| 1 | /* |
| 2 | * Copyright 2014 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #ifndef GrFragmentProcessor_DEFINED |
| 9 | #define GrFragmentProcessor_DEFINED |
| 10 | |
| 11 | #include "src/gpu/GrCoordTransform.h" |
| 12 | #include "src/gpu/GrProcessor.h" |
| 13 | #include "src/gpu/ops/GrOp.h" |
| 14 | |
| 15 | class GrGLSLFragmentProcessor; |
| 16 | class GrPaint; |
| 17 | class GrPipeline; |
| 18 | class GrProcessorKeyBuilder; |
| 19 | class GrShaderCaps; |
| 20 | class GrSwizzle; |
| 21 | |
| 22 | /** Provides custom fragment shader code. Fragment processors receive an input color (half4) and |
| 23 | produce an output color. They may reference textures and uniforms. They may use |
| 24 | GrCoordTransforms to receive a transformation of the local coordinates that map from local space |
| 25 | to the fragment being processed. |
| 26 | */ |
| 27 | class GrFragmentProcessor : public GrProcessor { |
| 28 | public: |
| 29 | class TextureSampler; |
| 30 | |
| 31 | /** |
| 32 | * In many instances (e.g. SkShader::asFragmentProcessor() implementations) it is desirable to |
| 33 | * only consider the input color's alpha. However, there is a competing desire to have reusable |
| 34 | * GrFragmentProcessor subclasses that can be used in other scenarios where the entire input |
| 35 | * color is considered. This function exists to filter the input color and pass it to a FP. It |
| 36 | * does so by returning a parent FP that multiplies the passed in FPs output by the parent's |
| 37 | * input alpha. The passed in FP will not receive an input color. |
| 38 | */ |
| 39 | static std::unique_ptr<GrFragmentProcessor> MulChildByInputAlpha( |
| 40 | std::unique_ptr<GrFragmentProcessor> child); |
| 41 | |
| 42 | /** |
| 43 | * Like MulChildByInputAlpha(), but reverses the sense of src and dst. In this case, return |
| 44 | * the input modulated by the child's alpha. The passed in FP will not receive an input color. |
| 45 | * |
| 46 | * output = input * child.a |
| 47 | */ |
| 48 | static std::unique_ptr<GrFragmentProcessor> MulInputByChildAlpha( |
| 49 | std::unique_ptr<GrFragmentProcessor> child); |
| 50 | |
| 51 | /** |
| 52 | * This assumes that the input color to the returned processor will be unpremul and that the |
| 53 | * passed processor (which becomes the returned processor's child) produces a premul output. |
| 54 | * The result of the returned processor is a premul of its input color modulated by the child |
| 55 | * processor's premul output. |
| 56 | */ |
| 57 | static std::unique_ptr<GrFragmentProcessor> MakeInputPremulAndMulByOutput( |
| 58 | std::unique_ptr<GrFragmentProcessor>); |
| 59 | |
| 60 | /** |
| 61 | * Returns a parent fragment processor that adopts the passed fragment processor as a child. |
| 62 | * The parent will ignore its input color and instead feed the passed in color as input to the |
| 63 | * child. |
| 64 | */ |
| 65 | static std::unique_ptr<GrFragmentProcessor> OverrideInput(std::unique_ptr<GrFragmentProcessor>, |
| 66 | const SkPMColor4f&, |
| 67 | bool useUniform = true); |
| 68 | |
| 69 | /** |
| 70 | * Returns a fragment processor that premuls the input before calling the passed in fragment |
| 71 | * processor. |
| 72 | */ |
| 73 | static std::unique_ptr<GrFragmentProcessor> PremulInput(std::unique_ptr<GrFragmentProcessor>); |
| 74 | |
| 75 | /** |
| 76 | * Returns a fragment processor that calls the passed in fragment processor, and then swizzles |
| 77 | * the output. |
| 78 | */ |
| 79 | static std::unique_ptr<GrFragmentProcessor> SwizzleOutput(std::unique_ptr<GrFragmentProcessor>, |
| 80 | const GrSwizzle&); |
| 81 | |
| 82 | /** |
| 83 | * Returns a fragment processor that calls the passed in fragment processor, and then ensures |
| 84 | * the output is a valid premul color by clamping RGB to [0, A]. |
| 85 | */ |
| 86 | static std::unique_ptr<GrFragmentProcessor> ClampPremulOutput( |
| 87 | std::unique_ptr<GrFragmentProcessor>); |
