; | 
|---|
| 242 | case Op::min_f32: write(o, V{id}, "=", op, V{x}, V{y}      ); break; | 
|---|
| 243 | case Op::max_f32: write(o, V{id}, "=", op, V{x}, V{y}      ); break; | 
|---|
| 244 | case Op::fma_f32: write(o, V{id}, "=", op, V{x}, V{y}, V{z}); break; | 
|---|
| 245 | case Op::fms_f32: write(o, V{id}, "=", op, V{x}, V{y}, V{z}); break; | 
|---|
| 246 | case Op::fnma_f32: write(o, V{id}, "=", op, V{x}, V{y}, V{z}); break; | 
|---|
| 247 |  | 
|---|
| 248 |  | 
|---|
| 249 | case Op::sqrt_f32: write(o, V{id}, "=", op, V{x}); break; | 
|---|
| 250 |  | 
|---|
| 251 | case Op::add_f32_imm: write(o, V{id}, "=", op, V{x}, Splat{immy}); break; | 
|---|
| 252 | case Op::sub_f32_imm: write(o, V{id}, "=", op, V{x}, Splat{immy}); break; | 
|---|
| 253 | case Op::mul_f32_imm: write(o, V{id}, "=", op, V{x}, Splat{immy}); break; | 
|---|
| 254 | case Op::min_f32_imm: write(o, V{id}, "=", op, V{x}, Splat{immy}); break; | 
|---|
| 255 | case Op::max_f32_imm: write(o, V{id}, "=", op, V{x}, Splat{immy}); break; | 
|---|
| 256 |  | 
|---|
| 257 | case Op:: eq_f32: write(o, V{id}, "=", op, V{x}, V{y}); break; | 
|---|
| 258 | case Op::neq_f32: write(o, V{id}, "=", op, V{x}, V{y}); break; | 
|---|
| 259 | case Op:: gt_f32: write(o, V{id}, "=", op, V{x}, V{y}); break; | 
|---|
| 260 | case Op::gte_f32: write(o, V{id}, "=", op, V{x}, V{y}); break; | 
|---|
| 261 |  | 
|---|
| 262 |  | 
|---|
| 263 | case Op::add_i32: write(o, V{id}, "=", op, V{x}, V{y}); break; | 
|---|
| 264 | case Op::sub_i32: write(o, V{id}, "=", op, V{x}, V{y}); break; | 
|---|
| 265 | case Op::mul_i32: write(o, V{id}, "=", op, V{x}, V{y}); break; | 
|---|
| 266 |  | 
|---|
| 267 | case Op::shl_i32: write(o, V{id}, "=", op, V{x}, Shift{immy}); break; | 
|---|
| 268 | case Op::shr_i32: write(o, V{id}, "=", op, V{x}, Shift{immy}); break; | 
|---|
| 269 | case Op::sra_i32: write(o, V{id}, "=", op, V{x}, Shift{immy}); break; | 
|---|
| 270 |  | 
|---|
| 271 | case Op:: eq_i32: write(o, V{id}, "=", op, V{x}, V{y}); break; | 
|---|
| 272 | case Op::neq_i32: write(o, V{id}, "=", op, V{x}, V{y}); break; | 
|---|
| 273 | case Op:: gt_i32: write(o, V{id}, "=", op, V{x}, V{y}); break; | 
|---|
| 274 | case Op::gte_i32: write(o, V{id}, "=", op, V{x}, V{y}); break; | 
|---|
| 275 |  | 
|---|
| 276 | case Op::add_i16x2: write(o, V{id}, "=", op, V{x}, V{y}); break; | 
|---|
| 277 | case Op::sub_i16x2: write(o, V{id}, "=", op, V{x}, V{y}); break; | 
|---|
| 278 | case Op::mul_i16x2: write(o, V{id}, "=", op, V{x}, V{y}); break; | 
|---|
| 279 |  | 
|---|
| 280 | case Op::shl_i16x2: write(o, V{id}, "=", op, V{x}, Shift{immy}); break; | 
|---|
| 281 | case Op::shr_i16x2: write(o, V{id}, "=", op, V{x}, Shift{immy}); break; | 
|---|
| 282 | case Op::sra_i16x2: write(o, V{id}, "=", op, V{x}, Shift{immy}); break; | 
|---|
| 283 |  | 
|---|
| 284 | case Op:: eq_i16x2: write(o, V{id}, "=", op, V{x}, V{y}); break; | 
|---|
| 285 | case Op::neq_i16x2: write(o, V{id}, "=", op, V{x}, V{y}); break; | 
|---|
| 286 | case Op:: gt_i16x2: write(o, V{id}, "=", op, V{x}, V{y}); break; | 
|---|
| 287 | case Op::gte_i16x2: write(o, V{id}, "=", op, V{x}, V{y}); break; | 
|---|
| 288 |  | 
|---|
| 289 | case Op::bit_and  : write(o, V{id}, "=", op, V{x}, V{y}      ); break; | 
|---|
| 290 | case Op::bit_or   : write(o, V{id}, "=", op, V{x}, V{y}      ); break; | 
|---|
| 291 | case Op::bit_xor  : write(o, V{id}, "=", op, V{x}, V{y}      ); break; | 
|---|
| 292 | case Op::bit_clear: write(o, V{id}, "=", op, V{x}, V{y}      ); break; | 
|---|
| 293 |  | 
|---|
| 294 | case Op::bit_and_imm: write(o, V{id}, "=", op, V{x}, Hex{immy}); break; | 
|---|
| 295 | case Op::bit_or_imm : write(o, V{id}, "=", op, V{x}, Hex{immy}); break; | 
|---|
| 296 | case Op::bit_xor_imm: write(o, V{id}, "=", op, V{x}, Hex{immy}); break; | 
|---|
| 297 |  | 
|---|
| 298 | case Op::select:  write(o, V{id}, "=", op, V{x}, V{y}, V{z}); break; | 
|---|
| 299 | case Op::pack:    write(o, V{id}, "=", op, V{x}, V{y}, Shift{immz}); break; | 
|---|
| 300 |  | 
|---|
| 301 | case Op::floor:  write(o, V{id}, "=", op, V{x}); break; | 
|---|
| 302 | case Op::to_f32: write(o, V{id}, "=", op, V{x}); break; | 
|---|
| 303 | case Op::trunc:  write(o, V{id}, "=", op, V{x}); break; | 
|---|
| 304 | case Op::round:  write(o, V{id}, "=", op, V{x}); break; | 
|---|
| 305 | } | 
|---|
| 306 |  | 
|---|
| 307 | write(o, "\n"); | 
|---|
| 308 | } | 
|---|
| 309 | } | 
|---|
| 310 |  | 
|---|
| 311 | void Program::dump(SkWStream* o) const { | 
|---|
| 312 | SkDebugfStream debug; | 
|---|
| 313 | if (!o) { o = &debug; } | 
|---|
| 314 |  | 
|---|
| 315 | o->writeDecAsText(fImpl->regs); | 
|---|
| 316 | o->writeText( " registers, "); | 
|---|
| 317 | o->writeDecAsText(fImpl->instructions.size()); | 
|---|
| 318 | o->writeText( " instructions:\n"); | 
|---|
| 319 | for (Val i = 0; i < (Val)fImpl->instructions.size(); i++) { | 
|---|
| 320 | if (i == fImpl->loop) { write(o, "loop:\n"); } | 
|---|
| 321 | o->writeDecAsText(i); | 
|---|
| 322 | o->writeText( "\t"); | 
|---|
| 323 | if (i >= fImpl->loop) { write(o, "    "); } | 
|---|
| 324 | const InterpreterInstruction& inst = fImpl->instructions[i]; | 
|---|
| 325 | Op   op = inst.op; | 
|---|
| 326 | Reg   d = inst.d, | 
|---|
| 327 | x = inst.x, | 
|---|
| 328 | y = inst.y, | 
|---|
| 329 | z = inst.z; | 
|---|
| 330 | int immy = inst.immy, | 
|---|
| 331 | immz = inst.immz; | 
|---|
| 332 | switch (op) { | 
|---|
| 333 | case Op::assert_true: write(o, op, R{x}, R{y}); break; | 
|---|
| 334 |  | 
|---|
| 335 | case Op::store8:  write(o, op, Arg{immy}, R{x}); break; | 
|---|
| 336 | case Op::store16: write(o, op, Arg{immy}, R{x}); break; | 
|---|
| 337 | case Op::store32: write(o, op, Arg{immy}, R{x}); break; | 
|---|
| 338 |  | 
|---|
| 339 | case Op::index: write(o, R{d}, "=", op); break; | 
|---|
| 340 |  | 
|---|
| 341 | case Op::load8:  write(o, R{d}, "=", op, Arg{immy}); break; | 
|---|
| 342 | case Op::load16: write(o, R{d}, "=", op, Arg{immy}); break; | 
|---|
| 343 | case Op::load32: write(o, R{d}, "=", op, Arg{immy}); break; | 
|---|
| 344 |  | 
|---|
| 345 | case Op::gather8:  write(o, R{d}, "=", op, Arg{immy}, Hex{immz}, R{x}); break; | 
|---|
| 346 | case Op::gather16: write(o, R{d}, "=", op, Arg{immy}, Hex{immz}, R{x}); break; | 
|---|
| 347 | case Op::gather32: write(o, R{d}, "=", op, Arg{immy}, Hex{immz}, R{x}); break; | 
|---|
| 348 |  | 
|---|
| 349 | case Op::uniform8:  write(o, R{d}, "=", op, Arg{immy}, Hex{immz}); break; | 
|---|
| 350 | case Op::uniform16: write(o, R{d}, "=", op, Arg{immy}, Hex{immz}); break; | 
|---|
| 351 | case Op::uniform32: write(o, R{d}, "=", op, Arg{immy}, Hex{immz}); break; | 
|---|
| 352 |  | 
|---|
| 353 | case Op::splat:  write(o, R{d}, "=", op, Splat{immy}); break; | 
|---|
| 354 |  | 
|---|
| 355 |  | 
|---|
| 356 | case Op::add_f32: write(o, R{d}, "=", op, R{x}, R{y}      ); break; | 
|---|
| 357 | case Op::sub_f32: write(o, R{d}, "=", op, R{x}, R{y}      ); break; | 
|---|
| 358 | case Op::mul_f32: write(o, R{d}, "=", op, R{x}, R{y}      ); break; | 
|---|
| 359 | case Op::div_f32: write(o, R{d}, "=", op, R{x}, R{y}      ); break; | 
|---|
| 360 | case Op::min_f32: write(o, R{d}, "=", op, R{x}, R{y}      ); break; | 
|---|
| 361 | case Op::max_f32: write(o, R{d}, "=", op, R{x}, R{y}      ); break; | 
|---|
| 362 | case Op::fma_f32: write(o, R{d}, "=", op, R{x}, R{y}, R{z}); break; | 
|---|
| 363 | case Op::fms_f32: write(o, R{d}, "=", op, R{x}, R{y}, R{z}); break; | 
|---|
| 364 | case Op::fnma_f32: write(o, R{d}, "=", op, R{x}, R{y}, R{z}); break; | 
|---|
| 365 |  | 
|---|
| 366 | case Op::sqrt_f32: write(o, R{d}, "=", op, R{x}); break; | 
|---|
| 367 |  | 
|---|
| 368 | case Op::add_f32_imm: write(o, R{d}, "=", op, R{x}, Splat{immy}); break; | 
|---|
| 369 | case Op::sub_f32_imm: write(o, R{d}, "=", op, R{x}, Splat{immy}); break; | 
|---|
| 370 | case Op::mul_f32_imm: write(o, R{d}, "=", op, R{x}, Splat{immy}); break; | 
|---|
| 371 | case Op::min_f32_imm: write(o, R{d}, "=", op, R{x}, Splat{immy}); break; | 
|---|
| 372 | case Op::max_f32_imm: write(o, R{d}, "=", op, R{x}, Splat{immy}); break; | 
|---|
| 373 |  | 
|---|
| 374 | case Op:: eq_f32: write(o, R{d}, "=", op, R{x}, R{y}); break; | 
|---|
| 375 | case Op::neq_f32: write(o, R{d}, "=", op, R{x}, R{y}); break; | 
|---|
| 376 | case Op:: gt_f32: write(o, R{d}, "=", op, R{x}, R{y}); break; | 
|---|
| 377 | case Op::gte_f32: write(o, R{d}, "=", op, R{x}, R{y}); break; | 
|---|
| 378 |  | 
|---|
| 379 |  | 
|---|
| 380 | case Op::add_i32: write(o, R{d}, "=", op, R{x}, R{y}); break; | 
|---|
| 381 | case Op::sub_i32: write(o, R{d}, "=", op, R{x}, R{y}); break; | 
|---|
| 382 | case Op::mul_i32: write(o, R{d}, "=", op, R{x}, R{y}); break; | 
|---|
| 383 |  | 
|---|
| 384 | case Op::shl_i32: write(o, R{d}, "=", op, R{x}, Shift{immy}); break; | 
|---|
| 385 | case Op::shr_i32: write(o, R{d}, "=", op, R{x}, Shift{immy}); break; | 
|---|
| 386 | case Op::sra_i32: write(o, R{d}, "=", op, R{x}, Shift{immy}); break; | 
|---|
| 387 |  | 
|---|
| 388 | case Op:: eq_i32: write(o, R{d}, "=", op, R{x}, R{y}); break; | 
|---|
| 389 | case Op::neq_i32: write(o, R{d}, "=", op, R{x}, R{y}); break; | 
|---|
| 390 | case Op:: gt_i32: write(o, R{d}, "=", op, R{x}, R{y}); break; | 
|---|
| 391 | case Op::gte_i32: write(o, R{d}, "=", op, R{x}, R{y}); break; | 
|---|
| 392 |  | 
|---|
| 393 |  | 
|---|
| 394 | case Op::add_i16x2: write(o, R{d}, "=", op, R{x}, R{y}); break; | 
|---|
| 395 | case Op::sub_i16x2: write(o, R{d}, "=", op, R{x}, R{y}); break; | 
|---|
| 396 | case Op::mul_i16x2: write(o, R{d}, "=", op, R{x}, R{y}); break; | 
|---|
| 397 |  | 
|---|
| 398 | case Op::shl_i16x2: write(o, R{d}, "=", op, R{x}, Shift{immy}); break; | 
|---|
| 399 | case Op::shr_i16x2: write(o, R{d}, "=", op, R{x}, Shift{immy}); break; | 
|---|
| 400 | case Op::sra_i16x2: write(o, R{d}, "=", op, R{x}, Shift{immy}); break; | 
|---|
| 401 |  | 
|---|
| 402 | case Op:: eq_i16x2: write(o, R{d}, "=", op, R{x}, R{y}); break; | 
|---|
| 403 | case Op::neq_i16x2: write(o, R{d}, "=", op, R{x}, R{y}); break; | 
|---|
| 404 | case Op:: gt_i16x2: write(o, R{d}, "=", op, R{x}, R{y}); break; | 
|---|
| 405 | case Op::gte_i16x2: write(o, R{d}, "=", op, R{x}, R{y}); break; | 
|---|
| 406 |  | 
|---|
| 407 |  | 
|---|
| 408 | case Op::bit_and  : write(o, R{d}, "=", op, R{x}, R{y}      ); break; | 
|---|
| 409 | case Op::bit_or   : write(o, R{d}, "=", op, R{x}, R{y}      ); break; | 
|---|
| 410 | case Op::bit_xor  : write(o, R{d}, "=", op, R{x}, R{y}      ); break; | 
|---|
| 411 | case Op::bit_clear: write(o, R{d}, "=", op, R{x}, R{y}      ); break; | 
|---|
| 412 |  | 
|---|
| 413 | case Op::bit_and_imm: write(o, R{d}, "=", op, R{x}, Hex{immy}); break; | 
|---|
| 414 | case Op::bit_or_imm : write(o, R{d}, "=", op, R{x}, Hex{immy}); break; | 
|---|
| 415 | case Op::bit_xor_imm: write(o, R{d}, "=", op, R{x}, Hex{immy}); break; | 
|---|
| 416 |  | 
|---|
| 417 | case Op::select:  write(o, R{d}, "=", op, R{x}, R{y}, R{z}); break; | 
|---|
| 418 | case Op::pack:    write(o, R{d}, "=", op,   R{x}, R{y}, Shift{immz}); break; | 
|---|
| 419 |  | 
|---|
| 420 | case Op::floor:  write(o, R{d}, "=", op, R{x}); break; | 
|---|
| 421 | case Op::to_f32: write(o, R{d}, "=", op, R{x}); break; | 
|---|
| 422 | case Op::trunc:  write(o, R{d}, "=", op, R{x}); break; | 
|---|
| 423 | case Op::round:  write(o, R{d}, "=", op, R{x}); break; | 
|---|
| 424 | } | 
|---|
| 425 | write(o, "\n"); | 
|---|
| 426 | } | 
|---|
| 427 | } | 
|---|
| 428 |  | 
|---|
| 429 | std::vector<Instruction> specialize_for_jit(std::vector<Instruction> program) { | 
|---|
| 430 | // We could use a temporary Builder to let new Instructions participate in common | 
|---|
| 431 | // sub-expression elimination, but we'll never hit anything valuable with the | 
|---|
| 432 | // specializations we've got today.  Worth keeping in mind for the future though. | 
|---|
| 433 | for (Val i = 0; i < (Val)program.size(); i++) { | 
|---|
| 434 | #if defined(SK_CPU_X86) | 
|---|
| 435 | Instruction& inst = program[i]; | 
|---|
| 436 |  | 
|---|
| 437 | auto is_imm = [&](Val id, int* bits) { | 
|---|
| 438 | *bits = program[id].immy; | 
|---|
| 439 | return  program[id].op == Op::splat; | 
|---|
| 440 | }; | 
|---|
| 441 |  | 
|---|
| 442 | switch (Op imm_op; inst.op) { | 
|---|
| 443 | default: break; | 
|---|
| 444 |  | 
|---|
| 445 | case Op::add_f32: imm_op = Op::add_f32_imm; goto try_imm_x_and_y; | 
|---|
| 446 | case Op::mul_f32: imm_op = Op::mul_f32_imm; goto try_imm_x_and_y; | 
|---|
| 447 | case Op::bit_and: imm_op = Op::bit_and_imm; goto try_imm_x_and_y; | 
|---|
| 448 | case Op::bit_or:  imm_op = Op::bit_or_imm ; goto try_imm_x_and_y; | 
|---|
| 449 | case Op::bit_xor: imm_op = Op::bit_xor_imm; goto try_imm_x_and_y; | 
|---|
| 450 | case Op::min_f32: imm_op = Op::min_f32_imm; goto try_imm_x; | 
|---|
| 451 | case Op::max_f32: imm_op = Op::max_f32_imm; goto try_imm_x; | 
|---|
| 452 | case Op::sub_f32: imm_op = Op::sub_f32_imm; goto try_imm_y; | 
|---|
| 453 |  | 
|---|
| 454 | try_imm_x_and_y: | 
|---|
| 455 | if (int bits; is_imm(inst.x, &bits)) { | 
|---|
| 456 | inst.op   = imm_op; | 
|---|
| 457 | inst.x    = inst.y; | 
|---|
| 458 | inst.y    = NA; | 
|---|
| 459 | inst.immy = bits; | 
|---|
| 460 | } else if (int bits; is_imm(inst.y, &bits)) { | 
|---|
| 461 | inst.op   = imm_op; | 
|---|
| 462 | inst.y    = NA; | 
|---|
| 463 | inst.immy = bits; | 
|---|
| 464 | } break; | 
|---|
| 465 |  | 
|---|
| 466 | try_imm_x: | 
|---|
| 467 | if (int bits; is_imm(inst.x, &bits)) { | 
|---|
| 468 | inst.op   = imm_op; | 
|---|
| 469 | inst.x    = inst.y; | 
|---|
| 470 | inst.y    = NA; | 
|---|
| 471 | inst.immy = bits; | 
|---|
| 472 | } break; | 
|---|
| 473 |  | 
|---|
| 474 | try_imm_y: | 
|---|
| 475 | if (int bits; is_imm(inst.y, &bits)) { | 
|---|
| 476 | inst.op   = imm_op; | 
|---|
| 477 | inst.y    = NA; | 
|---|
| 478 | inst.immy = bits; | 
|---|
| 479 | } break; | 
|---|
| 480 |  | 
|---|
| 481 | case Op::bit_clear: | 
|---|
| 482 | if (int bits; is_imm(inst.y, &bits)) { | 
|---|
| 483 | inst.op   = Op::bit_and_imm; | 
|---|
| 484 | inst.y    = NA; | 
|---|
| 485 | inst.immy = ~bits; | 
|---|
| 486 | } break; | 
|---|
| 487 | } | 
|---|
| 488 | #endif | 
|---|
| 489 | } | 
|---|
| 490 | return program; | 
|---|
| 491 | } | 
|---|
| 492 |  | 
|---|
| 493 | std::vector<Instruction> eliminate_dead_code(std::vector<Instruction> program) { | 
|---|
| 494 | // Determine which Instructions are live by working back from side effects. | 
|---|
| 495 | std::vector<bool> live(program.size(), false); | 
|---|
| 496 | auto mark_live = [&](Val id, auto& recurse) -> void { | 
|---|
| 497 | if (live[id] == false) { | 
|---|
| 498 | live[id] =  true; | 
|---|
| 499 | Instruction inst = program[id]; | 
|---|
| 500 | for (Val arg : {inst.x, inst.y, inst.z}) { | 
|---|
| 501 | if (arg != NA) { recurse(arg, recurse); } | 
|---|
| 502 | } | 
|---|
| 503 | } | 
|---|
| 504 | }; | 
|---|
| 505 | for (Val id = 0; id < (Val)program.size(); id++) { | 
|---|
| 506 | if (has_side_effect(program[id].op)) { | 
|---|
| 507 | mark_live(id, mark_live); | 
|---|
| 508 | } | 
|---|
| 509 | } | 
|---|
| 510 |  | 
|---|
| 511 | // Rewrite the program with only live Instructions: | 
|---|
| 512 | //   - remap IDs in live Instructions to what they'll be once dead Instructions are removed; | 
|---|
| 513 | //   - then actually remove the dead Instructions. | 
|---|
| 514 | std::vector<Val> new_id(program.size(), NA); | 
|---|
| 515 | for (Val id = 0, next = 0; id < (Val)program.size(); id++) { | 
|---|
| 516 | if (live[id]) { | 
|---|
| 517 | Instruction& inst = program[id]; | 
|---|
| 518 | for (Val* arg : {&inst.x, &inst.y, &inst.z}) { | 
|---|
| 519 | if (*arg != NA) { | 
|---|
| 520 | *arg = new_id[*arg]; | 
|---|
| 521 | SkASSERT(*arg != NA); | 
|---|
| 522 | } | 
|---|
| 523 | } | 
|---|
| 524 | new_id[id] = next++; | 
|---|
| 525 | } | 
|---|
| 526 | } | 
|---|
| 527 | auto it = std::remove_if(program.begin(), program.end(), [&](const Instruction& inst) { | 
|---|
| 528 | Val id = (Val)(&inst - program.data()); | 
|---|
| 529 | return !live[id]; | 
|---|
| 530 | }); | 
|---|
| 531 | program.erase(it, program.end()); | 
|---|
| 532 |  | 
|---|
| 533 | return program; | 
|---|
| 534 | } | 
|---|
| 535 |  | 
|---|
| 536 | std::vector<Instruction> schedule(std::vector<Instruction> program) { | 
|---|
| 537 | Usage usage{program}; | 
|---|
| 538 |  | 
|---|
| 539 | std::vector<int> uses(program.size()); | 
|---|
| 540 | for (Val id = 0; id < (Val)program.size(); id++) { | 
|---|
| 541 | uses[id] = (int)usage[id].size(); | 
|---|
| 542 | } | 
|---|
| 543 |  | 
|---|
| 544 | auto pressure_change = [&](Val id) -> int { | 
|---|
| 545 | Instruction inst = program[id]; | 
|---|
| 546 |  | 
|---|
| 547 | // If this Instruction is not a sink, its result needs a register. | 
|---|
| 548 | int change = has_side_effect(inst.op) ? 0 : 1; | 
|---|
| 549 |  | 
|---|
| 550 | // If this is the final user of an argument, the argument's register becomes free. | 
|---|
| 551 | for (Val arg : {inst.x, inst.y, inst.z}) { | 
|---|
| 552 | if (arg != NA && uses[arg] == 1) { change -= 1; } | 
|---|
| 553 | } | 
|---|
| 554 | return change; | 
|---|
| 555 | }; | 
|---|
| 556 |  | 
|---|
| 557 | auto compare = [&](Val lhs, Val rhs) { | 
|---|
| 558 | SkASSERT(lhs != rhs); | 
|---|
| 559 | int lhs_change = pressure_change(lhs); | 
|---|
| 560 | int rhs_change = pressure_change(rhs); | 
|---|
| 561 |  | 
|---|
| 562 | // This comparison operator orders instructions from least (likely negative) register | 
|---|
| 563 | // pressure to most register pressure,  breaking ties arbitrarily using original | 
|---|
| 564 | // program order comparing the instruction index itself. | 
|---|
| 565 | // | 
|---|
| 566 | // We'll use this operator with std::{make,push,pop}_heap() to maintain a max heap | 
|---|
| 567 | // frontier of instructions that are ready to schedule.  We iterate backwards through | 
|---|
| 568 | // the program, scheduling later instruction slots before earlier ones, and that means | 
|---|
| 569 | // an instruction becomes ready to schedule once all instructions using its result have | 
|---|
| 570 | // been scheduled (in later slots). | 
|---|
| 571 | // | 
|---|
| 572 | // All together that means we'll be issuing the instructions that hurt register pressure | 
|---|
| 573 | // as late as possible, and issuing the instructions that help register pressure as soon | 
|---|
| 574 | // as possible. | 
|---|
| 575 | // | 
|---|
| 576 | // This heuristic of greedily issuing the instruction that most immediately decreases | 
|---|
| 577 | // register pressure approximates a more expensive search to find a schedule that | 
|---|
| 578 | // minimizes the high-water maximum register pressure, the number of registers we'll | 
|---|
| 579 | // need to run this program. | 
|---|
| 580 | // | 
|---|
| 581 | // The tie-breaker heuristic was found through experimentation. | 
|---|
| 582 | return lhs_change < rhs_change || (lhs_change == rhs_change && lhs > rhs); | 
|---|
| 583 | }; | 
|---|
| 584 |  | 
|---|
| 585 | auto ready_to_schedule = [&](Val id) { return uses[id] == 0; }; | 
|---|
| 586 |  | 
|---|
| 587 | std::vector<Val> frontier; | 
|---|
| 588 | for (Val id = 0; id < (Val)program.size(); id++) { | 
|---|
| 589 | Instruction inst = program[id]; | 
|---|
| 590 | if (has_side_effect(inst.op)) { | 
|---|
| 591 | frontier.push_back(id); | 
|---|
| 592 | } | 
|---|
| 593 | // Having eliminated dead code, the only Instructions that should start | 
|---|
| 594 | // with no users remaining to schedule are those with side effects. | 
|---|
| 595 | SkASSERT(has_side_effect(inst.op) == (uses[id] == 0)); | 
|---|
| 596 | } | 
|---|
| 597 | std::make_heap(frontier.begin(), frontier.end(), compare); | 
|---|
| 598 |  | 
|---|
| 599 | // Figure out our new Instruction schedule. | 
|---|
| 600 | std::vector<Val> new_id(program.size(), NA); | 
|---|
| 601 | for (Val n = (Val)program.size(); n --> 0;) { | 
|---|
| 602 | SkASSERT(!frontier.empty()); | 
|---|
| 603 | std::pop_heap(frontier.begin(), frontier.end(), compare); | 
|---|
| 604 | Val id = frontier.back(); | 
|---|
| 605 | frontier.pop_back(); | 
|---|
| 606 |  | 
|---|
| 607 | SkASSERT(ready_to_schedule(id)); | 
|---|
| 608 |  | 
|---|
| 609 | Instruction inst = program[id]; | 
|---|
| 610 | new_id[id] = n; | 
|---|
| 611 |  | 
|---|
| 612 | for (Val arg : {inst.x, inst.y, inst.z}) { | 
|---|
| 613 | if (arg != NA) { | 
|---|
| 614 | uses[arg]--; | 
|---|
| 615 | if (ready_to_schedule(arg)) { | 
|---|
| 616 | frontier.push_back(arg); | 
|---|
| 617 | std::push_heap(frontier.begin(), frontier.end(), compare); | 
|---|
| 618 | } | 
|---|
| 619 | } | 
|---|
| 620 | } | 
|---|
| 621 | } | 
|---|
| 622 | SkASSERT(frontier.empty()); | 
|---|
| 623 |  | 
|---|
| 624 | // Remap each Instruction's arguments to their new IDs. | 
|---|
| 625 | for (Val id = 0; id < (Val)program.size(); id++) { | 
|---|
| 626 | Instruction& inst = program[id]; | 
|---|
| 627 | for (Val* arg : {&inst.x, &inst.y, &inst.z}) { | 
|---|
| 628 | if (*arg != NA) { | 
|---|
| 629 | *arg = new_id[*arg]; | 
|---|
| 630 | SkASSERT(*arg != NA); | 
|---|
| 631 | } | 
|---|
| 632 | } | 
|---|
| 633 | } | 
|---|
| 634 |  | 
|---|
| 635 | // Finally, reorder the Instructions themselves according to the new schedule. | 
|---|
| 636 | // This is O(N)... wish I had a good reference link breaking it down. | 
|---|
| 637 | for (Val id = 0; id < (Val)program.size(); id++) { | 
|---|
| 638 | while (id != new_id[id]) { | 
|---|
| 639 | std::swap(program[id], program[new_id[id]]); | 
