1 | /* |
2 | * Copyright 2014 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #ifndef GrFragmentProcessor_DEFINED |
9 | #define GrFragmentProcessor_DEFINED |
10 | |
11 | #include "src/gpu/GrCoordTransform.h" |
12 | #include "src/gpu/GrProcessor.h" |
13 | #include "src/gpu/ops/GrOp.h" |
14 | |
15 | class GrGLSLFragmentProcessor; |
16 | class GrPaint; |
17 | class GrPipeline; |
18 | class GrProcessorKeyBuilder; |
19 | class GrShaderCaps; |
20 | class GrSwizzle; |
21 | |
22 | /** Provides custom fragment shader code. Fragment processors receive an input color (half4) and |
23 | produce an output color. They may reference textures and uniforms. They may use |
24 | GrCoordTransforms to receive a transformation of the local coordinates that map from local space |
25 | to the fragment being processed. |
26 | */ |
27 | class GrFragmentProcessor : public GrProcessor { |
28 | public: |
29 | class TextureSampler; |
30 | |
31 | /** |
32 | * In many instances (e.g. SkShader::asFragmentProcessor() implementations) it is desirable to |
33 | * only consider the input color's alpha. However, there is a competing desire to have reusable |
34 | * GrFragmentProcessor subclasses that can be used in other scenarios where the entire input |
35 | * color is considered. This function exists to filter the input color and pass it to a FP. It |
36 | * does so by returning a parent FP that multiplies the passed in FPs output by the parent's |
37 | * input alpha. The passed in FP will not receive an input color. |
38 | */ |
39 | static std::unique_ptr<GrFragmentProcessor> MulChildByInputAlpha( |
40 | std::unique_ptr<GrFragmentProcessor> child); |
41 | |
42 | /** |
43 | * Like MulChildByInputAlpha(), but reverses the sense of src and dst. In this case, return |
44 | * the input modulated by the child's alpha. The passed in FP will not receive an input color. |
45 | * |
46 | * output = input * child.a |
47 | */ |
48 | static std::unique_ptr<GrFragmentProcessor> MulInputByChildAlpha( |
49 | std::unique_ptr<GrFragmentProcessor> child); |
50 | |
51 | /** |
52 | * This assumes that the input color to the returned processor will be unpremul and that the |
53 | * passed processor (which becomes the returned processor's child) produces a premul output. |
54 | * The result of the returned processor is a premul of its input color modulated by the child |
55 | * processor's premul output. |
56 | */ |
57 | static std::unique_ptr<GrFragmentProcessor> MakeInputPremulAndMulByOutput( |
58 | std::unique_ptr<GrFragmentProcessor>); |
59 | |
60 | /** |
61 | * Returns a parent fragment processor that adopts the passed fragment processor as a child. |
62 | * The parent will ignore its input color and instead feed the passed in color as input to the |
63 | * child. |
64 | */ |
65 | static std::unique_ptr<GrFragmentProcessor> OverrideInput(std::unique_ptr<GrFragmentProcessor>, |
66 | const SkPMColor4f&, |
67 | bool useUniform = true); |
68 | |
69 | /** |
70 | * Returns a fragment processor that premuls the input before calling the passed in fragment |
71 | * processor. |
72 | */ |
73 | static std::unique_ptr<GrFragmentProcessor> PremulInput(std::unique_ptr<GrFragmentProcessor>); |
74 | |
75 | /** |
76 | * Returns a fragment processor that calls the passed in fragment processor, and then swizzles |
77 | * the output. |
78 | */ |
79 | static std::unique_ptr<GrFragmentProcessor> SwizzleOutput(std::unique_ptr<GrFragmentProcessor>, |
80 | const GrSwizzle&); |
81 | |
82 | /** |
83 | * Returns a fragment processor that calls the passed in fragment processor, and then ensures |
84 | * the output is a valid premul color by clamping RGB to [0, A]. |
85 | */ |
86 | static std::unique_ptr<GrFragmentProcessor> ClampPremulOutput( |