| 88 | |
| 89 | /** |
| 90 | * Returns a fragment processor that runs the passed in array of fragment processors in a |
| 91 | * series. The original input is passed to the first, the first's output is passed to the |
| 92 | * second, etc. The output of the returned processor is the output of the last processor of the |
| 93 | * series. |
| 94 | * |
| 95 | * The array elements with be moved. |
| 96 | */ |
| 97 | static std::unique_ptr<GrFragmentProcessor> RunInSeries(std::unique_ptr<GrFragmentProcessor>[], |
| 98 | int cnt); |
| 99 | |
| 100 | /** |
| 101 | * Makes a copy of this fragment processor that draws equivalently to the original. |
| 102 | * If the processor has child processors they are cloned as well. |
| 103 | */ |
| 104 | virtual std::unique_ptr<GrFragmentProcessor> clone() const = 0; |
| 105 | |
| 106 | GrGLSLFragmentProcessor* createGLSLInstance() const; |
| 107 | |
| 108 | void getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const { |
| 109 | this->onGetGLSLProcessorKey(caps, b); |
| 110 | for (int i = 0; i < fChildProcessors.count(); ++i) { |
| 111 | fChildProcessors[i]->getGLSLProcessorKey(caps, b); |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | int numTextureSamplers() const { return fTextureSamplerCnt; } |
| 116 | const TextureSampler& textureSampler(int i) const; |
| 117 | |
| 118 | int numCoordTransforms() const { return fCoordTransforms.count(); } |
| 119 | |
| 120 | /** Returns the coordinate transformation at index. index must be valid according to |
| 121 | numCoordTransforms(). */ |
| 122 | const GrCoordTransform& coordTransform(int index) const { return *fCoordTransforms[index]; } |
| 123 | GrCoordTransform& coordTransform(int index) { return *fCoordTransforms[index]; } |
| 124 | |
| 125 | const SkTArray<GrCoordTransform*, true>& coordTransforms() const { |
| 126 | return fCoordTransforms; |
| 127 | } |
| 128 | |
| 129 | int numChildProcessors() const { return fChildProcessors.count(); } |
| 130 | |
| 131 | GrFragmentProcessor& childProcessor(int index) { return *fChildProcessors[index]; } |
| 132 | const GrFragmentProcessor& childProcessor(int index) const { return *fChildProcessors[index]; } |
| 133 | |
| 134 | SkDEBUGCODE(bool isInstantiated() const;) |
| 135 | |
| 136 | /** Do any of the coord transforms for this processor require local coords? */ |
| 137 | bool usesLocalCoords() const { |
| 138 | // If the processor is sampled with explicit coords then we do not need to apply the |
| 139 | // coord transforms in the vertex shader to the local coords. |
| 140 | return SkToBool(fFlags & kHasCoordTransforms_Flag) && |
| 141 | !SkToBool(fFlags & kSampledWithExplicitCoords); |
| 142 | } |
| 143 | |
| 144 | bool isSampledWithExplicitCoords() const { |
| 145 | return SkToBool(fFlags & kSampledWithExplicitCoords); |
| 146 | } |
| 147 | |
| 148 | void setSampledWithExplicitCoords(bool value) { |
| 149 | if (value) { |
| 150 | fFlags |= kSampledWithExplicitCoords; |
| 151 | } else { |
| 152 | fFlags &= ~kSampledWithExplicitCoords; |
| 153 | } |
| 154 | for (auto& child : fChildProcessors) { |
| 155 | child->setSampledWithExplicitCoords(value); |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | /** |
| 160 | * A GrDrawOp may premultiply its antialiasing coverage into its GrGeometryProcessor's color |
| 161 | * output under the following scenario: |
| 162 | * * all the color fragment processors report true to this query, |
| 163 | * * all the coverage fragment processors report true to this query, |
| 164 | * * the blend mode arithmetic allows for it it. |
| 165 | * To be compatible a fragment processor's output must be a modulation of its input color or |
| 166 | * alpha with a computed premultiplied color or alpha that is in 0..1 range. The computed color |
| 167 | * or alpha that is modulated against the input cannot depend on the input's alpha. The computed |