|---|
| 640 | std::swap( new_id[id],  new_id[new_id[id]]); | 
|---|
| 641 | } | 
|---|
| 642 | } | 
|---|
| 643 | return program; | 
|---|
| 644 | } | 
|---|
| 645 |  | 
|---|
| 646 | std::vector<OptimizedInstruction> finalize(const std::vector<Instruction> program) { | 
|---|
| 647 | std::vector<OptimizedInstruction> optimized(program.size()); | 
|---|
| 648 | for (Val id = 0; id < (Val)program.size(); id++) { | 
|---|
| 649 | Instruction inst = program[id]; | 
|---|
| 650 | optimized[id] = {inst.op, inst.x,inst.y,inst.z, inst.immy,inst.immz, | 
|---|
| 651 | /*death=*/id, /*can_hoist=*/true, /*used_in_loop=*/false}; | 
|---|
| 652 | } | 
|---|
| 653 |  | 
|---|
| 654 | // Each Instruction's inputs need to live at least until that Instruction issues. | 
|---|
| 655 | for (Val id = 0; id < (Val)optimized.size(); id++) { | 
|---|
| 656 | OptimizedInstruction& inst = optimized[id]; | 
|---|
| 657 | for (Val arg : {inst.x, inst.y, inst.z}) { | 
|---|
| 658 | // (We're walking in order, so this is the same as max()ing with the existing Val.) | 
|---|
| 659 | if (arg != NA) { optimized[arg].death = id; } | 
|---|
| 660 | } | 
|---|
| 661 | } | 
|---|
| 662 |  | 
|---|
| 663 | // Mark which values don't depend on the loop and can be hoisted. | 
|---|
| 664 | for (Val id = 0; id < (Val)optimized.size(); id++) { | 
|---|
| 665 | OptimizedInstruction& inst = optimized[id]; | 
|---|
| 666 |  | 
|---|
| 667 | // Varying loads (and gathers) and stores cannot be hoisted out of the loop. | 
|---|
| 668 | if (is_always_varying(inst.op)) { | 
|---|
| 669 | inst.can_hoist = false; | 
|---|
| 670 | } | 
|---|
| 671 |  | 
|---|
| 672 | // If any of an instruction's inputs can't be hoisted, it can't be hoisted itself. | 
|---|
| 673 | if (inst.can_hoist) { | 
|---|
| 674 | for (Val arg : {inst.x, inst.y, inst.z}) { | 
|---|
| 675 | if (arg != NA) { inst.can_hoist &= optimized[arg].can_hoist; } | 
|---|
| 676 | } | 
|---|
| 677 | } | 
|---|
| 678 |  | 
|---|
| 679 | // We'll want to know if hoisted values are used in the loop; | 
|---|
| 680 | // if not, we can recycle their registers like we do loop values. | 
|---|
| 681 | if (!inst.can_hoist /*i.e. we're in the loop, so the arguments are used_in_loop*/) { | 
|---|
| 682 | for (Val arg : {inst.x, inst.y, inst.z}) { | 
|---|
| 683 | if (arg != NA) { optimized[arg].used_in_loop = true; } | 
|---|
| 684 | } | 
|---|
| 685 | } | 
|---|
| 686 | } | 
|---|
| 687 |  | 
|---|
| 688 | return optimized; | 
|---|
| 689 | } | 
|---|
| 690 |  | 
|---|
| 691 | std::vector<OptimizedInstruction> Builder::optimize(bool for_jit) const { | 
|---|
| 692 | std::vector<Instruction> program = this->program(); | 
|---|
| 693 | if (for_jit) { | 
|---|
| 694 | program = specialize_for_jit(std::move(program)); | 
|---|
| 695 | } | 
|---|
| 696 | program = eliminate_dead_code(std::move(program)); | 
|---|
| 697 | program = schedule           (std::move(program)); | 
|---|
| 698 | return    finalize           (std::move(program)); | 
|---|
| 699 | } | 
|---|
| 700 |  | 
|---|
| 701 | Program Builder::done(const char* debug_name) const { | 
|---|
| 702 | char buf[64] = "skvm-jit-"; | 
|---|
| 703 | if (!debug_name) { | 
|---|
| 704 | *SkStrAppendU32(buf+9, this->hash()) = '\0'; | 
|---|
| 705 | debug_name = buf; | 
|---|
| 706 | } | 
|---|
| 707 |  | 
|---|
| 708 | #if defined(SKVM_LLVM) || defined(SKVM_JIT) | 
|---|
| 709 | return {this->optimize(false), this->optimize(true), fStrides, debug_name}; | 
|---|
| 710 | #else | 
|---|
| 711 | return {this->optimize(false), fStrides}; | 
|---|
| 712 | #endif | 
|---|
| 713 | } | 
|---|
| 714 |  | 
|---|
| 715 | uint64_t Builder::hash() const { | 
|---|
| 716 | uint32_t lo = SkOpts::hash(fProgram.data(), fProgram.size() * sizeof(Instruction), 0), | 
|---|
| 717 | hi = SkOpts::hash(fProgram.data(), fProgram.size() * sizeof(Instruction), 1); | 
|---|
| 718 | return (uint64_t)lo | (uint64_t)hi << 32; | 
|---|
| 719 | } | 
|---|
| 720 |  | 
|---|
| 721 | bool operator==(const Instruction& a, const Instruction& b) { | 
|---|
| 722 | return a.op   == b.op | 
|---|
| 723 | && a.x    == b.x | 
|---|
| 724 | && a.y    == b.y | 
|---|
| 725 | && a.z    == b.z | 
|---|
| 726 | && a.immy == b.immy | 
|---|
| 727 | && a.immz == b.immz; | 
|---|
| 728 | } | 
|---|
| 729 |  | 
|---|
| 730 | uint32_t InstructionHash::operator()(const Instruction& inst, uint32_t seed) const { | 
|---|
| 731 | return SkOpts::hash(&inst, sizeof(inst), seed); | 
|---|
| 732 | } | 
|---|
| 733 |  | 
|---|
| 734 |  | 
|---|
| 735 | // Most instructions produce a value and return it by ID, | 
|---|
| 736 | // the value-producing instruction's own index in the program vector. | 
|---|
| 737 | Val Builder::push(Instruction inst) { | 
|---|
| 738 | // Basic common subexpression elimination: | 
|---|
| 739 | // if we've already seen this exact Instruction, use it instead of creating a new one. | 
|---|
| 740 | if (Val* id = fIndex.find(inst)) { | 
|---|
| 741 | return *id; | 
|---|
| 742 | } | 
|---|
| 743 | Val id = static_cast<Val>(fProgram.size()); | 
|---|
| 744 | fProgram.push_back(inst); | 
|---|
| 745 | fIndex.set(inst, id); | 
|---|
| 746 | return id; | 
|---|
| 747 | } | 
|---|
| 748 |  | 
|---|
| 749 | bool Builder::allImm() const { return true; } | 
|---|
| 750 |  | 
|---|
| 751 | template <typename T, typename... Rest> | 
|---|
| 752 | bool Builder::allImm(Val id, T* imm, Rest... rest) const { | 
|---|
| 753 | if (fProgram[id].op == Op::splat) { | 
|---|
| 754 | static_assert(sizeof(T) == 4); | 
|---|
| 755 | memcpy(imm, &fProgram[id].immy, 4); | 
|---|
| 756 | return this->allImm(rest...); | 
|---|
| 757 | } | 
|---|
| 758 | return false; | 
|---|
| 759 | } | 
|---|
| 760 |  | 
|---|
| 761 | Arg Builder::arg(int stride) { | 
|---|
| 762 | int ix = (int)fStrides.size(); | 
|---|
| 763 | fStrides.push_back(stride); | 
|---|
| 764 | return {ix}; | 
|---|
| 765 | } | 
|---|
| 766 |  | 
|---|
| 767 | void Builder::assert_true(I32 cond, I32 debug) { | 
|---|
| 768 | #ifdef SK_DEBUG | 
|---|
| 769 | int imm; | 
|---|
| 770 | if (this->allImm(cond.id,&imm)) { SkASSERT(imm); return; } | 
|---|
| 771 | (void)push(Op::assert_true, cond.id,debug.id,NA); | 
|---|
| 772 | #endif | 
|---|
| 773 | } | 
|---|
| 774 |  | 
|---|
| 775 | void Builder::store8 (Arg ptr, I32 val) { (void)push(Op::store8 , val.id,NA,NA, ptr.ix); } | 
|---|
| 776 | void Builder::store16(Arg ptr, I32 val) { (void)push(Op::store16, val.id,NA,NA, ptr.ix); } | 
|---|
| 777 | void Builder::store32(Arg ptr, I32 val) { (void)push(Op::store32, val.id,NA,NA, ptr.ix); } | 
|---|
| 778 |  | 
|---|
| 779 | I32 Builder::index() { return {this, push(Op::index , NA,NA,NA,0) }; } | 
|---|
| 780 |  | 
|---|
| 781 | I32 Builder::load8 (Arg ptr) { return {this, push(Op::load8 , NA,NA,NA, ptr.ix) }; } | 
|---|
| 782 | I32 Builder::load16(Arg ptr) { return {this, push(Op::load16, NA,NA,NA, ptr.ix) }; } | 
|---|
| 783 | I32 Builder::load32(Arg ptr) { return {this, push(Op::load32, NA,NA,NA, ptr.ix) }; } | 
|---|
| 784 |  | 
|---|
| 785 | I32 Builder::gather8 (Arg ptr, int offset, I32 index) { | 
|---|
| 786 | return {this, push(Op::gather8 , index.id,NA,NA, ptr.ix,offset)}; | 
|---|
| 787 | } | 
|---|
| 788 | I32 Builder::gather16(Arg ptr, int offset, I32 index) { | 
|---|
| 789 | return {this, push(Op::gather16, index.id,NA,NA, ptr.ix,offset)}; | 
|---|
| 790 | } | 
|---|
| 791 | I32 Builder::gather32(Arg ptr, int offset, I32 index) { | 
|---|
| 792 | return {this, push(Op::gather32, index.id,NA,NA, ptr.ix,offset)}; | 
|---|
| 793 | } | 
|---|
| 794 |  | 
|---|
| 795 | I32 Builder::uniform8(Arg ptr, int offset) { | 
|---|
| 796 | return {this, push(Op::uniform8, NA,NA,NA, ptr.ix, offset)}; | 
|---|
| 797 | } | 
|---|
| 798 | I32 Builder::uniform16(Arg ptr, int offset) { | 
|---|
| 799 | return {this, push(Op::uniform16, NA,NA,NA, ptr.ix, offset)}; | 
|---|
| 800 | } | 
|---|
| 801 | I32 Builder::uniform32(Arg ptr, int offset) { | 
|---|
| 802 | return {this, push(Op::uniform32, NA,NA,NA, ptr.ix, offset)}; | 
|---|
| 803 | } | 
|---|
| 804 |  | 
|---|
| 805 | // The two splat() functions are just syntax sugar over splatting a 4-byte bit pattern. | 
|---|
| 806 | I32 Builder::splat(int   n) { return {this, push(Op::splat, NA,NA,NA, n) }; } | 
|---|
| 807 | F32 Builder::splat(float f) { | 
|---|
| 808 | int bits; | 
|---|
| 809 | memcpy(&bits, &f, 4); | 
|---|
| 810 | return {this, push(Op::splat, NA,NA,NA, bits)}; | 
|---|
| 811 | } | 
|---|
| 812 |  | 
|---|
| 813 | static bool fma_supported() { | 
|---|
| 814 | static const bool supported = | 
|---|
| 815 | #if defined(SK_CPU_X86) | 
|---|
| 816 | SkCpu::Supports(SkCpu::HSW); | 
|---|
| 817 | #elif defined(SK_CPU_ARM64) | 
|---|
| 818 | true; | 
|---|
| 819 | #else | 
|---|
| 820 | false; | 
|---|
| 821 | #endif | 
|---|
| 822 | return supported; | 
|---|
| 823 | } | 
|---|
| 824 |  | 
|---|
| 825 | // Be careful peepholing float math!  Transformations you might expect to | 
|---|
| 826 | // be legal can fail in the face of NaN/Inf, e.g. 0*x is not always 0. | 
|---|
| 827 | // Float peepholes must pass this equivalence test for all ~4B floats: | 
|---|
| 828 | // | 
|---|
| 829 | //     bool equiv(float x, float y) { return (x == y) || (isnanf(x) && isnanf(y)); } | 
|---|
| 830 | // | 
|---|
| 831 | //     unsigned bits = 0; | 
|---|
| 832 | //     do { | 
|---|
| 833 | //        float f; | 
|---|
| 834 | //        memcpy(&f, &bits, 4); | 
|---|
| 835 | //        if (!equiv(f, ...)) { | 
|---|
| 836 | //           abort(); | 
|---|
| 837 | //        } | 
|---|
| 838 | //     } while (++bits != 0); | 
|---|
| 839 |  | 
|---|
| 840 | F32 Builder::add(F32 x, F32 y) { | 
|---|
| 841 | if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X+Y); } | 
|---|
| 842 | if (this->isImm(y.id, 0.0f)) { return x; }   // x+0 == x | 
|---|
| 843 | if (this->isImm(x.id, 0.0f)) { return y; }   // 0+y == y | 
|---|
| 844 |  | 
|---|
| 845 | if (fma_supported()) { | 
|---|
| 846 | if (fProgram[x.id].op == Op::mul_f32) { | 
|---|
| 847 | return {this, this->push(Op::fma_f32, fProgram[x.id].x, fProgram[x.id].y, y.id)}; | 
|---|
| 848 | } | 
|---|
| 849 | if (fProgram[y.id].op == Op::mul_f32) { | 
|---|
| 850 | return {this, this->push(Op::fma_f32, fProgram[y.id].x, fProgram[y.id].y, x.id)}; | 
|---|
| 851 | } | 
|---|
| 852 | } | 
|---|
| 853 | return {this, this->push(Op::add_f32, x.id, y.id)}; | 
|---|
| 854 | } | 
|---|
| 855 |  | 
|---|
| 856 | F32 Builder::sub(F32 x, F32 y) { | 
|---|
| 857 | if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X-Y); } | 
|---|
| 858 | if (this->isImm(y.id, 0.0f)) { return x; }   // x-0 == x | 
|---|
| 859 | if (fma_supported()) { | 
|---|
| 860 | if (fProgram[x.id].op == Op::mul_f32) { | 
|---|
| 861 | return {this, this->push(Op::fms_f32, fProgram[x.id].x, fProgram[x.id].y, y.id)}; | 
|---|
| 862 | } | 
|---|
| 863 | if (fProgram[y.id].op == Op::mul_f32) { | 
|---|
| 864 | return {this, this->push(Op::fnma_f32, fProgram[y.id].x, fProgram[y.id].y, x.id)}; | 
|---|
| 865 | } | 
|---|
| 866 | } | 
|---|
| 867 | return {this, this->push(Op::sub_f32, x.id, y.id)}; | 
|---|
| 868 | } | 
|---|
| 869 |  | 
|---|
| 870 | F32 Builder::mul(F32 x, F32 y) { | 
|---|
| 871 | if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X*Y); } | 
|---|
| 872 | if (this->isImm(y.id, 1.0f)) { return x; }  // x*1 == x | 
|---|
| 873 | if (this->isImm(x.id, 1.0f)) { return y; }  // 1*y == y | 
|---|
| 874 | return {this, this->push(Op::mul_f32, x.id, y.id)}; | 
|---|
| 875 | } | 
|---|
| 876 |  | 
|---|
| 877 | F32 Builder::div(F32 x, F32 y) { | 
|---|
| 878 | if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X/Y); } | 
|---|
| 879 | if (this->isImm(y.id, 1.0f)) { return x; }  // x/1 == x | 
|---|
| 880 | return {this, this->push(Op::div_f32, x.id, y.id)}; | 
|---|
| 881 | } | 
|---|
| 882 |  | 
|---|
| 883 | F32 Builder::sqrt(F32 x) { | 
|---|
| 884 | if (float X; this->allImm(x.id,&X)) { return splat(std::sqrt(X)); } | 
|---|
| 885 | return {this, this->push(Op::sqrt_f32, x.id,NA,NA)}; | 
|---|
| 886 | } | 
|---|
| 887 |  | 
|---|
| 888 | // See http://www.machinedlearnings.com/2011/06/fast-approximate-logarithm-exponential.html. | 
|---|
| 889 | F32 Builder::approx_log2(F32 x) { | 
|---|
| 890 | // e - 127 is a fair approximation of log2(x) in its own right... | 
|---|
| 891 | F32 e = mul(to_f32(bit_cast(x)), splat(1.0f / (1<<23))); | 
|---|
| 892 |  | 
|---|
| 893 | // ... but using the mantissa to refine its error is _much_ better. | 
|---|
| 894 | F32 m = bit_cast(bit_or(bit_and(bit_cast(x), 0x007fffff), | 
|---|
| 895 | 0x3f000000)); | 
|---|
| 896 | F32 approx = sub(e,        124.225514990f); | 
|---|
| 897 | approx = sub(approx, mul(1.498030302f, m)); | 
|---|
| 898 | approx = sub(approx, div(1.725879990f, add(0.3520887068f, m))); | 
|---|
| 899 |  | 
|---|
| 900 | return approx; | 
|---|
| 901 | } | 
|---|
| 902 |  | 
|---|
| 903 | F32 Builder::approx_pow2(F32 x) { | 
|---|
| 904 | F32 f = fract(x); | 
|---|
| 905 | F32 approx = add(x,         121.274057500f); | 
|---|
| 906 | approx = sub(approx, mul( 1.490129070f, f)); | 
|---|
| 907 | approx = add(approx, div(27.728023300f, sub(4.84252568f, f))); | 
|---|
| 908 |  | 
|---|
| 909 | return bit_cast(round(mul(1.0f * (1<<23), approx))); | 
|---|
| 910 | } | 
|---|
| 911 |  | 
|---|
| 912 | F32 Builder::approx_powf(F32 x, F32 y) { | 
|---|
| 913 | auto is_x = bit_or(eq(x, 0.0f), | 
|---|
| 914 | eq(x, 1.0f)); | 
|---|
| 915 | return select(is_x, x, approx_pow2(mul(approx_log2(x), y))); | 
|---|
| 916 | } | 
|---|
| 917 |  | 
|---|
| 918 | // Bhaskara I's sine approximation | 
|---|
| 919 | // 16x(pi - x) / (5*pi^2 - 4x(pi - x) | 
|---|
| 920 | // ... divide by 4 | 
|---|
| 921 | // 4x(pi - x) / 5*pi^2/4 - x(pi - x) | 
|---|
| 922 | // | 
|---|
| 923 | // This is a good approximation only for 0 <= x <= pi, so we use symmetries to get | 
|---|
| 924 | // radians into that range first. | 
|---|
| 925 | // | 
|---|
| 926 | F32 Builder::approx_sin(F32 radians) { | 
|---|
| 927 | constexpr float Pi = SK_ScalarPI; | 
|---|
| 928 | // x = radians mod 2pi | 
|---|
| 929 | F32 x = fract(radians * (0.5f/Pi)) * (2*Pi); | 
|---|
| 930 | I32 neg = x > Pi;   // are we pi < x < 2pi --> need to negate result | 
|---|
| 931 | x = select(neg, x - Pi, x); | 
|---|
| 932 |  | 
|---|
| 933 | F32 pair = x * (Pi - x); | 
|---|
| 934 | x = 4.0f * pair / ((5*Pi*Pi/4) - pair); | 
|---|
| 935 | x = select(neg, -x, x); | 
|---|
| 936 | return x; | 
|---|
| 937 | } | 
|---|
| 938 |  | 
|---|
| 939 | /*  "GENERATING ACCURATE VALUES FOR THE TANGENT FUNCTION" | 
|---|
| 940 | https://mae.ufl.edu/~uhk/ACCURATE-TANGENT.pdf | 
|---|
| 941 |  | 
|---|
| 942 | approx = x + (1/3)x^3 + (2/15)x^5 + (17/315)x^7 + (62/2835)x^9 | 
|---|
| 943 |  | 
|---|
| 944 | Some simplifications: | 
|---|
| 945 | 1. tan(x) is periodic, -PI/2 < x < PI/2 | 
|---|
| 946 | 2. tan(x) is odd, so tan(-x) = -tan(x) | 
|---|
| 947 | 3. Our polynomial approximation is best near zero, so we use the following identity | 
|---|
| 948 | tan(x) + tan(y) | 
|---|
| 949 | tan(x + y) = ----------------- | 
|---|
| 950 | 1 - tan(x)*tan(y) | 
|---|
| 951 | tan(PI/4) = 1 | 
|---|
| 952 |  | 
|---|
| 953 | So for x > PI/8, we do the following refactor: | 
|---|
| 954 | x' = x - PI/4 | 
|---|
| 955 |  | 
|---|
| 956 | 1 + tan(x') | 
|---|
| 957 | tan(x) = ------------ | 
|---|
| 958 | 1 - tan(x') | 
|---|
| 959 | */ | 
|---|
| 960 | F32 Builder::approx_tan(F32 x) { | 
|---|
| 961 | constexpr float Pi = SK_ScalarPI; | 
|---|
| 962 | // periodic between -pi/2 ... pi/2 | 
|---|
| 963 | // shift to 0...Pi, scale 1/Pi to get into 0...1, then fract, scale-up, shift-back | 
|---|
| 964 | x = fract((1/Pi)*x + 0.5f) * Pi - (Pi/2); | 
|---|
| 965 |  | 
|---|
| 966 | I32 neg = (x < 0.0f); | 
|---|
| 967 | x = select(neg, -x, x); | 
|---|
| 968 |  | 
|---|
| 969 | // minimize total error by shifting if x > pi/8 | 
|---|
| 970 | I32 use_quotient = (x > (Pi/8)); | 
|---|
| 971 | x = select(use_quotient, x - (Pi/4), x); | 
|---|
| 972 |  | 
|---|
| 973 | // 9th order poly = 4th order(x^2) * x | 
|---|
| 974 | x = poly(x*x, 62/2835.0f, 17/315.0f, 2/15.0f, 1/3.0f, 1.0f) * x; | 
|---|
| 975 | x = select(use_quotient, (1+x)/(1-x), x); | 
|---|
| 976 | x = select(neg, -x, x); | 
|---|
| 977 | return x; | 
|---|
| 978 | } | 
|---|
| 979 |  | 
|---|
| 980 | F32 Builder::min(F32 x, F32 y) { | 
|---|
| 981 | if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(std::min(X,Y)); } | 
|---|
| 982 | return {this, this->push(Op::min_f32, x.id, y.id)}; | 
|---|
| 983 | } | 
|---|
| 984 | F32 Builder::max(F32 x, F32 y) { | 
|---|
| 985 | if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(std::max(X,Y)); } | 
|---|
| 986 | return {this, this->push(Op::max_f32, x.id, y.id)}; | 
|---|
| 987 | } | 
|---|
| 988 |  | 
|---|
| 989 | I32 Builder::add(I32 x, I32 y) { | 
|---|
| 990 | if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X+Y); } | 
|---|
| 991 | if (this->isImm(x.id, 0)) { return y; } | 
|---|
| 992 | if (this->isImm(y.id, 0)) { return x; } | 
|---|
| 993 | return {this, this->push(Op::add_i32, x.id, y.id)}; | 
|---|
| 994 | } | 
|---|
| 995 | I32 Builder::sub(I32 x, I32 y) { | 
|---|
| 996 | if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X-Y); } | 
|---|
| 997 | if (this->isImm(y.id, 0)) { return x; } | 
|---|
| 998 | return {this, this->push(Op::sub_i32, x.id, y.id)}; | 
|---|
| 999 | } | 
|---|
| 1000 | I32 Builder::mul(I32 x, I32 y) { | 
|---|
| 1001 | if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X*Y); } | 
|---|
| 1002 | if (this->isImm(x.id, 0)) { return splat(0); } | 
|---|
| 1003 | if (this->isImm(y.id, 0)) { return splat(0); } | 
|---|
| 1004 | if (this->isImm(x.id, 1)) { return y; } | 
|---|
| 1005 | if (this->isImm(y.id, 1)) { return x; } | 
|---|
| 1006 | return {this, this->push(Op::mul_i32, x.id, y.id)}; | 
|---|
| 1007 | } | 
|---|
| 1008 |  | 
|---|
| 1009 | I32 Builder::add_16x2(I32 x, I32 y) { return {this, this->push(Op::add_i16x2, x.id, y.id)}; } | 
|---|
| 1010 | I32 Builder::sub_16x2(I32 x, I32 y) { return {this, this->push(Op::sub_i16x2, x.id, y.id)}; } | 
|---|
| 1011 | I32 Builder::mul_16x2(I32 x, I32 y) { return {this, this->push(Op::mul_i16x2, x.id, y.id)}; } | 
|---|
| 1012 |  | 
|---|
| 1013 | I32 Builder::shl(I32 x, int bits) { | 
|---|
| 1014 | if (bits == 0) { return x; } | 
|---|
| 1015 | if (int X; this->allImm(x.id,&X)) { return splat(X << bits); } | 
|---|
| 1016 | return {this, this->push(Op::shl_i32, x.id,NA,NA, bits)}; | 
|---|
| 1017 | } | 
|---|
| 1018 | I32 Builder::shr(I32 x, int bits) { | 
|---|
| 1019 | if (bits == 0) { return x; } | 
|---|
| 1020 | if (int X; this->allImm(x.id,&X)) { return splat(unsigned(X) >> bits); } | 
|---|
| 1021 | return {this, this->push(Op::shr_i32, x.id,NA,NA, bits)}; | 
|---|
| 1022 | } | 
|---|
| 1023 | I32 Builder::sra(I32 x, int bits) { | 
|---|
| 1024 | if (bits == 0) { return x; } | 
|---|
| 1025 | if (int X; this->allImm(x.id,&X)) { return splat(X >> bits); } | 
|---|
| 1026 | return {this, this->push(Op::sra_i32, x.id,NA,NA, bits)}; | 
|---|
| 1027 | } | 
|---|
| 1028 |  | 
|---|
| 1029 | I32 Builder::shl_16x2(I32 x, int k) { return {this, this->push(Op::shl_i16x2, x.id,NA,NA, k)}; } | 
|---|
| 1030 | I32 Builder::shr_16x2(I32 x, int k) { return {this, this->push(Op::shr_i16x2, x.id,NA,NA, k)}; } | 
|---|
| 1031 | I32 Builder::sra_16x2(I32 x, int k) { return {this, this->push(Op::sra_i16x2, x.id,NA,NA, k)}; } | 
|---|
| 1032 |  | 
|---|
| 1033 | I32 Builder:: eq(F32 x, F32 y) { | 
|---|
| 1034 | if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X==Y ? ~0 : 0); } | 
|---|
| 1035 | return {this, this->push(Op::eq_f32, x.id, y.id)}; | 
|---|
| 1036 | } | 
|---|
| 1037 | I32 Builder::neq(F32 x, F32 y) { | 
|---|
| 1038 | if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X!=Y ? ~0 : 0); } | 
|---|
| 1039 | return {this, this->push(Op::neq_f32, x.id, y.id)}; | 
|---|
| 1040 | } | 
|---|
| 1041 | I32 Builder::lt(F32 x, F32 y) { | 
|---|
| 1042 | if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(Y> X ? ~0 : 0); } | 
|---|
| 1043 | return {this, this->push(Op::gt_f32, y.id, x.id)}; | 
|---|
| 1044 | } | 
|---|
| 1045 | I32 Builder::lte(F32 x, F32 y) { | 
|---|
| 1046 | if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(Y>=X ? ~0 : 0); } | 
|---|
| 1047 | return {this, this->push(Op::gte_f32, y.id, x.id)}; | 
|---|
| 1048 | } | 
|---|
| 1049 | I32 Builder::gt(F32 x, F32 y) { | 
|---|
| 1050 | if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X> Y ? ~0 : 0); } | 
|---|
| 1051 | return {this, this->push(Op::gt_f32, x.id, y.id)}; | 
|---|
| 1052 | } | 
|---|
| 1053 | I32 Builder::gte(F32 x, F32 y) { | 
|---|
| 1054 | if (float X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X>=Y ? ~0 : 0); } | 
|---|
| 1055 | return {this, this->push(Op::gte_f32, x.id, y.id)}; | 
|---|
| 1056 | } | 
|---|
| 1057 |  | 
|---|
| 1058 | I32 Builder:: eq(I32 x, I32 y) { | 
|---|
| 1059 | if (x.id == y.id) { return splat(~0); } | 
|---|
| 1060 | return {this, this->push(Op:: eq_i32, x.id, y.id)}; | 
|---|
| 1061 | } | 
|---|
| 1062 | I32 Builder::neq(I32 x, I32 y) { | 
|---|
| 1063 | return {this, this->push(Op::neq_i32, x.id, y.id)}; | 
|---|
| 1064 | } | 
|---|
| 1065 | I32 Builder:: gt(I32 x, I32 y) { | 
|---|
| 1066 | return {this, this->push(Op:: gt_i32, x.id, y.id)}; | 
|---|
| 1067 | } | 
|---|
| 1068 | I32 Builder::gte(I32 x, I32 y) { | 
|---|
| 1069 | if (x.id == y.id) { return splat(~0); } | 
|---|
| 1070 | return {this, this->push(Op::gte_i32, x.id, y.id)}; | 
|---|
| 1071 | } | 
|---|
| 1072 | I32 Builder:: lt(I32 x, I32 y) { return y>x; } | 
