| 1 | /* | 
|---|
| 2 | * Copyright 2017 Google Inc. | 
|---|
| 3 | * | 
|---|
| 4 | * Use of this source code is governed by a BSD-style license that can be | 
|---|
| 5 | * found in the LICENSE file. | 
|---|
| 6 | */ | 
|---|
| 7 |  | 
|---|
| 8 | #include "src/gpu/ccpr/GrCCFillGeometry.h" | 
|---|
| 9 |  | 
|---|
| 10 | #include "include/gpu/GrTypes.h" | 
|---|
| 11 | #include "src/core/SkGeometry.h" | 
|---|
| 12 | #include <algorithm> | 
|---|
| 13 | #include <cmath> | 
|---|
| 14 | #include <cstdlib> | 
|---|
| 15 |  | 
|---|
| 16 | static constexpr float kFlatnessThreshold = 1/16.f; // 1/16 of a pixel. | 
|---|
| 17 |  | 
|---|
| 18 | void GrCCFillGeometry::beginPath() { | 
|---|
| 19 | SkASSERT(!fBuildingContour); | 
|---|
| 20 | fVerbs.push_back(Verb::kBeginPath); | 
|---|
| 21 | } | 
|---|
| 22 |  | 
|---|
| 23 | void GrCCFillGeometry::beginContour(const SkPoint& pt) { | 
|---|
| 24 | SkASSERT(!fBuildingContour); | 
|---|
| 25 | // Store the current verb count in the fTriangles field for now. When we close the contour we | 
|---|
| 26 | // will use this value to calculate the actual number of triangles in its fan. | 
|---|
| 27 | fCurrContourTallies = {fVerbs.count(), 0, 0, 0, 0}; | 
|---|
| 28 |  | 
|---|
| 29 | fPoints.push_back(pt); | 
|---|
| 30 | fVerbs.push_back(Verb::kBeginContour); | 
|---|
| 31 | fCurrAnchorPoint = pt; | 
|---|
| 32 |  | 
|---|
| 33 | SkDEBUGCODE(fBuildingContour = true); | 
|---|
| 34 | } | 
|---|
| 35 |  | 
|---|
| 36 | void GrCCFillGeometry::lineTo(const SkPoint P[2]) { | 
|---|
| 37 | SkASSERT(fBuildingContour); | 
|---|
| 38 | SkASSERT(P[0] == fPoints.back()); | 
|---|
| 39 | Sk2f p0 = Sk2f::Load(P); | 
|---|
| 40 | Sk2f p1 = Sk2f::Load(P+1); | 
|---|
| 41 | this->appendLine(p0, p1); | 
|---|
| 42 | } | 
|---|
| 43 |  | 
|---|
| 44 | inline void GrCCFillGeometry::appendLine(const Sk2f& p0, const Sk2f& p1) { | 
|---|
| 45 | SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1])); | 
|---|
| 46 | if ((p0 == p1).allTrue()) { | 
|---|
| 47 | return; | 
|---|
| 48 | } | 
|---|
| 49 | p1.store(&fPoints.push_back()); | 
|---|
| 50 | fVerbs.push_back(Verb::kLineTo); | 
|---|
| 51 | } | 
|---|
| 52 |  | 
|---|
| 53 | static inline Sk2f normalize(const Sk2f& n) { | 
|---|
| 54 | Sk2f nn = n*n; | 
|---|
| 55 | return n * (nn + SkNx_shuffle<1,0>(nn)).rsqrt(); | 
|---|
| 56 | } | 
|---|
| 57 |  | 
|---|
| 58 | static inline float dot(const Sk2f& a, const Sk2f& b) { | 
|---|
| 59 | float product[2]; | 
|---|
| 60 | (a * b).store(product); | 
|---|
| 61 | return product[0] + product[1]; | 
|---|
| 62 | } | 
|---|
| 63 |  | 
|---|
| 64 | static inline bool are_collinear(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, | 
|---|
| 65 | float tolerance = kFlatnessThreshold) { | 
|---|
| 66 | Sk2f l = p2 - p0; // Line from p0 -> p2. | 
|---|
| 67 |  | 
|---|
| 68 | // lwidth = Manhattan width of l. | 
|---|
| 69 | Sk2f labs = l.abs(); | 
|---|
| 70 | float lwidth = labs[0] + labs[1]; | 
|---|
| 71 |  | 
|---|
| 72 | // d = |p1 - p0| dot | l.y| | 