87 | std::unique_ptr<GrFragmentProcessor>); |
88 | |
89 | /** |
90 | * Returns a fragment processor that runs the passed in array of fragment processors in a |
91 | * series. The original input is passed to the first, the first's output is passed to the |
92 | * second, etc. The output of the returned processor is the output of the last processor of the |
93 | * series. |
94 | * |
95 | * The array elements with be moved. |
96 | */ |
97 | static std::unique_ptr<GrFragmentProcessor> RunInSeries(std::unique_ptr<GrFragmentProcessor>[], |
98 | int cnt); |
99 | |
100 | /** |
101 | * Makes a copy of this fragment processor that draws equivalently to the original. |
102 | * If the processor has child processors they are cloned as well. |
103 | */ |
104 | virtual std::unique_ptr<GrFragmentProcessor> clone() const = 0; |
105 | |
106 | GrGLSLFragmentProcessor* createGLSLInstance() const; |
107 | |
108 | void getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const { |
109 | this->onGetGLSLProcessorKey(caps, b); |
110 | for (int i = 0; i < fChildProcessors.count(); ++i) { |
111 | fChildProcessors[i]->getGLSLProcessorKey(caps, b); |
112 | } |
113 | } |
114 | |
115 | int numTextureSamplers() const { return fTextureSamplerCnt; } |
116 | const TextureSampler& textureSampler(int i) const; |
117 | |
118 | int numCoordTransforms() const { return fCoordTransforms.count(); } |
119 | |
120 | /** Returns the coordinate transformation at index. index must be valid according to |
121 | numCoordTransforms(). */ |
122 | const GrCoordTransform& coordTransform(int index) const { return *fCoordTransforms[index]; } |
123 | GrCoordTransform& coordTransform(int index) { return *fCoordTransforms[index]; } |
124 | |
125 | const SkTArray<GrCoordTransform*, true>& coordTransforms() const { |
126 | return fCoordTransforms; |
127 | } |
128 | |
129 | int numChildProcessors() const { return fChildProcessors.count(); } |
130 | |
131 | GrFragmentProcessor& childProcessor(int index) { return *fChildProcessors[index]; } |
132 | const GrFragmentProcessor& childProcessor(int index) const { return *fChildProcessors[index]; } |
133 | |
134 | SkDEBUGCODE(bool isInstantiated() const;) |
135 | |
136 | /** Do any of the coord transforms for this processor require local coords? */ |
137 | bool usesLocalCoords() const { |
138 | // If the processor is sampled with explicit coords then we do not need to apply the |
139 | // coord transforms in the vertex shader to the local coords. |
140 | return SkToBool(fFlags & kHasCoordTransforms_Flag) && |
141 | !SkToBool(fFlags & kSampledWithExplicitCoords); |
142 | } |
143 | |
144 | bool isSampledWithExplicitCoords() const { |
145 | return SkToBool(fFlags & kSampledWithExplicitCoords); |
146 | } |
147 | |
148 | void setSampledWithExplicitCoords(bool value) { |
149 | if (value) { |
150 | fFlags |= kSampledWithExplicitCoords; |
151 | } else { |
152 | fFlags &= ~kSampledWithExplicitCoords; |
153 | } |
154 | for (auto& child : fChildProcessors) { |
155 | child->setSampledWithExplicitCoords(value); |
156 | } |
157 | } |
158 | |
159 | /** |
160 | * A GrDrawOp may premultiply its antialiasing coverage into its GrGeometryProcessor's color |
161 | * output under the following scenario: |
162 | * * all the color fragment processors report true to this query, |
163 | * * all the coverage fragment processors report true to this query, |
164 | * * the blend mode arithmetic allows for it it. |
165 | * To be compatible a fragment processor's output must be a modulation of its input color or |
166 | * alpha with a computed premultiplied color or alpha that is in 0..1 range. The computed color |
167 | * or alpha that is modulated against the input cannot depend on the input's alpha. The computed |