|---|
| 1073 | I32 Builder::lte(I32 x, I32 y) { return y>=x; } | 
|---|
| 1074 |  | 
|---|
| 1075 | I32 Builder:: eq_16x2(I32 x, I32 y) { return {this, this->push(Op:: eq_i16x2, x.id, y.id)}; } | 
|---|
| 1076 | I32 Builder::neq_16x2(I32 x, I32 y) { return {this, this->push(Op::neq_i16x2, x.id, y.id)}; } | 
|---|
| 1077 | I32 Builder:: lt_16x2(I32 x, I32 y) { return {this, this->push(Op:: gt_i16x2, y.id, x.id)}; } | 
|---|
| 1078 | I32 Builder::lte_16x2(I32 x, I32 y) { return {this, this->push(Op::gte_i16x2, y.id, x.id)}; } | 
|---|
| 1079 | I32 Builder:: gt_16x2(I32 x, I32 y) { return {this, this->push(Op:: gt_i16x2, x.id, y.id)}; } | 
|---|
| 1080 | I32 Builder::gte_16x2(I32 x, I32 y) { return {this, this->push(Op::gte_i16x2, x.id, y.id)}; } | 
|---|
| 1081 |  | 
|---|
| 1082 | I32 Builder::bit_and(I32 x, I32 y) { | 
|---|
| 1083 | if (x.id == y.id) { return x; } | 
|---|
| 1084 | if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X&Y); } | 
|---|
| 1085 | if (this->isImm(y.id, 0)) { return splat(0); }   // (x & false) == false | 
|---|
| 1086 | if (this->isImm(x.id, 0)) { return splat(0); }   // (false & y) == false | 
|---|
| 1087 | if (this->isImm(y.id,~0)) { return x; }          // (x & true) == x | 
|---|
| 1088 | if (this->isImm(x.id,~0)) { return y; }          // (true & y) == y | 
|---|
| 1089 | return {this, this->push(Op::bit_and, x.id, y.id)}; | 
|---|
| 1090 | } | 
|---|
| 1091 | I32 Builder::bit_or(I32 x, I32 y) { | 
|---|
| 1092 | if (x.id == y.id) { return x; } | 
|---|
| 1093 | if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X|Y); } | 
|---|
| 1094 | if (this->isImm(y.id, 0)) { return x; }           // (x | false) == x | 
|---|
| 1095 | if (this->isImm(x.id, 0)) { return y; }           // (false | y) == y | 
|---|
| 1096 | if (this->isImm(y.id,~0)) { return splat(~0); }   // (x | true) == true | 
|---|
| 1097 | if (this->isImm(x.id,~0)) { return splat(~0); }   // (true | y) == true | 
|---|
| 1098 | return {this, this->push(Op::bit_or, x.id, y.id)}; | 
|---|
| 1099 | } | 
|---|
| 1100 | I32 Builder::bit_xor(I32 x, I32 y) { | 
|---|
| 1101 | if (x.id == y.id) { return splat(0); } | 
|---|
| 1102 | if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X^Y); } | 
|---|
| 1103 | if (this->isImm(y.id, 0)) { return x; }   // (x ^ false) == x | 
|---|
| 1104 | if (this->isImm(x.id, 0)) { return y; }   // (false ^ y) == y | 
|---|
| 1105 | return {this, this->push(Op::bit_xor, x.id, y.id)}; | 
|---|
| 1106 | } | 
|---|
| 1107 |  | 
|---|
| 1108 | I32 Builder::bit_clear(I32 x, I32 y) { | 
|---|
| 1109 | if (x.id == y.id) { return splat(0); } | 
|---|
| 1110 | if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X&~Y); } | 
|---|
| 1111 | if (this->isImm(y.id, 0)) { return x; }          // (x & ~false) == x | 
|---|
| 1112 | if (this->isImm(y.id,~0)) { return splat(0); }   // (x & ~true) == false | 
|---|
| 1113 | if (this->isImm(x.id, 0)) { return splat(0); }   // (false & ~y) == false | 
|---|
| 1114 | return {this, this->push(Op::bit_clear, x.id, y.id)}; | 
|---|
| 1115 | } | 
|---|
| 1116 |  | 
|---|
| 1117 | I32 Builder::select(I32 x, I32 y, I32 z) { | 
|---|
| 1118 | if (y.id == z.id) { return y; } | 
|---|
| 1119 | if (int X,Y,Z; this->allImm(x.id,&X, y.id,&Y, z.id,&Z)) { return splat(X?Y:Z); } | 
|---|
| 1120 | if (this->isImm(x.id,~0)) { return y; }               // true  ? y : z == y | 
|---|
| 1121 | if (this->isImm(x.id, 0)) { return z; }               // false ? y : z == z | 
|---|
| 1122 | if (this->isImm(y.id, 0)) { return bit_clear(z,x); }  //     x ? 0 : z == ~x&z | 
|---|
| 1123 | if (this->isImm(z.id, 0)) { return bit_and  (y,x); }  //     x ? y : 0 ==  x&y | 
|---|
| 1124 | return {this, this->push(Op::select, x.id, y.id, z.id)}; | 
|---|
| 1125 | } | 
|---|
| 1126 |  | 
|---|
| 1127 | I32 Builder::(I32 x, int bits, I32 z) { | 
|---|
| 1128 | if (unsigned Z; this->allImm(z.id,&Z) && (~0u>>bits) == Z) { return shr(x, bits); } | 
|---|
| 1129 | return bit_and(z, shr(x, bits)); | 
|---|
| 1130 | } | 
|---|
| 1131 |  | 
|---|
| 1132 | I32 Builder::pack(I32 x, I32 y, int bits) { | 
|---|
| 1133 | if (int X,Y; this->allImm(x.id,&X, y.id,&Y)) { return splat(X|(Y<<bits)); } | 
|---|
| 1134 | return {this, this->push(Op::pack, x.id,y.id,NA, 0,bits)}; | 
|---|
| 1135 | } | 
|---|
| 1136 |  | 
|---|
| 1137 | F32 Builder::floor(F32 x) { | 
|---|
| 1138 | if (float X; this->allImm(x.id,&X)) { return splat(floorf(X)); } | 
|---|
| 1139 | return {this, this->push(Op::floor, x.id)}; | 
|---|
| 1140 | } | 
|---|
| 1141 | F32 Builder::to_f32(I32 x) { | 
|---|
| 1142 | if (int X; this->allImm(x.id,&X)) { return splat((float)X); } | 
|---|
| 1143 | return {this, this->push(Op::to_f32, x.id)}; | 
|---|
| 1144 | } | 
|---|
| 1145 | I32 Builder::trunc(F32 x) { | 
|---|
| 1146 | if (float X; this->allImm(x.id,&X)) { return splat((int)X); } | 
|---|
| 1147 | return {this, this->push(Op::trunc, x.id)}; | 
|---|
| 1148 | } | 
|---|
| 1149 | I32 Builder::round(F32 x) { | 
|---|
| 1150 | if (float X; this->allImm(x.id,&X)) { return splat((int)lrintf(X)); } | 
|---|
| 1151 | return {this, this->push(Op::round, x.id)}; | 
|---|
| 1152 | } | 
|---|
| 1153 |  | 
|---|
| 1154 | F32 Builder::from_unorm(int bits, I32 x) { | 
|---|
| 1155 | F32 limit = splat(1 / ((1<<bits)-1.0f)); | 
|---|
| 1156 | return mul(to_f32(x), limit); | 
|---|
| 1157 | } | 
|---|
| 1158 | I32 Builder::to_unorm(int bits, F32 x) { | 
|---|
| 1159 | F32 limit = splat((1<<bits)-1.0f); | 
|---|
| 1160 | return round(mul(x, limit)); | 
|---|
| 1161 | } | 
|---|
| 1162 |  | 
|---|
| 1163 | Color Builder::unpack_1010102(I32 rgba) { | 
|---|
| 1164 | return { | 
|---|
| 1165 | from_unorm(10, extract(rgba,  0, 0x3ff)), | 
|---|
| 1166 | from_unorm(10, extract(rgba, 10, 0x3ff)), | 
|---|
| 1167 | from_unorm(10, extract(rgba, 20, 0x3ff)), | 
|---|
| 1168 | from_unorm( 2, extract(rgba, 30, 0x3  )), | 
|---|
| 1169 | }; | 
|---|
| 1170 | } | 
|---|
| 1171 | Color Builder::unpack_8888(I32 rgba) { | 
|---|
| 1172 | return { | 
|---|
| 1173 | from_unorm(8, extract(rgba,  0, 0xff)), | 
|---|
| 1174 | from_unorm(8, extract(rgba,  8, 0xff)), | 
|---|
| 1175 | from_unorm(8, extract(rgba, 16, 0xff)), | 
|---|
| 1176 | from_unorm(8, extract(rgba, 24, 0xff)), | 
|---|
| 1177 | }; | 
|---|
| 1178 | } | 
|---|
| 1179 | Color Builder::unpack_565(I32 bgr) { | 
|---|
| 1180 | return { | 
|---|
| 1181 | from_unorm(5, extract(bgr, 11, 0b011'111)), | 
|---|
| 1182 | from_unorm(6, extract(bgr,  5, 0b111'111)), | 
|---|
| 1183 | from_unorm(5, extract(bgr,  0, 0b011'111)), | 
|---|
| 1184 | splat(1.0f), | 
|---|
| 1185 | }; | 
|---|
| 1186 | } | 
|---|
| 1187 |  | 
|---|
| 1188 | void Builder::unpremul(F32* r, F32* g, F32* b, F32 a) { | 
|---|
| 1189 | skvm::F32 invA = 1.0f / a, | 
|---|
| 1190 | inf  = bit_cast(splat(0x7f800000)); | 
|---|
| 1191 | // If a is 0, so are *r,*g,*b, so set invA to 0 to avoid 0*inf=NaN (instead 0*0 = 0). | 
|---|
| 1192 | invA = select(invA < inf, invA | 
|---|
| 1193 | , 0.0f); | 
|---|
| 1194 | *r *= invA; | 
|---|
| 1195 | *g *= invA; | 
|---|
| 1196 | *b *= invA; | 
|---|
| 1197 | } | 
|---|
| 1198 |  | 
|---|
| 1199 | void Builder::premul(F32* r, F32* g, F32* b, F32 a) { | 
|---|
| 1200 | *r *= a; | 
|---|
| 1201 | *g *= a; | 
|---|
| 1202 | *b *= a; | 
|---|
| 1203 | } | 
|---|
| 1204 |  | 
|---|
| 1205 | Color Builder::uniformPremul(SkColor4f color,    SkColorSpace* src, | 
|---|
| 1206 | Uniforms* uniforms, SkColorSpace* dst) { | 
|---|
| 1207 | SkColorSpaceXformSteps(src, kUnpremul_SkAlphaType, | 
|---|
| 1208 | dst,   kPremul_SkAlphaType).apply(color.vec()); | 
|---|
| 1209 | return { | 
|---|
| 1210 | uniformF(uniforms->pushF(color.fR)), | 
|---|
| 1211 | uniformF(uniforms->pushF(color.fG)), | 
|---|
| 1212 | uniformF(uniforms->pushF(color.fB)), | 
|---|
| 1213 | uniformF(uniforms->pushF(color.fA)), | 
|---|
| 1214 | }; | 
|---|
| 1215 | } | 
|---|
| 1216 |  | 
|---|
| 1217 | Color Builder::lerp(Color lo, Color hi, F32 t) { | 
|---|
| 1218 | return { | 
|---|
| 1219 | lerp(lo.r, hi.r, t), | 
|---|
| 1220 | lerp(lo.g, hi.g, t), | 
|---|
| 1221 | lerp(lo.b, hi.b, t), | 
|---|
| 1222 | lerp(lo.a, hi.a, t), | 
|---|
| 1223 | }; | 
|---|
| 1224 | } | 
|---|
| 1225 |  | 
|---|
| 1226 | HSLA Builder::to_hsla(Color c) { | 
|---|
| 1227 | F32 mx = max(max(c.r,c.g),c.b), | 
|---|
| 1228 | mn = min(min(c.r,c.g),c.b), | 
|---|
| 1229 | d = mx - mn, | 
|---|
| 1230 | invd = 1.0f / d, | 
|---|
| 1231 | g_lt_b = select(c.g < c.b, splat(6.0f) | 
|---|
| 1232 | , splat(0.0f)); | 
|---|
| 1233 |  | 
|---|
| 1234 | F32 h = (1/6.0f) * select(mx == mn,  0.0f, | 
|---|
| 1235 | select(mx == c.r, invd * (c.g - c.b) + g_lt_b, | 
|---|
| 1236 | select(mx == c.g, invd * (c.b - c.r) + 2.0f | 
|---|
| 1237 | , invd * (c.r - c.g) + 4.0f))); | 
|---|
| 1238 |  | 
|---|
| 1239 | F32 sum = mx + mn, | 
|---|
| 1240 | l = sum * 0.5f, | 
|---|
| 1241 | s = select(mx == mn, 0.0f | 
|---|
| 1242 | , d / select(l > 0.5f, 2.0f - sum | 
|---|
| 1243 | , sum)); | 
|---|
| 1244 | return {h, s, l, c.a}; | 
|---|
| 1245 | } | 
|---|
| 1246 |  | 
|---|
| 1247 | Color Builder::to_rgba(HSLA c) { | 
|---|
| 1248 | // See GrRGBToHSLFilterEffect.fp | 
|---|
| 1249 |  | 
|---|
| 1250 | auto [h,s,l,a] = c; | 
|---|
| 1251 | F32 x = s * (1.0f - abs(l + l - 1.0f)); | 
|---|
| 1252 |  | 
|---|
| 1253 | auto hue_to_rgb = [&,l=l](auto hue) { | 
|---|
| 1254 | auto q = abs(6.0f * fract(hue) - 3.0f) - 1.0f; | 
|---|
| 1255 | return x * (clamp01(q) - 0.5f) + l; | 
|---|
| 1256 | }; | 
|---|
| 1257 |  | 
|---|
| 1258 | return { | 
|---|
| 1259 | hue_to_rgb(h + 0/3.0f), | 
|---|
| 1260 | hue_to_rgb(h + 2/3.0f), | 
|---|
| 1261 | hue_to_rgb(h + 1/3.0f), | 
|---|
| 1262 | c.a, | 
|---|
| 1263 | }; | 
|---|
| 1264 | } | 
|---|
| 1265 |  | 
|---|
| 1266 | // We're basing our implementation of non-separable blend modes on | 
|---|
| 1267 | //   https://www.w3.org/TR/compositing-1/#blendingnonseparable. | 
|---|
| 1268 | // and | 
|---|
| 1269 | //   https://www.khronos.org/registry/OpenGL/specs/es/3.2/es_spec_3.2.pdf | 
|---|
| 1270 | // They're equivalent, but ES' math has been better simplified. | 
|---|
| 1271 | // | 
|---|
| 1272 | // Anything extra we add beyond that is to make the math work with premul inputs. | 
|---|
| 1273 |  | 
|---|
| 1274 | static skvm::F32 saturation(skvm::F32 r, skvm::F32 g, skvm::F32 b) { | 
|---|
| 1275 | return max(r, max(g, b)) | 
|---|
| 1276 | - min(r, min(g, b)); | 
|---|
| 1277 | } | 
|---|
| 1278 |  | 
|---|
| 1279 | static skvm::F32 luminance(skvm::F32 r, skvm::F32 g, skvm::F32 b) { | 
|---|
| 1280 | return r*0.30f + g*0.59f + b*0.11f; | 
|---|
| 1281 | } | 
|---|
| 1282 |  | 
|---|
| 1283 | static void set_sat(skvm::F32* r, skvm::F32* g, skvm::F32* b, skvm::F32 s) { | 
|---|
| 1284 | F32 mn  = min(*r, min(*g, *b)), | 
|---|
| 1285 | mx  = max(*r, max(*g, *b)), | 
|---|
| 1286 | sat = mx - mn; | 
|---|
| 1287 |  | 
|---|
| 1288 | // Map min channel to 0, max channel to s, and scale the middle proportionally. | 
|---|
| 1289 | auto scale = [&](auto c) { | 
|---|
| 1290 | // TODO: better to divide and check for non-finite result? | 
|---|
| 1291 | return select(sat == 0.0f, 0.0f | 
|---|
| 1292 | , ((c - mn) * s) / sat); | 
|---|
| 1293 | }; | 
|---|
| 1294 | *r = scale(*r); | 
|---|
| 1295 | *g = scale(*g); | 
|---|
| 1296 | *b = scale(*b); | 
|---|
| 1297 | } | 
|---|
| 1298 |  | 
|---|
| 1299 | static void set_lum(skvm::F32* r, skvm::F32* g, skvm::F32* b, skvm::F32 lu) { | 
|---|
| 1300 | auto diff = lu - luminance(*r, *g, *b); | 
|---|
| 1301 | *r += diff; | 
|---|
| 1302 | *g += diff; | 
|---|
| 1303 | *b += diff; | 
|---|
| 1304 | } | 
|---|
| 1305 |  | 
|---|
| 1306 | static void clip_color(skvm::F32* r, skvm::F32* g, skvm::F32* b, skvm::F32 a) { | 
|---|
| 1307 | F32 mn  = min(*r, min(*g, *b)), | 
|---|
| 1308 | mx  = max(*r, max(*g, *b)), | 
|---|
| 1309 | lu = luminance(*r, *g, *b); | 
|---|
| 1310 |  | 
|---|
| 1311 | auto clip = [&](auto c) { | 
|---|
| 1312 | c = select(mn >= 0, c | 
|---|
| 1313 | , lu + ((c-lu)*(  lu)) / (lu-mn)); | 
|---|
| 1314 | c = select(mx >  a, lu + ((c-lu)*(a-lu)) / (mx-lu) | 
|---|
| 1315 | , c); | 
|---|
| 1316 | return clamp01(c);  // May be a little negative, or worse, NaN. | 
|---|
| 1317 | }; | 
|---|
| 1318 | *r = clip(*r); | 
|---|
| 1319 | *g = clip(*g); | 
|---|
| 1320 | *b = clip(*b); | 
|---|
| 1321 | } | 
|---|
| 1322 |  | 
|---|
| 1323 | Color Builder::blend(SkBlendMode mode, Color src, Color dst) { | 
|---|
| 1324 | auto mma = [](skvm::F32 x, skvm::F32 y, skvm::F32 z, skvm::F32 w) { | 
|---|
| 1325 | return x*y + z*w; | 
|---|
| 1326 | }; | 
|---|
| 1327 |  | 
|---|
| 1328 | auto two = [](skvm::F32 x) { return x+x; }; | 
|---|
| 1329 |  | 
|---|
| 1330 | auto apply_rgba = [&](auto fn) { | 
|---|
| 1331 | return Color { | 
|---|
| 1332 | fn(src.r, dst.r), | 
|---|
| 1333 | fn(src.g, dst.g), | 
|---|
| 1334 | fn(src.b, dst.b), | 
|---|
| 1335 | fn(src.a, dst.a), | 
|---|
| 1336 | }; | 
|---|
| 1337 | }; | 
|---|
| 1338 |  | 
|---|
| 1339 | auto apply_rgb_srcover_a = [&](auto fn) { | 
|---|
| 1340 | return Color { | 
|---|
| 1341 | fn(src.r, dst.r), | 
|---|
| 1342 | fn(src.g, dst.g), | 
|---|
| 1343 | fn(src.b, dst.b), | 
|---|
| 1344 | mad(dst.a, 1-src.a, src.a),   // srcover for alpha | 
|---|
| 1345 | }; | 
|---|
| 1346 | }; | 
|---|
| 1347 |  | 
|---|
| 1348 | auto non_sep = [&](auto R, auto G, auto B) { | 
|---|
| 1349 | return Color{ | 
|---|
| 1350 | R + mma(src.r, 1-dst.a,  dst.r, 1-src.a), | 
|---|
| 1351 | G + mma(src.g, 1-dst.a,  dst.g, 1-src.a), | 
|---|
| 1352 | B + mma(src.b, 1-dst.a,  dst.b, 1-src.a), | 
|---|
| 1353 | mad(dst.a, 1-src.a, src.a),   // srcover for alpha | 
|---|
| 1354 | }; | 
|---|
| 1355 | }; | 
|---|
| 1356 |  | 
|---|
| 1357 | switch (mode) { | 
|---|
| 1358 | default: SkASSERT(false); /*but also, for safety, fallthrough*/ | 
|---|
| 1359 |  | 
|---|
| 1360 | case SkBlendMode::kClear: return { splat(0.0f), splat(0.0f), splat(0.0f), splat(0.0f) }; | 
|---|
| 1361 |  | 
|---|
| 1362 | case SkBlendMode::kSrc: return src; | 
|---|
| 1363 | case SkBlendMode::kDst: return dst; | 
|---|
| 1364 |  | 
|---|
| 1365 | case SkBlendMode::kDstOver: std::swap(src, dst); // fall-through | 
|---|
| 1366 | case SkBlendMode::kSrcOver: | 
|---|
| 1367 | return apply_rgba([&](auto s, auto d) { | 
|---|
| 1368 | return mad(d,1-src.a, s); | 
|---|
| 1369 | }); | 
|---|
| 1370 |  | 
|---|
| 1371 | case SkBlendMode::kDstIn: std::swap(src, dst); // fall-through | 
|---|
| 1372 | case SkBlendMode::kSrcIn: | 
|---|
| 1373 | return apply_rgba([&](auto s, auto d) { | 
|---|
| 1374 | return s * dst.a; | 
|---|
| 1375 | }); | 
|---|
| 1376 |  | 
|---|
| 1377 | case SkBlendMode::kDstOut: std::swap(src, dst); // fall-through | 
|---|
| 1378 | case SkBlendMode::kSrcOut: | 
|---|
| 1379 | return apply_rgba([&](auto s, auto d) { | 
|---|
| 1380 | return s * (1-dst.a); | 
|---|
| 1381 | }); | 
|---|
| 1382 |  | 
|---|
| 1383 | case SkBlendMode::kDstATop: std::swap(src, dst); // fall-through | 
|---|
| 1384 | case SkBlendMode::kSrcATop: | 
|---|
| 1385 | return apply_rgba([&](auto s, auto d) { | 
|---|
| 1386 | return mma(s, dst.a,  d, 1-src.a); | 
|---|
| 1387 | }); | 
|---|
| 1388 |  | 
|---|
| 1389 | case SkBlendMode::kXor: | 
|---|
| 1390 | return apply_rgba([&](auto s, auto d) { | 
|---|
| 1391 | return mma(s, 1-dst.a,  d, 1-src.a); | 
|---|
| 1392 | }); | 
|---|
| 1393 |  | 
|---|
| 1394 | case SkBlendMode::kPlus: | 
|---|
| 1395 | return apply_rgba([&](auto s, auto d) { | 
|---|
| 1396 | return min(s+d, 1.0f); | 
|---|
| 1397 | }); | 
|---|
| 1398 |  | 
|---|
| 1399 | case SkBlendMode::kModulate: | 
|---|
| 1400 | return apply_rgba([&](auto s, auto d) { | 
|---|
| 1401 | return s * d; | 
|---|
| 1402 | }); | 
|---|
| 1403 |  | 
|---|
| 1404 | case SkBlendMode::kScreen: | 
|---|
| 1405 | // (s+d)-(s*d) gave us trouble with our "r,g,b <= after blending" asserts. | 
|---|
| 1406 | // It's kind of plausible that s + (d - sd) keeps more precision? | 
|---|
| 1407 | return apply_rgba([&](auto s, auto d) { | 
|---|
| 1408 | return s + (d - s*d); | 
|---|
| 1409 | }); | 
|---|
| 1410 |  | 
|---|
| 1411 | case SkBlendMode::kDarken: | 
|---|
| 1412 | return apply_rgb_srcover_a([&](auto s, auto d) { | 
|---|
| 1413 | return s + (d - max(s * dst.a, | 
|---|
| 1414 | d * src.a)); | 
|---|
| 1415 | }); | 
|---|
| 1416 |  | 
|---|
| 1417 | case SkBlendMode::kLighten: | 
|---|
| 1418 | return apply_rgb_srcover_a([&](auto s, auto d) { | 
|---|
| 1419 | return s + (d - min(s * dst.a, | 
|---|
| 1420 | d * src.a)); | 
|---|
| 1421 | }); | 
|---|
| 1422 |  | 
|---|
| 1423 | case SkBlendMode::kDifference: | 
|---|
| 1424 | return apply_rgb_srcover_a([&](auto s, auto d) { | 
|---|
| 1425 | return s + (d - two(min(s * dst.a, | 
|---|
| 1426 | d * src.a))); | 
|---|
| 1427 | }); | 
|---|
| 1428 |  | 
|---|
| 1429 | case SkBlendMode::kExclusion: | 
|---|
| 1430 | return apply_rgb_srcover_a([&](auto s, auto d) { | 
|---|
| 1431 | return s + (d - two(s * d)); | 
|---|
| 1432 | }); | 
|---|
| 1433 |  | 
|---|
| 1434 | case SkBlendMode::kColorBurn: | 
|---|
| 1435 | return apply_rgb_srcover_a([&](auto s, auto d) { | 
|---|
| 1436 | // TODO: divide and check for non-finite result instead of checking for s == 0. | 
|---|
| 1437 | auto mn   = min(dst.a, | 
|---|
| 1438 | src.a * (dst.a - d) / s), | 
|---|
| 1439 | burn = src.a * (dst.a - mn) + mma(s, 1-dst.a, d, 1-src.a); | 
|---|
| 1440 | return select(d == dst.a, s * (1-dst.a) + d, | 
|---|
| 1441 | select(s == 0.0f , d * (1-src.a) | 
|---|
| 1442 | , burn)); | 
|---|
| 1443 | }); | 
|---|
| 1444 |  | 
|---|
| 1445 | case SkBlendMode::kColorDodge: | 
|---|
| 1446 | return apply_rgb_srcover_a([&](auto s, auto d) { | 
|---|
| 1447 | // TODO: divide and check for non-finite result instead of checking for s == sa. | 
|---|
| 1448 | auto dodge = src.a * min(dst.a, | 
|---|
| 1449 | d * src.a / (src.a - s)) | 
|---|
| 1450 | + mma(s, 1-dst.a, d, 1-src.a); | 
|---|
| 1451 | return select(d == 0.0f , s * (1-dst.a), | 
|---|
| 1452 | select(s == src.a, d * (1-src.a) + s | 
|---|
| 1453 | , dodge)); | 
|---|
| 1454 | }); | 
|---|
| 1455 |  | 
|---|
| 1456 | case SkBlendMode::kHardLight: | 
|---|
| 1457 | return apply_rgb_srcover_a([&](auto s, auto d) { | 
|---|
| 1458 | return mma(s, 1-dst.a, d, 1-src.a) + | 
|---|
| 1459 | select(two(s) <= src.a, | 
|---|
| 1460 | two(s * d), | 
|---|
| 1461 | src.a * dst.a - two((dst.a - d) * (src.a - s))); | 
|---|
| 1462 | }); | 
|---|
| 1463 |  | 
|---|
| 1464 | case SkBlendMode::kOverlay: | 
|---|
| 1465 | return apply_rgb_srcover_a([&](auto s, auto d) { | 
|---|
| 1466 | return mma(s, 1-dst.a, d, 1-src.a) + | 
|---|
| 1467 | select(two(d) <= dst.a, | 
|---|
| 1468 | two(s * d), | 
|---|
| 1469 | src.a * dst.a - two((dst.a - d) * (src.a - s))); | 
|---|
| 1470 | }); | 
|---|
| 1471 |  | 
|---|
| 1472 | case SkBlendMode::kMultiply: | 
|---|
| 1473 | return apply_rgba([&](auto s, auto d) { | 
|---|
| 1474 | return mma(s, 1-dst.a, d, 1-src.a) + s * d; | 
|---|
| 1475 | }); | 
|---|
| 1476 |  | 
|---|
| 1477 | case SkBlendMode::kSoftLight: | 
|---|
| 1478 | return apply_rgb_srcover_a([&](auto s, auto d) { | 
|---|
| 1479 | auto  m = select(dst.a > 0.0f, d / dst.a | 
|---|
| 1480 | , 0.0f), | 
|---|
| 1481 | s2 = two(s), | 
|---|
| 1482 | m4 = 4*m; | 
|---|
| 1483 |  | 
|---|
| 1484 | // The logic forks three ways: | 
|---|
| 1485 | //    1. dark src? | 
|---|
| 1486 | //    2. light src, dark dst? | 
|---|
| 1487 | //    3. light src, light dst? | 
|---|
| 1488 |  | 
|---|
| 1489 | // Used in case 1 | 
|---|
| 1490 | auto darkSrc = d * ((s2-src.a) * (1-m) + src.a), | 
|---|
| 1491 | // Used in case 2 | 
|---|
| 1492 | darkDst = (m4 * m4 + m4) * (m-1) + 7*m, | 
|---|
| 1493 | // Used in case 3. | 
|---|
| 1494 | liteDst = sqrt(m) - m, | 
|---|
| 1495 | // Used in 2 or 3? | 
|---|
| 1496 | liteSrc = dst.a * (s2 - src.a) * select(4*d <= dst.a, darkDst | 
|---|
| 1497 | , liteDst) | 
|---|
| 1498 | + d * src.a; | 
|---|
| 1499 | return s * (1-dst.a) + d * (1-src.a) + select(s2 <= src.a, darkSrc | 
|---|
| 1500 | , liteSrc); | 
|---|
| 1501 | }); | 
|---|
| 1502 |  | 
|---|
| 1503 | case SkBlendMode::kHue: { | 
|---|
| 1504 | skvm::F32 R = src.r * src.a, | 
|---|
| 1505 | G = src.g * src.a, | 
|---|
| 1506 | B = src.b * src.a; | 
|---|
| 1507 |  | 
|---|
| 1508 | set_sat   (&R, &G, &B, src.a * saturation(dst.r, dst.g, dst.b)); | 
|---|
| 1509 | set_lum   (&R, &G, &B, src.a * luminance (dst.r, dst.g, dst.b)); | 
|---|
| 1510 | clip_color(&R, &G, &B, src.a * dst.a); | 
|---|
| 1511 |  | 
|---|
| 1512 | return non_sep(R, G, B); | 
|---|
| 1513 | } | 
|---|
| 1514 |  | 
|---|
| 1515 | case SkBlendMode::kSaturation: { | 
|---|
| 1516 | skvm::F32 R = dst.r * src.a, | 
|---|
| 1517 | G = dst.g * src.a, | 
|---|
| 1518 | B = dst.b * src.a; | 
|---|
| 1519 |  | 
|---|
| 1520 | set_sat   (&R, &G, &B, dst.a * saturation(src.r, src.g, src.b)); | 
|---|
| 1521 | set_lum   (&R, &G, &B, src.a * luminance (dst.r, dst.g, dst.b)); | 
|---|
| 1522 | clip_color(&R, &G, &B, src.a * dst.a); | 
|---|
| 1523 |  | 
|---|
| 1524 | return non_sep(R, G, B); | 
|---|
| 1525 | } | 
|---|
| 1526 |  | 
|---|
| 1527 | case SkBlendMode::kColor: { | 
|---|
| 1528 | skvm::F32 R = src.r * dst.a, | 
|---|
| 1529 | G = src.g * dst.a, | 
|---|
| 1530 | B = src.b * dst.a; | 
|---|
| 1531 |  | 
|---|
| 1532 | set_lum   (&R, &G, &B, src.a * luminance(dst.r, dst.g, dst.b)); | 
|---|
| 1533 | clip_color(&R, &G, &B, src.a * dst.a); | 
|---|
| 1534 |  | 
|---|
| 1535 | return non_sep(R, G, B); | 
|---|
| 1536 | } | 
|---|
| 1537 |  | 
|---|
| 1538 | case SkBlendMode::kLuminosity: { | 
|---|
| 1539 | skvm::F32 R = dst.r * src.a, | 