| 168 | * value cannot depend on the input's color channels unless it unpremultiplies the input color |
| 169 | * channels by the input alpha. |
| 170 | */ |
| 171 | bool compatibleWithCoverageAsAlpha() const { |
| 172 | return SkToBool(fFlags & kCompatibleWithCoverageAsAlpha_OptimizationFlag); |
| 173 | } |
| 174 | |
| 175 | /** |
| 176 | * If this is true then all opaque input colors to the processor produce opaque output colors. |
| 177 | */ |
| 178 | bool preservesOpaqueInput() const { |
| 179 | return SkToBool(fFlags & kPreservesOpaqueInput_OptimizationFlag); |
| 180 | } |
| 181 | |
| 182 | /** |
| 183 | * Tests whether given a constant input color the processor produces a constant output color |
| 184 | * (for all fragments). If true outputColor will contain the constant color produces for |
| 185 | * inputColor. |
| 186 | */ |
| 187 | bool hasConstantOutputForConstantInput(SkPMColor4f inputColor, SkPMColor4f* outputColor) const { |
| 188 | if (fFlags & kConstantOutputForConstantInput_OptimizationFlag) { |
| 189 | *outputColor = this->constantOutputForConstantInput(inputColor); |
| 190 | return true; |
| 191 | } |
| 192 | return false; |
| 193 | } |
| 194 | bool hasConstantOutputForConstantInput() const { |
| 195 | return SkToBool(fFlags & kConstantOutputForConstantInput_OptimizationFlag); |
| 196 | } |
| 197 | |
| 198 | /** Returns true if this and other processor conservatively draw identically. It can only return |
| 199 | true when the two processor are of the same subclass (i.e. they return the same object from |
| 200 | from getFactory()). |
| 201 | |
| 202 | A return value of true from isEqual() should not be used to test whether the processor would |
| 203 | generate the same shader code. To test for identical code generation use getGLSLProcessorKey |
| 204 | */ |
| 205 | bool isEqual(const GrFragmentProcessor& that) const; |
| 206 | |
| 207 | void visitProxies(const GrOp::VisitProxyFunc& func); |
| 208 | |
| 209 | // A pre-order traversal iterator over a hierarchy of FPs. It can also iterate over all the FP |
| 210 | // hierarchies rooted in a GrPaint, GrProcessorSet, or GrPipeline. For these collections it |
| 211 | // iterates the tree rooted at each color FP and then each coverage FP. |
| 212 | // |
| 213 | // Iter is the non-const version and CIter is the const version. |
| 214 | // |
| 215 | // An iterator is constructed from one of the srcs and used like this: |
| 216 | // for (GrFragmentProcessor::Iter iter(pipeline); iter; ++iter) { |
| 217 | // GrFragmentProcessor& fp = *iter; |
| 218 | // } |
| 219 | // The exit test for the loop is using Iter's operator bool(). |
| 220 | // To use a range-for loop instead see CIterRange below. |
| 221 | class Iter; |
| 222 | class CIter; |
| 223 | |
| 224 | // Used to implement a range-for loop using CIter. Src is one of GrFragmentProcessor, |
| 225 | // GrPaint, GrProcessorSet, or GrPipeline. Type aliases for these defined below. |
| 226 | // Example usage: |
| 227 | // for (const auto& fp : GrFragmentProcessor::PaintRange(paint)) { |
| 228 | // if (fp.usesLocalCoords()) { |
| 229 | // ... |
| 230 | // } |
| 231 | // } |
| 232 | template <typename Src> class CIterRange; |
| 233 | // Like CIterRange but non const and only constructable from GrFragmentProcessor. This could |
| 234 | // support GrPaint as it owns non-const FPs but no need for it as of now. |
| 235 | // for (auto& fp0 : GrFragmentProcessor::IterRange(fp)) { |
| 236 | // ... |
| 237 | // } |
| 238 | class IterRange; |
| 239 | |
| 240 | // We would use template deduction guides for Iter/CIter but for: |
| 241 | // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=79501 |
| 242 | // Instead we use these specialized type aliases to make it prettier |
| 243 | // to construct Iters for particular sources of FPs. |
| 244 | using FPCRange = CIterRange<GrFragmentProcessor>; |
| 245 | using PaintCRange = CIterRange<GrPaint>; |
| 246 | |