168 | * value cannot depend on the input's color channels unless it unpremultiplies the input color |
169 | * channels by the input alpha. |
170 | */ |
171 | bool compatibleWithCoverageAsAlpha() const { |
172 | return SkToBool(fFlags & kCompatibleWithCoverageAsAlpha_OptimizationFlag); |
173 | } |
174 | |
175 | /** |
176 | * If this is true then all opaque input colors to the processor produce opaque output colors. |
177 | */ |
178 | bool preservesOpaqueInput() const { |
179 | return SkToBool(fFlags & kPreservesOpaqueInput_OptimizationFlag); |
180 | } |
181 | |
182 | /** |
183 | * Tests whether given a constant input color the processor produces a constant output color |
184 | * (for all fragments). If true outputColor will contain the constant color produces for |
185 | * inputColor. |
186 | */ |
187 | bool hasConstantOutputForConstantInput(SkPMColor4f inputColor, SkPMColor4f* outputColor) const { |
188 | if (fFlags & kConstantOutputForConstantInput_OptimizationFlag) { |
189 | *outputColor = this->constantOutputForConstantInput(inputColor); |
190 | return true; |
191 | } |
192 | return false; |
193 | } |
194 | bool hasConstantOutputForConstantInput() const { |
195 | return SkToBool(fFlags & kConstantOutputForConstantInput_OptimizationFlag); |
196 | } |
197 | |
198 | /** Returns true if this and other processor conservatively draw identically. It can only return |
199 | true when the two processor are of the same subclass (i.e. they return the same object from |
200 | from getFactory()). |
201 | |
202 | A return value of true from isEqual() should not be used to test whether the processor would |
203 | generate the same shader code. To test for identical code generation use getGLSLProcessorKey |
204 | */ |
205 | bool isEqual(const GrFragmentProcessor& that) const; |
206 | |
207 | void visitProxies(const GrOp::VisitProxyFunc& func); |
208 | |
209 | // A pre-order traversal iterator over a hierarchy of FPs. It can also iterate over all the FP |
210 | // hierarchies rooted in a GrPaint, GrProcessorSet, or GrPipeline. For these collections it |
211 | // iterates the tree rooted at each color FP and then each coverage FP. |
212 | // |
213 | // Iter is the non-const version and CIter is the const version. |
214 | // |
215 | // An iterator is constructed from one of the srcs and used like this: |
216 | // for (GrFragmentProcessor::Iter iter(pipeline); iter; ++iter) { |
217 | // GrFragmentProcessor& fp = *iter; |
218 | // } |
219 | // The exit test for the loop is using Iter's operator bool(). |
220 | // To use a range-for loop instead see CIterRange below. |
221 | class Iter; |
222 | class CIter; |
223 | |
224 | // Used to implement a range-for loop using CIter. Src is one of GrFragmentProcessor, |
225 | // GrPaint, GrProcessorSet, or GrPipeline. Type aliases for these defined below. |
226 | // Example usage: |
227 | // for (const auto& fp : GrFragmentProcessor::PaintRange(paint)) { |
228 | // if (fp.usesLocalCoords()) { |
229 | // ... |
230 | // } |
231 | // } |
232 | template <typename Src> class CIterRange; |
233 | // Like CIterRange but non const and only constructable from GrFragmentProcessor. This could |
234 | // support GrPaint as it owns non-const FPs but no need for it as of now. |
235 | // for (auto& fp0 : GrFragmentProcessor::IterRange(fp)) { |
236 | // ... |
237 | // } |
238 | class IterRange; |
239 | |
240 | // We would use template deduction guides for Iter/CIter but for: |
241 | // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=79501 |
242 | // Instead we use these specialized type aliases to make it prettier |
243 | // to construct Iters for particular sources of FPs. |
244 | using FPCRange = CIterRange<GrFragmentProcessor>; |
245 | using PaintCRange = CIterRange<GrPaint>; |
246 | |