|---|
| 1540 | G = dst.g * src.a, | 
|---|
| 1541 | B = dst.b * src.a; | 
|---|
| 1542 |  | 
|---|
| 1543 | set_lum   (&R, &G, &B, dst.a * luminance(src.r, src.g, src.b)); | 
|---|
| 1544 | clip_color(&R, &G, &B, dst.a * src.a); | 
|---|
| 1545 |  | 
|---|
| 1546 | return non_sep(R, G, B); | 
|---|
| 1547 | } | 
|---|
| 1548 | } | 
|---|
| 1549 | } | 
|---|
| 1550 |  | 
|---|
| 1551 | // For a given program we'll store each Instruction's users contiguously in a table, | 
|---|
| 1552 | // and track where each Instruction's span of users starts and ends in another index. | 
|---|
| 1553 | // Here's a simple program that loads x and stores kx+k: | 
|---|
| 1554 | // | 
|---|
| 1555 | //  v0 = splat(k) | 
|---|
| 1556 | //  v1 = load(...) | 
|---|
| 1557 | //  v2 = mul(v1, v0) | 
|---|
| 1558 | //  v3 = add(v2, v0) | 
|---|
| 1559 | //  v4 = store(..., v3) | 
|---|
| 1560 | // | 
|---|
| 1561 | // This program has 5 instructions v0-v4. | 
|---|
| 1562 | //    - v0 is used by v2 and v3 | 
|---|
| 1563 | //    - v1 is used by v2 | 
|---|
| 1564 | //    - v2 is used by v3 | 
|---|
| 1565 | //    - v3 is used by v4 | 
|---|
| 1566 | //    - v4 has a side-effect | 
|---|
| 1567 | // | 
|---|
| 1568 | // For this program we fill out these two arrays: | 
|---|
| 1569 | //     table:  [v2,v3, v2, v3, v4] | 
|---|
| 1570 | //     index:  [0,     2,  3,  4,  5] | 
|---|
| 1571 | // | 
|---|
| 1572 | // The table is just those "is used by ..." I wrote out above in order, | 
|---|
| 1573 | // and the index tracks where an Instruction's span of users starts, table[index[id]]. | 
|---|
| 1574 | // The span continues up until the start of the next Instruction, table[index[id+1]]. | 
|---|
| 1575 | SkSpan<const Val> Usage::operator[](Val id) const { | 
|---|
| 1576 | int begin = fIndex[id]; | 
|---|
| 1577 | int end   = fIndex[id + 1]; | 
|---|
| 1578 | return SkMakeSpan(fTable.data() + begin, end - begin); | 
|---|
| 1579 | } | 
|---|
| 1580 |  | 
|---|
| 1581 | Usage::Usage(const std::vector<Instruction>& program) { | 
|---|
| 1582 | // uses[id] counts the number of times each Instruction is used. | 
|---|
| 1583 | std::vector<int> uses(program.size(), 0); | 
|---|
| 1584 | for (Val id = 0; id < (Val)program.size(); id++) { | 
|---|
| 1585 | Instruction inst = program[id]; | 
|---|
| 1586 | if (inst.x != NA) { ++uses[inst.x]; } | 
|---|
| 1587 | if (inst.y != NA) { ++uses[inst.y]; } | 
|---|
| 1588 | if (inst.z != NA) { ++uses[inst.z]; } | 
|---|
| 1589 | } | 
|---|
| 1590 |  | 
|---|
| 1591 | // Build our index into fTable, with an extra entry marking the final Instruction's end. | 
|---|
| 1592 | fIndex.reserve(program.size() + 1); | 
|---|
| 1593 | int total_uses = 0; | 
|---|
| 1594 | for (int n : uses) { | 
|---|
| 1595 | fIndex.push_back(total_uses); | 
|---|
| 1596 | total_uses += n; | 
|---|
| 1597 | } | 
|---|
| 1598 | fIndex.push_back(total_uses); | 
|---|
| 1599 |  | 
|---|
| 1600 | // Tick down each Instruction's uses to fill in fTable. | 
|---|
| 1601 | fTable.resize(total_uses, NA); | 
|---|
| 1602 | for (Val id = (Val)program.size(); id --> 0; ) { | 
|---|
| 1603 | Instruction inst = program[id]; | 
|---|
| 1604 | if (inst.x != NA) { fTable[fIndex[inst.x] + --uses[inst.x]] = id; } | 
|---|
| 1605 | if (inst.y != NA) { fTable[fIndex[inst.y] + --uses[inst.y]] = id; } | 
|---|
| 1606 | if (inst.z != NA) { fTable[fIndex[inst.z] + --uses[inst.z]] = id; } | 
|---|
| 1607 | } | 
|---|
| 1608 | for (int n  : uses  ) { (void)n;  SkASSERT(n  == 0 ); } | 
|---|
| 1609 | for (Val id : fTable) { (void)id; SkASSERT(id != NA); } | 
|---|
| 1610 | } | 
|---|
| 1611 |  | 
|---|
| 1612 | // ~~~~ Program::eval() and co. ~~~~ // | 
|---|
| 1613 |  | 
|---|
| 1614 | // Handy references for x86-64 instruction encoding: | 
|---|
| 1615 | // https://wiki.osdev.org/X86-64_Instruction_Encoding | 
|---|
| 1616 | // https://www-user.tu-chemnitz.de/~heha/viewchm.php/hs/x86.chm/x64.htm | 
|---|
| 1617 | // https://www-user.tu-chemnitz.de/~heha/viewchm.php/hs/x86.chm/x86.htm | 
|---|
| 1618 | // http://ref.x86asm.net/coder64.html | 
|---|
| 1619 |  | 
|---|
| 1620 | // Used for ModRM / immediate instruction encoding. | 
|---|
| 1621 | static uint8_t _233(int a, int b, int c) { | 
|---|
| 1622 | return (a & 3) << 6 | 
|---|
| 1623 | | (b & 7) << 3 | 
|---|
| 1624 | | (c & 7) << 0; | 
|---|
| 1625 | } | 
|---|
| 1626 |  | 
|---|
| 1627 | // ModRM byte encodes the arguments of an opcode. | 
|---|
| 1628 | enum class Mod { Indirect, OneByteImm, FourByteImm, Direct }; | 
|---|
| 1629 | static uint8_t mod_rm(Mod mod, int reg, int rm) { | 
|---|
| 1630 | return _233((int)mod, reg, rm); | 
|---|
| 1631 | } | 
|---|
| 1632 |  | 
|---|
| 1633 | static Mod mod(int imm) { | 
|---|
| 1634 | if (imm == 0)               { return Mod::Indirect; } | 
|---|
| 1635 | if (SkTFitsIn<int8_t>(imm)) { return Mod::OneByteImm; } | 
|---|
| 1636 | return Mod::FourByteImm; | 
|---|
| 1637 | } | 
|---|
| 1638 |  | 
|---|
| 1639 | static int imm_bytes(Mod mod) { | 
|---|
| 1640 | switch (mod) { | 
|---|
| 1641 | case Mod::Indirect:    return 0; | 
|---|
| 1642 | case Mod::OneByteImm:  return 1; | 
|---|
| 1643 | case Mod::FourByteImm: return 4; | 
|---|
| 1644 | case Mod::Direct: SkUNREACHABLE; | 
|---|
| 1645 | } | 
|---|
| 1646 | SkUNREACHABLE; | 
|---|
| 1647 | } | 
|---|
| 1648 |  | 
|---|
| 1649 | // SIB byte encodes a memory address, base + (index * scale). | 
|---|
| 1650 | static uint8_t sib(Assembler::Scale scale, int index, int base) { | 
|---|
| 1651 | return _233((int)scale, index, base); | 
|---|
| 1652 | } | 
|---|
| 1653 |  | 
|---|
| 1654 | // The REX prefix is used to extend most old 32-bit instructions to 64-bit. | 
|---|
| 1655 | static uint8_t rex(bool W,   // If set, operation is 64-bit, otherwise default, usually 32-bit. | 
|---|
| 1656 | bool R,   // Extra top bit to select ModRM reg, registers 8-15. | 
|---|
| 1657 | bool X,   // Extra top bit for SIB index register. | 
|---|
| 1658 | bool B) { // Extra top bit for SIB base or ModRM rm register. | 
|---|
| 1659 | return 0b01000000   // Fixed 0100 for top four bits. | 
|---|
| 1660 | | (W << 3) | 
|---|
| 1661 | | (R << 2) | 
|---|
| 1662 | | (X << 1) | 
|---|
| 1663 | | (B << 0); | 
|---|
| 1664 | } | 
|---|
| 1665 |  | 
|---|
| 1666 |  | 
|---|
| 1667 | // The VEX prefix extends SSE operations to AVX.  Used generally, even with XMM. | 
|---|
| 1668 | struct VEX { | 
|---|
| 1669 | int     len; | 
|---|
| 1670 | uint8_t bytes[3]; | 
|---|
| 1671 | }; | 
|---|
| 1672 |  | 
|---|
| 1673 | static VEX vex(bool  WE,   // Like REX W for int operations, or opcode extension for float? | 
|---|
| 1674 | bool   R,   // Same as REX R.  Pass high bit of dst register, dst>>3. | 
|---|
| 1675 | bool   X,   // Same as REX X. | 
|---|
| 1676 | bool   B,   // Same as REX B.  Pass y>>3 for 3-arg ops, x>>3 for 2-arg. | 
|---|
| 1677 | int  map,   // SSE opcode map selector: 0x0f, 0x380f, 0x3a0f. | 
|---|
| 1678 | int vvvv,   // 4-bit second operand register.  Pass our x for 3-arg ops. | 
|---|
| 1679 | bool   L,   // Set for 256-bit ymm operations, off for 128-bit xmm. | 
|---|
| 1680 | int   pp) { // SSE mandatory prefix: 0x66, 0xf3, 0xf2, else none. | 
|---|
| 1681 |  | 
|---|
| 1682 | // Pack x86 opcode map selector to 5-bit VEX encoding. | 
|---|
| 1683 | map = [map]{ | 
|---|
| 1684 | switch (map) { | 
|---|
| 1685 | case   0x0f: return 0b00001; | 
|---|
| 1686 | case 0x380f: return 0b00010; | 
|---|
| 1687 | case 0x3a0f: return 0b00011; | 
|---|
| 1688 | // Several more cases only used by XOP / TBM. | 
|---|
| 1689 | } | 
|---|
| 1690 | SkUNREACHABLE; | 
|---|
| 1691 | }(); | 
|---|
| 1692 |  | 
|---|
| 1693 | // Pack  mandatory SSE opcode prefix byte to 2-bit VEX encoding. | 
|---|
| 1694 | pp = [pp]{ | 
|---|
| 1695 | switch (pp) { | 
|---|
| 1696 | case 0x66: return 0b01; | 
|---|
| 1697 | case 0xf3: return 0b10; | 
|---|
| 1698 | case 0xf2: return 0b11; | 
|---|
| 1699 | } | 
|---|
| 1700 | return 0b00; | 
|---|
| 1701 | }(); | 
|---|
| 1702 |  | 
|---|
| 1703 | VEX vex = {0, {0,0,0}}; | 
|---|
| 1704 | if (X == 0 && B == 0 && WE == 0 && map == 0b00001) { | 
|---|
| 1705 | // With these conditions met, we can optionally compress VEX to 2-byte. | 
|---|
| 1706 | vex.len = 2; | 
|---|
| 1707 | vex.bytes[0] = 0xc5; | 
|---|
| 1708 | vex.bytes[1] = (pp      &  3) << 0 | 
|---|
| 1709 | | (L       &  1) << 2 | 
|---|
| 1710 | | (~vvvv   & 15) << 3 | 
|---|
| 1711 | | (~(int)R &  1) << 7; | 
|---|
| 1712 | } else { | 
|---|
| 1713 | // We could use this 3-byte VEX prefix all the time if we like. | 
|---|
| 1714 | vex.len = 3; | 
|---|
| 1715 | vex.bytes[0] = 0xc4; | 
|---|
| 1716 | vex.bytes[1] = (map     & 31) << 0 | 
|---|
| 1717 | | (~(int)B &  1) << 5 | 
|---|
| 1718 | | (~(int)X &  1) << 6 | 
|---|
| 1719 | | (~(int)R &  1) << 7; | 
|---|
| 1720 | vex.bytes[2] = (pp    &  3) << 0 | 
|---|
| 1721 | | (L     &  1) << 2 | 
|---|
| 1722 | | (~vvvv & 15) << 3 | 
|---|
| 1723 | | (WE    &  1) << 7; | 
|---|
| 1724 | } | 
|---|
| 1725 | return vex; | 
|---|
| 1726 | } | 
|---|
| 1727 |  | 
|---|
| 1728 | Assembler::Assembler(void* buf) : fCode((uint8_t*)buf), fCurr(fCode), fSize(0) {} | 
|---|
| 1729 |  | 
|---|
| 1730 | size_t Assembler::size() const { return fSize; } | 
|---|
| 1731 |  | 
|---|
| 1732 | void Assembler::bytes(const void* p, int n) { | 
|---|
| 1733 | if (fCurr) { | 
|---|
| 1734 | memcpy(fCurr, p, n); | 
|---|
| 1735 | fCurr += n; | 
|---|
| 1736 | } | 
|---|
| 1737 | fSize += n; | 
|---|
| 1738 | } | 
|---|
| 1739 |  | 
|---|
| 1740 | void Assembler::byte(uint8_t b) { this->bytes(&b, 1); } | 
|---|
| 1741 | void Assembler::word(uint32_t w) { this->bytes(&w, 4); } | 
|---|
| 1742 |  | 
|---|
| 1743 | void Assembler::align(int mod) { | 
|---|
| 1744 | while (this->size() % mod) { | 
|---|
| 1745 | this->byte(0x00); | 
|---|
| 1746 | } | 
|---|
| 1747 | } | 
|---|
| 1748 |  | 
|---|
| 1749 | void Assembler::int3() { | 
|---|
| 1750 | this->byte(0xcc); | 
|---|
| 1751 | } | 
|---|
| 1752 |  | 
|---|
| 1753 | void Assembler::vzeroupper() { | 
|---|
| 1754 | this->byte(0xc5); | 
|---|
| 1755 | this->byte(0xf8); | 
|---|
| 1756 | this->byte(0x77); | 
|---|
| 1757 | } | 
|---|
| 1758 | void Assembler::ret() { this->byte(0xc3); } | 
|---|
| 1759 |  | 
|---|
| 1760 | // Common instruction building for 64-bit opcodes with an immediate argument. | 
|---|
| 1761 | void Assembler::op(int opcode, int opcode_ext, GP64 dst, int imm) { | 
|---|
| 1762 | opcode |= 0b0000'0001;   // low bit set for 64-bit operands | 
|---|
| 1763 | opcode |= 0b1000'0000;   // top bit set for instructions with any immediate | 
|---|
| 1764 |  | 
|---|
| 1765 | int imm_bytes = 4; | 
|---|
| 1766 | if (SkTFitsIn<int8_t>(imm)) { | 
|---|
| 1767 | imm_bytes = 1; | 
|---|
| 1768 | opcode |= 0b0000'0010;  // second bit set for 8-bit immediate, else 32-bit. | 
|---|
| 1769 | } | 
|---|
| 1770 |  | 
|---|
| 1771 | this->byte(rex(1,0,0,dst>>3)); | 
|---|
| 1772 | this->byte(opcode); | 
|---|
| 1773 | this->byte(mod_rm(Mod::Direct, opcode_ext, dst&7)); | 
|---|
| 1774 | this->bytes(&imm, imm_bytes); | 
|---|
| 1775 | } | 
|---|
| 1776 |  | 
|---|
| 1777 | void Assembler::add(GP64 dst, int imm) { this->op(0,0b000, dst,imm); } | 
|---|
| 1778 | void Assembler::sub(GP64 dst, int imm) { this->op(0,0b101, dst,imm); } | 
|---|
| 1779 | void Assembler::cmp(GP64 reg, int imm) { this->op(0,0b111, reg,imm); } | 
|---|
| 1780 |  | 
|---|
| 1781 | void Assembler::movq(GP64 dst, GP64 src, int off) { | 
|---|
| 1782 | this->byte(rex(1,dst>>3,0,src>>3)); | 
|---|
| 1783 | this->byte(0x8b); | 
|---|
| 1784 | this->byte(mod_rm(mod(off), dst&7, src&7)); | 
|---|
| 1785 | this->bytes(&off, imm_bytes(mod(off))); | 
|---|
| 1786 | } | 
|---|
| 1787 |  | 
|---|
| 1788 | void Assembler::op(int prefix, int map, int opcode, Ymm dst, Ymm x, Ymm y, bool W/*=false*/) { | 
|---|
| 1789 | VEX v = vex(W, dst>>3, 0, y>>3, | 
|---|
| 1790 | map, x, 1/*ymm, not xmm*/, prefix); | 
|---|
| 1791 | this->bytes(v.bytes, v.len); | 
|---|
| 1792 | this->byte(opcode); | 
|---|
| 1793 | this->byte(mod_rm(Mod::Direct, dst&7, y&7)); | 
|---|
| 1794 | } | 
|---|
| 1795 |  | 
|---|
| 1796 | void Assembler::vpaddd (Ymm dst, Ymm x, YmmOrLabel y) { this->op(0x66,  0x0f,0xfe, dst,x,y); } | 
|---|
| 1797 | void Assembler::vpsubd (Ymm dst, Ymm x, YmmOrLabel y) { this->op(0x66,  0x0f,0xfa, dst,x,y); } | 
|---|
| 1798 | void Assembler::vpmulld(Ymm dst, Ymm x, Ymm        y) { this->op(0x66,0x380f,0x40, dst,x,y); } | 
|---|
| 1799 |  | 
|---|
| 1800 | void Assembler::vpsubw (Ymm dst, Ymm x, Ymm y) { this->op(0x66,0x0f,0xf9, dst,x,y); } | 
|---|
| 1801 | void Assembler::vpmullw(Ymm dst, Ymm x, Ymm y) { this->op(0x66,0x0f,0xd5, dst,x,y); } | 
|---|
| 1802 |  | 
|---|
| 1803 | void Assembler::vpand (Ymm dst, Ymm x, YmmOrLabel y) { this->op(0x66,0x0f,0xdb, dst,x,y); } | 
|---|
| 1804 | void Assembler::vpor  (Ymm dst, Ymm x, YmmOrLabel y) { this->op(0x66,0x0f,0xeb, dst,x,y); } | 
|---|
| 1805 | void Assembler::vpxor (Ymm dst, Ymm x, YmmOrLabel y) { this->op(0x66,0x0f,0xef, dst,x,y); } | 
|---|
| 1806 | void Assembler::vpandn(Ymm dst, Ymm x, Ymm        y) { this->op(0x66,0x0f,0xdf, dst,x,y); } | 
|---|
| 1807 |  | 
|---|
| 1808 | void Assembler::vaddps(Ymm dst, Ymm x, YmmOrLabel y) { this->op(0,0x0f,0x58, dst,x,y); } | 
|---|
| 1809 | void Assembler::vsubps(Ymm dst, Ymm x, YmmOrLabel y) { this->op(0,0x0f,0x5c, dst,x,y); } | 
|---|
| 1810 | void Assembler::vmulps(Ymm dst, Ymm x, YmmOrLabel y) { this->op(0,0x0f,0x59, dst,x,y); } | 
|---|
| 1811 | void Assembler::vdivps(Ymm dst, Ymm x, Ymm        y) { this->op(0,0x0f,0x5e, dst,x,y); } | 
|---|
| 1812 | void Assembler::vminps(Ymm dst, Ymm x, YmmOrLabel y) { this->op(0,0x0f,0x5d, dst,x,y); } | 
|---|
| 1813 | void Assembler::vmaxps(Ymm dst, Ymm x, YmmOrLabel y) { this->op(0,0x0f,0x5f, dst,x,y); } | 
|---|
| 1814 |  | 
|---|
| 1815 | void Assembler::vfmadd132ps(Ymm dst, Ymm x, Ymm y) { this->op(0x66,0x380f,0x98, dst,x,y); } | 
|---|
| 1816 | void Assembler::vfmadd213ps(Ymm dst, Ymm x, Ymm y) { this->op(0x66,0x380f,0xa8, dst,x,y); } | 
|---|
| 1817 | void Assembler::vfmadd231ps(Ymm dst, Ymm x, Ymm y) { this->op(0x66,0x380f,0xb8, dst,x,y); } | 
|---|
| 1818 |  | 
|---|
| 1819 | void Assembler::vfmsub132ps(Ymm dst, Ymm x, Ymm y) { this->op(0x66,0x380f,0x9a, dst,x,y); } | 
|---|
| 1820 | void Assembler::vfmsub213ps(Ymm dst, Ymm x, Ymm y) { this->op(0x66,0x380f,0xaa, dst,x,y); } | 
|---|
| 1821 | void Assembler::vfmsub231ps(Ymm dst, Ymm x, Ymm y) { this->op(0x66,0x380f,0xba, dst,x,y); } | 
|---|
| 1822 |  | 
|---|
| 1823 | void Assembler::vfnmadd132ps(Ymm dst, Ymm x, Ymm y) { this->op(0x66,0x380f,0x9c, dst,x,y); } | 
|---|
| 1824 | void Assembler::vfnmadd213ps(Ymm dst, Ymm x, Ymm y) { this->op(0x66,0x380f,0xac, dst,x,y); } | 
|---|
| 1825 | void Assembler::vfnmadd231ps(Ymm dst, Ymm x, Ymm y) { this->op(0x66,0x380f,0xbc, dst,x,y); } | 
|---|
| 1826 |  | 
|---|
| 1827 | void Assembler::vpackusdw(Ymm dst, Ymm x, Ymm y) { this->op(0x66,0x380f,0x2b, dst,x,y); } | 
|---|
| 1828 | void Assembler::vpackuswb(Ymm dst, Ymm x, Ymm y) { this->op(0x66,  0x0f,0x67, dst,x,y); } | 
|---|
| 1829 |  | 
|---|
| 1830 | void Assembler::vpcmpeqd(Ymm dst, Ymm x, Ymm y) { this->op(0x66,0x0f,0x76, dst,x,y); } | 
|---|
| 1831 | void Assembler::vpcmpgtd(Ymm dst, Ymm x, Ymm y) { this->op(0x66,0x0f,0x66, dst,x,y); } | 
|---|
| 1832 |  | 
|---|
| 1833 | void Assembler::vcmpps(Ymm dst, Ymm x, Ymm y, int imm) { | 
|---|
| 1834 | this->op(0,0x0f,0xc2, dst,x,y); | 
|---|
| 1835 | this->byte(imm); | 
|---|
| 1836 | } | 
|---|
| 1837 |  | 
|---|
| 1838 | void Assembler::vpblendvb(Ymm dst, Ymm x, Ymm y, Ymm z) { | 
|---|
| 1839 | int prefix = 0x66, | 
|---|
| 1840 | map    = 0x3a0f, | 
|---|
| 1841 | opcode = 0x4c; | 
|---|
| 1842 | VEX v = vex(0, dst>>3, 0, y>>3, | 
|---|
| 1843 | map, x, /*ymm?*/1, prefix); | 
|---|
| 1844 | this->bytes(v.bytes, v.len); | 
|---|
| 1845 | this->byte(opcode); | 
|---|
| 1846 | this->byte(mod_rm(Mod::Direct, dst&7, y&7)); | 
|---|
| 1847 | this->byte(z << 4); | 
|---|
| 1848 | } | 
|---|
| 1849 |  | 
|---|
| 1850 | // dst = x op /opcode_ext imm | 
|---|
| 1851 | void Assembler::op(int prefix, int map, int opcode, int opcode_ext, Ymm dst, Ymm x, int imm) { | 
|---|
| 1852 | // This is a little weird, but if we pass the opcode_ext as if it were the dst register, | 
|---|
| 1853 | // the dst register as if x, and the x register as if y, all the bits end up where we want. | 
|---|
| 1854 | this->op(prefix, map, opcode, (Ymm)opcode_ext,dst,x); | 
|---|
| 1855 | this->byte(imm); | 
|---|
| 1856 | } | 
|---|
| 1857 |  | 
|---|
| 1858 | void Assembler::vpslld(Ymm dst, Ymm x, int imm) { this->op(0x66,0x0f,0x72,6, dst,x,imm); } | 
|---|
| 1859 | void Assembler::vpsrld(Ymm dst, Ymm x, int imm) { this->op(0x66,0x0f,0x72,2, dst,x,imm); } | 
|---|
| 1860 | void Assembler::vpsrad(Ymm dst, Ymm x, int imm) { this->op(0x66,0x0f,0x72,4, dst,x,imm); } | 
|---|
| 1861 |  | 
|---|
| 1862 | void Assembler::vpsrlw(Ymm dst, Ymm x, int imm) { this->op(0x66,0x0f,0x71,2, dst,x,imm); } | 
|---|
| 1863 |  | 
|---|
| 1864 |  | 
|---|
| 1865 | void Assembler::vpermq(Ymm dst, Ymm x, int imm) { | 
|---|
| 1866 | // A bit unusual among the instructions we use, this is 64-bit operation, so we set W. | 
|---|
| 1867 | bool W = true; | 
|---|
| 1868 | this->op(0x66,0x3a0f,0x00, dst,x,W); | 
|---|
| 1869 | this->byte(imm); | 
|---|
| 1870 | } | 
|---|
| 1871 |  | 
|---|
| 1872 | void Assembler::vroundps(Ymm dst, Ymm x, int imm) { | 
|---|
| 1873 | this->op(0x66,0x3a0f,0x08, dst,x); | 
|---|
| 1874 | this->byte(imm); | 
|---|
| 1875 | } | 
|---|
| 1876 |  | 
|---|
| 1877 | void Assembler::vmovdqa(Ymm dst, Ymm src) { this->op(0x66,0x0f,0x6f, dst,src); } | 
|---|
| 1878 |  | 
|---|
| 1879 | void Assembler::vcvtdq2ps (Ymm dst, Ymm x) { this->op(   0,0x0f,0x5b, dst,x); } | 
|---|
| 1880 | void Assembler::vcvttps2dq(Ymm dst, Ymm x) { this->op(0xf3,0x0f,0x5b, dst,x); } | 
|---|
| 1881 | void Assembler::vcvtps2dq (Ymm dst, Ymm x) { this->op(0x66,0x0f,0x5b, dst,x); } | 
|---|
| 1882 | void Assembler::vsqrtps   (Ymm dst, Ymm x) { this->op(   0,0x0f,0x51, dst,x); } | 
|---|
| 1883 |  | 
|---|
| 1884 | Assembler::Label Assembler::here() { | 
|---|
| 1885 | return { (int)this->size(), Label::NotYetSet, {} }; | 
|---|
| 1886 | } | 
|---|
| 1887 |  | 
|---|
| 1888 | int Assembler::disp19(Label* l) { | 
|---|
| 1889 | SkASSERT(l->kind == Label::NotYetSet || | 
|---|
| 1890 | l->kind == Label::ARMDisp19); | 
|---|
| 1891 | l->kind = Label::ARMDisp19; | 
|---|
| 1892 | l->references.push_back(here().offset); | 
|---|
| 1893 | // ARM 19-bit instruction count, from the beginning of this instruction. | 
|---|
| 1894 | return (l->offset - here().offset) / 4; | 
|---|
| 1895 | } | 
|---|
| 1896 |  | 
|---|
| 1897 | int Assembler::disp32(Label* l) { | 
|---|
| 1898 | SkASSERT(l->kind == Label::NotYetSet || | 
|---|
| 1899 | l->kind == Label::X86Disp32); | 
|---|
| 1900 | l->kind = Label::X86Disp32; | 
|---|
| 1901 | l->references.push_back(here().offset); | 
|---|
| 1902 | // x86 32-bit byte count, from the end of this instruction. | 
|---|
| 1903 | return l->offset - (here().offset + 4); | 
|---|
| 1904 | } | 
|---|
| 1905 |  | 
|---|
| 1906 | void Assembler::op(int prefix, int map, int opcode, Ymm dst, Ymm x, Label* l) { | 
|---|
| 1907 | // IP-relative addressing uses Mod::Indirect with the R/M encoded as-if rbp or r13. | 
|---|
| 1908 | const int rip = rbp; | 
|---|
| 1909 |  | 
|---|
| 1910 | VEX v = vex(0, dst>>3, 0, rip>>3, | 
|---|
| 1911 | map, x, /*ymm?*/1, prefix); | 
|---|
| 1912 | this->bytes(v.bytes, v.len); | 
|---|
| 1913 | this->byte(opcode); | 
|---|
| 1914 | this->byte(mod_rm(Mod::Indirect, dst&7, rip&7)); | 
|---|
| 1915 | this->word(this->disp32(l)); | 
|---|
| 1916 | } | 
|---|
| 1917 |  | 
|---|
| 1918 | void Assembler::op(int prefix, int map, int opcode, Ymm dst, Ymm x, YmmOrLabel y) { | 
|---|
| 1919 | y.label ? this->op(prefix,map,opcode,dst,x, y.label) | 
|---|
| 1920 | : this->op(prefix,map,opcode,dst,x, y.ymm  ); | 
|---|
| 1921 | } | 
|---|
| 1922 |  | 
|---|
| 1923 | void Assembler::vpshufb(Ymm dst, Ymm x, Label* l) { this->op(0x66,0x380f,0x00, dst,x,l); } | 
|---|
| 1924 | void Assembler::vptest(Ymm dst, Label* l) { this->op(0x66, 0x380f, 0x17, dst, (Ymm)0, l); } | 
|---|
| 1925 |  | 
|---|
| 1926 | void Assembler::vbroadcastss(Ymm dst, Label* l) { this->op(0x66,0x380f,0x18, dst, (Ymm)0, l); } | 
|---|
| 1927 | void Assembler::vbroadcastss(Ymm dst, Xmm src)  { this->op(0x66,0x380f,0x18, dst, (Ymm)src); } | 
|---|
| 1928 | void Assembler::vbroadcastss(Ymm dst, GP64 ptr, int off) { | 
|---|
| 1929 | int prefix = 0x66, | 
|---|
| 1930 | map = 0x380f, | 
|---|
| 1931 | opcode = 0x18; | 
|---|
| 1932 | VEX v = vex(0, dst>>3, 0, ptr>>3, | 
|---|
| 1933 | map, 0, /*ymm?*/1, prefix); | 
|---|
| 1934 | this->bytes(v.bytes, v.len); | 
|---|
| 1935 | this->byte(opcode); | 
|---|
| 1936 |  | 
|---|
| 1937 | this->byte(mod_rm(mod(off), dst&7, ptr&7)); | 
|---|
| 1938 | this->bytes(&off, imm_bytes(mod(off))); | 
|---|
| 1939 | } | 
|---|
| 1940 |  | 
|---|
| 1941 | void Assembler::jump(uint8_t condition, Label* l) { | 
|---|
| 1942 | // These conditional jumps can be either 2 bytes (short) or 6 bytes (near): | 
|---|
| 1943 | //    7?     one-byte-disp | 
|---|
| 1944 | //    0F 8? four-byte-disp | 
|---|
| 1945 | // We always use the near displacement to make updating labels simpler (no resizing). | 
|---|
| 1946 | this->byte(0x0f); | 
|---|
| 1947 | this->byte(condition); | 
|---|
| 1948 | this->word(this->disp32(l)); | 
|---|
| 1949 | } | 
|---|
| 1950 | void Assembler::je (Label* l) { this->jump(0x84, l); } | 
|---|
