| 1 | /* |
| 2 | * Copyright 2017 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "src/core/SkBlendModePriv.h" |
| 9 | #include "src/gpu/GrAppliedClip.h" |
| 10 | #include "src/gpu/GrCaps.h" |
| 11 | #include "src/gpu/GrProcessorSet.h" |
| 12 | #include "src/gpu/GrUserStencilSettings.h" |
| 13 | #include "src/gpu/GrXferProcessor.h" |
| 14 | #include "src/gpu/effects/GrPorterDuffXferProcessor.h" |
| 15 | |
| 16 | const GrProcessorSet& GrProcessorSet::EmptySet() { |
| 17 | static GrProcessorSet gEmpty(GrProcessorSet::Empty::kEmpty); |
| 18 | return gEmpty; |
| 19 | } |
| 20 | |
| 21 | GrProcessorSet GrProcessorSet::MakeEmptySet() { |
| 22 | return GrProcessorSet(GrProcessorSet::Empty::kEmpty); |
| 23 | } |
| 24 | |
| 25 | GrProcessorSet::GrProcessorSet(GrPaint&& paint) : fXP(paint.getXPFactory()) { |
| 26 | fFlags = 0; |
| 27 | if (paint.numColorFragmentProcessors() <= kMaxColorProcessors) { |
| 28 | fColorFragmentProcessorCnt = paint.numColorFragmentProcessors(); |
| 29 | fFragmentProcessors.reset(paint.numTotalFragmentProcessors()); |
| 30 | int i = 0; |
| 31 | for (auto& fp : paint.fColorFragmentProcessors) { |
| 32 | SkASSERT(fp.get()); |
| 33 | fFragmentProcessors[i++] = std::move(fp); |
| 34 | } |
| 35 | for (auto& fp : paint.fCoverageFragmentProcessors) { |
| 36 | SkASSERT(fp.get()); |
| 37 | fFragmentProcessors[i++] = std::move(fp); |
| 38 | } |
| 39 | } else { |
| 40 | SkDebugf("Insane number of color fragment processors in paint. Dropping all processors." ); |
| 41 | fColorFragmentProcessorCnt = 0; |
| 42 | } |
| 43 | SkDEBUGCODE(paint.fAlive = false;) |
| 44 | } |
| 45 | |
| 46 | GrProcessorSet::GrProcessorSet(SkBlendMode mode) |
| 47 | : fXP(SkBlendMode_AsXPFactory(mode)) |
| 48 | , fColorFragmentProcessorCnt(0) |
| 49 | , fFragmentProcessorOffset(0) |
| 50 | , fFlags(0) {} |
| 51 | |
| 52 | GrProcessorSet::GrProcessorSet(std::unique_ptr<GrFragmentProcessor> colorFP) |
| 53 | : fFragmentProcessors(1) |
| 54 | , fXP((const GrXPFactory*)nullptr) |
| 55 | , fColorFragmentProcessorCnt(1) |
| 56 | , fFragmentProcessorOffset(0) |
| 57 | , fFlags(0) { |
| 58 | SkASSERT(colorFP); |
| 59 | fFragmentProcessors[0] = std::move(colorFP); |
| 60 | } |
| 61 | |
| 62 | GrProcessorSet::GrProcessorSet(GrProcessorSet&& that) |
| 63 | : fXP(std::move(that.fXP)) |
| 64 | , fColorFragmentProcessorCnt(that.fColorFragmentProcessorCnt) |
| 65 | , fFragmentProcessorOffset(0) |
| 66 | , fFlags(that.fFlags) { |
| 67 | fFragmentProcessors.reset(that.fFragmentProcessors.count() - that.fFragmentProcessorOffset); |
| 68 | for (int i = 0; i < fFragmentProcessors.count(); ++i) { |
| 69 | fFragmentProcessors[i] = |
| 70 | std::move(that.fFragmentProcessors[i + that.fFragmentProcessorOffset]); |
| 71 | } |
| 72 | that.fColorFragmentProcessorCnt = 0; |
| 73 | that.fFragmentProcessors.reset(0); |
| 74 | } |
| 75 | |
| 76 | GrProcessorSet::~GrProcessorSet() { |