|---|
| 73 | //                   |-l.x| = distance from p1 to l. | 
|---|
| 74 | Sk2f dd = (p1 - p0) * SkNx_shuffle<1,0>(l); | 
|---|
| 75 | float d = dd[0] - dd[1]; | 
|---|
| 76 |  | 
|---|
| 77 | // We are collinear if a box with radius "tolerance", centered on p1, touches the line l. | 
|---|
| 78 | // To decide this, we check if the distance from p1 to the line is less than the distance from | 
|---|
| 79 | // p1 to the far corner of this imaginary box, along that same normal vector. | 
|---|
| 80 | // The far corner of the box can be found at "p1 + sign(n) * tolerance", where n is normal to l: | 
|---|
| 81 | // | 
|---|
| 82 | //   abs(dot(p1 - p0, n)) <= dot(sign(n) * tolerance, n) | 
|---|
| 83 | // | 
|---|
| 84 | // Which reduces to: | 
|---|
| 85 | // | 
|---|
| 86 | //   abs(d) <= (n.x * sign(n.x) + n.y * sign(n.y)) * tolerance | 
|---|
| 87 | //   abs(d) <= (abs(n.x) + abs(n.y)) * tolerance | 
|---|
| 88 | // | 
|---|
| 89 | // Use "<=" in case l == 0. | 
|---|
| 90 | return std::abs(d) <= lwidth * tolerance; | 
|---|
| 91 | } | 
|---|
| 92 |  | 
|---|
| 93 | static inline bool are_collinear(const SkPoint P[4], float tolerance = kFlatnessThreshold) { | 
|---|
| 94 | Sk4f Px, Py;               // |Px  Py|   |p0 - p3| | 
|---|
| 95 | Sk4f::Load2(P, &Px, &Py);  // |.   . | = |p1 - p3| | 
|---|
| 96 | Px -= Px[3];               // |.   . |   |p2 - p3| | 
|---|
| 97 | Py -= Py[3];               // |.   . |   |   0   | | 
|---|
| 98 |  | 
|---|
| 99 | // Find [lx, ly] = the line from p3 to the furthest-away point from p3. | 
|---|
| 100 | Sk4f Pwidth = Px.abs() + Py.abs(); // Pwidth = Manhattan width of each point. | 
|---|
| 101 | int lidx = Pwidth[0] > Pwidth[1] ? 0 : 1; | 
|---|
| 102 | lidx = Pwidth[lidx] > Pwidth[2] ? lidx : 2; | 
|---|
| 103 | float lx = Px[lidx], ly = Py[lidx]; | 
|---|
| 104 | float lwidth = Pwidth[lidx]; // lwidth = Manhattan width of [lx, ly]. | 
|---|
| 105 |  | 
|---|
| 106 | //     |Px  Py| | 
|---|
| 107 | // d = |.   . | * | ly| = distances from each point to l (two of the distances will be zero). | 
|---|
| 108 | //     |.   . |   |-lx| | 
|---|
| 109 | //     |.   . | | 
|---|
| 110 | Sk4f d = Px*ly - Py*lx; | 
|---|
| 111 |  | 
|---|
| 112 | // We are collinear if boxes with radius "tolerance", centered on all 4 points all touch line l. | 
|---|
| 113 | // (See the rationale for this formula in the above, 3-point version of this function.) | 
|---|
| 114 | // Use "<=" in case l == 0. | 
|---|
| 115 | return (d.abs() <= lwidth * tolerance).allTrue(); | 
|---|
| 116 | } | 
|---|
| 117 |  | 
|---|
| 118 | // Returns whether the (convex) curve segment is monotonic with respect to [endPt - startPt]. | 
|---|
| 119 | static inline bool is_convex_curve_monotonic(const Sk2f& startPt, const Sk2f& tan0, | 
|---|
| 120 | const Sk2f& endPt, const Sk2f& tan1) { | 
|---|
| 121 | Sk2f v = endPt - startPt; | 
|---|
| 122 | float dot0 = dot(tan0, v); | 
|---|
| 123 | float dot1 = dot(tan1, v); | 
|---|
| 124 |  | 
|---|