247 | // Implementation details for iterators that walk an array of Items owned by a set of FPs. |
248 | using CountFn = int (GrFragmentProcessor::*)() const; |
249 | // Defined GetFn to be a member function that returns an Item by index. The function itself is |
250 | // const if Item is a const type and non-const if Item is non-const. |
251 | template <typename Item, bool IsConst = std::is_const<Item>::value> struct GetT; |
252 | template <typename Item> struct GetT<Item, false> { |
253 | using GetFn = Item& (GrFragmentProcessor::*)(int); |
254 | }; |
255 | template <typename Item> struct GetT<Item, true> { |
256 | using GetFn = const Item& (GrFragmentProcessor::*)(int) const; |
257 | }; |
258 | template <typename Item> using GetFn = typename GetT<Item>::GetFn; |
259 | // This is an iterator over the Items owned by a (collection of) FP. CountFn is a FP member that |
260 | // gets the number of Items owned by each FP and GetFn is a member that gets them by index. |
261 | template <typename Item, CountFn Count, GetFn<Item> Get> class FPItemIter; |
262 | |
263 | // Loops over all the GrCoordTransforms owned by GrFragmentProcessors. The possible sources for |
264 | // the iteration are the same as those for Iter and the FPs are walked in the same order as |
265 | // Iter. This provides access to the coord transform and the FP that owns it. Example usage: |
266 | // for (GrFragmentProcessor::CoordTransformIter iter(pipeline); iter; ++iter) { |
267 | // // transform is const GrCoordTransform& and owningFP is const GrFragmentProcessor&. |
268 | // auto [transform, owningFP] = *iter; |
269 | // ... |
270 | // } |
271 | // See the ranges below to make this simpler a la range-for loops. |
272 | using CoordTransformIter = FPItemIter<const GrCoordTransform, |
273 | &GrFragmentProcessor::numCoordTransforms, |
274 | &GrFragmentProcessor::coordTransform>; |
275 | // Same as CoordTransformIter but for TextureSamplers: |
276 | // for (GrFragmentProcessor::TextureSamplerIter iter(pipeline); iter; ++iter) { |
277 | // // TextureSamplerIter is const GrFragmentProcessor::TextureSampler& and |
278 | // // owningFP is const GrFragmentProcessor&. |
279 | // auto [sampler, owningFP] = *iter; |
280 | // ... |
281 | // } |
282 | // See the ranges below to make this simpler a la range-for loops. |
283 | using TextureSamplerIter = FPItemIter<const TextureSampler, |
284 | &GrFragmentProcessor::numTextureSamplers, |
285 | &GrFragmentProcessor::textureSampler>; |
286 | |
287 | // Implementation detail for using CoordTransformIter and TextureSamplerIter in range-for loops. |
288 | template <typename Src, typename ItemIter> class FPItemRange; |
289 | |
290 | // These allow iteration over coord transforms/texture samplers for various FP sources via |
291 | // range-for loops. An example usage for looping over the coord transforms in a pipeline: |
292 | // for (auto [transform, fp] : GrFragmentProcessor::PipelineCoordTransformRange(pipeline)) { |
293 | // ... |
294 | // } |
295 | // Only the combinations of FP sources and iterable things have been defined but it is easy |
296 | // to add more as they become useful. Maybe someday we'll have template argument deduction |
297 | // with guides for type aliases and the sources can be removed from the type aliases: |
298 | // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1021r5.html |
299 | using PipelineCoordTransformRange = FPItemRange<const GrPipeline, CoordTransformIter>; |
300 | using PipelineTextureSamplerRange = FPItemRange<const GrPipeline, TextureSamplerIter>; |
301 | using FPTextureSamplerRange = FPItemRange<const GrFragmentProcessor, TextureSamplerIter>; |
302 | using ProcessorSetTextureSamplerRange = FPItemRange<const GrProcessorSet, TextureSamplerIter>; |
303 | |
304 | // Not used directly. |
