1/*
2 * Copyright 2017 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "src/gpu/ccpr/GrCCCoverageProcessor.h"
9
10#include "src/gpu/GrOpFlushState.h"
11#include "src/gpu/GrOpsRenderPass.h"
12#include "src/gpu/GrProgramInfo.h"
13#include "src/gpu/ccpr/GrCCConicShader.h"
14#include "src/gpu/ccpr/GrCCCubicShader.h"
15#include "src/gpu/ccpr/GrCCQuadraticShader.h"
16#include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h"
17#include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h"
18#include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h"
19
20class GrCCCoverageProcessor::TriangleShader : public GrCCCoverageProcessor::Shader {
21 void onEmitVaryings(
22 GrGLSLVaryingHandler* varyingHandler, GrGLSLVarying::Scope scope, SkString* code,
23 const char* position, const char* coverage, const char* cornerCoverage,
24 const char* /*wind*/) override {
25 if (!cornerCoverage) {
26 fCoverages.reset(kHalf_GrSLType, scope);
27 varyingHandler->addVarying("coverage", &fCoverages);
28 code->appendf("%s = %s;", OutName(fCoverages), coverage);
29 } else {
30 fCoverages.reset(kHalf3_GrSLType, scope);
31 varyingHandler->addVarying("coverages", &fCoverages);
32 code->appendf("%s = half3(%s, %s);", OutName(fCoverages), coverage, cornerCoverage);
33 }
34 }
35
36 void emitFragmentCoverageCode(
37 GrGLSLFPFragmentBuilder* f, const char* outputCoverage) const override {
38 if (kHalf_GrSLType == fCoverages.type()) {
39 f->codeAppendf("%s = %s;", outputCoverage, fCoverages.fsIn());
40 } else {
41 f->codeAppendf("%s = %s.z * %s.y + %s.x;",
42 outputCoverage, fCoverages.fsIn(), fCoverages.fsIn(), fCoverages.fsIn());
43 }
44 }
45
46 void emitSampleMaskCode(GrGLSLFPFragmentBuilder*) const override { return; }
47
48 GrGLSLVarying fCoverages;
49};
50
51void GrCCCoverageProcessor::Shader::CalcWind(const GrCCCoverageProcessor& proc,
52 GrGLSLVertexGeoBuilder* s, const char* pts,
53 const char* outputWind) {
54 if (3 == proc.numInputPoints()) {
55 s->codeAppendf("float2 a = %s[0] - %s[1], "
56 "b = %s[0] - %s[2];", pts, pts, pts, pts);
57 } else {
58 // All inputs are convex, so it's sufficient to just average the middle two input points.
59 SkASSERT(4 == proc.numInputPoints());
60 s->codeAppendf("float2 p12 = (%s[1] + %s[2]) * .5;", pts, pts);
61 s->codeAppendf("float2 a = %s[0] - p12, "
62 "b = %s[0] - %s[3];", pts, pts, pts);
63 }
64
65 s->codeAppend ("float area_x2 = determinant(float2x2(a, b));");
66 if (proc.isTriangles()) {
67 // We cull extremely thin triangles by zeroing wind. When a triangle gets too thin it's
68 // possible for FP round-off error to actually give us the wrong winding direction, causing
69 // rendering artifacts. The criteria we choose is "height <~ 1/1024". So we drop a triangle
70 // if the max effect it can have on any single pixel is <~ 1/1024, or 1/4 of a bit in 8888.
71 s->codeAppend ("float2 bbox_size = max(abs(a), abs(b));");
72 s->codeAppend ("float basewidth = max(bbox_size.x + bbox_size.y, 1);");
73 s->codeAppendf("%s = (abs(area_x2 * 1024) > basewidth) ? sign(half(area_x2)) : 0;",
74 outputWind);
75 } else {
76 // We already converted nearly-flat curves to lines on the CPU, so no need to worry about
77 // thin curve hulls at this point.
78 s->codeAppendf("%s = sign(half(area_x2));", outputWind);
79 }
80}
81
82void GrCCCoverageProcessor::Shader::CalcEdgeCoverageAtBloatVertex(GrGLSLVertexGeoBuilder* s,
83 const char* leftPt,
84 const char* rightPt,
85 const char* rasterVertexDir,
86 const char* outputCoverage) {
87 // Here we find an edge's coverage at one corner of a conservative raster bloat box whose center
88 // falls on the edge in question. (A bloat box is axis-aligned and the size of one pixel.) We
89 // always set up coverage so it is -1 at the outermost corner, 0 at the innermost, and -.5 at
90 // the center. Interpolated, these coverage values convert jagged conservative raster edges into
91 // smooth antialiased edges.
92 //
93 // d1 == (P + sign(n) * bloat) dot n (Distance at the bloat box vertex whose
94 // == P dot n + (abs(n.x) + abs(n.y)) * bloatSize coverage=-1, where the bloat box is
95 // centered on P.)
96 //
97 // d0 == (P - sign(n) * bloat) dot n (Distance at the bloat box vertex whose
98 // == P dot n - (abs(n.x) + abs(n.y)) * bloatSize coverage=0, where the bloat box is
99 // centered on P.)
100 //
101 // d == (P + rasterVertexDir * bloatSize) dot n (Distance at the bloat box vertex whose
102 // == P dot n + (rasterVertexDir dot n) * bloatSize coverage we wish to calculate.)