| 247 | // Implementation details for iterators that walk an array of Items owned by a set of FPs. |
| 248 | using CountFn = int (GrFragmentProcessor::*)() const; |
| 249 | // Defined GetFn to be a member function that returns an Item by index. The function itself is |
| 250 | // const if Item is a const type and non-const if Item is non-const. |
| 251 | template <typename Item, bool IsConst = std::is_const<Item>::value> struct GetT; |
| 252 | template <typename Item> struct GetT<Item, false> { |
| 253 | using GetFn = Item& (GrFragmentProcessor::*)(int); |
| 254 | }; |
| 255 | template <typename Item> struct GetT<Item, true> { |
| 256 | using GetFn = const Item& (GrFragmentProcessor::*)(int) const; |
| 257 | }; |
| 258 | template <typename Item> using GetFn = typename GetT<Item>::GetFn; |
| 259 | // This is an iterator over the Items owned by a (collection of) FP. CountFn is a FP member that |
| 260 | // gets the number of Items owned by each FP and GetFn is a member that gets them by index. |
| 261 | template <typename Item, CountFn Count, GetFn<Item> Get> class FPItemIter; |
| 262 | |
| 263 | // Loops over all the GrCoordTransforms owned by GrFragmentProcessors. The possible sources for |
| 264 | // the iteration are the same as those for Iter and the FPs are walked in the same order as |
| 265 | // Iter. This provides access to the coord transform and the FP that owns it. Example usage: |
| 266 | // for (GrFragmentProcessor::CoordTransformIter iter(pipeline); iter; ++iter) { |
| 267 | // // transform is const GrCoordTransform& and owningFP is const GrFragmentProcessor&. |
| 268 | // auto [transform, owningFP] = *iter; |
| 269 | // ... |
| 270 | // } |
| 271 | // See the ranges below to make this simpler a la range-for loops. |
| 272 | using CoordTransformIter = FPItemIter<const GrCoordTransform, |
| 273 | &GrFragmentProcessor::numCoordTransforms, |
| 274 | &GrFragmentProcessor::coordTransform>; |
| 275 | // Same as CoordTransformIter but for TextureSamplers: |
| 276 | // for (GrFragmentProcessor::TextureSamplerIter iter(pipeline); iter; ++iter) { |
| 277 | // // TextureSamplerIter is const GrFragmentProcessor::TextureSampler& and |
| 278 | // // owningFP is const GrFragmentProcessor&. |
| 279 | // auto [sampler, owningFP] = *iter; |
| 280 | // ... |
| 281 | // } |
| 282 | // See the ranges below to make this simpler a la range-for loops. |
| 283 | using TextureSamplerIter = FPItemIter<const TextureSampler, |
| 284 | &GrFragmentProcessor::numTextureSamplers, |
| 285 | &GrFragmentProcessor::textureSampler>; |
| 286 | |
| 287 | // Implementation detail for using CoordTransformIter and TextureSamplerIter in range-for loops. |
| 288 | template <typename Src, typename ItemIter> class FPItemRange; |
| 289 | |
| 290 | // These allow iteration over coord transforms/texture samplers for various FP sources via |
| 291 | // range-for loops. An example usage for looping over the coord transforms in a pipeline: |
| 292 | // for (auto [transform, fp] : GrFragmentProcessor::PipelineCoordTransformRange(pipeline)) { |
| 293 | // ... |
| 294 | // } |
| 295 | // Only the combinations of FP sources and iterable things have been defined but it is easy |
| 296 | // to add more as they become useful. Maybe someday we'll have template argument deduction |
| 297 | // with guides for type aliases and the sources can be removed from the type aliases: |
| 298 | // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1021r5.html |
| 299 | using PipelineCoordTransformRange = FPItemRange<const GrPipeline, CoordTransformIter>; |
| 300 | using PipelineTextureSamplerRange = FPItemRange<const GrPipeline, TextureSamplerIter>; |
| 301 | using FPTextureSamplerRange = FPItemRange<const GrFragmentProcessor, TextureSamplerIter>; |
| 302 | using ProcessorSetTextureSamplerRange = FPItemRange<const GrProcessorSet, TextureSamplerIter>; |
| 303 | |
| 304 | // Not used directly. |
| 305 | using NonConstCoordTransformIter = |