305 | using NonConstCoordTransformIter = |
306 | FPItemIter<GrCoordTransform, &GrFragmentProcessor::numCoordTransforms, |
307 | &GrFragmentProcessor::coordTransform>; |
308 | // Iterator over non-const GrCoordTransforms owned by FP and its descendants. |
309 | using FPCoordTransformRange = FPItemRange<GrFragmentProcessor, NonConstCoordTransformIter>; |
310 | |
311 | // Sentinel type for range-for using Iter. |
312 | class EndIter {}; |
313 | // Sentinel type for range-for using FPItemIter. |
314 | class FPItemEndIter {}; |
315 | |
316 | protected: |
317 | enum OptimizationFlags : uint32_t { |
318 | kNone_OptimizationFlags, |
319 | kCompatibleWithCoverageAsAlpha_OptimizationFlag = 0x1, |
320 | kPreservesOpaqueInput_OptimizationFlag = 0x2, |
321 | kConstantOutputForConstantInput_OptimizationFlag = 0x4, |
322 | kAll_OptimizationFlags = kCompatibleWithCoverageAsAlpha_OptimizationFlag | |
323 | kPreservesOpaqueInput_OptimizationFlag | |
324 | kConstantOutputForConstantInput_OptimizationFlag |
325 | }; |
326 | GR_DECL_BITFIELD_OPS_FRIENDS(OptimizationFlags) |
327 | |
328 | /** |
329 | * Can be used as a helper to decide which fragment processor OptimizationFlags should be set. |
330 | * This assumes that the subclass output color will be a modulation of the input color with a |
331 | * value read from a texture of the passed color type and that the texture contains |
332 | * premultiplied color or alpha values that are in range. |
333 | * |
334 | * Since there are multiple ways in which a sampler may have its coordinates clamped or wrapped, |
335 | * callers must determine on their own if the sampling uses a decal strategy in any way, in |
336 | * which case the texture may become transparent regardless of the color type. |
337 | */ |
338 | static OptimizationFlags ModulateForSamplerOptFlags(SkAlphaType alphaType, bool samplingDecal) { |
339 | if (samplingDecal) { |
340 | return kCompatibleWithCoverageAsAlpha_OptimizationFlag; |
341 | } else { |
342 | return ModulateForClampedSamplerOptFlags(alphaType); |
343 | } |
344 | } |
345 | |
346 | // As above, but callers should somehow ensure or assert their sampler still uses clamping |
347 | static OptimizationFlags ModulateForClampedSamplerOptFlags(SkAlphaType alphaType) { |
348 | if (alphaType == kOpaque_SkAlphaType) { |
349 | return kCompatibleWithCoverageAsAlpha_OptimizationFlag | |
350 | kPreservesOpaqueInput_OptimizationFlag; |
351 | } else { |
352 | return kCompatibleWithCoverageAsAlpha_OptimizationFlag; |
353 | } |
354 | } |
355 | |
356 | GrFragmentProcessor(ClassID classID, OptimizationFlags optimizationFlags) |
357 | : INHERITED(classID), fFlags(optimizationFlags) { |
358 | SkASSERT((optimizationFlags & ~kAll_OptimizationFlags) == 0); |
359 | } |
360 | |
361 | OptimizationFlags optimizationFlags() const { |
362 | return static_cast<OptimizationFlags>(kAll_OptimizationFlags & fFlags); |
363 | } |
364 | |
365 | /** Useful when you can't call fp->optimizationFlags() on a base class object from a subclass.*/ |
366 | static OptimizationFlags ProcessorOptimizationFlags(const GrFragmentProcessor* fp) { |
367 | return fp->optimizationFlags(); |
368 | } |
369 | |
370 | /** |
371 | * This allows one subclass to access another subclass's implementation of |
372 | * constantOutputForConstantInput. It must only be called when |
373 | * hasConstantOutputForConstantInput() is known to be true. |
374 | */ |
375 | static SkPMColor4f ConstantOutputForConstantInput(const GrFragmentProcessor& fp, |
376 | const SkPMColor4f& input) { |
377 | SkASSERT(fp.hasConstantOutputForConstantInput()); |
378 | return fp.constantOutputForConstantInput(input); |
379 | } |
380 | |
381 | /** |
382 | * Fragment Processor subclasses call this from their constructor to register coordinate |