| 125 | // A small, negative tolerance handles floating-point error in the case when one tangent | 
|---|
| 126 | // approaches 0 length, meaning the (convex) curve segment is effectively a flat line. | 
|---|
| 127 | float tolerance = -std::max(std::abs(dot0), std::abs(dot1)) * SK_ScalarNearlyZero; | 
|---|
| 128 | return dot0 >= tolerance && dot1 >= tolerance; | 
|---|
| 129 | } | 
|---|
| 130 |  | 
|---|
| 131 | template<int N> static inline SkNx<N,float> lerp(const SkNx<N,float>& a, const SkNx<N,float>& b, | 
|---|
| 132 | const SkNx<N,float>& t) { | 
|---|
| 133 | return SkNx_fma(t, b - a, a); | 
|---|
| 134 | } | 
|---|
| 135 |  | 
|---|
| 136 | void GrCCFillGeometry::quadraticTo(const SkPoint P[3]) { | 
|---|
| 137 | SkASSERT(fBuildingContour); | 
|---|
| 138 | SkASSERT(P[0] == fPoints.back()); | 
|---|
| 139 | Sk2f p0 = Sk2f::Load(P); | 
|---|
| 140 | Sk2f p1 = Sk2f::Load(P+1); | 
|---|
| 141 | Sk2f p2 = Sk2f::Load(P+2); | 
|---|
| 142 |  | 
|---|
| 143 | // Don't crunch on the curve if it is nearly flat (or just very small). Flat curves can break | 
|---|
| 144 | // The monotonic chopping math. | 
|---|
| 145 | if (are_collinear(p0, p1, p2)) { | 
|---|
| 146 | this->appendLine(p0, p2); | 
|---|
| 147 | return; | 
|---|
| 148 | } | 
|---|
| 149 |  | 
|---|
| 150 | this->appendQuadratics(p0, p1, p2); | 
|---|
| 151 | } | 
|---|
| 152 |  | 
|---|
| 153 | inline void GrCCFillGeometry::appendQuadratics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2) { | 
|---|
| 154 | Sk2f tan0 = p1 - p0; | 
|---|
| 155 | Sk2f tan1 = p2 - p1; | 
|---|
| 156 |  | 
|---|
| 157 | // This should almost always be this case for well-behaved curves in the real world. | 
|---|
| 158 | if (is_convex_curve_monotonic(p0, tan0, p2, tan1)) { | 
|---|
| 159 | this->appendMonotonicQuadratic(p0, p1, p2); | 
|---|
| 160 | return; | 
|---|
| 161 | } | 
|---|
| 162 |  | 
|---|
| 163 | // Chop the curve into two segments with equal curvature. To do this we find the T value whose | 
|---|
| 164 | // tangent angle is halfway between tan0 and tan1. | 
|---|
| 165 | Sk2f n = normalize(tan0) - normalize(tan1); | 
|---|
| 166 |  | 
|---|
| 167 | // The midtangent can be found where (dQ(t) dot n) = 0: | 
|---|
| 168 | // | 
|---|
| 169 | //   0 = (dQ(t) dot n) = | 2*t  1 | * | p0 - 2*p1 + p2 | * | n | | 
|---|
| 170 | //                                    | -2*p0 + 2*p1   |   | . | | 
|---|
| 171 | // | 
|---|
| 172 | //                     = | 2*t  1 | * | tan1 - tan0 | * | n | | 
|---|
| 173 | //                                    | 2*tan0      |   | . | | 
|---|
| 174 | // | 
|---|
| 175 | //                     = 2*t * ((tan1 - tan0) dot n) + (2*tan0 dot n) | 
|---|
| 176 | // | 
|---|
| 177 | //   t = (tan0 dot n) / ((tan0 - tan1) dot n) | 
|---|
| 178 | Sk2f dQ1n = (tan0 - tan1) * n; | 
|---|
| 179 | Sk2f dQ0n = tan0 * n; | 
|---|
| 180 | Sk2f t = (dQ0n + SkNx_shuffle<1,0>(dQ0n)) / (dQ1n + SkNx_shuffle<1,0>(dQ1n)); | 
|---|
| 181 | t = Sk2f::Min(Sk2f::Max(t, 0), 1); // Clamp for FP error. | 
|---|
| 182 |  | 
|---|