103 //
104 // coverage == -(d - d0) / (d1 - d0) (coverage=-1 at d=d1; coverage=0 at d=d0)
105 //
106 // == (rasterVertexDir dot n) / (abs(n.x) + abs(n.y)) * -.5 - .5
107 //
108 s->codeAppendf("float2 n = float2(%s.y - %s.y, %s.x - %s.x);",
109 rightPt, leftPt, leftPt, rightPt);
110 s->codeAppend ("float nwidth = abs(n.x) + abs(n.y);");
111 s->codeAppendf("float t = dot(%s, n);", rasterVertexDir);
112 // The below conditional guarantees we get exactly 1 on the divide when nwidth=t (in case the
113 // GPU divides by multiplying by the reciprocal?) It also guards against NaN when nwidth=0.
114 s->codeAppendf("%s = half(abs(t) != nwidth ? t / nwidth : sign(t)) * -.5 - .5;",
115 outputCoverage);
116}
117
118void GrCCCoverageProcessor::Shader::CalcEdgeCoveragesAtBloatVertices(GrGLSLVertexGeoBuilder* s,
119 const char* leftPt,
120 const char* rightPt,
121 const char* bloatDir1,
122 const char* bloatDir2,
123 const char* outputCoverages) {
124 // See comments in CalcEdgeCoverageAtBloatVertex.
125 s->codeAppendf("float2 n = float2(%s.y - %s.y, %s.x - %s.x);",
126 rightPt, leftPt, leftPt, rightPt);
127 s->codeAppend ("float nwidth = abs(n.x) + abs(n.y);");
128 s->codeAppendf("float2 t = n * float2x2(%s, %s);", bloatDir1, bloatDir2);
129 s->codeAppendf("for (int i = 0; i < 2; ++i) {");
130 s->codeAppendf( "%s[i] = half(abs(t[i]) != nwidth ? t[i] / nwidth : sign(t[i])) * -.5 - .5;",
131 outputCoverages);
132 s->codeAppendf("}");
133}
134
135void GrCCCoverageProcessor::Shader::CalcCornerAttenuation(GrGLSLVertexGeoBuilder* s,
136 const char* leftDir, const char* rightDir,
137 const char* outputAttenuation) {
138 // obtuseness = cos(corner_angle) if corner_angle > 90 degrees
139 // 0 if corner_angle <= 90 degrees
140 //
141 // NOTE: leftDir and rightDir are normalized and point in the same direction the path was
142 // defined with, i.e., leftDir points into the corner and rightDir points away from the corner.
143 s->codeAppendf("half obtuseness = max(half(dot(%s, %s)), 0);", leftDir, rightDir);
144
145 // axis_alignedness = 1 - tan(angle_to_nearest_axis_from_corner_bisector)
146 // (i.e., 1 when the corner bisector is aligned with the x- or y-axis
147 // 0 when the corner bisector falls on a 45 degree angle
148 // 0..1 when the corner bisector falls somewhere in between
149 s->codeAppendf("half2 abs_bisect_maybe_transpose = abs((0 == obtuseness) ? half2(%s - %s) : "
150 "half2(%s + %s));",
151 leftDir, rightDir, leftDir, rightDir);
152 s->codeAppend ("half axis_alignedness = "
153 "1 - min(abs_bisect_maybe_transpose.y, abs_bisect_maybe_transpose.x) / "
154 "max(abs_bisect_maybe_transpose.x, abs_bisect_maybe_transpose.y);");
155
156 // ninety_degreesness = sin^2(corner_angle)
157 // sin^2 just because... it's always positive and the results looked better than plain sine... ?
158 s->codeAppendf("half ninety_degreesness = determinant(half2x2(%s, %s));", leftDir, rightDir);
159 s->codeAppend ("ninety_degreesness = ninety_degreesness * ninety_degreesness;");
160
161 // The below formula is not smart. It was just arrived at by considering the following
162 // observations:
163 //
164 // 1. 90-degree, axis-aligned corners have full attenuation along the bisector.
165 // (i.e. coverage = 1 - distance_to_corner^2)
166 // (i.e. outputAttenuation = 0)
167 //
168 // 2. 180-degree corners always have zero attenuation.
169 // (i.e. coverage = 1 - distance_to_corner)
170 // (i.e. outputAttenuation = 1)
171 //
172 // 3. 90-degree corners whose bisector falls on a 45 degree angle also do not attenuate.
173 // (i.e. outputAttenuation = 1)
174 s->codeAppendf("%s = max(obtuseness, axis_alignedness * ninety_degreesness);",
175 outputAttenuation);
176}
177
178GrGLSLPrimitiveProcessor* GrCCCoverageProcessor::createGLSLInstance(const GrShaderCaps&) const {
179 std::unique_ptr<Shader> shader;
180 switch (fPrimitiveType) {
181 case PrimitiveType::kTriangles:
182 case PrimitiveType::kWeightedTriangles:
183 shader = std::make_unique<TriangleShader>();
184 break;
185 case PrimitiveType::kQuadratics:
186 shader = std::make_unique<GrCCQuadraticShader>();
187 break;
188 case PrimitiveType::kCubics:
189 shader = std::make_unique<GrCCCubicShader>();
190 break;
191 case PrimitiveType::kConics:
192 shader = std::make_unique<GrCCConicShader>();
193 break;
194 }
195 return this->onCreateGLSLInstance(std::move(shader));
196}
197
198void GrCCCoverageProcessor::bindPipeline(GrOpFlushState* flushState, const GrPipeline& pipeline,
199 const SkRect& drawBounds) const {
200 GrProgramInfo programInfo(flushState->proxy()->numSamples(),
201 flushState->proxy()->numStencilSamples(),
202 flushState->proxy()->backendFormat(),
203 flushState->writeView()->origin(), &pipeline, this,
204 this->primType());
205 flushState->bindPipeline(programInfo, drawBounds);
206}
207