383 | * transformations. Coord transforms provide a mechanism for a processor to receive coordinates |
384 | * in their FS code. The matrix expresses a transformation from local space. For a given |
385 | * fragment the matrix will be applied to the local coordinate that maps to the fragment. |
386 | * |
387 | * When the transformation has perspective, the transformed coordinates will have |
388 | * 3 components. Otherwise they'll have 2. |
389 | * |
390 | * This must only be called from the constructor because GrProcessors are immutable. The |
391 | * processor subclass manages the lifetime of the transformations (this function only stores a |
392 | * pointer). The GrCoordTransform is typically a member field of the GrProcessor subclass. |
393 | * |
394 | * A processor subclass that has multiple methods of construction should always add its coord |
395 | * transforms in a consistent order. The non-virtual implementation of isEqual() automatically |
396 | * compares transforms and will assume they line up across the two processor instances. |
397 | */ |
398 | void addCoordTransform(GrCoordTransform*); |
399 | |
400 | /** |
401 | * FragmentProcessor subclasses call this from their constructor to register any child |
402 | * FragmentProcessors they have. This must be called AFTER all texture accesses and coord |
403 | * transforms have been added. |
404 | * This is for processors whose shader code will be composed of nested processors whose output |
405 | * colors will be combined somehow to produce its output color. Registering these child |
406 | * processors will allow the ProgramBuilder to automatically handle their transformed coords and |
407 | * texture accesses and mangle their uniform and output color names. |
408 | */ |
409 | int registerChildProcessor(std::unique_ptr<GrFragmentProcessor> child); |
410 | |
411 | void setTextureSamplerCnt(int cnt) { |
412 | SkASSERT(cnt >= 0); |
413 | fTextureSamplerCnt = cnt; |
414 | } |
415 | |
416 | /** |
417 | * Helper for implementing onTextureSampler(). E.g.: |
418 | * return IthTexureSampler(i, fMyFirstSampler, fMySecondSampler, fMyThirdSampler); |
419 | */ |
420 | template <typename... Args> |
421 | static const TextureSampler& IthTextureSampler(int i, const TextureSampler& samp0, |
422 | const Args&... samps) { |
423 | return (0 == i) ? samp0 : IthTextureSampler(i - 1, samps...); |
424 | } |
425 | inline static const TextureSampler& IthTextureSampler(int i); |
426 | |
427 | private: |
428 | // Implementation details of Iter and CIter. |
429 | template <typename> class IterBase; |
430 | |
431 | virtual SkPMColor4f constantOutputForConstantInput(const SkPMColor4f& /* inputColor */) const { |
432 | SK_ABORT("Subclass must override this if advertising this optimization." ); |
433 | } |
434 | |
435 | /** Returns a new instance of the appropriate *GL* implementation class |
436 | for the given GrFragmentProcessor; caller is responsible for deleting |
437 | the object. */ |
438 | virtual GrGLSLFragmentProcessor* onCreateGLSLInstance() const = 0; |
439 | |
440 | /** Implemented using GLFragmentProcessor::GenKey as described in this class's comment. */ |
441 | virtual void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const = 0; |
442 | |
443 | /** |
444 | * Subclass implements this to support isEqual(). It will only be called if it is known that |
445 | * the two processors are of the same subclass (i.e. they return the same object from |
446 | * getFactory()). The processor subclass should not compare its coord transforms as that will |
447 | * be performed automatically in the non-virtual isEqual(). |
448 | */ |
449 | virtual bool onIsEqual(const GrFragmentProcessor&) const = 0; |
450 | |