| 306 | FPItemIter<GrCoordTransform, &GrFragmentProcessor::numCoordTransforms, |
| 307 | &GrFragmentProcessor::coordTransform>; |
| 308 | // Iterator over non-const GrCoordTransforms owned by FP and its descendants. |
| 309 | using FPCoordTransformRange = FPItemRange<GrFragmentProcessor, NonConstCoordTransformIter>; |
| 310 | |
| 311 | // Sentinel type for range-for using Iter. |
| 312 | class EndIter {}; |
| 313 | // Sentinel type for range-for using FPItemIter. |
| 314 | class FPItemEndIter {}; |
| 315 | |
| 316 | protected: |
| 317 | enum OptimizationFlags : uint32_t { |
| 318 | kNone_OptimizationFlags, |
| 319 | kCompatibleWithCoverageAsAlpha_OptimizationFlag = 0x1, |
| 320 | kPreservesOpaqueInput_OptimizationFlag = 0x2, |
| 321 | kConstantOutputForConstantInput_OptimizationFlag = 0x4, |
| 322 | kAll_OptimizationFlags = kCompatibleWithCoverageAsAlpha_OptimizationFlag | |
| 323 | kPreservesOpaqueInput_OptimizationFlag | |
| 324 | kConstantOutputForConstantInput_OptimizationFlag |
| 325 | }; |
| 326 | GR_DECL_BITFIELD_OPS_FRIENDS(OptimizationFlags) |
| 327 | |
| 328 | /** |
| 329 | * Can be used as a helper to decide which fragment processor OptimizationFlags should be set. |
| 330 | * This assumes that the subclass output color will be a modulation of the input color with a |
| 331 | * value read from a texture of the passed color type and that the texture contains |
| 332 | * premultiplied color or alpha values that are in range. |
| 333 | * |
| 334 | * Since there are multiple ways in which a sampler may have its coordinates clamped or wrapped, |
| 335 | * callers must determine on their own if the sampling uses a decal strategy in any way, in |
| 336 | * which case the texture may become transparent regardless of the color type. |
| 337 | */ |
| 338 | static OptimizationFlags ModulateForSamplerOptFlags(SkAlphaType alphaType, bool samplingDecal) { |
| 339 | if (samplingDecal) { |
| 340 | return kCompatibleWithCoverageAsAlpha_OptimizationFlag; |
| 341 | } else { |
| 342 | return ModulateForClampedSamplerOptFlags(alphaType); |
| 343 | } |
| 344 | } |
| 345 | |
| 346 | // As above, but callers should somehow ensure or assert their sampler still uses clamping |
| 347 | static OptimizationFlags ModulateForClampedSamplerOptFlags(SkAlphaType alphaType) { |
| 348 | if (alphaType == kOpaque_SkAlphaType) { |
| 349 | return kCompatibleWithCoverageAsAlpha_OptimizationFlag | |
| 350 | kPreservesOpaqueInput_OptimizationFlag; |
| 351 | } else { |
| 352 | return kCompatibleWithCoverageAsAlpha_OptimizationFlag; |
| 353 | } |
| 354 | } |
| 355 | |
| 356 | GrFragmentProcessor(ClassID classID, OptimizationFlags optimizationFlags) |
| 357 | : INHERITED(classID), fFlags(optimizationFlags) { |
| 358 | SkASSERT((optimizationFlags & ~kAll_OptimizationFlags) == 0); |
| 359 | } |
| 360 | |
| 361 | OptimizationFlags optimizationFlags() const { |
| 362 | return static_cast<OptimizationFlags>(kAll_OptimizationFlags & fFlags); |
| 363 | } |
| 364 | |
| 365 | /** Useful when you can't call fp->optimizationFlags() on a base class object from a subclass.*/ |
| 366 | static OptimizationFlags ProcessorOptimizationFlags(const GrFragmentProcessor* fp) { |
| 367 | return fp->optimizationFlags(); |
| 368 | } |
| 369 | |
| 370 | /** |
| 371 | * This allows one subclass to access another subclass's implementation of |
| 372 | * constantOutputForConstantInput. It must only be called when |
| 373 | * hasConstantOutputForConstantInput() is known to be true. |
| 374 | */ |
| 375 | static SkPMColor4f ConstantOutputForConstantInput(const GrFragmentProcessor& fp, |
| 376 | const SkPMColor4f& input) { |
| 377 | SkASSERT(fp.hasConstantOutputForConstantInput()); |
| 378 | return fp.constantOutputForConstantInput(input); |
| 379 | } |
| 380 | |
| 381 | /** |
| 382 | * Fragment Processor subclasses call this from their constructor to register coordinate |