| 1951 | void Assembler::jne(Label* l) { this->jump(0x85, l); } | 
|---|
| 1952 | void Assembler::jl (Label* l) { this->jump(0x8c, l); } | 
|---|
| 1953 | void Assembler::jc (Label* l) { this->jump(0x82, l); } | 
|---|
| 1954 |  | 
|---|
| 1955 | void Assembler::jmp(Label* l) { | 
|---|
| 1956 | // Like above in jump(), we could use 8-bit displacement here, but always use 32-bit. | 
|---|
| 1957 | this->byte(0xe9); | 
|---|
| 1958 | this->word(this->disp32(l)); | 
|---|
| 1959 | } | 
|---|
| 1960 |  | 
|---|
| 1961 | void Assembler::load_store(int prefix, int map, int opcode, Ymm ymm, GP64 ptr) { | 
|---|
| 1962 | VEX v = vex(0, ymm>>3, 0, ptr>>3, | 
|---|
| 1963 | map, 0, /*ymm?*/1, prefix); | 
|---|
| 1964 | this->bytes(v.bytes, v.len); | 
|---|
| 1965 | this->byte(opcode); | 
|---|
| 1966 | this->byte(mod_rm(Mod::Indirect, ymm&7, ptr&7)); | 
|---|
| 1967 | } | 
|---|
| 1968 |  | 
|---|
| 1969 | void Assembler::vmovups  (Ymm dst, GP64 src) { this->load_store(0   ,  0x0f,0x10, dst,src); } | 
|---|
| 1970 | void Assembler::vpmovzxwd(Ymm dst, GP64 src) { this->load_store(0x66,0x380f,0x33, dst,src); } | 
|---|
| 1971 | void Assembler::vpmovzxbd(Ymm dst, GP64 src) { this->load_store(0x66,0x380f,0x31, dst,src); } | 
|---|
| 1972 |  | 
|---|
| 1973 | void Assembler::vmovups  (GP64 dst, Ymm src) { this->load_store(0   ,  0x0f,0x11, src,dst); } | 
|---|
| 1974 | void Assembler::vmovups  (GP64 dst, Xmm src) { | 
|---|
| 1975 | // Same as vmovups(GP64,YMM) and load_store() except ymm? is 0. | 
|---|
| 1976 | int prefix = 0, | 
|---|
| 1977 | map    = 0x0f, | 
|---|
| 1978 | opcode = 0x11; | 
|---|
| 1979 | VEX v = vex(0, src>>3, 0, dst>>3, | 
|---|
| 1980 | map, 0, /*ymm?*/0, prefix); | 
|---|
| 1981 | this->bytes(v.bytes, v.len); | 
|---|
| 1982 | this->byte(opcode); | 
|---|
| 1983 | this->byte(mod_rm(Mod::Indirect, src&7, dst&7)); | 
|---|
| 1984 | } | 
|---|
| 1985 |  | 
|---|
| 1986 | void Assembler::stack_load_store(int prefix, int map, int opcode, Ymm ymm, int off) { | 
|---|
| 1987 | VEX v = vex(0, ymm>>3, 0, rsp>>3/*i.e. 0*/, | 
|---|
| 1988 | map, 0, /*ymm?*/1, prefix); | 
|---|
| 1989 | this->bytes(v.bytes, v.len); | 
|---|
| 1990 | this->byte(opcode); | 
|---|
| 1991 | this->byte(mod_rm(mod(off), ymm&7, rsp/*use SIB*/)); | 
|---|
| 1992 | this->byte(sib(ONE, rsp/*no index*/, rsp)); | 
|---|
| 1993 | this->bytes(&off, imm_bytes(mod(off))); | 
|---|
| 1994 | } | 
|---|
| 1995 | void Assembler::vmovups(Ymm dst, int off) { this->stack_load_store(0, 0x0f, 0x10, dst,off); } | 
|---|
| 1996 | void Assembler::vmovups(int off, Ymm src) { this->stack_load_store(0, 0x0f, 0x11, src,off); } | 
|---|
| 1997 |  | 
|---|
| 1998 | void Assembler::vmovq(GP64 dst, Xmm src) { | 
|---|
| 1999 | int prefix = 0x66, | 
|---|
| 2000 | map    = 0x0f, | 
|---|
| 2001 | opcode = 0xd6; | 
|---|
| 2002 | VEX v = vex(0, src>>3, 0, dst>>3, | 
|---|
| 2003 | map, 0, /*ymm?*/0, prefix); | 
|---|
| 2004 | this->bytes(v.bytes, v.len); | 
|---|
| 2005 | this->byte(opcode); | 
|---|
| 2006 | this->byte(mod_rm(Mod::Indirect, src&7, dst&7)); | 
|---|
| 2007 | } | 
|---|
| 2008 |  | 
|---|
| 2009 | void Assembler::vmovd(GP64 dst, Xmm src) { | 
|---|
| 2010 | int prefix = 0x66, | 
|---|
| 2011 | map    = 0x0f, | 
|---|
| 2012 | opcode = 0x7e; | 
|---|
| 2013 | VEX v = vex(0, src>>3, 0, dst>>3, | 
|---|
| 2014 | map, 0, /*ymm?*/0, prefix); | 
|---|
| 2015 | this->bytes(v.bytes, v.len); | 
|---|
| 2016 | this->byte(opcode); | 
|---|
| 2017 | this->byte(mod_rm(Mod::Indirect, src&7, dst&7)); | 
|---|
| 2018 | } | 
|---|
| 2019 |  | 
|---|
| 2020 | void Assembler::vmovd_direct(GP64 dst, Xmm src) { | 
|---|
| 2021 | int prefix = 0x66, | 
|---|
| 2022 | map    = 0x0f, | 
|---|
| 2023 | opcode = 0x7e; | 
|---|
| 2024 | VEX v = vex(0, src>>3, 0, dst>>3, | 
|---|
| 2025 | map, 0, /*ymm?*/0, prefix); | 
|---|
| 2026 | this->bytes(v.bytes, v.len); | 
|---|
| 2027 | this->byte(opcode); | 
|---|
| 2028 | this->byte(mod_rm(Mod::Direct, src&7, dst&7)); | 
|---|
| 2029 | } | 
|---|
| 2030 |  | 
|---|
| 2031 | void Assembler::vmovd(Xmm dst, GP64 src) { | 
|---|
| 2032 | int prefix = 0x66, | 
|---|
| 2033 | map    = 0x0f, | 
|---|
| 2034 | opcode = 0x6e; | 
|---|
| 2035 | VEX v = vex(0, dst>>3, 0, src>>3, | 
|---|
| 2036 | map, 0, /*ymm?*/0, prefix); | 
|---|
| 2037 | this->bytes(v.bytes, v.len); | 
|---|
| 2038 | this->byte(opcode); | 
|---|
| 2039 | this->byte(mod_rm(Mod::Indirect, dst&7, src&7)); | 
|---|
| 2040 | } | 
|---|
| 2041 |  | 
|---|
| 2042 | void Assembler::vmovd(Xmm dst, Scale scale, GP64 index, GP64 base) { | 
|---|
| 2043 | int prefix = 0x66, | 
|---|
| 2044 | map    = 0x0f, | 
|---|
| 2045 | opcode = 0x6e; | 
|---|
| 2046 | VEX v = vex(0, dst>>3, index>>3, base>>3, | 
|---|
| 2047 | map, 0, /*ymm?*/0, prefix); | 
|---|
| 2048 | this->bytes(v.bytes, v.len); | 
|---|
| 2049 | this->byte(opcode); | 
|---|
| 2050 | this->byte(mod_rm(Mod::Indirect, dst&7, rsp/*use SIB*/)); | 
|---|
| 2051 | this->byte(sib(scale, index&7, base&7)); | 
|---|
| 2052 | } | 
|---|
| 2053 |  | 
|---|
| 2054 | void Assembler::vmovd_direct(Xmm dst, GP64 src) { | 
|---|
| 2055 | int prefix = 0x66, | 
|---|
| 2056 | map    = 0x0f, | 
|---|
| 2057 | opcode = 0x6e; | 
|---|
| 2058 | VEX v = vex(0, dst>>3, 0, src>>3, | 
|---|
| 2059 | map, 0, /*ymm?*/0, prefix); | 
|---|
| 2060 | this->bytes(v.bytes, v.len); | 
|---|
| 2061 | this->byte(opcode); | 
|---|
| 2062 | this->byte(mod_rm(Mod::Direct, dst&7, src&7)); | 
|---|
| 2063 | } | 
|---|
| 2064 |  | 
|---|
| 2065 | void Assembler::movzbl(GP64 dst, GP64 src, int off) { | 
|---|
| 2066 | if ((dst>>3) || (src>>3)) { | 
|---|
| 2067 | this->byte(rex(0,dst>>3,0,src>>3)); | 
|---|
| 2068 | } | 
|---|
| 2069 | this->byte(0x0f); | 
|---|
| 2070 | this->byte(0xb6); | 
|---|
| 2071 | this->byte(mod_rm(mod(off), dst&7, src&7)); | 
|---|
| 2072 | this->bytes(&off, imm_bytes(mod(off))); | 
|---|
| 2073 | } | 
|---|
| 2074 |  | 
|---|
| 2075 |  | 
|---|
| 2076 | void Assembler::movb(GP64 dst, GP64 src) { | 
|---|
| 2077 | if ((dst>>3) || (src>>3)) { | 
|---|
| 2078 | this->byte(rex(0,src>>3,0,dst>>3)); | 
|---|
| 2079 | } | 
|---|
| 2080 | this->byte(0x88); | 
|---|
| 2081 | this->byte(mod_rm(Mod::Indirect, src&7, dst&7)); | 
|---|
| 2082 | } | 
|---|
| 2083 |  | 
|---|
| 2084 | void Assembler::vpinsrw(Xmm dst, Xmm src, GP64 ptr, int imm) { | 
|---|
| 2085 | int prefix = 0x66, | 
|---|
| 2086 | map    = 0x0f, | 
|---|
| 2087 | opcode = 0xc4; | 
|---|
| 2088 | VEX v = vex(0, dst>>3, 0, ptr>>3, | 
|---|
| 2089 | map, src, /*ymm?*/0, prefix); | 
|---|
| 2090 | this->bytes(v.bytes, v.len); | 
|---|
| 2091 | this->byte(opcode); | 
|---|
| 2092 | this->byte(mod_rm(Mod::Indirect, dst&7, ptr&7)); | 
|---|
| 2093 | this->byte(imm); | 
|---|
| 2094 | } | 
|---|
| 2095 |  | 
|---|
| 2096 | void Assembler::vpinsrb(Xmm dst, Xmm src, GP64 ptr, int imm) { | 
|---|
| 2097 | int prefix = 0x66, | 
|---|
| 2098 | map    = 0x3a0f, | 
|---|
| 2099 | opcode = 0x20; | 
|---|
| 2100 | VEX v = vex(0, dst>>3, 0, ptr>>3, | 
|---|
| 2101 | map, src, /*ymm?*/0, prefix); | 
|---|
| 2102 | this->bytes(v.bytes, v.len); | 
|---|
| 2103 | this->byte(opcode); | 
|---|
| 2104 | this->byte(mod_rm(Mod::Indirect, dst&7, ptr&7)); | 
|---|
| 2105 | this->byte(imm); | 
|---|
| 2106 | } | 
|---|
| 2107 |  | 
|---|
| 2108 | void Assembler::vpextrw(GP64 ptr, Xmm src, int imm) { | 
|---|
| 2109 | int prefix = 0x66, | 
|---|
| 2110 | map    = 0x3a0f, | 
|---|
| 2111 | opcode = 0x15; | 
|---|
| 2112 |  | 
|---|
| 2113 | VEX v = vex(0, src>>3, 0, ptr>>3, | 
|---|
| 2114 | map, 0, /*ymm?*/0, prefix); | 
|---|
| 2115 | this->bytes(v.bytes, v.len); | 
|---|
| 2116 | this->byte(opcode); | 
|---|
| 2117 | this->byte(mod_rm(Mod::Indirect, src&7, ptr&7)); | 
|---|
| 2118 | this->byte(imm); | 
|---|
| 2119 | } | 
|---|
| 2120 | void Assembler::vpextrb(GP64 ptr, Xmm src, int imm) { | 
|---|
| 2121 | int prefix = 0x66, | 
|---|
| 2122 | map    = 0x3a0f, | 
|---|
| 2123 | opcode = 0x14; | 
|---|
| 2124 |  | 
|---|
| 2125 | VEX v = vex(0, src>>3, 0, ptr>>3, | 
|---|
| 2126 | map, 0, /*ymm?*/0, prefix); | 
|---|
| 2127 | this->bytes(v.bytes, v.len); | 
|---|
| 2128 | this->byte(opcode); | 
|---|
| 2129 | this->byte(mod_rm(Mod::Indirect, src&7, ptr&7)); | 
|---|
| 2130 | this->byte(imm); | 
|---|
| 2131 | } | 
|---|
| 2132 |  | 
|---|
| 2133 | void Assembler::vgatherdps(Ymm dst, Scale scale, Ymm ix, GP64 base, Ymm mask) { | 
|---|
| 2134 | // Unlike most instructions, no aliasing is permitted here. | 
|---|
| 2135 | SkASSERT(dst != ix); | 
|---|
| 2136 | SkASSERT(dst != mask); | 
|---|
| 2137 | SkASSERT(mask != ix); | 
|---|
| 2138 |  | 
|---|
| 2139 | int prefix = 0x66, | 
|---|
| 2140 | map    = 0x380f, | 
|---|
| 2141 | opcode = 0x92; | 
|---|
| 2142 | VEX v = vex(0, dst>>3, ix>>3, base>>3, | 
|---|
| 2143 | map, mask, /*ymm?*/1, prefix); | 
|---|
| 2144 | this->bytes(v.bytes, v.len); | 
|---|
| 2145 | this->byte(opcode); | 
|---|
| 2146 | this->byte(mod_rm(Mod::Indirect, dst&7, rsp/*use SIB*/)); | 
|---|
| 2147 | this->byte(sib(scale, ix&7, base&7)); | 
|---|
| 2148 | } | 
|---|
| 2149 |  | 
|---|
| 2150 | // https://static.docs.arm.com/ddi0596/a/DDI_0596_ARM_a64_instruction_set_architecture.pdf | 
|---|
| 2151 |  | 
|---|
| 2152 | static int operator ""_mask(unsigned long long bits) { return (1<<(int)bits)-1; } | 
|---|
| 2153 |  | 
|---|
| 2154 | void Assembler::op(uint32_t hi, V m, uint32_t lo, V n, V d) { | 
|---|
| 2155 | this->word( (hi & 11_mask) << 21 | 
|---|
| 2156 | | (m  &  5_mask) << 16 | 
|---|
| 2157 | | (lo &  6_mask) << 10 | 
|---|
| 2158 | | (n  &  5_mask) <<  5 | 
|---|
| 2159 | | (d  &  5_mask) <<  0); | 
|---|
| 2160 | } | 
|---|
| 2161 |  | 
|---|
| 2162 | void Assembler::and16b(V d, V n, V m) { this->op(0b0'1'0'01110'00'1, m, 0b00011'1, n, d); } | 
|---|
| 2163 | void Assembler::orr16b(V d, V n, V m) { this->op(0b0'1'0'01110'10'1, m, 0b00011'1, n, d); } | 
|---|
| 2164 | void Assembler::eor16b(V d, V n, V m) { this->op(0b0'1'1'01110'00'1, m, 0b00011'1, n, d); } | 
|---|
| 2165 | void Assembler::bic16b(V d, V n, V m) { this->op(0b0'1'0'01110'01'1, m, 0b00011'1, n, d); } | 
|---|
| 2166 | void Assembler::bsl16b(V d, V n, V m) { this->op(0b0'1'1'01110'01'1, m, 0b00011'1, n, d); } | 
|---|
| 2167 | void Assembler::not16b(V d, V n)      { this->op(0b0'1'1'01110'00'10000'00101'10,  n, d); } | 
|---|
| 2168 |  | 
|---|
| 2169 | void Assembler::add4s(V d, V n, V m) { this->op(0b0'1'0'01110'10'1, m, 0b10000'1, n, d); } | 
|---|
| 2170 | void Assembler::sub4s(V d, V n, V m) { this->op(0b0'1'1'01110'10'1, m, 0b10000'1, n, d); } | 
|---|
| 2171 | void Assembler::mul4s(V d, V n, V m) { this->op(0b0'1'0'01110'10'1, m, 0b10011'1, n, d); } | 
|---|
| 2172 |  | 
|---|
| 2173 | void Assembler::cmeq4s(V d, V n, V m) { this->op(0b0'1'1'01110'10'1, m, 0b10001'1, n, d); } | 
|---|
| 2174 | void Assembler::cmgt4s(V d, V n, V m) { this->op(0b0'1'0'01110'10'1, m, 0b0011'0'1, n, d); } | 
|---|
| 2175 |  | 
|---|
| 2176 | void Assembler::sub8h(V d, V n, V m) { this->op(0b0'1'1'01110'01'1, m, 0b10000'1, n, d); } | 
|---|
| 2177 | void Assembler::mul8h(V d, V n, V m) { this->op(0b0'1'0'01110'01'1, m, 0b10011'1, n, d); } | 
|---|
| 2178 |  | 
|---|
| 2179 | void Assembler::fadd4s(V d, V n, V m) { this->op(0b0'1'0'01110'0'0'1, m, 0b11010'1, n, d); } | 
|---|
| 2180 | void Assembler::fsub4s(V d, V n, V m) { this->op(0b0'1'0'01110'1'0'1, m, 0b11010'1, n, d); } | 
|---|
| 2181 | void Assembler::fmul4s(V d, V n, V m) { this->op(0b0'1'1'01110'0'0'1, m, 0b11011'1, n, d); } | 
|---|
| 2182 | void Assembler::fdiv4s(V d, V n, V m) { this->op(0b0'1'1'01110'0'0'1, m, 0b11111'1, n, d); } | 
|---|
| 2183 | void Assembler::fmin4s(V d, V n, V m) { this->op(0b0'1'0'01110'1'0'1, m, 0b11110'1, n, d); } | 
|---|
| 2184 | void Assembler::fmax4s(V d, V n, V m) { this->op(0b0'1'0'01110'0'0'1, m, 0b11110'1, n, d); } | 
|---|
| 2185 | void Assembler::fneg4s(V d, V n)      { this->op(0b0'1'1'01110'1'0'10000'01111'10,  n, d); } | 
|---|
| 2186 |  | 
|---|
| 2187 | void Assembler::fcmeq4s(V d, V n, V m) { this->op(0b0'1'0'01110'0'0'1, m, 0b1110'0'1, n, d); } | 
|---|
| 2188 | void Assembler::fcmgt4s(V d, V n, V m) { this->op(0b0'1'1'01110'1'0'1, m, 0b1110'0'1, n, d); } | 
|---|
| 2189 | void Assembler::fcmge4s(V d, V n, V m) { this->op(0b0'1'1'01110'0'0'1, m, 0b1110'0'1, n, d); } | 
|---|
| 2190 |  | 
|---|
| 2191 | void Assembler::fmla4s(V d, V n, V m) { this->op(0b0'1'0'01110'0'0'1, m, 0b11001'1, n, d); } | 
|---|
| 2192 | void Assembler::fmls4s(V d, V n, V m) { this->op(0b0'1'0'01110'1'0'1, m, 0b11001'1, n, d); } | 
|---|
| 2193 |  | 
|---|
| 2194 | void Assembler::tbl(V d, V n, V m) { this->op(0b0'1'001110'00'0, m, 0b0'00'0'00, n, d); } | 
|---|
| 2195 |  | 
|---|
| 2196 | void Assembler::op(uint32_t op22, int imm, V n, V d) { | 
|---|
| 2197 | this->word( (op22 & 22_mask) << 10 | 
|---|
| 2198 | | imm              << 16   // imm is embedded inside op, bit size depends on op | 
|---|
| 2199 | | (n    &  5_mask) <<  5 | 
|---|
| 2200 | | (d    &  5_mask) <<  0); | 
|---|
| 2201 | } | 
|---|
| 2202 |  | 
|---|
| 2203 | void Assembler::sli4s(V d, V n, int imm) { | 
|---|
| 2204 | this->op(0b0'1'1'011110'0100'000'01010'1,    ( imm&31), n, d); | 
|---|
| 2205 | } | 
|---|
| 2206 | void Assembler::shl4s(V d, V n, int imm) { | 
|---|
| 2207 | this->op(0b0'1'0'011110'0100'000'01010'1,    ( imm&31), n, d); | 
|---|
| 2208 | } | 
|---|
| 2209 | void Assembler::sshr4s(V d, V n, int imm) { | 
|---|
| 2210 | this->op(0b0'1'0'011110'0100'000'00'0'0'0'1, (-imm&31), n, d); | 
|---|
| 2211 | } | 
|---|
| 2212 | void Assembler::ushr4s(V d, V n, int imm) { | 
|---|
| 2213 | this->op(0b0'1'1'011110'0100'000'00'0'0'0'1, (-imm&31), n, d); | 
|---|
| 2214 | } | 
|---|
| 2215 | void Assembler::ushr8h(V d, V n, int imm) { | 
|---|
| 2216 | this->op(0b0'1'1'011110'0010'000'00'0'0'0'1, (-imm&15), n, d); | 
|---|
| 2217 | } | 
|---|
| 2218 |  | 
|---|
| 2219 | void Assembler::scvtf4s (V d, V n) { this->op(0b0'1'0'01110'0'0'10000'11101'10, n,d); } | 
|---|
| 2220 | void Assembler::fcvtzs4s(V d, V n) { this->op(0b0'1'0'01110'1'0'10000'1101'1'10, n,d); } | 
|---|
| 2221 | void Assembler::fcvtns4s(V d, V n) { this->op(0b0'1'0'01110'0'0'10000'1101'0'10, n,d); } | 
|---|
| 2222 |  | 
|---|
| 2223 | void Assembler::xtns2h(V d, V n) { this->op(0b0'0'0'01110'01'10000'10010'10, n,d); } | 
|---|
| 2224 | void Assembler::xtnh2b(V d, V n) { this->op(0b0'0'0'01110'00'10000'10010'10, n,d); } | 
|---|
| 2225 |  | 
|---|
| 2226 | void Assembler::uxtlb2h(V d, V n) { this->op(0b0'0'1'011110'0001'000'10100'1, n,d); } | 
|---|
| 2227 | void Assembler::uxtlh2s(V d, V n) { this->op(0b0'0'1'011110'0010'000'10100'1, n,d); } | 
|---|
| 2228 |  | 
|---|
| 2229 | void Assembler::uminv4s(V d, V n) { this->op(0b0'1'1'01110'10'11000'1'1010'10, n,d); } | 
|---|
| 2230 |  | 
|---|
| 2231 | void Assembler::brk(int imm16) { | 
|---|
| 2232 | this->word(0b11010100'001'0000000000000000'000'00 | 
|---|
| 2233 | | (imm16 & 16_mask) << 5); | 
|---|
| 2234 | } | 
|---|
| 2235 |  | 
|---|
| 2236 | void Assembler::ret(X n) { | 
|---|
| 2237 | this->word(0b1101011'0'0'10'11111'0000'0'0 << 10 | 
|---|
| 2238 | | (n & 5_mask) << 5); | 
|---|
| 2239 | } | 
|---|
| 2240 |  | 
|---|
| 2241 | void Assembler::add(X d, X n, int imm12) { | 
|---|
| 2242 | this->word(0b1'0'0'10001'00   << 22 | 
|---|
| 2243 | | (imm12 & 12_mask) << 10 | 
|---|
| 2244 | | (n     &  5_mask) <<  5 | 
|---|
| 2245 | | (d     &  5_mask) <<  0); | 
|---|
| 2246 | } | 
|---|
| 2247 | void Assembler::sub(X d, X n, int imm12) { | 
|---|
| 2248 | this->word( 0b1'1'0'10001'00  << 22 | 
|---|
| 2249 | | (imm12 & 12_mask) << 10 | 
|---|
| 2250 | | (n     &  5_mask) <<  5 | 
|---|
| 2251 | | (d     &  5_mask) <<  0); | 
|---|
| 2252 | } | 
|---|
| 2253 | void Assembler::subs(X d, X n, int imm12) { | 
|---|
| 2254 | this->word( 0b1'1'1'10001'00  << 22 | 
|---|
| 2255 | | (imm12 & 12_mask) << 10 | 
|---|
| 2256 | | (n     &  5_mask) <<  5 | 
|---|
| 2257 | | (d     &  5_mask) <<  0); | 
|---|
| 2258 | } | 
|---|
| 2259 |  | 
|---|
| 2260 | void Assembler::b(Condition cond, Label* l) { | 
|---|
| 2261 | const int imm19 = this->disp19(l); | 
|---|
| 2262 | this->word( 0b0101010'0           << 24 | 
|---|
| 2263 | | (imm19     & 19_mask) <<  5 | 
|---|
| 2264 | | ((int)cond &  4_mask) <<  0); | 
|---|
| 2265 | } | 
|---|
| 2266 | void Assembler::cbz(X t, Label* l) { | 
|---|
| 2267 | const int imm19 = this->disp19(l); | 
|---|
| 2268 | this->word( 0b1'011010'0      << 24 | 
|---|
| 2269 | | (imm19 & 19_mask) <<  5 | 
|---|
| 2270 | | (t     &  5_mask) <<  0); | 
|---|
| 2271 | } | 
|---|
| 2272 | void Assembler::cbnz(X t, Label* l) { | 
|---|
| 2273 | const int imm19 = this->disp19(l); | 
|---|
| 2274 | this->word( 0b1'011010'1      << 24 | 
|---|
| 2275 | | (imm19 & 19_mask) <<  5 | 
|---|
| 2276 | | (t     &  5_mask) <<  0); | 
|---|
| 2277 | } | 
|---|
| 2278 |  | 
|---|
| 2279 | void Assembler::ldrq(V dst, X src) { this->op(0b00'111'1'01'11'000000000000, src, dst); } | 
|---|
| 2280 | void Assembler::ldrs(V dst, X src) { this->op(0b10'111'1'01'01'000000000000, src, dst); } | 
|---|
| 2281 | void Assembler::ldrb(V dst, X src) { this->op(0b00'111'1'01'01'000000000000, src, dst); } | 
|---|
| 2282 |  | 
|---|
| 2283 | void Assembler::strq(V src, X dst) { this->op(0b00'111'1'01'10'000000000000, dst, src); } | 
|---|
| 2284 | void Assembler::strs(V src, X dst) { this->op(0b10'111'1'01'00'000000000000, dst, src); } | 
|---|
| 2285 | void Assembler::strb(V src, X dst) { this->op(0b00'111'1'01'00'000000000000, dst, src); } | 
|---|
| 2286 |  | 
|---|
| 2287 | void Assembler::fmovs(X dst, V src) { | 
|---|
| 2288 | this->word(0b0'0'0'11110'00'1'00'110'000000 << 10 | 
|---|
| 2289 | | (src & 5_mask)                  << 5 | 
|---|
| 2290 | | (dst & 5_mask)                  << 0); | 
|---|
| 2291 | } | 
|---|
| 2292 |  | 
|---|
| 2293 | void Assembler::ldrq(V dst, Label* l) { | 
|---|
| 2294 | const int imm19 = this->disp19(l); | 
|---|
| 2295 | this->word( 0b10'011'1'00     << 24 | 
|---|
| 2296 | | (imm19 & 19_mask) << 5 | 
|---|
| 2297 | | (dst   &  5_mask) << 0); | 
|---|
| 2298 | } | 
|---|
| 2299 |  | 
|---|
| 2300 | void Assembler::label(Label* l) { | 
|---|
| 2301 | if (fCode) { | 
|---|
| 2302 | // The instructions all currently point to l->offset. | 
|---|
| 2303 | // We'll want to add a delta to point them to here(). | 
|---|
| 2304 | int delta = here().offset - l->offset; | 
|---|
| 2305 | l->offset = here().offset; | 
|---|
| 2306 |  | 
|---|
| 2307 | if (l->kind == Label::ARMDisp19) { | 
|---|
| 2308 | for (int ref : l->references) { | 
|---|
| 2309 | // ref points to a 32-bit instruction with 19-bit displacement in instructions. | 
|---|
| 2310 | uint32_t inst; | 
|---|
| 2311 | memcpy(&inst, fCode + ref, 4); | 
|---|
| 2312 |  | 
|---|
| 2313 | // [ 8 bits to preserve] [ 19 bit signed displacement ] [ 5 bits to preserve ] | 
|---|
| 2314 | int disp = (int)(inst << 8) >> 13; | 
|---|
| 2315 |  | 
|---|
| 2316 | disp += delta/4;  // delta is in bytes, we want instructions. | 
|---|
| 2317 |  | 
|---|
| 2318 | // Put it all back together, preserving the high 8 bits and low 5. | 
|---|
| 2319 | inst = ((disp << 5) &  (19_mask << 5)) | 
|---|
| 2320 | | ((inst     ) & ~(19_mask << 5)); | 
|---|
| 2321 |  | 
|---|
| 2322 | memcpy(fCode + ref, &inst, 4); | 
|---|
| 2323 | } | 
|---|
| 2324 | } | 
|---|
| 2325 |  | 
|---|
| 2326 | if (l->kind == Label::X86Disp32) { | 
|---|
| 2327 | for (int ref : l->references) { | 
|---|
| 2328 | // ref points to a 32-bit displacement in bytes. | 
|---|
| 2329 | int disp; | 
|---|
| 2330 | memcpy(&disp, fCode + ref, 4); | 
|---|
| 2331 |  | 
|---|
| 2332 | disp += delta; | 
|---|
| 2333 |  | 
|---|
| 2334 | memcpy(fCode + ref, &disp, 4); | 
|---|
| 2335 | } | 
|---|
| 2336 | } | 
|---|
| 2337 | } | 
|---|
| 2338 | } | 
|---|
| 2339 |  | 
|---|
| 2340 | void Program::eval(int n, void* args[]) const { | 
|---|
| 2341 | #define SKVM_JIT_STATS 0 | 
|---|
| 2342 | #if SKVM_JIT_STATS | 
|---|
| 2343 | static std::atomic<int64_t>  calls{0}, jits{0}, | 
|---|
| 2344 | pixels{0}, fast{0}; | 
|---|
| 2345 | pixels += n; | 
|---|
| 2346 | if (0 == calls++) { | 
|---|
| 2347 | atexit([]{ | 
|---|
| 2348 | int64_t num = jits .load(), | 
|---|
| 2349 | den = calls.load(); | 
|---|
| 2350 | SkDebugf( "%.3g%% of %lld eval() calls went through JIT.\n", (100.0 * num)/den, den); | 
|---|
| 2351 | num = fast  .load(); | 
|---|
| 2352 | den = pixels.load(); | 
|---|
| 2353 | SkDebugf( "%.3g%% of %lld pixels went through JIT.\n", (100.0 * num)/den, den); | 
|---|
| 2354 | }); | 
|---|
| 2355 | } | 
|---|
| 2356 | #endif | 
|---|
| 2357 | // This may fail either simply because we can't JIT, or when using LLVM, | 
|---|
| 2358 | // because the work represented by fImpl->llvm_compiling hasn't finished yet. | 
|---|
| 2359 | if (const void* b = fImpl->jit_entry.load()) { | 
|---|
| 2360 | #if SKVM_JIT_STATS | 
|---|
| 2361 | jits++; | 
|---|
| 2362 | fast += n; | 
|---|
| 2363 | #endif | 
|---|
| 2364 | void** a = args; | 
|---|
| 2365 | switch (fImpl->strides.size()) { | 
|---|
| 2366 | case 0: return ((void(*)(int                        ))b)(n                    ); | 
|---|
| 2367 | case 1: return ((void(*)(int,void*                  ))b)(n,a[0]               ); | 
|---|
| 2368 | case 2: return ((void(*)(int,void*,void*            ))b)(n,a[0],a[1]          ); | 
|---|
| 2369 | case 3: return ((void(*)(int,void*,void*,void*      ))b)(n,a[0],a[1],a[2]     ); | 
|---|
| 2370 | case 4: return ((void(*)(int,void*,void*,void*,void*))b)(n,a[0],a[1],a[2],a[3]); | 
|---|
| 2371 | case 5: return ((void(*)(int,void*,void*,void*,void*,void*))b) | 
|---|
| 2372 | (n,a[0],a[1],a[2],a[3],a[4]); | 