451 | virtual const TextureSampler& onTextureSampler(int) const { return IthTextureSampler(0); } |
452 | |
453 | bool hasSameTransforms(const GrFragmentProcessor&) const; |
454 | |
455 | enum PrivateFlags { |
456 | kFirstPrivateFlag = kAll_OptimizationFlags + 1, |
457 | kHasCoordTransforms_Flag = kFirstPrivateFlag, |
458 | kSampledWithExplicitCoords = kFirstPrivateFlag << 1, |
459 | }; |
460 | |
461 | uint32_t fFlags = 0; |
462 | |
463 | int fTextureSamplerCnt = 0; |
464 | |
465 | SkSTArray<4, GrCoordTransform*, true> fCoordTransforms; |
466 | |
467 | SkSTArray<1, std::unique_ptr<GrFragmentProcessor>, true> fChildProcessors; |
468 | |
469 | typedef GrProcessor INHERITED; |
470 | }; |
471 | |
472 | /** |
473 | * Used to represent a texture that is required by a GrFragmentProcessor. It holds a GrTextureProxy |
474 | * along with an associated GrSamplerState. TextureSamplers don't perform any coord manipulation to |
475 | * account for texture origin. |
476 | */ |
477 | class GrFragmentProcessor::TextureSampler { |
478 | public: |
479 | TextureSampler() = default; |
480 | |
481 | /** |
482 | * This copy constructor is used by GrFragmentProcessor::clone() implementations. |
483 | */ |
484 | explicit TextureSampler(const TextureSampler&) = default; |
485 | |
486 | TextureSampler(GrSurfaceProxyView, GrSamplerState = {}); |
487 | |
488 | TextureSampler& operator=(const TextureSampler&) = delete; |
489 | |
490 | bool operator==(const TextureSampler& that) const { |
491 | return fView == that.fView && fSamplerState == that.fSamplerState; |
492 | } |
493 | |
494 | bool operator!=(const TextureSampler& other) const { return !(*this == other); } |
495 | |
496 | SkDEBUGCODE(bool isInstantiated() const { return this->proxy()->isInstantiated(); }) |
497 | |
498 | // 'peekTexture' should only ever be called after a successful 'instantiate' call |
499 | GrTexture* peekTexture() const { |
500 | SkASSERT(this->proxy()->isInstantiated()); |
501 | return this->proxy()->peekTexture(); |
502 | } |
503 | |
504 | const GrSurfaceProxyView& view() const { return fView; } |
505 | GrSamplerState samplerState() const { return fSamplerState; } |
506 | |
507 | bool isInitialized() const { return SkToBool(this->proxy()); } |
508 | |
509 | GrSurfaceProxy* proxy() const { return fView.proxy(); } |
510 | |
511 | #if GR_TEST_UTILS |
512 | void set(GrSurfaceProxyView, GrSamplerState); |
513 | #endif |
514 | |
515 | private: |
516 | GrSurfaceProxyView fView; |
517 | GrSamplerState fSamplerState; |
518 | }; |
519 | |
520 | ////////////////////////////////////////////////////////////////////////////// |
521 | |
522 | const GrFragmentProcessor::TextureSampler& GrFragmentProcessor::IthTextureSampler(int i) { |
523 | SK_ABORT("Illegal texture sampler index" ); |
524 | static const TextureSampler kBogus; |
525 | return kBogus; |
526 | } |
527 | |
528 | GR_MAKE_BITFIELD_OPS(GrFragmentProcessor::OptimizationFlags) |
529 | |
530 | ////////////////////////////////////////////////////////////////////////////// |
531 | |
532 | template <typename FP> class GrFragmentProcessor::IterBase { |
533 | public: |
534 | FP& operator*() const { return *fFPStack.back(); } |
535 | FP* operator->() const { return fFPStack.back(); } |
536 | operator bool() const { return !fFPStack.empty(); } |
537 | bool operator!=(const EndIter&) { return (bool)*this; } |
538 | |
539 | // Hopefully this does not actually get called because of RVO. |
540 | IterBase(const IterBase&) = default; |
541 | |
542 | // Because each iterator carries a stack we want to avoid copies. |
543 | IterBase& operator=(const IterBase&) = delete; |
544 | |
545 | protected: |
546 | void increment(); |
547 | |
548 | IterBase() = default; |
549 | explicit IterBase(FP& fp) { fFPStack.push_back(&fp); } |
550 | |
551 | SkSTArray<4, FP*, true> fFPStack; |