| 383 | * transformations. Coord transforms provide a mechanism for a processor to receive coordinates |
| 384 | * in their FS code. The matrix expresses a transformation from local space. For a given |
| 385 | * fragment the matrix will be applied to the local coordinate that maps to the fragment. |
| 386 | * |
| 387 | * When the transformation has perspective, the transformed coordinates will have |
| 388 | * 3 components. Otherwise they'll have 2. |
| 389 | * |
| 390 | * This must only be called from the constructor because GrProcessors are immutable. The |
| 391 | * processor subclass manages the lifetime of the transformations (this function only stores a |
| 392 | * pointer). The GrCoordTransform is typically a member field of the GrProcessor subclass. |
| 393 | * |
| 394 | * A processor subclass that has multiple methods of construction should always add its coord |
| 395 | * transforms in a consistent order. The non-virtual implementation of isEqual() automatically |
| 396 | * compares transforms and will assume they line up across the two processor instances. |
| 397 | */ |
| 398 | void addCoordTransform(GrCoordTransform*); |
| 399 | |
| 400 | /** |
| 401 | * FragmentProcessor subclasses call this from their constructor to register any child |
| 402 | * FragmentProcessors they have. This must be called AFTER all texture accesses and coord |
| 403 | * transforms have been added. |
| 404 | * This is for processors whose shader code will be composed of nested processors whose output |
| 405 | * colors will be combined somehow to produce its output color. Registering these child |
| 406 | * processors will allow the ProgramBuilder to automatically handle their transformed coords and |
| 407 | * texture accesses and mangle their uniform and output color names. |
| 408 | */ |
| 409 | int registerChildProcessor(std::unique_ptr<GrFragmentProcessor> child); |
| 410 | |
| 411 | void setTextureSamplerCnt(int cnt) { |
| 412 | SkASSERT(cnt >= 0); |
| 413 | fTextureSamplerCnt = cnt; |
| 414 | } |
| 415 | |
| 416 | /** |
| 417 | * Helper for implementing onTextureSampler(). E.g.: |
| 418 | * return IthTexureSampler(i, fMyFirstSampler, fMySecondSampler, fMyThirdSampler); |
| 419 | */ |
| 420 | template <typename... Args> |
| 421 | static const TextureSampler& IthTextureSampler(int i, const TextureSampler& samp0, |
| 422 | const Args&... samps) { |
| 423 | return (0 == i) ? samp0 : IthTextureSampler(i - 1, samps...); |
| 424 | } |
| 425 | inline static const TextureSampler& IthTextureSampler(int i); |
| 426 | |
| 427 | private: |
| 428 | // Implementation details of Iter and CIter. |
| 429 | template <typename> class IterBase; |
| 430 | |
| 431 | virtual SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& /* inputColor */) const { |
| 432 | SK_ABORT("Subclass must override this if advertising this optimization." ); |
| 433 | } |
| 434 | |
| 435 | /** Returns a new instance of the appropriate *GL* implementation class |
| 436 | for the given GrFragmentProcessor; caller is responsible for deleting |
| 437 | the object. */ |
| 438 | virtual GrGLSLFragmentProcessor* onCreateGLSLInstance() const = 0; |
| 439 | |
| 440 | /** Implemented using GLFragmentProcessor::GenKey as described in this class's comment. */ |
| 441 | virtual void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const = 0; |
| 442 | |
| 443 | /** |
| 444 | * Subclass implements this to support isEqual(). It will only be called if it is known that |
| 445 | * the two processors are of the same subclass (i.e. they return the same object from |
| 446 | * getFactory()). The processor subclass should not compare its coord transforms as that will |
| 447 | * be performed automatically in the non-virtual isEqual(). |
| 448 | */ |
| 449 | virtual bool onIsEqual(const GrFragmentProcessor&) const = 0; |
| 450 | |
| 451 | virtual const TextureSampler& onTextureSampler(int) const { return IthTextureSampler(0); } |
| 452 | |