| 183 | Sk2f p01 = SkNx_fma(t, tan0, p0); | 
|---|
| 184 | Sk2f p12 = SkNx_fma(t, tan1, p1); | 
|---|
| 185 | Sk2f p012 = lerp(p01, p12, t); | 
|---|
| 186 |  | 
|---|
| 187 | this->appendMonotonicQuadratic(p0, p01, p012); | 
|---|
| 188 | this->appendMonotonicQuadratic(p012, p12, p2); | 
|---|
| 189 | } | 
|---|
| 190 |  | 
|---|
| 191 | inline void GrCCFillGeometry::appendMonotonicQuadratic(const Sk2f& p0, const Sk2f& p1, | 
|---|
| 192 | const Sk2f& p2) { | 
|---|
| 193 | // Don't send curves to the GPU if we know they are nearly flat (or just very small). | 
|---|
| 194 | if (are_collinear(p0, p1, p2)) { | 
|---|
| 195 | this->appendLine(p0, p2); | 
|---|
| 196 | return; | 
|---|
| 197 | } | 
|---|
| 198 |  | 
|---|
| 199 | SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1])); | 
|---|
| 200 | SkASSERT((p0 != p2).anyTrue()); | 
|---|
| 201 | p1.store(&fPoints.push_back()); | 
|---|
| 202 | p2.store(&fPoints.push_back()); | 
|---|
| 203 | fVerbs.push_back(Verb::kMonotonicQuadraticTo); | 
|---|
| 204 | ++fCurrContourTallies.fQuadratics; | 
|---|
| 205 | } | 
|---|
| 206 |  | 
|---|
| 207 | static inline Sk2f first_unless_nearly_zero(const Sk2f& a, const Sk2f& b) { | 
|---|
| 208 | Sk2f aa = a*a; | 
|---|
| 209 | aa += SkNx_shuffle<1,0>(aa); | 
|---|
| 210 | SkASSERT(aa[0] == aa[1]); | 
|---|
| 211 |  | 
|---|
| 212 | Sk2f bb = b*b; | 
|---|
| 213 | bb += SkNx_shuffle<1,0>(bb); | 
|---|
| 214 | SkASSERT(bb[0] == bb[1]); | 
|---|
| 215 |  | 
|---|
| 216 | return (aa > bb * SK_ScalarNearlyZero).thenElse(a, b); | 
|---|
| 217 | } | 
|---|
| 218 |  | 
|---|
| 219 | static inline void get_cubic_tangents(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, | 
|---|
| 220 | const Sk2f& p3, Sk2f* tan0, Sk2f* tan1) { | 
|---|
| 221 | *tan0 = first_unless_nearly_zero(p1 - p0, p2 - p0); | 
|---|
| 222 | *tan1 = first_unless_nearly_zero(p3 - p2, p3 - p1); | 
|---|
| 223 | } | 
|---|
| 224 |  | 
|---|
| 225 | static inline bool is_cubic_nearly_quadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, | 
|---|
| 226 | const Sk2f& p3, const Sk2f& tan0, const Sk2f& tan1, | 
|---|
| 227 | Sk2f* c) { | 
|---|
| 228 | Sk2f c1 = SkNx_fma(Sk2f(1.5f), tan0, p0); | 
|---|
| 229 | Sk2f c2 = SkNx_fma(Sk2f(-1.5f), tan1, p3); | 
|---|
| 230 | *c = (c1 + c2) * .5f; // Hopefully optimized out if not used? | 
|---|
| 231 | return ((c1 - c2).abs() <= 1).allTrue(); | 
|---|
| 232 | } | 
|---|
| 233 |  | 
|---|
| 234 | enum class ExcludedTerm : bool { | 
|---|
| 235 | kQuadraticTerm, | 
|---|
| 236 | kLinearTerm | 
|---|
| 237 | }; | 
|---|
| 238 |  | 
|---|
| 239 | // Finds where to chop a non-loop around its inflection points. The resulting cubic segments will be | 
|---|
| 240 | // chopped such that a box of radius 'padRadius', centered at any point along the curve segment, is | 
|---|
| 241 | // guaranteed to not cross the tangent lines at the inflection points (a.k.a lines L & M). | 
|---|
| 242 | // | 
|---|
| 243 | // 'chops' will be filled with 0, 2, or 4 T values. The segments between T0..T1 and T2..T3 must be | 