|---|
| 2373 | default: SkUNREACHABLE;  // TODO | 
|---|
| 2374 | } | 
|---|
| 2375 | } | 
|---|
| 2376 |  | 
|---|
| 2377 | // So we'll sometimes use the interpreter here even if later calls will use the JIT. | 
|---|
| 2378 | SkOpts::interpret_skvm(fImpl->instructions.data(), (int)fImpl->instructions.size(), | 
|---|
| 2379 | this->nregs(), this->loop(), fImpl->strides.data(), this->nargs(), | 
|---|
| 2380 | n, args); | 
|---|
| 2381 | } | 
|---|
| 2382 |  | 
|---|
| 2383 | #if defined(SKVM_LLVM) | 
|---|
| 2384 | void Program::setupLLVM(const std::vector<OptimizedInstruction>& instructions, | 
|---|
| 2385 | const char* debug_name) { | 
|---|
| 2386 | auto ctx = std::make_unique<llvm::LLVMContext>(); | 
|---|
| 2387 |  | 
|---|
| 2388 | auto mod = std::make_unique<llvm::Module>( "", *ctx); | 
|---|
| 2389 | // All the scary bare pointers from here on are owned by ctx or mod, I think. | 
|---|
| 2390 |  | 
|---|
| 2391 | // Everything I've tested runs faster at K=8 (using ymm) than K=16 (zmm) on SKX machines. | 
|---|
| 2392 | const int K = (true && SkCpu::Supports(SkCpu::HSW)) ? 8 : 4; | 
|---|
| 2393 |  | 
|---|
| 2394 | llvm::Type *ptr = llvm::Type::getInt8Ty(*ctx)->getPointerTo(), | 
|---|
| 2395 | *i32 = llvm::Type::getInt32Ty(*ctx); | 
|---|
| 2396 |  | 
|---|
| 2397 | std::vector<llvm::Type*> arg_types = { i32 }; | 
|---|
| 2398 | for (size_t i = 0; i < fImpl->strides.size(); i++) { | 
|---|
| 2399 | arg_types.push_back(ptr); | 
|---|
| 2400 | } | 
|---|
| 2401 |  | 
|---|
| 2402 | llvm::FunctionType* fn_type = llvm::FunctionType::get(llvm::Type::getVoidTy(*ctx), | 
|---|
| 2403 | arg_types, /*vararg?=*/false); | 
|---|
| 2404 | llvm::Function* fn | 
|---|
| 2405 | = llvm::Function::Create(fn_type, llvm::GlobalValue::ExternalLinkage, debug_name, *mod); | 
|---|
| 2406 | for (size_t i = 0; i < fImpl->strides.size(); i++) { | 
|---|
| 2407 | fn->addParamAttr(i+1, llvm::Attribute::NoAlias); | 
|---|
| 2408 | } | 
|---|
| 2409 |  | 
|---|
| 2410 | llvm::BasicBlock *enter  = llvm::BasicBlock::Create(*ctx, "enter", fn), | 
|---|
| 2411 | *hoistK = llvm::BasicBlock::Create(*ctx, "hoistK", fn), | 
|---|
| 2412 | *testK  = llvm::BasicBlock::Create(*ctx, "testK", fn), | 
|---|
| 2413 | *loopK  = llvm::BasicBlock::Create(*ctx, "loopK", fn), | 
|---|
| 2414 | *hoist1 = llvm::BasicBlock::Create(*ctx, "hoist1", fn), | 
|---|
| 2415 | *test1  = llvm::BasicBlock::Create(*ctx, "test1", fn), | 
|---|
| 2416 | *loop1  = llvm::BasicBlock::Create(*ctx, "loop1", fn), | 
|---|
| 2417 | *leave  = llvm::BasicBlock::Create(*ctx, "leave", fn); | 
|---|
| 2418 |  | 
|---|
| 2419 | using IRBuilder = llvm::IRBuilder<>; | 
|---|
| 2420 |  | 
|---|
| 2421 | llvm::PHINode*                 n; | 
|---|
| 2422 | std::vector<llvm::PHINode*> args; | 
|---|
| 2423 | std::vector<llvm::Value*> vals(instructions.size()); | 
|---|
| 2424 |  | 
|---|
| 2425 | auto emit = [&](size_t i, bool scalar, IRBuilder* b) { | 
|---|
| 2426 | auto [op, x,y,z, immy,immz, death,can_hoist,used_in_loop] = instructions[i]; | 
|---|
| 2427 |  | 
|---|
| 2428 | llvm::Type *i1    = llvm::Type::getInt1Ty (*ctx), | 
|---|
| 2429 | *i8    = llvm::Type::getInt8Ty (*ctx), | 
|---|
| 2430 | *i16   = llvm::Type::getInt16Ty(*ctx), | 
|---|
| 2431 | *i16x2 = llvm::VectorType::get(i16, 2), | 
|---|
| 2432 | *f32   = llvm::Type::getFloatTy(*ctx), | 
|---|
| 2433 | *I1    = scalar ? i1    : llvm::VectorType::get(i1 , K  ), | 
|---|
| 2434 | *I8    = scalar ? i8    : llvm::VectorType::get(i8 , K  ), | 
|---|
| 2435 | *I16   = scalar ? i16   : llvm::VectorType::get(i16, K  ), | 
|---|
| 2436 | *I16x2 = scalar ? i16x2 : llvm::VectorType::get(i16, K*2), | 
|---|
| 2437 | *I32   = scalar ? i32   : llvm::VectorType::get(i32, K  ), | 
|---|
| 2438 | *F32   = scalar ? f32   : llvm::VectorType::get(f32, K  ); | 
|---|
| 2439 |  | 
|---|
| 2440 | auto I  = [&](llvm::Value* v) { return b->CreateBitCast(v, I32  ); }; | 
|---|
| 2441 | auto F  = [&](llvm::Value* v) { return b->CreateBitCast(v, F32  ); }; | 
|---|
| 2442 | auto x2 = [&](llvm::Value* v) { return b->CreateBitCast(v, I16x2); }; | 
|---|
| 2443 |  | 
|---|
| 2444 | auto S = [&](llvm::Type* dst, llvm::Value* v) { return b->CreateSExt(v, dst); }; | 
|---|
| 2445 |  | 
|---|
| 2446 | switch (llvm::Type* t = nullptr; op) { | 
|---|
| 2447 | default: | 
|---|
| 2448 | SkDebugf( "can't llvm %s (%d)\n", name(op), op); | 
|---|
| 2449 | return false; | 
|---|
| 2450 |  | 
|---|
| 2451 | case Op::assert_true: /*TODO*/ break; | 
|---|
| 2452 |  | 
|---|
| 2453 | case Op::index: | 
|---|
| 2454 | if (I32->isVectorTy()) { | 
|---|
| 2455 | std::vector<llvm::Constant*> iota(K); | 
|---|
| 2456 | for (int j = 0; j < K; j++) { | 
|---|
| 2457 | iota[j] = b->getInt32(j); | 
|---|
| 2458 | } | 
|---|
| 2459 | vals[i] = b->CreateSub(b->CreateVectorSplat(K, n), | 
|---|
| 2460 | llvm::ConstantVector::get(iota)); | 
|---|
| 2461 | } else { | 
|---|
| 2462 | vals[i] = n; | 
|---|
| 2463 | } break; | 
|---|
| 2464 |  | 
|---|
| 2465 | case Op::load8:  t = I8 ; goto load; | 
|---|
| 2466 | case Op::load16: t = I16; goto load; | 
|---|
| 2467 | case Op::load32: t = I32; goto load; | 
|---|
| 2468 | load: { | 
|---|
| 2469 | llvm::Value* ptr = b->CreateBitCast(args[immy], t->getPointerTo()); | 
|---|
| 2470 | vals[i] = b->CreateZExt(b->CreateAlignedLoad(ptr, 1), I32); | 
|---|
| 2471 | } break; | 
|---|
| 2472 |  | 
|---|
| 2473 |  | 
|---|
| 2474 | case Op::splat: vals[i] = llvm::ConstantInt::get(I32, immy); break; | 
|---|
| 2475 |  | 
|---|
| 2476 | case Op::uniform8:  t = i8 ; goto uniform; | 
|---|
| 2477 | case Op::uniform16: t = i16; goto uniform; | 
|---|
| 2478 | case Op::uniform32: t = i32; goto uniform; | 
|---|
| 2479 | uniform: { | 
|---|
| 2480 | llvm::Value* ptr = b->CreateBitCast(b->CreateConstInBoundsGEP1_32(nullptr, | 
|---|
| 2481 | args[immy], | 
|---|
| 2482 | immz), | 
|---|
| 2483 | t->getPointerTo()); | 
|---|
| 2484 | llvm::Value* val = b->CreateZExt(b->CreateAlignedLoad(ptr, 1), i32); | 
|---|
| 2485 | vals[i] = I32->isVectorTy() ? b->CreateVectorSplat(K, val) | 
|---|
| 2486 | : val; | 
|---|
| 2487 | } break; | 
|---|
| 2488 |  | 
|---|
| 2489 | case Op::gather8:  t = i8 ; goto gather; | 
|---|
| 2490 | case Op::gather16: t = i16; goto gather; | 
|---|
| 2491 | case Op::gather32: t = i32; goto gather; | 
|---|
| 2492 | gather: { | 
|---|
| 2493 | // Our gather base pointer is immz bytes off of uniform immy. | 
|---|
| 2494 | llvm::Value* base = | 
|---|
| 2495 | b->CreateLoad(b->CreateBitCast(b->CreateConstInBoundsGEP1_32(nullptr, | 
|---|
| 2496 | args[immy], | 
|---|
| 2497 | immz), | 
|---|
| 2498 | t->getPointerTo()->getPointerTo())); | 
|---|
| 2499 |  | 
|---|
| 2500 | llvm::Value* ptr = b->CreateInBoundsGEP(nullptr, base, vals[x]); | 
|---|
| 2501 | llvm::Value* gathered; | 
|---|
| 2502 | if (ptr->getType()->isVectorTy()) { | 
|---|
| 2503 | gathered = b->CreateMaskedGather(ptr, 1); | 
|---|
| 2504 | } else { | 
|---|
| 2505 | gathered = b->CreateAlignedLoad(ptr, 1); | 
|---|
| 2506 | } | 
|---|
| 2507 | vals[i] = b->CreateZExt(gathered, I32); | 
|---|
| 2508 | } break; | 
|---|
| 2509 |  | 
|---|
| 2510 | case Op::store8:  t = I8 ; goto store; | 
|---|
| 2511 | case Op::store16: t = I16; goto store; | 
|---|
| 2512 | case Op::store32: t = I32; goto store; | 
|---|
| 2513 | store: { | 
|---|
| 2514 | llvm::Value* val = b->CreateTrunc(vals[x], t); | 
|---|
| 2515 | llvm::Value* ptr = b->CreateBitCast(args[immy], | 
|---|
| 2516 | val->getType()->getPointerTo()); | 
|---|
| 2517 | vals[i] = b->CreateAlignedStore(val, ptr, 1); | 
|---|
| 2518 | } break; | 
|---|
| 2519 |  | 
|---|
| 2520 | case Op::bit_and:   vals[i] = b->CreateAnd(vals[x], vals[y]); break; | 
|---|
| 2521 | case Op::bit_or :   vals[i] = b->CreateOr (vals[x], vals[y]); break; | 
|---|
| 2522 | case Op::bit_xor:   vals[i] = b->CreateXor(vals[x], vals[y]); break; | 
|---|
| 2523 | case Op::bit_clear: vals[i] = b->CreateAnd(vals[x], b->CreateNot(vals[y])); break; | 
|---|
| 2524 |  | 
|---|
| 2525 | case Op::pack: vals[i] = b->CreateOr(vals[x], b->CreateShl(vals[y], immz)); break; | 
|---|
| 2526 |  | 
|---|
| 2527 | case Op::select: | 
|---|
| 2528 | vals[i] = b->CreateSelect(b->CreateTrunc(vals[x], I1), vals[y], vals[z]); | 
|---|
| 2529 | break; | 
|---|
| 2530 |  | 
|---|
| 2531 | case Op::add_i32: vals[i] = b->CreateAdd(vals[x], vals[y]); break; | 
|---|
| 2532 | case Op::sub_i32: vals[i] = b->CreateSub(vals[x], vals[y]); break; | 
|---|
| 2533 | case Op::mul_i32: vals[i] = b->CreateMul(vals[x], vals[y]); break; | 
|---|
| 2534 |  | 
|---|
| 2535 | case Op::shl_i32: vals[i] = b->CreateShl (vals[x], immy); break; | 
|---|
| 2536 | case Op::sra_i32: vals[i] = b->CreateAShr(vals[x], immy); break; | 
|---|
| 2537 | case Op::shr_i32: vals[i] = b->CreateLShr(vals[x], immy); break; | 
|---|
| 2538 |  | 
|---|
| 2539 | case Op:: eq_i32: vals[i] = S(I32, b->CreateICmpEQ (vals[x], vals[y])); break; | 
|---|
| 2540 | case Op::neq_i32: vals[i] = S(I32, b->CreateICmpNE (vals[x], vals[y])); break; | 
|---|
| 2541 | case Op:: gt_i32: vals[i] = S(I32, b->CreateICmpSGT(vals[x], vals[y])); break; | 
|---|
| 2542 | case Op::gte_i32: vals[i] = S(I32, b->CreateICmpSGE(vals[x], vals[y])); break; | 
|---|
| 2543 |  | 
|---|
| 2544 | case Op::add_f32: vals[i] = I(b->CreateFAdd(F(vals[x]), F(vals[y]))); break; | 
|---|
| 2545 | case Op::sub_f32: vals[i] = I(b->CreateFSub(F(vals[x]), F(vals[y]))); break; | 
|---|
| 2546 | case Op::mul_f32: vals[i] = I(b->CreateFMul(F(vals[x]), F(vals[y]))); break; | 
|---|
| 2547 | case Op::div_f32: vals[i] = I(b->CreateFDiv(F(vals[x]), F(vals[y]))); break; | 
|---|
| 2548 |  | 
|---|
| 2549 | case Op:: eq_f32: vals[i] = S(I32, b->CreateFCmpOEQ(F(vals[x]), F(vals[y]))); break; | 
|---|
| 2550 | case Op::neq_f32: vals[i] = S(I32, b->CreateFCmpUNE(F(vals[x]), F(vals[y]))); break; | 
|---|
| 2551 | case Op:: gt_f32: vals[i] = S(I32, b->CreateFCmpOGT(F(vals[x]), F(vals[y]))); break; | 
|---|
| 2552 | case Op::gte_f32: vals[i] = S(I32, b->CreateFCmpOGE(F(vals[x]), F(vals[y]))); break; | 
|---|
| 2553 |  | 
|---|
| 2554 | case Op::fma_f32: | 
|---|
| 2555 | vals[i] = I(b->CreateIntrinsic(llvm::Intrinsic::fma, {F32}, | 
|---|
| 2556 | {F(vals[x]), F(vals[y]), F(vals[z])})); | 
|---|
| 2557 | break; | 
|---|
| 2558 |  | 
|---|
| 2559 | case Op::fms_f32: | 
|---|
| 2560 | vals[i] = I(b->CreateIntrinsic(llvm::Intrinsic::fma, {F32}, | 
|---|
| 2561 | {F(vals[x]), F(vals[y]), | 
|---|
| 2562 | b->CreateFNeg(F(vals[z]))})); | 
|---|
| 2563 | break; | 
|---|
| 2564 |  | 
|---|
| 2565 | case Op::fnma_f32: | 
|---|
| 2566 | vals[i] = I(b->CreateIntrinsic(llvm::Intrinsic::fma, {F32}, | 
|---|
| 2567 | {b->CreateFNeg(F(vals[x])), F(vals[y]), | 
|---|
| 2568 | F(vals[z])})); | 
|---|
| 2569 | break; | 
|---|
| 2570 |  | 
|---|
| 2571 | case Op::floor: | 
|---|
| 2572 | vals[i] = I(b->CreateUnaryIntrinsic(llvm::Intrinsic::floor, F(vals[x]))); | 
|---|
| 2573 | break; | 
|---|
| 2574 |  | 
|---|
| 2575 | case Op::max_f32: | 
|---|
| 2576 | vals[i] = I(b->CreateSelect(b->CreateFCmpOLT(F(vals[x]), F(vals[y])), | 
|---|
| 2577 | F(vals[y]), F(vals[x]))); | 
|---|
| 2578 | break; | 
|---|
| 2579 | case Op::min_f32: | 
|---|
| 2580 | vals[i] = I(b->CreateSelect(b->CreateFCmpOLT(F(vals[y]), F(vals[x])), | 
|---|
| 2581 | F(vals[y]), F(vals[x]))); | 
|---|
| 2582 | break; | 
|---|
| 2583 |  | 
|---|
| 2584 | case Op::sqrt_f32: | 
|---|
| 2585 | vals[i] = I(b->CreateUnaryIntrinsic(llvm::Intrinsic::sqrt, F(vals[x]))); | 
|---|
| 2586 | break; | 
|---|
| 2587 |  | 
|---|
| 2588 | case Op::to_f32: vals[i] = I(b->CreateSIToFP(  vals[x] , F32)); break; | 
|---|
| 2589 | case Op::trunc : vals[i] =   b->CreateFPToSI(F(vals[x]), I32) ; break; | 
|---|
| 2590 | case Op::round : { | 
|---|
| 2591 | // Basic impl when we can't use cvtps2dq and co. | 
|---|
| 2592 | auto round = b->CreateUnaryIntrinsic(llvm::Intrinsic::rint, F(vals[x])); | 
|---|
| 2593 | vals[i] = b->CreateFPToSI(round, I32); | 
|---|
| 2594 |  | 
|---|
| 2595 | #if 1 && defined(SK_CPU_X86) | 
|---|
| 2596 | // Using b->CreateIntrinsic(..., {}, {...}) to avoid name mangling. | 
|---|
| 2597 | if (scalar) { | 
|---|
| 2598 | // cvtss2si is float x4 -> int, ignoring input lanes 1,2,3.  ¯\_(ツ)_/¯ | 
|---|
| 2599 | llvm::Value* v = llvm::UndefValue::get(llvm::VectorType::get(f32, 4)); | 
|---|
| 2600 | v = b->CreateInsertElement(v, F(vals[x]), (uint64_t)0); | 
|---|
| 2601 | vals[i] = b->CreateIntrinsic(llvm::Intrinsic::x86_sse_cvtss2si, {}, {v}); | 
|---|
| 2602 | } else { | 
|---|
| 2603 | SkASSERT(K == 4  || K == 8); | 
|---|
| 2604 | auto intr = K == 4 ?   llvm::Intrinsic::x86_sse2_cvtps2dq : | 
|---|
| 2605 | /* K == 8 ?*/ llvm::Intrinsic::x86_avx_cvt_ps2dq_256; | 
|---|
| 2606 | vals[i] = b->CreateIntrinsic(intr, {}, {F(vals[x])}); | 
|---|
| 2607 | } | 
|---|
| 2608 | #endif | 
|---|
| 2609 | } break; | 
|---|
| 2610 |  | 
|---|
| 2611 | case Op::add_i16x2: vals[i] = I(b->CreateAdd(x2(vals[x]), x2(vals[y]))); break; | 
|---|
| 2612 | case Op::sub_i16x2: vals[i] = I(b->CreateSub(x2(vals[x]), x2(vals[y]))); break; | 
|---|
| 2613 | case Op::mul_i16x2: vals[i] = I(b->CreateMul(x2(vals[x]), x2(vals[y]))); break; | 
|---|
| 2614 |  | 
|---|
| 2615 | case Op::shl_i16x2: vals[i] = I(b->CreateShl (x2(vals[x]), immy)); break; | 
|---|
| 2616 | case Op::sra_i16x2: vals[i] = I(b->CreateAShr(x2(vals[x]), immy)); break; | 
|---|
| 2617 | case Op::shr_i16x2: vals[i] = I(b->CreateLShr(x2(vals[x]), immy)); break; | 
|---|
| 2618 |  | 
|---|
| 2619 | case Op:: eq_i16x2: | 
|---|
| 2620 | vals[i] = I(S(I16x2, b->CreateICmpEQ (x2(vals[x]), x2(vals[y])))); | 
|---|
| 2621 | break; | 
|---|
| 2622 | case Op::neq_i16x2: | 
|---|
| 2623 | vals[i] = I(S(I16x2, b->CreateICmpNE (x2(vals[x]), x2(vals[y])))); | 
|---|
| 2624 | break; | 
|---|
| 2625 | case Op:: gt_i16x2: | 
|---|
| 2626 | vals[i] = I(S(I16x2, b->CreateICmpSGT(x2(vals[x]), x2(vals[y])))); | 
|---|
| 2627 | break; | 
|---|
| 2628 | case Op::gte_i16x2: | 
|---|
| 2629 | vals[i] = I(S(I16x2, b->CreateICmpSGE(x2(vals[x]), x2(vals[y])))); | 
|---|
| 2630 | break; | 
|---|
| 2631 | } | 
|---|
| 2632 | return true; | 
|---|
| 2633 | }; | 
|---|
| 2634 |  | 
|---|
| 2635 | { | 
|---|
| 2636 | IRBuilder b(enter); | 
|---|
| 2637 | b.CreateBr(hoistK); | 
|---|
| 2638 | } | 
|---|
| 2639 |  | 
|---|
| 2640 | // hoistK: emit each hoistable vector instruction; goto testK; | 
|---|
| 2641 | // LLVM can do this sort of thing itself, but we've got the information cheap, | 
|---|
| 2642 | // and pointer aliasing makes it easier to manually hoist than teach LLVM it's safe. | 
|---|
| 2643 | { | 
|---|
| 2644 | IRBuilder b(hoistK); | 
|---|
| 2645 |  | 
|---|
| 2646 | // Hoisted instructions will need args (think, uniforms), so set that up now. | 
|---|
| 2647 | // These phi nodes are degenerate... they'll always be the passed-in args from enter. | 
|---|
| 2648 | // Later on when we start looping the phi nodes will start looking useful. | 
|---|
| 2649 | llvm::Argument* arg = fn->arg_begin(); | 
|---|
| 2650 | (void)arg++;  // Leave n as nullptr... it'd be a bug to use n in a hoisted instruction. | 
|---|
| 2651 | for (size_t i = 0; i < fImpl->strides.size(); i++) { | 
|---|
| 2652 | args.push_back(b.CreatePHI(arg->getType(), 1)); | 
|---|
| 2653 | args.back()->addIncoming(arg++, enter); | 
|---|
| 2654 | } | 
|---|
| 2655 |  | 
|---|
| 2656 | for (size_t i = 0; i < instructions.size(); i++) { | 
|---|
| 2657 | if (instructions[i].can_hoist && !emit(i, false, &b)) { | 
|---|
| 2658 | return; | 
|---|
| 2659 | } | 
|---|
| 2660 | } | 
|---|
| 2661 |  | 
|---|
| 2662 | b.CreateBr(testK); | 
|---|
| 2663 | } | 
|---|
| 2664 |  | 
|---|
| 2665 | // testK:  if (N >= K) goto loopK; else goto hoist1; | 
|---|
| 2666 | { | 
|---|
| 2667 | IRBuilder b(testK); | 
|---|
| 2668 |  | 
|---|
| 2669 | // New phi nodes for `n` and each pointer argument from hoistK; later we'll add loopK. | 
|---|
| 2670 | // These also start as the initial function arguments; hoistK can't have changed them. | 
|---|
| 2671 | llvm::Argument* arg = fn->arg_begin(); | 
|---|
| 2672 |  | 
|---|
| 2673 | n = b.CreatePHI(arg->getType(), 2); | 
|---|
| 2674 | n->addIncoming(arg++, hoistK); | 
|---|
| 2675 |  | 
|---|
| 2676 | for (size_t i = 0; i < fImpl->strides.size(); i++) { | 
|---|
| 2677 | args[i] = b.CreatePHI(arg->getType(), 2); | 
|---|
| 2678 | args[i]->addIncoming(arg++, hoistK); | 
|---|
| 2679 | } | 
|---|
| 2680 |  | 
|---|
| 2681 | b.CreateCondBr(b.CreateICmpSGE(n, b.getInt32(K)), loopK, hoist1); | 
|---|
| 2682 | } | 
|---|
| 2683 |  | 
|---|
| 2684 | // loopK:  ... insts on K x T vectors; N -= K, args += K*stride; goto testK; | 
|---|
| 2685 | { | 
|---|
| 2686 | IRBuilder b(loopK); | 
|---|
| 2687 | for (size_t i = 0; i < instructions.size(); i++) { | 
|---|
| 2688 | if (!instructions[i].can_hoist && !emit(i, false, &b)) { | 
|---|
| 2689 | return; | 
|---|
| 2690 | } | 
|---|
| 2691 | } | 
|---|
| 2692 |  | 
|---|
| 2693 | // n -= K | 
|---|
| 2694 | llvm::Value* n_next = b.CreateSub(n, b.getInt32(K)); | 
|---|
| 2695 | n->addIncoming(n_next, loopK); | 
|---|
| 2696 |  | 
|---|
| 2697 | // Each arg ptr += K | 
|---|
| 2698 | for (size_t i = 0; i < fImpl->strides.size(); i++) { | 
|---|
| 2699 | llvm::Value* arg_next | 
|---|
| 2700 | = b.CreateConstInBoundsGEP1_32(nullptr, args[i], K*fImpl->strides[i]); | 
|---|
| 2701 | args[i]->addIncoming(arg_next, loopK); | 
|---|
| 2702 | } | 
|---|
| 2703 | b.CreateBr(testK); | 
|---|
| 2704 | } | 
|---|
| 2705 |  | 
|---|
| 2706 | // hoist1: emit each hoistable scalar instruction; goto test1; | 
|---|
| 2707 | { | 
|---|
| 2708 | IRBuilder b(hoist1); | 
|---|
| 2709 | for (size_t i = 0; i < instructions.size(); i++) { | 
|---|
| 2710 | if (instructions[i].can_hoist && !emit(i, true, &b)) { | 
|---|
| 2711 | return; | 
|---|
| 2712 | } | 
|---|
| 2713 | } | 
|---|
| 2714 | b.CreateBr(test1); | 
|---|
| 2715 | } | 
|---|
| 2716 |  | 
|---|
| 2717 | // test1:  if (N >= 1) goto loop1; else goto leave; | 
|---|
| 2718 | { | 
|---|
| 2719 | IRBuilder b(test1); | 
|---|
| 2720 |  | 
|---|
| 2721 | // Set up new phi nodes for `n` and each pointer argument, now from hoist1 and loop1. | 
|---|
| 2722 | llvm::PHINode* n_new = b.CreatePHI(n->getType(), 2); | 
|---|
| 2723 | n_new->addIncoming(n, hoist1); | 
|---|
| 2724 | n = n_new; | 
|---|
| 2725 |  | 
|---|
| 2726 | for (size_t i = 0; i < fImpl->strides.size(); i++) { | 
|---|
| 2727 | llvm::PHINode* arg_new = b.CreatePHI(args[i]->getType(), 2); | 
|---|
| 2728 | arg_new->addIncoming(args[i], hoist1); | 
|---|
| 2729 | args[i] = arg_new; | 
|---|
| 2730 | } | 
|---|
| 2731 |  | 
|---|
| 2732 | b.CreateCondBr(b.CreateICmpSGE(n, b.getInt32(1)), loop1, leave); | 
|---|
| 2733 | } | 
|---|
| 2734 |  | 
|---|
| 2735 | // loop1:  ... insts on scalars; N -= 1, args += stride; goto test1; | 
|---|
| 2736 | { | 
|---|
| 2737 | IRBuilder b(loop1); | 
|---|
| 2738 | for (size_t i = 0; i < instructions.size(); i++) { | 
|---|
| 2739 | if (!instructions[i].can_hoist && !emit(i, true, &b)) { | 
|---|
| 2740 | return; | 
|---|
| 2741 | } | 
|---|
| 2742 | } | 
|---|
| 2743 |  | 
|---|
| 2744 | // n -= 1 | 
|---|
| 2745 | llvm::Value* n_next = b.CreateSub(n, b.getInt32(1)); | 
|---|
| 2746 | n->addIncoming(n_next, loop1); | 
|---|
| 2747 |  | 
|---|
| 2748 | // Each arg ptr += K | 
|---|
| 2749 | for (size_t i = 0; i < fImpl->strides.size(); i++) { | 
|---|
| 2750 | llvm::Value* arg_next | 
|---|
| 2751 | = b.CreateConstInBoundsGEP1_32(nullptr, args[i], fImpl->strides[i]); | 
|---|
| 2752 | args[i]->addIncoming(arg_next, loop1); | 
|---|
| 2753 | } | 
|---|
| 2754 | b.CreateBr(test1); | 
|---|
| 2755 | } | 
|---|
| 2756 |  | 
|---|
| 2757 | // leave:  ret | 
|---|
| 2758 | { | 
|---|
| 2759 | IRBuilder b(leave); | 
|---|
| 2760 | b.CreateRetVoid(); | 
|---|
| 2761 | } | 
|---|
| 2762 |  | 
|---|
| 2763 | SkASSERT(false == llvm::verifyModule(*mod, &llvm::outs())); | 
|---|
| 2764 |  | 
|---|
| 2765 | if (true) { | 
|---|
| 2766 | SkString path = SkStringPrintf( "/tmp/%s.bc", debug_name); | 
|---|
| 2767 | std::error_code err; | 
|---|
| 2768 | llvm::raw_fd_ostream os(path.c_str(), err); | 
|---|
| 2769 | if (err) { | 
|---|
| 2770 | return; | 
|---|
| 2771 | } | 
|---|
| 2772 | llvm::WriteBitcodeToFile(*mod, os); | 
|---|
| 2773 | } | 
|---|
| 2774 |  | 
|---|
| 2775 | static SkOnce once; | 
|---|
| 2776 | once([]{ | 
|---|
| 2777 | SkAssertResult(false == llvm::InitializeNativeTarget()); | 
|---|
| 2778 | SkAssertResult(false == llvm::InitializeNativeTargetAsmPrinter()); | 
|---|
| 2779 | }); | 
|---|
| 2780 |  | 
|---|
| 2781 | if (llvm::ExecutionEngine* ee = llvm::EngineBuilder(std::move(mod)) | 
|---|
| 2782 | .setEngineKind(llvm::EngineKind::JIT) | 
|---|
| 2783 | .setMCPU(llvm::sys::getHostCPUName()) | 
|---|
| 2784 | .create()) { | 
|---|
| 2785 | fImpl->llvm_ctx = std::move(ctx); | 
|---|
| 2786 | fImpl->llvm_ee.reset(ee); | 
|---|
| 2787 |  | 
|---|
| 2788 | // We have to be careful here about what we close over and how, in case fImpl moves. | 
|---|
| 2789 | // fImpl itself may change, but its pointee fields won't, so close over them by value. | 
|---|
| 2790 | // Also, debug_name will almost certainly leave scope, so copy it. | 
|---|
| 2791 | fImpl->llvm_compiling = std::async(std::launch::async, [dst  = &fImpl->jit_entry, | 
|---|
| 2792 | ee   =  fImpl->llvm_ee.get(), | 
|---|
| 2793 | name = std::string(debug_name)]{ | 
|---|
| 2794 | // std::atomic<void*>*    dst; | 
|---|
| 2795 | // llvm::ExecutionEngine* ee; | 
|---|
| 2796 | // std::string            name; | 
|---|
| 2797 | dst->store( (void*)ee->getFunctionAddress(name.c_str()) ); | 