| 453 | bool hasSameTransforms(const GrFragmentProcessor&) const; |
| 454 | |
| 455 | enum PrivateFlags { |
| 456 | kFirstPrivateFlag = kAll_OptimizationFlags + 1, |
| 457 | kHasCoordTransforms_Flag = kFirstPrivateFlag, |
| 458 | kSampledWithExplicitCoords = kFirstPrivateFlag << 1, |
| 459 | }; |
| 460 | |
| 461 | uint32_t fFlags = 0; |
| 462 | |
| 463 | int fTextureSamplerCnt = 0; |
| 464 | |
| 465 | SkSTArray<4, GrCoordTransform*, true> fCoordTransforms; |
| 466 | |
| 467 | SkSTArray<1, std::unique_ptr<GrFragmentProcessor>, true> fChildProcessors; |
| 468 | |
| 469 | typedef GrProcessor INHERITED; |
| 470 | }; |
| 471 | |
| 472 | /** |
| 473 | * Used to represent a texture that is required by a GrFragmentProcessor. It holds a GrTextureProxy |
| 474 | * along with an associated GrSamplerState. TextureSamplers don't perform any coord manipulation to |
| 475 | * account for texture origin. |
| 476 | */ |
| 477 | class GrFragmentProcessor::TextureSampler { |
| 478 | public: |
| 479 | TextureSampler() = default; |
| 480 | |
| 481 | /** |
| 482 | * This copy constructor is used by GrFragmentProcessor::clone() implementations. |
| 483 | */ |
| 484 | explicit TextureSampler(const TextureSampler&) = default; |
| 485 | |
| 486 | TextureSampler(GrSurfaceProxyView, GrSamplerState = {}); |
| 487 | |
| 488 | TextureSampler& operator=(const TextureSampler&) = delete; |
| 489 | |
| 490 | bool operator==(const TextureSampler& that) const { |
| 491 | return fView == that.fView && fSamplerState == that.fSamplerState; |
| 492 | } |
| 493 | |
| 494 | bool operator!=(const TextureSampler& other) const { return !(*this == other); } |
| 495 | |
| 496 | SkDEBUGCODE(bool isInstantiated() const { return this->proxy()->isInstantiated(); }) |
| 497 | |
| 498 | // 'peekTexture' should only ever be called after a successful 'instantiate' call |
| 499 | GrTexture* peekTexture() const { |
| 500 | SkASSERT(this->proxy()->isInstantiated()); |
| 501 | return this->proxy()->peekTexture(); |
| 502 | } |
| 503 | |
| 504 | const GrSurfaceProxyView& view() const { return fView; } |
| 505 | GrSamplerState samplerState() const { return fSamplerState; } |
| 506 | |
| 507 | bool isInitialized() const { return SkToBool(this->proxy()); } |
| 508 | |
| 509 | GrSurfaceProxy* proxy() const { return fView.proxy(); } |
| 510 | |
| 511 | #if GR_TEST_UTILS |
| 512 | void set(GrSurfaceProxyView, GrSamplerState); |
| 513 | #endif |
| 514 | |
| 515 | private: |
| 516 | GrSurfaceProxyView fView; |
| 517 | GrSamplerState fSamplerState; |
| 518 | }; |
| 519 | |
| 520 | ////////////////////////////////////////////////////////////////////////////// |
| 521 | |
| 522 | const GrFragmentProcessor::TextureSampler& GrFragmentProcessor::IthTextureSampler(int i) { |
| 523 | SK_ABORT("Illegal texture sampler index" ); |
| 524 | static const TextureSampler kBogus; |
| 525 | return kBogus; |
| 526 | } |
| 527 | |
| 528 | GR_MAKE_BITFIELD_OPS(GrFragmentProcessor::OptimizationFlags) |
| 529 | |
| 530 | ////////////////////////////////////////////////////////////////////////////// |
| 531 | |
| 532 | template <typename FP> class GrFragmentProcessor::IterBase { |
| 533 | public: |
| 534 | FP& operator*() const { return *fFPStack.back(); } |
| 535 | FP* operator->() const { return fFPStack.back(); } |
| 536 | operator bool() const { return !fFPStack.empty(); } |
| 537 | bool operator!=(const EndIter&) { return (bool)*this; } |
| 538 | |
| 539 | // Hopefully this does not actually get called because of RVO. |
| 540 | IterBase(const IterBase&) = default; |
| 541 | |
| 542 | // Because each iterator carries a stack we want to avoid copies. |
| 543 | IterBase& operator=(const IterBase&) = delete; |
| 544 | |
| 545 | protected: |
| 546 | void increment(); |
| 547 | |
| 548 | IterBase() = default; |
| 549 | explicit IterBase(FP& fp) { fFPStack.push_back(&fp); } |
| 550 | |
| 551 | SkSTArray<4, FP*, true> fFPStack; |
| 552 | }; |
| 553 | |