|---|
| 244 | // drawn with flat lines instead of cubics. | 
|---|
| 245 | // | 
|---|
| 246 | // A serpentine cubic has two inflection points, so this method takes Sk2f and computes the padding | 
|---|
| 247 | // for both in SIMD. | 
|---|
| 248 | static inline void find_chops_around_inflection_points(float padRadius, Sk2f tl, Sk2f sl, | 
|---|
| 249 | const Sk2f& C0, const Sk2f& C1, | 
|---|
| 250 | ExcludedTerm skipTerm, float Cdet, | 
|---|
| 251 | SkSTArray<4, float>* chops) { | 
|---|
| 252 | SkASSERT(chops->empty()); | 
|---|
| 253 | SkASSERT(padRadius >= 0); | 
|---|
| 254 |  | 
|---|
| 255 | padRadius /= std::abs(Cdet); // Scale this single value rather than all of C^-1 later on. | 
|---|
| 256 |  | 
|---|
| 257 | // The homogeneous parametric functions for distance from lines L & M are: | 
|---|
| 258 | // | 
|---|
| 259 | //     l(t,s) = (t*sl - s*tl)^3 | 
|---|
| 260 | //     m(t,s) = (t*sm - s*tm)^3 | 
|---|
| 261 | // | 
|---|
| 262 | // See "Resolution Independent Curve Rendering using Programmable Graphics Hardware", | 
|---|
| 263 | // 4.3 Finding klmn: | 
|---|
| 264 | // | 
|---|
| 265 | // https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf | 
|---|
| 266 | // | 
|---|
| 267 | // From here on we use Sk2f with "L" names, but the second lane will be for line M. | 
|---|
| 268 | tl = (sl > 0).thenElse(tl, -tl); // Tl=tl/sl is the triple root of l(t,s). Normalize so s >= 0. | 
|---|
| 269 | sl = sl.abs(); | 
|---|
| 270 |  | 
|---|
| 271 | // Convert l(t,s), m(t,s) to power-basis form: | 
|---|
| 272 | // | 
|---|
| 273 | //                                                  | l3  m3 | | 
|---|
| 274 | //    |l(t,s)  m(t,s)| = |t^3  t^2*s  t*s^2  s^3| * | l2  m2 | | 
|---|
| 275 | //                                                  | l1  m1 | | 
|---|
| 276 | //                                                  | l0  m0 | | 
|---|
| 277 | // | 
|---|
| 278 | Sk2f l3 = sl*sl*sl; | 
|---|
| 279 | Sk2f l2or1 = (ExcludedTerm::kLinearTerm == skipTerm) ? sl*sl*tl*-3 : sl*tl*tl*3; | 
|---|
| 280 |  | 
|---|
| 281 | // The equation for line L can be found as follows: | 
|---|
| 282 | // | 
|---|
| 283 | //     L = C^-1 * (l excluding skipTerm) | 
|---|
| 284 | // | 
|---|
| 285 | // (See comments for GrPathUtils::calcCubicInverseTransposePowerBasisMatrix.) | 
|---|
| 286 | // We are only interested in the normal to L, so only need the upper 2x2 of C^-1. And rather | 
|---|
| 287 | // than divide by determinant(C) here, we have already performed this divide on padRadius. | 
|---|
| 288 | Sk2f Lx =  C1[1]*l3 - C0[1]*l2or1; | 
|---|
| 289 | Sk2f Ly = -C1[0]*l3 + C0[0]*l2or1; | 
|---|
| 290 |  | 
|---|
| 291 | // A box of radius "padRadius" is touching line L if "center dot L" is less than the Manhattan | 
|---|
| 292 | // with of L. (See rationale in are_collinear.) | 
|---|
| 293 | Sk2f Lwidth = Lx.abs() + Ly.abs(); | 
|---|
| 294 | Sk2f pad = Lwidth * padRadius; | 
|---|
| 295 |  | 
|---|
| 296 | // Will T=(t + cbrt(pad))/s be greater than 0? No need to solve roots outside T=0..1. | 