|---|
| 2798 | }); | 
|---|
| 2799 | } | 
|---|
| 2800 | } | 
|---|
| 2801 | #endif | 
|---|
| 2802 |  | 
|---|
| 2803 | void Program::waitForLLVM() const { | 
|---|
| 2804 | #if defined(SKVM_LLVM) | 
|---|
| 2805 | if (fImpl->llvm_compiling.valid()) { | 
|---|
| 2806 | fImpl->llvm_compiling.wait(); | 
|---|
| 2807 | } | 
|---|
| 2808 | #endif | 
|---|
| 2809 | } | 
|---|
| 2810 |  | 
|---|
| 2811 | bool Program::hasJIT() const { | 
|---|
| 2812 | // Program::hasJIT() is really just a debugging / test aid, | 
|---|
| 2813 | // so we don't mind adding a sync point here to wait for compilation. | 
|---|
| 2814 | this->waitForLLVM(); | 
|---|
| 2815 |  | 
|---|
| 2816 | return fImpl->jit_entry.load() != nullptr; | 
|---|
| 2817 | } | 
|---|
| 2818 |  | 
|---|
| 2819 | void Program::dropJIT() { | 
|---|
| 2820 | #if defined(SKVM_LLVM) | 
|---|
| 2821 | this->waitForLLVM(); | 
|---|
| 2822 | fImpl->llvm_ee .reset(nullptr); | 
|---|
| 2823 | fImpl->llvm_ctx.reset(nullptr); | 
|---|
| 2824 | #elif defined(SKVM_JIT) | 
|---|
| 2825 | if (fImpl->dylib) { | 
|---|
| 2826 | dlclose(fImpl->dylib); | 
|---|
| 2827 | } else if (auto jit_entry = fImpl->jit_entry.load()) { | 
|---|
| 2828 | munmap(jit_entry, fImpl->jit_size); | 
|---|
| 2829 | } | 
|---|
| 2830 | #else | 
|---|
| 2831 | SkASSERT(!this->hasJIT()); | 
|---|
| 2832 | #endif | 
|---|
| 2833 |  | 
|---|
| 2834 | fImpl->jit_entry.store(nullptr); | 
|---|
| 2835 | fImpl->jit_size  = 0; | 
|---|
| 2836 | fImpl->dylib     = nullptr; | 
|---|
| 2837 | } | 
|---|
| 2838 |  | 
|---|
| 2839 | Program::Program() : fImpl(std::make_unique<Impl>()) {} | 
|---|
| 2840 |  | 
|---|
| 2841 | Program::~Program() { | 
|---|
| 2842 | // Moved-from Programs may have fImpl == nullptr. | 
|---|
| 2843 | if (fImpl) { | 
|---|
| 2844 | this->dropJIT(); | 
|---|
| 2845 | } | 
|---|
| 2846 | } | 
|---|
| 2847 |  | 
|---|
| 2848 | Program::Program(Program&& other) : fImpl(std::move(other.fImpl)) {} | 
|---|
| 2849 |  | 
|---|
| 2850 | Program& Program::operator=(Program&& other) { | 
|---|
| 2851 | fImpl = std::move(other.fImpl); | 
|---|
| 2852 | return *this; | 
|---|
| 2853 | } | 
|---|
| 2854 |  | 
|---|
| 2855 | Program::Program(const std::vector<OptimizedInstruction>& interpreter, | 
|---|
| 2856 | const std::vector<int>& strides) : Program() { | 
|---|
| 2857 | fImpl->strides = strides; | 
|---|
| 2858 | this->setupInterpreter(interpreter); | 
|---|
| 2859 | } | 
|---|
| 2860 |  | 
|---|
| 2861 | Program::Program(const std::vector<OptimizedInstruction>& interpreter, | 
|---|
| 2862 | const std::vector<OptimizedInstruction>& jit, | 
|---|
| 2863 | const std::vector<int>& strides, | 
|---|
| 2864 | const char* debug_name) : Program() { | 
|---|
| 2865 | fImpl->strides = strides; | 
|---|
| 2866 | #if 1 && defined(SKVM_LLVM) | 
|---|
| 2867 | this->setupLLVM(interpreter, debug_name); | 
|---|
| 2868 | #elif 1 && defined(SKVM_JIT) | 
|---|
| 2869 | this->setupJIT(jit, debug_name); | 
|---|
| 2870 | #endif | 
|---|
| 2871 |  | 
|---|
| 2872 | // Might as well do this after setupLLVM() to get a little more time to compile. | 
|---|
| 2873 | this->setupInterpreter(interpreter); | 
|---|
| 2874 | } | 
|---|
| 2875 |  | 
|---|
| 2876 | std::vector<InterpreterInstruction> Program::instructions() const { return fImpl->instructions; } | 
|---|
| 2877 | int  Program::nargs() const { return (int)fImpl->strides.size(); } | 
|---|
| 2878 | int  Program::nregs() const { return fImpl->regs; } | 
|---|
| 2879 | int  Program::loop () const { return fImpl->loop; } | 
|---|
| 2880 | bool Program::empty() const { return fImpl->instructions.empty(); } | 
|---|
| 2881 |  | 
|---|
| 2882 | // Translate OptimizedInstructions to InterpreterInstructions. | 
|---|
| 2883 | void Program::setupInterpreter(const std::vector<OptimizedInstruction>& instructions) { | 
|---|
| 2884 | // Register each instruction is assigned to. | 
|---|
| 2885 | std::vector<Reg> reg(instructions.size()); | 
|---|
| 2886 |  | 
|---|
| 2887 | // This next bit is a bit more complicated than strictly necessary; | 
|---|
| 2888 | // we could just assign every instruction to its own register. | 
|---|
| 2889 | // | 
|---|
| 2890 | // But recycling registers is fairly cheap, and good practice for the | 
|---|
| 2891 | // JITs where minimizing register pressure really is important. | 
|---|
| 2892 | // | 
|---|
| 2893 | // Since we have effectively infinite registers, we hoist any value we can. | 
|---|
| 2894 | // (The JIT may choose a more complex policy to reduce register pressure.) | 
|---|
| 2895 | auto hoisted = [&](Val id) { return instructions[id].can_hoist; }; | 
|---|
| 2896 |  | 
|---|
| 2897 | fImpl->regs = 0; | 
|---|
| 2898 | std::vector<Reg> avail; | 
|---|
| 2899 |  | 
|---|
| 2900 | // Assign this value to a register, recycling them where we can. | 
|---|
| 2901 | auto assign_register = [&](Val id) { | 
|---|
| 2902 | const OptimizedInstruction& inst = instructions[id]; | 
|---|
| 2903 |  | 
|---|
| 2904 | // If this is a real input and it's lifetime ends at this instruction, | 
|---|
| 2905 | // we can recycle the register it's occupying. | 
|---|
| 2906 | auto maybe_recycle_register = [&](Val input) { | 
|---|
| 2907 | if (input != NA | 
|---|
| 2908 | && instructions[input].death == id | 
|---|
| 2909 | && !(hoisted(input) && instructions[input].used_in_loop)) { | 
|---|
| 2910 | avail.push_back(reg[input]); | 
|---|
| 2911 | } | 
|---|
| 2912 | }; | 
|---|
| 2913 |  | 
|---|
| 2914 | // Take care to not recycle the same register twice. | 
|---|
| 2915 | if (true                                ) { maybe_recycle_register(inst.x); } | 
|---|
| 2916 | if (inst.y != inst.x                    ) { maybe_recycle_register(inst.y); } | 
|---|
| 2917 | if (inst.z != inst.x && inst.z != inst.y) { maybe_recycle_register(inst.z); } | 
|---|
| 2918 |  | 
|---|
| 2919 | // Instructions that die at themselves (stores) don't need a register. | 
|---|
| 2920 | if (inst.death != id) { | 
|---|
| 2921 | // Allocate a register if we have to, preferring to reuse anything available. | 
|---|
| 2922 | if (avail.empty()) { | 
|---|
| 2923 | reg[id] = fImpl->regs++; | 
|---|
| 2924 | } else { | 
|---|
| 2925 | reg[id] = avail.back(); | 
|---|
| 2926 | avail.pop_back(); | 
|---|
| 2927 | } | 
|---|
| 2928 | } | 
|---|
| 2929 | }; | 
|---|
| 2930 |  | 
|---|
| 2931 | // Assign a register to each hoisted instruction, then each non-hoisted loop instruction. | 
|---|
| 2932 | for (Val id = 0; id < (Val)instructions.size(); id++) { | 
|---|
| 2933 | if ( hoisted(id)) { assign_register(id); } | 
|---|
| 2934 | } | 
|---|
| 2935 | for (Val id = 0; id < (Val)instructions.size(); id++) { | 
|---|
| 2936 | if (!hoisted(id)) { assign_register(id); } | 
|---|
| 2937 | } | 
|---|
| 2938 |  | 
|---|
| 2939 | // Translate OptimizedInstructions to InterpreterIstructions by mapping values to | 
|---|
| 2940 | // registers.  This will be two passes, first hoisted instructions, then inside the loop. | 
|---|
| 2941 |  | 
|---|
| 2942 | // The loop begins at the fImpl->loop'th Instruction. | 
|---|
| 2943 | fImpl->loop = 0; | 
|---|
| 2944 | fImpl->instructions.reserve(instructions.size()); | 
|---|
| 2945 |  | 
|---|
| 2946 | // Add a dummy mapping for the N/A sentinel Val to any arbitrary register | 
|---|
| 2947 | // so lookups don't have to know which arguments are used by which Ops. | 
|---|
| 2948 | auto lookup_register = [&](Val id) { | 
|---|
| 2949 | return id == NA ? (Reg)0 | 
|---|
| 2950 | : reg[id]; | 
|---|
| 2951 | }; | 
|---|
| 2952 |  | 
|---|
| 2953 | auto push_instruction = [&](Val id, const OptimizedInstruction& inst) { | 
|---|
| 2954 | InterpreterInstruction pinst{ | 
|---|
| 2955 | inst.op, | 
|---|
| 2956 | lookup_register(id), | 
|---|
| 2957 | lookup_register(inst.x), | 
|---|
| 2958 | {lookup_register(inst.y)}, | 
|---|
| 2959 | {lookup_register(inst.z)}, | 
|---|
| 2960 | }; | 
|---|
| 2961 | if (inst.y == NA) { pinst.immy = inst.immy; } | 
|---|
| 2962 | if (inst.z == NA) { pinst.immz = inst.immz; } | 
|---|
| 2963 | fImpl->instructions.push_back(pinst); | 
|---|
| 2964 | }; | 
|---|
| 2965 |  | 
|---|
| 2966 | for (Val id = 0; id < (Val)instructions.size(); id++) { | 
|---|
| 2967 | const OptimizedInstruction& inst = instructions[id]; | 
|---|
| 2968 | if (hoisted(id)) { | 
|---|
| 2969 | push_instruction(id, inst); | 
|---|
| 2970 | fImpl->loop++; | 
|---|
| 2971 | } | 
|---|
| 2972 | } | 
|---|
| 2973 | for (Val id = 0; id < (Val)instructions.size(); id++) { | 
|---|
| 2974 | const OptimizedInstruction& inst = instructions[id]; | 
|---|
| 2975 | if (!hoisted(id)) { | 
|---|
| 2976 | push_instruction(id, inst); | 
|---|
| 2977 | } | 
|---|
| 2978 | } | 
|---|
| 2979 | } | 
|---|
| 2980 |  | 
|---|
| 2981 | #if defined(SKVM_JIT) | 
|---|
| 2982 |  | 
|---|
| 2983 | bool Program::jit(const std::vector<OptimizedInstruction>& instructions, | 
|---|
| 2984 | const JITMode mode, | 
|---|
| 2985 | Assembler* a) const { | 
|---|
| 2986 | using A = Assembler; | 
|---|
| 2987 | const bool try_hoisting = mode != JITMode::RegisterNoHoist; | 
|---|
| 2988 |  | 
|---|
| 2989 | auto debug_dump = [&] { | 
|---|
| 2990 | #if 0 | 
|---|
| 2991 | SkDebugfStream stream; | 
|---|
| 2992 | this->dump(&stream); | 
|---|
| 2993 | return true; | 
|---|
| 2994 | #else | 
|---|
| 2995 | return false; | 
|---|
| 2996 | #endif | 
|---|
| 2997 | }; | 
|---|
| 2998 |  | 
|---|
| 2999 | #if defined(__x86_64__) | 
|---|
| 3000 | if (!SkCpu::Supports(SkCpu::HSW)) { | 
|---|
| 3001 | return false; | 
|---|
| 3002 | } | 
|---|
| 3003 | const int K = 8; | 
|---|
| 3004 | const bool stack_only = mode == JITMode::Stack; | 
|---|
| 3005 | A::GP64 N        = A::rdi, | 
|---|
| 3006 | scratch  = A::rax, | 
|---|
| 3007 | scratch2 = A::r11, | 
|---|
| 3008 | arg[]    = { A::rsi, A::rdx, A::rcx, A::r8, A::r9 }; | 
|---|
| 3009 |  | 
|---|
| 3010 | // All 16 ymm registers are available to use. | 
|---|
| 3011 | using Reg = A::Ymm; | 
|---|
| 3012 | const uint32_t all_regs = 0xffff; | 
|---|
| 3013 | uint32_t avail = all_regs; | 
|---|
| 3014 |  | 
|---|
| 3015 | #elif defined(__aarch64__) | 
|---|
| 3016 | const int K = 4; | 
|---|
| 3017 | const bool stack_only = false;  // TODO | 
|---|
| 3018 | A::X N       = A::x0, | 
|---|
| 3019 | scratch = A::x8, | 
|---|
| 3020 | arg[]   = { A::x1, A::x2, A::x3, A::x4, A::x5, A::x6, A::x7 }; | 
|---|
| 3021 |  | 
|---|
| 3022 | // We can use v0-v7 and v16-v31 freely; we'd need to preserve v8-v15. | 
|---|
| 3023 | using Reg = A::V; | 
|---|
| 3024 | const uint32_t all_regs = 0xffff00ff; | 
|---|
| 3025 | uint32_t avail = all_regs; | 
|---|
| 3026 | #endif | 
|---|
| 3027 |  | 
|---|
| 3028 | if (SK_ARRAY_COUNT(arg) < fImpl->strides.size()) { | 
|---|
| 3029 | return false; | 
|---|
| 3030 | } | 
|---|
| 3031 |  | 
|---|
| 3032 | auto hoisted = [&](Val id) { return try_hoisting && instructions[id].can_hoist; }; | 
|---|
| 3033 |  | 
|---|
| 3034 | std::vector<Reg> r(instructions.size()); | 
|---|
| 3035 |  | 
|---|
| 3036 | struct LabelAndReg { | 
|---|
| 3037 | A::Label label; | 
|---|
| 3038 | Reg      reg; | 
|---|
| 3039 | }; | 
|---|
| 3040 | SkTHashMap<int, LabelAndReg> constants;    // All constants share the same pool. | 
|---|
| 3041 | LabelAndReg                  iota;         // Exists _only_ to vary per-lane. | 
|---|
| 3042 |  | 
|---|
| 3043 | auto emit = [&](Val id, bool scalar) { | 
|---|
| 3044 | if (stack_only) { | 
|---|
| 3045 | SkASSERT(avail == all_regs); | 
|---|
| 3046 | } | 
|---|
| 3047 |  | 
|---|
| 3048 | const OptimizedInstruction& inst = instructions[id]; | 
|---|
| 3049 | Op op = inst.op; | 
|---|
| 3050 | Val x = inst.x, | 
|---|
| 3051 | y = inst.y, | 
|---|
| 3052 | z = inst.z; | 
|---|
| 3053 | int immy = inst.immy, | 
|---|
| 3054 | immz = inst.immz; | 
|---|
| 3055 |  | 
|---|
| 3056 | // Most (but not all) ops create an output value and need a register to hold it, dst. | 
|---|
| 3057 | // We track each instruction's dst in r[] so we can thread it through as an input | 
|---|
| 3058 | // to any future instructions needing that value. | 
|---|
| 3059 | // | 
|---|
| 3060 | // And some ops may need a temporary register, tmp.  Some need both tmp and dst. | 
|---|
| 3061 | // | 
|---|
| 3062 | // tmp and dst are very similar and can and will often be assigned the same register, | 
|---|
| 3063 | // but tmp may never alias any of the instructions's inputs, while dst may when this | 
|---|
| 3064 | // instruction consumes that input, i.e. if the input reaches its end of life here. | 
|---|
| 3065 | // | 
|---|
| 3066 | // We'll assign both registers lazily to keep register pressure as low as possible. | 
|---|
| 3067 | bool tmp_is_set = false, | 
|---|
| 3068 | dst_is_set = false; | 
|---|
| 3069 | Reg tmp_reg = (Reg)0;  // This initial value won't matter... anything legal is fine. | 
|---|
| 3070 |  | 
|---|
| 3071 | bool ok = true;   // Set to false if we need to assign a register and none's available. | 
|---|
| 3072 |  | 
|---|
| 3073 | if (stack_only) { | 
|---|
| 3074 | // Move each unique argument into a temporary register. | 
|---|
| 3075 | auto load_from_stack = [&](Val arg) { | 
|---|
| 3076 | if (int found = __builtin_ffs(avail)) { | 
|---|
| 3077 | Reg reg = (Reg)(found - 1); | 
|---|
| 3078 | avail ^= 1 << reg; | 
|---|
| 3079 | r[arg] = reg; | 
|---|
| 3080 | #if defined(__x86_64__) | 
|---|
| 3081 | a->vmovups(r[arg], arg*K*4); | 
|---|
| 3082 | #else | 
|---|
| 3083 | SkASSERT(false); // TODO | 
|---|
| 3084 | #endif | 
|---|
| 3085 | } else { | 
|---|
| 3086 | if (debug_dump()) { | 
|---|
| 3087 | SkDebugf( "\nCould not find temporary register for %d\n", arg); | 
|---|
| 3088 | } | 
|---|
| 3089 | ok = false; | 
|---|
| 3090 | } | 
|---|
| 3091 | }; | 
|---|
| 3092 | if (x != NA                    ) { load_from_stack(x); } | 
|---|
| 3093 | if (y != NA && y != x          ) { load_from_stack(y); } | 
|---|
| 3094 | if (z != NA && z != x && z != y) { load_from_stack(z); } | 
|---|
| 3095 | } | 
|---|
| 3096 |  | 
|---|
| 3097 | // First lock in how to choose tmp if we need to based on the registers | 
|---|
| 3098 | // available before this instruction, not including any of its input registers. | 
|---|
| 3099 | auto tmp = [&,avail/*important, closing over avail's current value*/]{ | 
|---|
| 3100 | if (!tmp_is_set) { | 
|---|
| 3101 | tmp_is_set = true; | 
|---|
| 3102 | if (int found = __builtin_ffs(avail)) { | 
|---|
| 3103 | // This is a temporary register just for this op, | 
|---|
| 3104 | // so we leave it marked available for future ops. | 
|---|
| 3105 | tmp_reg = (Reg)(found - 1); | 
|---|
| 3106 | } else { | 
|---|
| 3107 | // We needed a tmp register but couldn't find one available. :'( | 
|---|
| 3108 | // This will cause emit() to return false, in turn causing jit() to fail. | 
|---|
| 3109 | if (debug_dump()) { | 
|---|
| 3110 | SkDebugf( "\nCould not find a register to hold tmp\n"); | 
|---|
| 3111 | } | 
|---|
| 3112 | ok = false; | 
|---|
| 3113 | } | 
|---|
| 3114 | } | 
|---|
| 3115 | return tmp_reg; | 
|---|
| 3116 | }; | 
|---|
| 3117 |  | 
|---|
| 3118 | // Now make available any registers that are consumed by this instruction. | 
|---|
| 3119 | // (The register pool we can pick dst from is >= the pool for tmp, adding any of these.) | 
|---|
| 3120 | auto maybe_recycle_register = [&](Val input) { | 
|---|
| 3121 | if (input != NA | 
|---|
| 3122 | && instructions[input].death == id | 
|---|
| 3123 | && !(hoisted(input) && instructions[input].used_in_loop)) { | 
|---|
| 3124 | avail |= 1 << r[input]; | 
|---|
| 3125 | } | 
|---|
| 3126 | }; | 
|---|
| 3127 | maybe_recycle_register(x); | 
|---|
| 3128 | maybe_recycle_register(y); | 
|---|
| 3129 | maybe_recycle_register(z); | 
|---|
| 3130 | // set_dst() and dst() will work read/write with this perhaps-just-updated avail. | 
|---|
| 3131 |  | 
|---|
| 3132 | // Some ops may decide dst on their own to best fit the instruction (see Op::fma_f32). | 
|---|
| 3133 | auto set_dst = [&](Reg reg){ | 
|---|
| 3134 | SkASSERT(dst_is_set == false); | 
|---|
| 3135 | dst_is_set = true; | 
|---|
| 3136 |  | 
|---|
| 3137 | SkASSERT(avail & (1<<reg)); | 
|---|
| 3138 | avail ^= 1<<reg; | 
|---|
| 3139 |  | 
|---|
| 3140 | r[id] = reg; | 
|---|
| 3141 | }; | 
|---|
| 3142 |  | 
|---|
| 3143 | // Thanks to AVX and NEON's 3-argument instruction sets, | 
|---|
| 3144 | // most ops can use any register as dst. | 
|---|
| 3145 | auto dst = [&]{ | 
|---|
| 3146 | if (!dst_is_set) { | 
|---|
| 3147 | if (int found = __builtin_ffs(avail)) { | 
|---|
| 3148 | set_dst((Reg)(found-1)); | 
|---|
| 3149 | } else { | 
|---|
| 3150 | // Same deal as with tmp... all the registers are occupied.  Time to fail! | 
|---|
| 3151 | if (debug_dump()) { | 
|---|
| 3152 | SkDebugf( "\nCould not find a register to hold value %d\n", id); | 
|---|
| 3153 | } | 
|---|
| 3154 | ok = false; | 
|---|
| 3155 | } | 
|---|
| 3156 | } | 
|---|
| 3157 | return r[id]; | 
|---|
| 3158 | }; | 
|---|
| 3159 |  | 
|---|
| 3160 | // Because we use the same logic to pick an arbitrary dst and to pick tmp, | 
|---|
| 3161 | // and we know that tmp will never overlap any of the inputs, `dst() == tmp()` | 
|---|
| 3162 | // is a simple idiom to check that the destination does not overlap any of the inputs. | 
|---|
| 3163 | // Sometimes we can use this knowledge to do better instruction selection. | 
|---|
| 3164 |  | 
|---|
| 3165 | // Ok!  Keep in mind that we haven't assigned tmp or dst yet, | 
|---|
| 3166 | // just laid out hooks for how to do so if we need them, depending on the instruction. | 
|---|
| 3167 | // | 
|---|
| 3168 | // Now let's actually assemble the instruction! | 
|---|
| 3169 | switch (op) { | 
|---|
| 3170 | default: | 
|---|
| 3171 | if (debug_dump()) { | 
|---|
| 3172 | SkDEBUGFAILF( "\nOp::%s (%d) not yet implemented\n", name(op), op); | 
|---|
| 3173 | } | 
|---|
| 3174 | return false;  // TODO: many new ops | 
|---|
| 3175 |  | 
|---|
| 3176 | #if defined(__x86_64__) | 
|---|
| 3177 | case Op::assert_true: { | 
|---|
| 3178 | a->vptest (r[x], &constants[0xffffffff].label); | 
|---|
| 3179 | A::Label all_true; | 
|---|
| 3180 | a->jc(&all_true); | 
|---|
| 3181 | a->int3(); | 
|---|
| 3182 | a->label(&all_true); | 
|---|
| 3183 | } break; | 
|---|
| 3184 |  | 
|---|
| 3185 | case Op::store8: if (scalar) { a->vpextrb  (arg[immy], (A::Xmm)r[x], 0); } | 
|---|
| 3186 | else        { a->vpackusdw(tmp(), r[x], r[x]); | 
|---|
| 3187 | a->vpermq   (tmp(), tmp(), 0xd8); | 
|---|
| 3188 | a->vpackuswb(tmp(), tmp(), tmp()); | 
|---|
| 3189 | a->vmovq    (arg[immy], (A::Xmm)tmp()); } | 
|---|
| 3190 | break; | 
|---|
| 3191 |  | 
|---|
| 3192 | case Op::store16: if (scalar) { a->vpextrw  (arg[immy], (A::Xmm)r[x], 0); } | 
|---|
| 3193 | else        { a->vpackusdw(tmp(), r[x], r[x]); | 
|---|
| 3194 | a->vpermq   (tmp(), tmp(), 0xd8); | 
|---|
| 3195 | a->vmovups  (arg[immy], (A::Xmm)tmp()); } | 
|---|
| 3196 | break; | 
|---|
| 3197 |  | 
|---|
| 3198 | case Op::store32: if (scalar) { a->vmovd  (arg[immy], (A::Xmm)r[x]); } | 
|---|
| 3199 | else        { a->vmovups(arg[immy],         r[x]); } | 
|---|
| 3200 | break; | 
|---|
| 3201 |  | 
|---|
| 3202 | case Op::load8:  if (scalar) { | 
|---|
| 3203 | a->vpxor  (dst(), dst(), dst()); | 
|---|
| 3204 | a->vpinsrb((A::Xmm)dst(), (A::Xmm)dst(), arg[immy], 0); | 
|---|
| 3205 | } else { | 
|---|
| 3206 | a->vpmovzxbd(dst(), arg[immy]); | 
|---|
| 3207 | } break; | 
|---|
| 3208 |  | 
|---|
| 3209 | case Op::load16: if (scalar) { | 
|---|
| 3210 | a->vpxor  (dst(), dst(), dst()); | 
|---|
| 3211 | a->vpinsrw((A::Xmm)dst(), (A::Xmm)dst(), arg[immy], 0); | 
|---|
| 3212 | } else { | 
|---|
| 3213 | a->vpmovzxwd(dst(), arg[immy]); | 
|---|
| 3214 | } break; | 
|---|
| 3215 |  | 
|---|
| 3216 | case Op::load32: if (scalar) { a->vmovd  ((A::Xmm)dst(), arg[immy]); } | 
|---|
| 3217 | else        { a->vmovups(        dst(), arg[immy]); } | 
|---|
| 3218 | break; | 
|---|
| 3219 |  | 
|---|
| 3220 | case Op::gather32: | 
|---|
| 3221 | if (scalar) { | 
|---|
| 3222 | auto base  = scratch, | 
|---|
| 3223 | index = scratch2; | 
|---|
| 3224 | // Our gather base pointer is immz bytes off of uniform immy. | 
|---|
| 3225 | a->movq(base, arg[immy], immz); | 
|---|
| 3226 |  | 
|---|
| 3227 | // Grab our index from lane 0 of the index argument. | 
|---|
| 3228 | a->vmovd_direct(index, (A::Xmm)r[x]); | 
|---|
| 3229 |  | 
|---|
| 3230 | // dst = *(base + 4*index) | 
|---|
| 3231 | a->vmovd((A::Xmm)dst(), A::FOUR, index, base); | 
|---|
| 3232 | } else { | 
|---|
| 3233 | // We may not let any of dst(), index, or mask use the same register, | 
|---|
| 3234 | // so we must allocate registers manually and very carefully. | 
|---|
| 3235 |  | 
|---|
| 3236 | // index is argument x and has already been maybe_recycle_register()'d, | 
|---|
| 3237 | // so we explicitly ignore its availability during this op. | 
|---|
| 3238 | A::Ymm index = r[x]; | 
|---|
| 3239 | uint32_t avail_during_gather = avail & ~(1<<index); | 
|---|
| 3240 |  | 
|---|
| 3241 | // Choose dst() to not overlap with index. | 
|---|
| 3242 | if (int found = __builtin_ffs(avail_during_gather)) { | 
|---|
| 3243 | set_dst((A::Ymm)(found-1)); | 
|---|
| 3244 | avail_during_gather ^= (1<<dst()); | 
|---|
| 3245 | } else { | 
|---|
| 3246 | ok = false; | 
|---|
| 3247 | break; | 
|---|
| 3248 | } | 
|---|
| 3249 |  | 
|---|
| 3250 | // Choose (temporary) mask to not overlap with dst() or index. | 
|---|
| 3251 | A::Ymm mask; | 
|---|
| 3252 | if (int found = __builtin_ffs(avail_during_gather)) { | 
|---|
| 3253 | mask = (A::Ymm)(found-1); | 
|---|
| 3254 | } else { | 
|---|
| 3255 | ok = false; | 