| 554 | template <typename FP> void GrFragmentProcessor::IterBase<FP>::increment() { |
| 555 | SkASSERT(!fFPStack.empty()); |
| 556 | FP* back = fFPStack.back(); |
| 557 | fFPStack.pop_back(); |
| 558 | for (int i = back->numChildProcessors() - 1; i >= 0; --i) { |
| 559 | fFPStack.push_back(&back->childProcessor(i)); |
| 560 | } |
| 561 | } |
| 562 | |
| 563 | ////////////////////////////////////////////////////////////////////////////// |
| 564 | |
| 565 | class GrFragmentProcessor::Iter : public IterBase<GrFragmentProcessor> { |
| 566 | public: |
| 567 | explicit Iter(GrFragmentProcessor& fp) : IterBase(fp) {} |
| 568 | Iter& operator++() { |
| 569 | this->increment(); |
| 570 | return *this; |
| 571 | } |
| 572 | }; |
| 573 | |
| 574 | ////////////////////////////////////////////////////////////////////////////// |
| 575 | |
| 576 | class GrFragmentProcessor::CIter : public IterBase<const GrFragmentProcessor> { |
| 577 | public: |
| 578 | explicit CIter(const GrFragmentProcessor& fp) : IterBase(fp) {} |
| 579 | explicit CIter(const GrPaint&); |
| 580 | explicit CIter(const GrProcessorSet&); |
| 581 | explicit CIter(const GrPipeline&); |
| 582 | CIter& operator++() { |
| 583 | this->increment(); |
| 584 | return *this; |
| 585 | } |
| 586 | }; |
| 587 | |
| 588 | ////////////////////////////////////////////////////////////////////////////// |
| 589 | |
| 590 | template <typename Src> class GrFragmentProcessor::CIterRange { |
| 591 | public: |
| 592 | explicit CIterRange(const Src& t) : fT(t) {} |
| 593 | CIter begin() const { return CIter(fT); } |
| 594 | EndIter end() const { return EndIter(); } |
| 595 | |
| 596 | private: |
| 597 | const Src& fT; |
| 598 | }; |
| 599 | |
| 600 | ////////////////////////////////////////////////////////////////////////////// |
| 601 | |
| 602 | template <typename Item, GrFragmentProcessor::CountFn Count, GrFragmentProcessor::GetFn<Item> Get> |
| 603 | class GrFragmentProcessor::FPItemIter { |
| 604 | public: |
| 605 | template <typename Src> explicit FPItemIter(Src& s); |
| 606 | |
| 607 | std::pair<Item&, const GrFragmentProcessor&> operator*() const { |
| 608 | return {(*fFPIter.*Get)(fIndex), *fFPIter}; |
| 609 | } |
| 610 | FPItemIter& operator++(); |
| 611 | operator bool() const { return fFPIter; } |
| 612 | bool operator!=(const FPItemEndIter&) { return (bool)*this; } |
| 613 | |
| 614 | FPItemIter(const FPItemIter&) = delete; |
| 615 | FPItemIter& operator=(const FPItemIter&) = delete; |
| 616 | |
| 617 | private: |
| 618 | typename std::conditional<std::is_const<Item>::value, CIter, Iter>::type fFPIter; |
| 619 | int fIndex; |
| 620 | }; |
| 621 | |
| 622 | template <typename Item, GrFragmentProcessor::CountFn Count, GrFragmentProcessor::GetFn<Item> Get> |
| 623 | template <typename Src> |
| 624 | GrFragmentProcessor::FPItemIter<Item, Count, Get>::FPItemIter(Src& s) : fFPIter(s), fIndex(-1) { |
| 625 | if (fFPIter) { |
| 626 | ++*this; |
| 627 | } |
| 628 | } |
| 629 | |
| 630 | template <typename Item, GrFragmentProcessor::CountFn Count, GrFragmentProcessor::GetFn<Item> Get> |
| 631 | GrFragmentProcessor::FPItemIter<Item, Count, Get>& |
| 632 | GrFragmentProcessor::FPItemIter<Item, Count, Get>::operator++() { |
| 633 | ++fIndex; |
| 634 | if (fIndex < ((*fFPIter).*Count)()) { |
| 635 | return *this; |
| 636 | } |
| 637 | fIndex = 0; |
| 638 | do {} while (++fFPIter && !((*fFPIter).*Count)()); |
| 639 | return *this; |
| 640 | } |
| 641 | |
| 642 | ////////////////////////////////////////////////////////////////////////////// |
| 643 | |
| 644 | template <typename Src, typename ItemIter> class GrFragmentProcessor::FPItemRange { |
| 645 | public: |
| 646 | FPItemRange(Src& src) : fSrc(src) {} |
| 647 | ItemIter begin() const { return ItemIter(fSrc); } |
| 648 | FPItemEndIter end() const { return FPItemEndIter(); } |
| 649 | |
| 650 | private: |
| 651 | Src& fSrc; |
| 652 | }; |
| 653 | |
| 654 | #endif |
| 655 | |