| 77 | if (this->isFinalized() && this->xferProcessor()) { |
| 78 | this->xferProcessor()->unref(); |
| 79 | } |
| 80 | } |
| 81 | |
| 82 | #ifdef SK_DEBUG |
| 83 | SkString dump_fragment_processor_tree(const GrFragmentProcessor* fp, int indentCnt) { |
| 84 | SkString result; |
| 85 | SkString indentString; |
| 86 | for (int i = 0; i < indentCnt; ++i) { |
| 87 | indentString.append(" " ); |
| 88 | } |
| 89 | result.appendf("%s%s %s \n" , indentString.c_str(), fp->name(), fp->dumpInfo().c_str()); |
| 90 | if (fp->numChildProcessors()) { |
| 91 | for (int i = 0; i < fp->numChildProcessors(); ++i) { |
| 92 | result += dump_fragment_processor_tree(&fp->childProcessor(i), indentCnt + 1); |
| 93 | } |
| 94 | } |
| 95 | return result; |
| 96 | } |
| 97 | |
| 98 | SkString GrProcessorSet::dumpProcessors() const { |
| 99 | SkString result; |
| 100 | if (this->numFragmentProcessors()) { |
| 101 | if (this->numColorFragmentProcessors()) { |
| 102 | result.append("Color Fragment Processors:\n" ); |
| 103 | for (int i = 0; i < this->numColorFragmentProcessors(); ++i) { |
| 104 | result += dump_fragment_processor_tree(this->colorFragmentProcessor(i), 1); |
| 105 | } |
| 106 | } else { |
| 107 | result.append("No color fragment processors.\n" ); |
| 108 | } |
| 109 | if (this->numCoverageFragmentProcessors()) { |
| 110 | result.append("Coverage Fragment Processors:\n" ); |
| 111 | for (int i = 0; i < this->numColorFragmentProcessors(); ++i) { |
| 112 | result += dump_fragment_processor_tree(this->coverageFragmentProcessor(i), 1); |
| 113 | } |
| 114 | } else { |
| 115 | result.append("No coverage fragment processors.\n" ); |
| 116 | } |
| 117 | } else { |
| 118 | result.append("No color or coverage fragment processors.\n" ); |
| 119 | } |
| 120 | if (this->isFinalized()) { |
| 121 | result.append("Xfer Processor: " ); |
| 122 | if (this->xferProcessor()) { |
| 123 | result.appendf("%s\n" , this->xferProcessor()->name()); |
| 124 | } else { |
| 125 | result.append("SrcOver\n" ); |
| 126 | } |
| 127 | } else { |
| 128 | result.append("XP Factory dumping not implemented.\n" ); |
| 129 | } |
| 130 | return result; |
| 131 | } |
| 132 | #endif |
| 133 | |
| 134 | bool GrProcessorSet::operator==(const GrProcessorSet& that) const { |
| 135 | SkASSERT(this->isFinalized()); |
| 136 | SkASSERT(that.isFinalized()); |
| 137 | int fpCount = this->numFragmentProcessors(); |
| 138 | if (((fFlags ^ that.fFlags) & ~kFinalized_Flag) || fpCount != that.numFragmentProcessors() || |
| 139 | fColorFragmentProcessorCnt != that.fColorFragmentProcessorCnt) { |
| 140 | return false; |
| 141 | } |
| 142 | |
| 143 | for (int i = 0; i < fpCount; ++i) { |
| 144 | int a = i + fFragmentProcessorOffset; |
| 145 | int b = i + that.fFragmentProcessorOffset; |
| 146 | if (!fFragmentProcessors[a]->isEqual(*that.fFragmentProcessors[b])) { |
| 147 | return false; |
| 148 | } |
| 149 | } |