|---|
| 3256 | break; | 
|---|
| 3257 | } | 
|---|
| 3258 |  | 
|---|
| 3259 | // Our gather base pointer is immz bytes off of uniform immy. | 
|---|
| 3260 | auto base = scratch; | 
|---|
| 3261 | a->movq(base, arg[immy], immz); | 
|---|
| 3262 | a->vpcmpeqd(mask, mask, mask);   // (All lanes enabled.) | 
|---|
| 3263 | a->vgatherdps(dst(), A::FOUR, index, base, mask); | 
|---|
| 3264 | } | 
|---|
| 3265 | break; | 
|---|
| 3266 |  | 
|---|
| 3267 | case Op::uniform8: a->movzbl(scratch, arg[immy], immz); | 
|---|
| 3268 | a->vmovd_direct((A::Xmm)dst(), scratch); | 
|---|
| 3269 | a->vbroadcastss(dst(), (A::Xmm)dst()); | 
|---|
| 3270 | break; | 
|---|
| 3271 |  | 
|---|
| 3272 | case Op::uniform32: a->vbroadcastss(dst(), arg[immy], immz); | 
|---|
| 3273 | break; | 
|---|
| 3274 |  | 
|---|
| 3275 | case Op::index: a->vmovd_direct((A::Xmm)tmp(), N); | 
|---|
| 3276 | a->vbroadcastss(tmp(), (A::Xmm)tmp()); | 
|---|
| 3277 | a->vpsubd(dst(), tmp(), &iota.label); | 
|---|
| 3278 | break; | 
|---|
| 3279 |  | 
|---|
| 3280 | case Op::splat: if (immy) { a->vbroadcastss(dst(), &constants[immy].label); } | 
|---|
| 3281 | else      { a->vpxor(dst(), dst(), dst()); } | 
|---|
| 3282 | break; | 
|---|
| 3283 |  | 
|---|
| 3284 | case Op::add_f32: a->vaddps(dst(), r[x], r[y]); break; | 
|---|
| 3285 | case Op::sub_f32: a->vsubps(dst(), r[x], r[y]); break; | 
|---|
| 3286 | case Op::mul_f32: a->vmulps(dst(), r[x], r[y]); break; | 
|---|
| 3287 | case Op::div_f32: a->vdivps(dst(), r[x], r[y]); break; | 
|---|
| 3288 | case Op::min_f32: a->vminps(dst(), r[y], r[x]); break;  // Order matters, | 
|---|
| 3289 | case Op::max_f32: a->vmaxps(dst(), r[y], r[x]); break;  // see test SkVM_min_max. | 
|---|
| 3290 |  | 
|---|
| 3291 | case Op::fma_f32: | 
|---|
| 3292 | if      (avail & (1<<r[x])) { set_dst(r[x]); a->vfmadd132ps(r[x], r[z], r[y]); } | 
|---|
| 3293 | else if (avail & (1<<r[y])) { set_dst(r[y]); a->vfmadd213ps(r[y], r[x], r[z]); } | 
|---|
| 3294 | else if (avail & (1<<r[z])) { set_dst(r[z]); a->vfmadd231ps(r[z], r[x], r[y]); } | 
|---|
| 3295 | else                        {                SkASSERT(dst() == tmp()); | 
|---|
| 3296 | a->vmovdqa    (dst(),r[x]); | 
|---|
| 3297 | a->vfmadd132ps(dst(),r[z], r[y]); } | 
|---|
| 3298 | break; | 
|---|
| 3299 |  | 
|---|
| 3300 | case Op::fms_f32: | 
|---|
| 3301 | if      (avail & (1<<r[x])) { set_dst(r[x]); a->vfmsub132ps(r[x], r[z], r[y]); } | 
|---|
| 3302 | else if (avail & (1<<r[y])) { set_dst(r[y]); a->vfmsub213ps(r[y], r[x], r[z]); } | 
|---|
| 3303 | else if (avail & (1<<r[z])) { set_dst(r[z]); a->vfmsub231ps(r[z], r[x], r[y]); } | 
|---|
| 3304 | else                        {                SkASSERT(dst() == tmp()); | 
|---|
| 3305 | a->vmovdqa    (dst(),r[x]); | 
|---|
| 3306 | a->vfmsub132ps(dst(),r[z], r[y]); } | 
|---|
| 3307 | break; | 
|---|
| 3308 |  | 
|---|
| 3309 | case Op::fnma_f32: | 
|---|
| 3310 | if      (avail & (1<<r[x])) { set_dst(r[x]); a->vfnmadd132ps(r[x],r[z], r[y]); } | 
|---|
| 3311 | else if (avail & (1<<r[y])) { set_dst(r[y]); a->vfnmadd213ps(r[y],r[x], r[z]); } | 
|---|
| 3312 | else if (avail & (1<<r[z])) { set_dst(r[z]); a->vfnmadd231ps(r[z],r[x], r[y]); } | 
|---|
| 3313 | else                        {                SkASSERT(dst() == tmp()); | 
|---|
| 3314 | a->vmovdqa    (dst(),r[x]); | 
|---|
| 3315 | a->vfnmadd132ps(dst(),r[z],r[y]); } | 
|---|
| 3316 | break; | 
|---|
| 3317 |  | 
|---|
| 3318 | case Op::sqrt_f32: a->vsqrtps(dst(), r[x]); break; | 
|---|
| 3319 |  | 
|---|
| 3320 | case Op::add_f32_imm: a->vaddps(dst(), r[x], &constants[immy].label); break; | 
|---|
| 3321 | case Op::sub_f32_imm: a->vsubps(dst(), r[x], &constants[immy].label); break; | 
|---|
| 3322 | case Op::mul_f32_imm: a->vmulps(dst(), r[x], &constants[immy].label); break; | 
|---|
| 3323 | case Op::min_f32_imm: a->vminps(dst(), r[x], &constants[immy].label); break; | 
|---|
| 3324 | case Op::max_f32_imm: a->vmaxps(dst(), r[x], &constants[immy].label); break; | 
|---|
| 3325 |  | 
|---|
| 3326 | case Op::add_i32: a->vpaddd (dst(), r[x], r[y]); break; | 
|---|
| 3327 | case Op::sub_i32: a->vpsubd (dst(), r[x], r[y]); break; | 
|---|
| 3328 | case Op::mul_i32: a->vpmulld(dst(), r[x], r[y]); break; | 
|---|
| 3329 |  | 
|---|
| 3330 | case Op::sub_i16x2: a->vpsubw (dst(), r[x], r[y]); break; | 
|---|
| 3331 | case Op::mul_i16x2: a->vpmullw(dst(), r[x], r[y]); break; | 
|---|
| 3332 | case Op::shr_i16x2: a->vpsrlw (dst(), r[x], immy); break; | 
|---|
| 3333 |  | 
|---|
| 3334 | case Op::bit_and  : a->vpand (dst(), r[x], r[y]); break; | 
|---|
| 3335 | case Op::bit_or   : a->vpor  (dst(), r[x], r[y]); break; | 
|---|
| 3336 | case Op::bit_xor  : a->vpxor (dst(), r[x], r[y]); break; | 
|---|
| 3337 | case Op::bit_clear: a->vpandn(dst(), r[y], r[x]); break;  // Notice, y then x. | 
|---|
| 3338 | case Op::select   : a->vpblendvb(dst(), r[z], r[y], r[x]); break; | 
|---|
| 3339 |  | 
|---|
| 3340 | case Op::bit_and_imm: a->vpand (dst(), r[x], &constants[immy].label); break; | 
|---|
| 3341 | case Op::bit_or_imm : a->vpor  (dst(), r[x], &constants[immy].label); break; | 
|---|
| 3342 | case Op::bit_xor_imm: a->vpxor (dst(), r[x], &constants[immy].label); break; | 
|---|
| 3343 |  | 
|---|
| 3344 | case Op::shl_i32: a->vpslld(dst(), r[x], immy); break; | 
|---|
| 3345 | case Op::shr_i32: a->vpsrld(dst(), r[x], immy); break; | 
|---|
| 3346 | case Op::sra_i32: a->vpsrad(dst(), r[x], immy); break; | 
|---|
| 3347 |  | 
|---|
| 3348 | case Op::eq_i32: a->vpcmpeqd(dst(), r[x], r[y]); break; | 
|---|
| 3349 | case Op::gt_i32: a->vpcmpgtd(dst(), r[x], r[y]); break; | 
|---|
| 3350 |  | 
|---|
| 3351 | case Op:: eq_f32: a->vcmpeqps (dst(), r[x], r[y]); break; | 
|---|
| 3352 | case Op::neq_f32: a->vcmpneqps(dst(), r[x], r[y]); break; | 
|---|
| 3353 | case Op:: gt_f32: a->vcmpltps (dst(), r[y], r[x]); break; | 
|---|
| 3354 | case Op::gte_f32: a->vcmpleps (dst(), r[y], r[x]); break; | 
|---|
| 3355 |  | 
|---|
| 3356 | case Op::pack: a->vpslld(tmp(),  r[y], immz); | 
|---|
| 3357 | a->vpor  (dst(), tmp(), r[x]); | 
|---|
| 3358 | break; | 
|---|
| 3359 |  | 
|---|
| 3360 | case Op::floor : a->vroundps  (dst(), r[x], Assembler::FLOOR); break; | 
|---|
| 3361 | case Op::to_f32: a->vcvtdq2ps (dst(), r[x]); break; | 
|---|
| 3362 | case Op::trunc : a->vcvttps2dq(dst(), r[x]); break; | 
|---|
| 3363 | case Op::round : a->vcvtps2dq (dst(), r[x]); break; | 
|---|
| 3364 |  | 
|---|
| 3365 | #elif defined(__aarch64__) | 
|---|
| 3366 | case Op::assert_true: { | 
|---|
| 3367 | a->uminv4s(tmp(), r[x]);   // uminv acts like an all() across the vector. | 
|---|
| 3368 | a->fmovs(scratch, tmp()); | 
|---|
| 3369 | A::Label all_true; | 
|---|
| 3370 | a->cbnz(scratch, &all_true); | 
|---|
| 3371 | a->brk(0); | 
|---|
| 3372 | a->label(&all_true); | 
|---|
| 3373 | } break; | 
|---|
| 3374 |  | 
|---|
| 3375 | case Op::store8: a->xtns2h(tmp(), r[x]); | 
|---|
| 3376 | a->xtnh2b(tmp(), tmp()); | 
|---|
| 3377 | if (scalar) { a->strb  (tmp(), arg[immy]); } | 
|---|
| 3378 | else        { a->strs  (tmp(), arg[immy]); } | 
|---|
| 3379 | break; | 
|---|
| 3380 | // TODO: another case where it'd be okay to alias r[x] and tmp if r[x] dies here. | 
|---|
| 3381 |  | 
|---|
| 3382 | case Op::store32: if (scalar) { a->strs(r[x], arg[immy]); } | 
|---|
| 3383 | else        { a->strq(r[x], arg[immy]); } | 
|---|
| 3384 | break; | 
|---|
| 3385 |  | 
|---|
| 3386 | case Op::load8: if (scalar) { a->ldrb(tmp(), arg[immy]); } | 
|---|
| 3387 | else        { a->ldrs(tmp(), arg[immy]); } | 
|---|
| 3388 | a->uxtlb2h(tmp(), tmp()); | 
|---|
| 3389 | a->uxtlh2s(dst(), tmp()); | 
|---|
| 3390 | break; | 
|---|
| 3391 |  | 
|---|
| 3392 | case Op::load32: if (scalar) { a->ldrs(dst(), arg[immy]); } | 
|---|
| 3393 | else        { a->ldrq(dst(), arg[immy]); } | 
|---|
| 3394 | break; | 
|---|
| 3395 |  | 
|---|
| 3396 | case Op::splat: if (immy) { a->ldrq(dst(), &constants[immy].label); } | 
|---|
| 3397 | else      { a->eor16b(dst(), dst(), dst()); } | 
|---|
| 3398 | break; | 
|---|
| 3399 | // TODO: If we hoist these, pack 4 values in each register | 
|---|
| 3400 | // and use vector/lane operations, cutting the register | 
|---|
| 3401 | // pressure cost of hoisting by 4? | 
|---|
| 3402 |  | 
|---|
| 3403 | case Op::add_f32: a->fadd4s(dst(), r[x], r[y]); break; | 
|---|
| 3404 | case Op::sub_f32: a->fsub4s(dst(), r[x], r[y]); break; | 
|---|
| 3405 | case Op::mul_f32: a->fmul4s(dst(), r[x], r[y]); break; | 
|---|
| 3406 | case Op::div_f32: a->fdiv4s(dst(), r[x], r[y]); break; | 
|---|
| 3407 |  | 
|---|
| 3408 | case Op::fma_f32: // fmla.4s is z += x*y | 
|---|
| 3409 | if (avail & (1<<r[z])) { set_dst(r[z]); a->fmla4s( r[z],  r[x],  r[y]);   } | 
|---|
| 3410 | else {                                  a->orr16b(tmp(),  r[z],  r[z]); | 
|---|
| 3411 | a->fmla4s(tmp(),  r[x],  r[y]); | 
|---|
| 3412 | if(dst() != tmp()) { a->orr16b(dst(), tmp(), tmp()); } } | 
|---|
| 3413 | break; | 
|---|
| 3414 |  | 
|---|
| 3415 | case Op::fnma_f32:  // fmls.4s is z -= x*y | 
|---|
| 3416 | if (avail & (1<<r[z])) { set_dst(r[z]); a->fmls4s( r[z],  r[x],  r[y]);   } | 
|---|
| 3417 | else {                                  a->orr16b(tmp(),  r[z],  r[z]); | 
|---|
| 3418 | a->fmls4s(tmp(),  r[x],  r[y]); | 
|---|
| 3419 | if(dst() != tmp()) { a->orr16b(dst(), tmp(), tmp()); } } | 
|---|
| 3420 | break; | 
|---|
| 3421 |  | 
|---|
| 3422 | case Op::fms_f32: | 
|---|
| 3423 | // first dst() = xy - z as if fnma_f32 | 
|---|
| 3424 | if (avail & (1<<r[z])) { set_dst(r[z]); a->fmls4s( r[z],  r[x],  r[y]);   } | 
|---|
| 3425 | else {                                  a->orr16b(tmp(),  r[z],  r[z]); | 
|---|
| 3426 | a->fmls4s(tmp(),  r[x],  r[y]); | 
|---|
| 3427 | if(dst() != tmp()) { a->orr16b(dst(), tmp(), tmp()); } } | 
|---|
| 3428 | // then dst() = -dst()  (i.e. z - xy) | 
|---|
| 3429 | a->fneg4s(dst(), dst()); | 
|---|
| 3430 | break; | 
|---|
| 3431 |  | 
|---|
| 3432 | // These _imm instructions are all x86/JIT only. | 
|---|
| 3433 | case  Op::add_f32_imm : | 
|---|
| 3434 | case  Op::sub_f32_imm : | 
|---|
| 3435 | case  Op::mul_f32_imm : | 
|---|
| 3436 | case  Op::min_f32_imm : | 
|---|
| 3437 | case  Op::max_f32_imm : | 
|---|
| 3438 | case  Op::bit_and_imm : | 
|---|
| 3439 | case  Op::bit_or_imm  : | 
|---|
| 3440 | case  Op::bit_xor_imm : SkUNREACHABLE; break; | 
|---|
| 3441 |  | 
|---|
| 3442 | case Op:: gt_f32: a->fcmgt4s (dst(), r[x], r[y]); break; | 
|---|
| 3443 | case Op::gte_f32: a->fcmge4s (dst(), r[x], r[y]); break; | 
|---|
| 3444 | case Op:: eq_f32: a->fcmeq4s (dst(), r[x], r[y]); break; | 
|---|
| 3445 | case Op::neq_f32: a->fcmeq4s (tmp(), r[x], r[y]); | 
|---|
| 3446 | a->not16b  (dst(), tmp());      break; | 
|---|
| 3447 |  | 
|---|
| 3448 |  | 
|---|
| 3449 | case Op::add_i32: a->add4s(dst(), r[x], r[y]); break; | 
|---|
| 3450 | case Op::sub_i32: a->sub4s(dst(), r[x], r[y]); break; | 
|---|
| 3451 | case Op::mul_i32: a->mul4s(dst(), r[x], r[y]); break; | 
|---|
| 3452 |  | 
|---|
| 3453 | case Op::sub_i16x2: a->sub8h (dst(), r[x], r[y]); break; | 
|---|
| 3454 | case Op::mul_i16x2: a->mul8h (dst(), r[x], r[y]); break; | 
|---|
| 3455 | case Op::shr_i16x2: a->ushr8h(dst(), r[x], immy); break; | 
|---|
| 3456 |  | 
|---|
| 3457 | case Op::bit_and  : a->and16b(dst(), r[x], r[y]); break; | 
|---|
| 3458 | case Op::bit_or   : a->orr16b(dst(), r[x], r[y]); break; | 
|---|
| 3459 | case Op::bit_xor  : a->eor16b(dst(), r[x], r[y]); break; | 
|---|
| 3460 | case Op::bit_clear: a->bic16b(dst(), r[x], r[y]); break; | 
|---|
| 3461 |  | 
|---|
| 3462 | case Op::select: // bsl16b is x = x ? y : z | 
|---|
| 3463 | if (avail & (1<<r[x])) { set_dst(r[x]); a->bsl16b( r[x],  r[y],  r[z]); } | 
|---|
| 3464 | else {                                  a->orr16b(tmp(),  r[x],  r[x]); | 
|---|
| 3465 | a->bsl16b(tmp(),  r[y],  r[z]); | 
|---|
| 3466 | if(dst() != tmp()) { a->orr16b(dst(), tmp(), tmp()); } } | 
|---|
| 3467 | break; | 
|---|
| 3468 |  | 
|---|
| 3469 | // fmin4s and fmax4s don't work the way we want with NaN, | 
|---|
| 3470 | // so we write them the long way: | 
|---|
| 3471 | case Op::min_f32: // min(x,y) = y<x ? y : x | 
|---|
| 3472 | a->fcmgt4s(tmp(), r[x],r[y]); | 
|---|
| 3473 | a->bsl16b (tmp(), r[y],r[x]); | 
|---|
| 3474 | if(dst() != tmp()) { a->orr16b(dst(), tmp(), tmp()); } | 
|---|
| 3475 | break; | 
|---|
| 3476 |  | 
|---|
| 3477 | case Op::max_f32: // max(x,y) = x<y ? y : x | 
|---|
| 3478 | a->fcmgt4s(tmp(), r[y],r[x]); | 
|---|
| 3479 | a->bsl16b (tmp(), r[y],r[x]); | 
|---|
| 3480 | if(dst() != tmp()) { a->orr16b(dst(), tmp(), tmp()); } | 
|---|
| 3481 | break; | 
|---|
| 3482 |  | 
|---|
| 3483 | case Op::shl_i32: a-> shl4s(dst(), r[x], immy); break; | 
|---|
| 3484 | case Op::shr_i32: a->ushr4s(dst(), r[x], immy); break; | 
|---|
| 3485 | case Op::sra_i32: a->sshr4s(dst(), r[x], immy); break; | 
|---|
| 3486 |  | 
|---|
| 3487 | case Op::eq_i32: a->cmeq4s(dst(), r[x], r[y]); break; | 
|---|
| 3488 | case Op::gt_i32: a->cmgt4s(dst(), r[x], r[y]); break; | 
|---|
| 3489 |  | 
|---|
| 3490 | case Op::pack: | 
|---|
| 3491 | if (avail & (1<<r[x])) { set_dst(r[x]); a->sli4s ( r[x],  r[y],  immz); } | 
|---|
| 3492 | else                   {                a->shl4s (tmp(),  r[y],  immz); | 
|---|
| 3493 | a->orr16b(dst(), tmp(),  r[x]); } | 
|---|
| 3494 | break; | 
|---|
| 3495 |  | 
|---|
| 3496 | case Op::to_f32: a->scvtf4s (dst(), r[x]); break; | 
|---|
| 3497 | case Op::trunc:  a->fcvtzs4s(dst(), r[x]); break; | 
|---|
| 3498 | case Op::round:  a->fcvtns4s(dst(), r[x]); break; | 
|---|
| 3499 | // TODO: fcvtns.4s rounds to nearest even. | 
|---|
| 3500 | // I think we actually want frintx -> fcvtzs to round to current mode. | 
|---|
| 3501 | #endif | 
|---|
| 3502 | } | 
|---|
| 3503 |  | 
|---|
| 3504 | if (stack_only) { | 
|---|
| 3505 | if (dst_is_set) { | 
|---|
| 3506 | #if defined(__x86_64__) | 
|---|
| 3507 | a->vmovups(id*K*4, r[id]); | 
|---|
| 3508 | #else | 
|---|
| 3509 | SkASSERT(false);  // TODO | 
|---|
| 3510 | #endif | 
|---|
| 3511 | avail |= 1 << r[id]; | 
|---|
| 3512 | } | 
|---|
| 3513 | for (Val arg : {x,y,z}) { | 
|---|
| 3514 | if (arg != NA) { | 
|---|
| 3515 | avail |= 1 << r[arg]; | 
|---|
| 3516 | } | 
|---|
| 3517 | } | 
|---|
| 3518 | SkASSERT(avail == all_regs); | 
|---|
| 3519 | } | 
|---|
| 3520 |  | 
|---|
| 3521 | // Calls to tmp() or dst() might have flipped this false from its default true state. | 
|---|
| 3522 | return ok; | 
|---|
| 3523 | }; | 
|---|
| 3524 |  | 
|---|
| 3525 |  | 
|---|
| 3526 | #if defined(__x86_64__) | 
|---|
| 3527 | auto jump_if_less = [&](A::Label* l) { a->jl (l); }; | 
|---|
| 3528 | auto jump         = [&](A::Label* l) { a->jmp(l); }; | 
|---|
| 3529 |  | 
|---|
| 3530 | auto add = [&](A::GP64 gp, int imm) { a->add(gp, imm); }; | 
|---|
| 3531 | auto sub = [&](A::GP64 gp, int imm) { a->sub(gp, imm); }; | 
|---|
| 3532 |  | 
|---|
| 3533 | auto enter = [&]{ a->sub(A::rsp, instructions.size()*K*4); }; | 
|---|
| 3534 | auto exit  = [&]{ a->add(A::rsp, instructions.size()*K*4); a->vzeroupper(); a->ret(); }; | 
|---|
| 3535 | #elif defined(__aarch64__) | 
|---|
| 3536 | auto jump_if_less = [&](A::Label* l) { a->blt(l); }; | 
|---|
| 3537 | auto jump         = [&](A::Label* l) { a->b  (l); }; | 
|---|
| 3538 |  | 
|---|
| 3539 | auto add = [&](A::X gp, int imm) { a->add(gp, gp, imm); }; | 
|---|
| 3540 | auto sub = [&](A::X gp, int imm) { a->sub(gp, gp, imm); }; | 
|---|
| 3541 |  | 
|---|
| 3542 | auto enter = [&]{}; | 
|---|
| 3543 | auto exit  = [&]{ a->ret(A::x30); }; | 
|---|
| 3544 | #endif | 
|---|
| 3545 |  | 
|---|
| 3546 | A::Label body, | 
|---|
| 3547 | tail, | 
|---|
| 3548 | done; | 
|---|
| 3549 |  | 
|---|
| 3550 | enter(); | 
|---|
| 3551 | for (Val id = 0; id < (Val)instructions.size(); id++) { | 
|---|
| 3552 | if (hoisted(id) && !emit(id, /*scalar=*/false)) { | 
|---|
| 3553 | return false; | 
|---|
| 3554 | } | 
|---|
| 3555 | } | 
|---|
| 3556 |  | 
|---|
| 3557 | a->label(&body); | 
|---|
| 3558 | { | 
|---|
| 3559 | a->cmp(N, K); | 
|---|
| 3560 | jump_if_less(&tail); | 
|---|
| 3561 | for (Val id = 0; id < (Val)instructions.size(); id++) { | 
|---|
| 3562 | if (!hoisted(id) && !emit(id, /*scalar=*/false)) { | 
|---|
| 3563 | return false; | 
|---|
| 3564 | } | 
|---|
| 3565 | } | 
|---|
| 3566 | for (int i = 0; i < (int)fImpl->strides.size(); i++) { | 
|---|
| 3567 | if (fImpl->strides[i]) { | 
|---|
| 3568 | add(arg[i], K*fImpl->strides[i]); | 
|---|
| 3569 | } | 
|---|
| 3570 | } | 
|---|
| 3571 | sub(N, K); | 
|---|
| 3572 | jump(&body); | 
|---|
| 3573 | } | 
|---|
| 3574 |  | 
|---|
| 3575 | a->label(&tail); | 
|---|
| 3576 | { | 
|---|
| 3577 | a->cmp(N, 1); | 
|---|
| 3578 | jump_if_less(&done); | 
|---|
| 3579 | for (Val id = 0; id < (Val)instructions.size(); id++) { | 
|---|
| 3580 | if (!hoisted(id) && !emit(id, /*scalar=*/true)) { | 
|---|
| 3581 | return false; | 
|---|
| 3582 | } | 
|---|
| 3583 | } | 
|---|
| 3584 | for (int i = 0; i < (int)fImpl->strides.size(); i++) { | 
|---|
| 3585 | if (fImpl->strides[i]) { | 
|---|
| 3586 | add(arg[i], 1*fImpl->strides[i]); | 
|---|
| 3587 | } | 
|---|
| 3588 | } | 
|---|
| 3589 | sub(N, 1); | 
|---|
| 3590 | jump(&tail); | 
|---|
| 3591 | } | 
|---|
| 3592 |  | 
|---|
| 3593 | a->label(&done); | 
|---|
| 3594 | { | 
|---|
| 3595 | exit(); | 
|---|
| 3596 | } | 
|---|
| 3597 |  | 
|---|
| 3598 | // Except for explicit aligned load and store instructions, AVX allows | 
|---|
| 3599 | // memory operands to be unaligned.  So even though we're creating 16 | 
|---|
| 3600 | // byte patterns on ARM or 32-byte patterns on x86, we only need to | 
|---|
| 3601 | // align to 4 bytes, the element size and alignment requirement. | 
|---|
| 3602 |  | 
|---|
| 3603 | constants.foreach([&](int imm, LabelAndReg* entry) { | 
|---|
| 3604 | a->align(4); | 
|---|
| 3605 | a->label(&entry->label); | 
|---|
| 3606 | for (int i = 0; i < K; i++) { | 
|---|
| 3607 | a->word(imm); | 
|---|
| 3608 | } | 
|---|
| 3609 | }); | 
|---|
| 3610 |  | 
|---|
| 3611 | if (!iota.label.references.empty()) { | 
|---|
| 3612 | a->align(4); | 
|---|
| 3613 | a->label(&iota.label); | 
|---|
| 3614 | for (int i = 0; i < K; i++) { | 
|---|
| 3615 | a->word(i); | 
|---|
| 3616 | } | 
|---|
| 3617 | } | 
|---|
| 3618 |  | 
|---|
| 3619 | return true; | 
|---|
| 3620 | } | 
|---|
| 3621 |  | 
|---|
| 3622 | void Program::setupJIT(const std::vector<OptimizedInstruction>& instructions, | 
|---|
| 3623 | const char* debug_name) { | 
|---|
| 3624 | // Assemble with no buffer to determine a.size(), the number of bytes we'll assemble. | 
|---|
| 3625 | Assembler a{nullptr}; | 
|---|
| 3626 |  | 
|---|
| 3627 | // First try allowing code hoisting (faster code) | 
|---|
| 3628 | // then again without if that fails (lower register pressure). | 
|---|
| 3629 | JITMode mode = JITMode::Register; | 
|---|
| 3630 | bool ok = false; | 
|---|
| 3631 | for (JITMode m : {JITMode::Register, JITMode::RegisterNoHoist, JITMode::Stack}) { | 
|---|
| 3632 | if (this->jit(instructions, m, &a)) { | 
|---|
| 3633 | ok = true; | 
|---|
| 3634 | mode = m; | 
|---|
| 3635 | break; | 
|---|
| 3636 | } | 
|---|
| 3637 | } | 
|---|
| 3638 | if (!ok) { return; } | 
|---|
| 3639 |  | 
|---|
| 3640 | // Allocate space that we can remap as executable. | 
|---|
| 3641 | const size_t page = sysconf(_SC_PAGESIZE); | 
|---|
| 3642 |  | 
|---|
| 3643 | // mprotect works at page granularity. | 
|---|
| 3644 | fImpl->jit_size = ((a.size() + page - 1) / page) * page; | 
|---|
| 3645 |  | 
|---|
| 3646 | void* jit_entry | 
|---|
| 3647 | = mmap(nullptr,fImpl->jit_size, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1,0); | 
|---|
| 3648 | fImpl->jit_entry.store(jit_entry); | 
|---|
| 3649 |  | 
|---|
| 3650 | // Assemble the program for real. | 
|---|
| 3651 | a = Assembler{jit_entry}; | 
|---|
| 3652 | SkAssertResult(this->jit(instructions, mode, &a)); | 
|---|
| 3653 | SkASSERT(a.size() <= fImpl->jit_size); | 
|---|
| 3654 |  | 
|---|
| 3655 | // Remap as executable, and flush caches on platforms that need that. | 
|---|
| 3656 | mprotect(jit_entry, fImpl->jit_size, PROT_READ|PROT_EXEC); | 
|---|
| 3657 | __builtin___clear_cache((char*)jit_entry, | 
|---|
| 3658 | (char*)jit_entry + fImpl->jit_size); | 
|---|
| 3659 |  | 
|---|
| 3660 | // For profiling and debugging, it's helpful to have this code loaded | 
|---|
| 3661 | // dynamically rather than just jumping info fImpl->jit_entry. | 
|---|
| 3662 | if (gSkVMJITViaDylib) { | 
|---|
| 3663 | // Dump the raw program binary. | 
|---|
| 3664 | SkString path = SkStringPrintf( "/tmp/%s.XXXXXX", debug_name); | 
|---|
| 3665 | int fd = mkstemp(path.writable_str()); | 
|---|
| 3666 | ::write(fd, jit_entry, a.size()); | 
|---|
| 3667 | close(fd); | 
|---|
| 3668 |  | 
|---|
| 3669 | this->dropJIT();  // (unmap and null out fImpl->jit_entry.) | 
|---|
| 3670 |  | 
|---|
| 3671 | // Convert it in-place to a dynamic library with a single symbol "skvm_jit": | 
|---|
| 3672 | SkString cmd = SkStringPrintf( | 
|---|
| 3673 | "echo '.global _skvm_jit\n_skvm_jit: .incbin \"%s\"'" | 
|---|
| 3674 | " | clang -x assembler -shared - -o %s", | 
|---|
| 3675 | path.c_str(), path.c_str()); | 
|---|
| 3676 | system(cmd.c_str()); | 
|---|
| 3677 |  | 
|---|
| 3678 | // Load that dynamic library and look up skvm_jit(). | 
|---|
| 3679 | fImpl->dylib = dlopen(path.c_str(), RTLD_NOW|RTLD_LOCAL); | 
|---|
| 3680 | fImpl->jit_entry.store(dlsym(fImpl->dylib, "skvm_jit")); | 
|---|
| 3681 | } | 
|---|
| 3682 | } | 
|---|
| 3683 | #endif | 
|---|
| 3684 |  | 
|---|
| 3685 | }  // namespace skvm | 
|---|
| 3686 |  | 
|---|