552 | }; |
553 | |
554 | template <typename FP> void GrFragmentProcessor::IterBase<FP>::increment() { |
555 | SkASSERT(!fFPStack.empty()); |
556 | FP* back = fFPStack.back(); |
557 | fFPStack.pop_back(); |
558 | for (int i = back->numChildProcessors() - 1; i >= 0; --i) { |
559 | fFPStack.push_back(&back->childProcessor(i)); |
560 | } |
561 | } |
562 | |
563 | ////////////////////////////////////////////////////////////////////////////// |
564 | |
565 | class GrFragmentProcessor::Iter : public IterBase<GrFragmentProcessor> { |
566 | public: |
567 | explicit Iter(GrFragmentProcessor& fp) : IterBase(fp) {} |
568 | Iter& operator++() { |
569 | this->increment(); |
570 | return *this; |
571 | } |
572 | }; |
573 | |
574 | ////////////////////////////////////////////////////////////////////////////// |
575 | |
576 | class GrFragmentProcessor::CIter : public IterBase<const GrFragmentProcessor> { |
577 | public: |
578 | explicit CIter(const GrFragmentProcessor& fp) : IterBase(fp) {} |
579 | explicit CIter(const GrPaint&); |
580 | explicit CIter(const GrProcessorSet&); |
581 | explicit CIter(const GrPipeline&); |
582 | CIter& operator++() { |
583 | this->increment(); |
584 | return *this; |
585 | } |
586 | }; |
587 | |
588 | ////////////////////////////////////////////////////////////////////////////// |
589 | |
590 | template <typename Src> class GrFragmentProcessor::CIterRange { |
591 | public: |
592 | explicit CIterRange(const Src& t) : fT(t) {} |
593 | CIter begin() const { return CIter(fT); } |
594 | EndIter end() const { return EndIter(); } |
595 | |
596 | private: |
597 | const Src& fT; |
598 | }; |
599 | |
600 | ////////////////////////////////////////////////////////////////////////////// |
601 | |
602 | template <typename Item, GrFragmentProcessor::CountFn Count, GrFragmentProcessor::GetFn<Item> Get> |
603 | class GrFragmentProcessor::FPItemIter { |
604 | public: |
605 | template <typename Src> explicit FPItemIter(Src& s); |
606 | |
607 | std::pair<Item&, const GrFragmentProcessor&> operator*() const { |
608 | return {(*fFPIter.*Get)(fIndex), *fFPIter}; |
609 | } |
610 | FPItemIter& operator++(); |
611 | operator bool() const { return fFPIter; } |
612 | bool operator!=(const FPItemEndIter&) { return (bool)*this; } |
613 | |
614 | FPItemIter(const FPItemIter&) = delete; |
615 | FPItemIter& operator=(const FPItemIter&) = delete; |
616 | |
617 | private: |
618 | typename std::conditional<std::is_const<Item>::value, CIter, Iter>::type fFPIter; |
619 | int fIndex; |
620 | }; |
621 | |
622 | template <typename Item, GrFragmentProcessor::CountFn Count, GrFragmentProcessor::GetFn<Item> Get> |
623 | template <typename Src> |
624 | GrFragmentProcessor::FPItemIter<Item, Count, Get>::FPItemIter(Src& s) : fFPIter(s), fIndex(-1) { |
625 | if (fFPIter) { |
626 | ++*this; |
627 | } |
628 | } |
629 | |
630 | template <typename Item, GrFragmentProcessor::CountFn Count, GrFragmentProcessor::GetFn<Item> Get> |
631 | GrFragmentProcessor::FPItemIter<Item, Count, Get>& |
632 | GrFragmentProcessor::FPItemIter<Item, Count, Get>::operator++() { |
633 | ++fIndex; |
634 | if (fIndex < ((*fFPIter).*Count)()) { |
635 | return *this; |
636 | } |
637 | fIndex = 0; |
638 | do {} while (++fFPIter && !((*fFPIter).*Count)()); |
639 | return *this; |
640 | } |
641 | |
642 | ////////////////////////////////////////////////////////////////////////////// |
643 | |
644 | template <typename Src, typename ItemIter> class GrFragmentProcessor::FPItemRange { |
645 | public: |
646 | FPItemRange(Src& src) : fSrc(src) {} |
647 | ItemIter begin() const { return ItemIter(fSrc); } |
648 | FPItemEndIter end() const { return FPItemEndIter(); } |
649 | |
650 | private: |
651 | Src& fSrc; |
652 | }; |
653 | |
654 | #endif |
655 | |