| 150 | // Most of the time both of these are null |
| 151 | if (!this->xferProcessor() && !that.xferProcessor()) { |
| 152 | return true; |
| 153 | } |
| 154 | const GrXferProcessor& thisXP = this->xferProcessor() |
| 155 | ? *this->xferProcessor() |
| 156 | : GrPorterDuffXPFactory::SimpleSrcOverXP(); |
| 157 | const GrXferProcessor& thatXP = that.xferProcessor() |
| 158 | ? *that.xferProcessor() |
| 159 | : GrPorterDuffXPFactory::SimpleSrcOverXP(); |
| 160 | return thisXP.isEqual(thatXP); |
| 161 | } |
| 162 | |
| 163 | GrProcessorSet::Analysis GrProcessorSet::finalize( |
| 164 | const GrProcessorAnalysisColor& colorInput, const GrProcessorAnalysisCoverage coverageInput, |
| 165 | const GrAppliedClip* clip, const GrUserStencilSettings* userStencil, |
| 166 | bool hasMixedSampledCoverage, const GrCaps& caps, GrClampType clampType, |
| 167 | SkPMColor4f* overrideInputColor) { |
| 168 | SkASSERT(!this->isFinalized()); |
| 169 | SkASSERT(!fFragmentProcessorOffset); |
| 170 | |
| 171 | GrProcessorSet::Analysis analysis; |
| 172 | analysis.fCompatibleWithCoverageAsAlpha = GrProcessorAnalysisCoverage::kLCD != coverageInput; |
| 173 | |
| 174 | const std::unique_ptr<GrFragmentProcessor>* fps = |
| 175 | fFragmentProcessors.get() + fFragmentProcessorOffset; |
| 176 | GrColorFragmentProcessorAnalysis colorAnalysis(colorInput, fps, fColorFragmentProcessorCnt); |
| 177 | fps += fColorFragmentProcessorCnt; |
| 178 | int n = this->numCoverageFragmentProcessors(); |
| 179 | bool hasCoverageFP = n > 0; |
| 180 | bool coverageUsesLocalCoords = false; |
| 181 | for (int i = 0; i < n; ++i) { |
| 182 | if (!fps[i]->compatibleWithCoverageAsAlpha()) { |
| 183 | analysis.fCompatibleWithCoverageAsAlpha = false; |
| 184 | } |
| 185 | coverageUsesLocalCoords |= fps[i]->usesLocalCoords(); |
| 186 | } |
| 187 | if (clip) { |
| 188 | hasCoverageFP = hasCoverageFP || clip->numClipCoverageFragmentProcessors(); |
| 189 | for (int i = 0; i < clip->numClipCoverageFragmentProcessors(); ++i) { |
| 190 | const GrFragmentProcessor* clipFP = clip->clipCoverageFragmentProcessor(i); |
| 191 | analysis.fCompatibleWithCoverageAsAlpha &= clipFP->compatibleWithCoverageAsAlpha(); |
| 192 | coverageUsesLocalCoords |= clipFP->usesLocalCoords(); |
| 193 | } |
| 194 | } |
| 195 | int colorFPsToEliminate = colorAnalysis.initialProcessorsToEliminate(overrideInputColor); |
| 196 | analysis.fInputColorType = static_cast<Analysis::PackedInputColorType>( |
| 197 | colorFPsToEliminate ? Analysis::kOverridden_InputColorType |
| 198 | : Analysis::kOriginal_InputColorType); |
| 199 | |
| 200 | GrProcessorAnalysisCoverage outputCoverage; |
| 201 | if (GrProcessorAnalysisCoverage::kLCD == coverageInput) { |
| 202 | outputCoverage = GrProcessorAnalysisCoverage::kLCD; |
| 203 | } else if (hasCoverageFP || GrProcessorAnalysisCoverage::kSingleChannel == coverageInput) { |
| 204 | outputCoverage = GrProcessorAnalysisCoverage::kSingleChannel; |
| 205 | } else { |
| 206 | outputCoverage = GrProcessorAnalysisCoverage::kNone; |
| 207 | } |
| 208 | |
| 209 | GrXPFactory::AnalysisProperties props = GrXPFactory::GetAnalysisProperties( |
| 210 | this->xpFactory(), colorAnalysis.outputColor(), outputCoverage, caps, clampType); |
| 211 | if (!this->numCoverageFragmentProcessors() && |
| 212 | GrProcessorAnalysisCoverage::kNone == coverageInput) { |
| 213 | } |
| 214 | analysis.fRequiresDstTexture = |
| 215 | SkToBool(props & GrXPFactory::AnalysisProperties::kRequiresDstTexture); |
| 216 | analysis.fCompatibleWithCoverageAsAlpha &= |
| 217 | SkToBool(props & GrXPFactory::AnalysisProperties::kCompatibleWithCoverageAsAlpha); |
| 218 | analysis.fRequiresNonOverlappingDraws = SkToBool( |
| 219 | props & GrXPFactory::AnalysisProperties::kRequiresNonOverlappingDraws); |
| 220 | if (props & GrXPFactory::AnalysisProperties::kIgnoresInputColor) { |
| 221 | colorFPsToEliminate = this->numColorFragmentProcessors(); |
| 222 | analysis.fInputColorType = |
| 223 | static_cast<Analysis::PackedInputColorType>(Analysis::kIgnored_InputColorType); |
| 224 | analysis.fUsesLocalCoords = coverageUsesLocalCoords; |
| 225 | } else { |
| 226 | analysis.fCompatibleWithCoverageAsAlpha &= |
| 227 | colorAnalysis.allProcessorsCompatibleWithCoverageAsAlpha(); |
| 228 | analysis.fUsesLocalCoords = coverageUsesLocalCoords | colorAnalysis.usesLocalCoords(); |
| 229 | } |
| 230 | for (int i = 0; i < colorFPsToEliminate; ++i) { |
| 231 | fFragmentProcessors[i].reset(nullptr); |
| 232 | } |
| 233 | fFragmentProcessorOffset = colorFPsToEliminate; |
| 234 | fColorFragmentProcessorCnt -= colorFPsToEliminate; |
| 235 | analysis.fHasColorFragmentProcessor = (fColorFragmentProcessorCnt != 0); |
| 236 | |
| 237 | auto xp = GrXPFactory::MakeXferProcessor(this->xpFactory(), colorAnalysis.outputColor(), |
| 238 | outputCoverage, hasMixedSampledCoverage, caps, |
| 239 | clampType); |
| 240 | fXP.fProcessor = xp.release(); |
| 241 | |
| 242 | fFlags |= kFinalized_Flag; |
| 243 | analysis.fIsInitialized = true; |
| 244 | #ifdef SK_DEBUG |
| 245 | bool hasXferBarrier = |
| 246 | fXP.fProcessor && |
| 247 | GrXferBarrierType::kNone_GrXferBarrierType != fXP.fProcessor->xferBarrierType(caps); |
| 248 | bool needsNonOverlappingDraws = analysis.fRequiresDstTexture || hasXferBarrier; |
| 249 | SkASSERT(analysis.fRequiresNonOverlappingDraws == needsNonOverlappingDraws); |
| 250 | #endif |
| 251 | return analysis; |
| 252 | } |
| 253 | |
| 254 | void GrProcessorSet::visitProxies(const GrOp::VisitProxyFunc& func) const { |
| 255 | for (auto [sampler, fp] : GrFragmentProcessor::ProcessorSetTextureSamplerRange(*this)) { |
| 256 | bool mipped = (GrSamplerState::Filter::kMipMap == sampler.samplerState().filter()); |
| 257 | func(sampler.view().proxy(), GrMipMapped(mipped)); |
| 258 | } |
| 259 | } |
| 260 | |