|---|
| 297 | Sk2f insideLeftPad = pad + tl*tl*tl; | 
|---|
| 298 |  | 
|---|
| 299 | // Will T=(t - cbrt(pad))/s be less than 1? No need to solve roots outside T=0..1. | 
|---|
| 300 | Sk2f tms = tl - sl; | 
|---|
| 301 | Sk2f insideRightPad = pad - tms*tms*tms; | 
|---|
| 302 |  | 
|---|
| 303 | // Solve for the T values where abs(l(T)) = pad. | 
|---|
| 304 | if (insideLeftPad[0] > 0 && insideRightPad[0] > 0) { | 
|---|
| 305 | float padT = cbrtf(pad[0]); | 
|---|
| 306 | Sk2f pts = (tl[0] + Sk2f(-padT, +padT)) / sl[0]; | 
|---|
| 307 | pts.store(chops->push_back_n(2)); | 
|---|
| 308 | } | 
|---|
| 309 |  | 
|---|
| 310 | // Solve for the T values where abs(m(T)) = pad. | 
|---|
| 311 | if (insideLeftPad[1] > 0 && insideRightPad[1] > 0) { | 
|---|
| 312 | float padT = cbrtf(pad[1]); | 
|---|
| 313 | Sk2f pts = (tl[1] + Sk2f(-padT, +padT)) / sl[1]; | 
|---|
| 314 | pts.store(chops->push_back_n(2)); | 
|---|
| 315 | } | 
|---|
| 316 | } | 
|---|
| 317 |  | 
|---|
| 318 | static inline void swap_if_greater(float& a, float& b) { | 
|---|
| 319 | if (a > b) { | 
|---|
| 320 | std::swap(a, b); | 
|---|
| 321 | } | 
|---|
| 322 | } | 
|---|
| 323 |  | 
|---|
| 324 | // Finds where to chop a non-loop around its intersection point. The resulting cubic segments will | 
|---|
| 325 | // be chopped such that a box of radius 'padRadius', centered at any point along the curve segment, | 
|---|
| 326 | // is guaranteed to not cross the tangent lines at the intersection point (a.k.a lines L & M). | 
|---|
| 327 | // | 
|---|
| 328 | // 'chops' will be filled with 0, 2, or 4 T values. The segments between T0..T1 and T2..T3 must be | 
|---|
| 329 | // drawn with quadratic splines instead of cubics. | 
|---|
| 330 | // | 
|---|
| 331 | // A loop intersection falls at two different T values, so this method takes Sk2f and computes the | 
|---|
| 332 | // padding for both in SIMD. | 
|---|
| 333 | static inline void find_chops_around_loop_intersection(float padRadius, Sk2f t2, Sk2f s2, | 
|---|
| 334 | const Sk2f& C0, const Sk2f& C1, | 
|---|
| 335 | ExcludedTerm skipTerm, float Cdet, | 
|---|
| 336 | SkSTArray<4, float>* chops) { | 
|---|
| 337 | SkASSERT(chops->empty()); | 
|---|
| 338 | SkASSERT(padRadius >= 0); | 
|---|
| 339 |  | 
|---|
| 340 | padRadius /= std::abs(Cdet); // Scale this single value rather than all of C^-1 later on. | 
|---|
| 341 |  | 
|---|
| 342 | // The parametric functions for distance from lines L & M are: | 
|---|
| 343 | // | 
|---|
| 344 | //     l(T) = (T - Td)^2 * (T - Te) | 
|---|
| 345 | //     m(T) = (T - Td) * (T - Te)^2 | 
|---|
| 346 | // | 
|---|
| 347 | // See "Resolution Independent Curve Rendering using Programmable Graphics Hardware", | 
|---|
| 348 | // 4.3 Finding klmn: | 
|---|
| 349 | // | 
|---|
| 350 | // https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf | 
|---|
| 351 | Sk2f T2 = t2/s2; // T2 is the double root of l(T). | 
|---|
| 352 | Sk2f T1 = SkNx_shuffle<1,0>(T2); // T1 is the other root of l(T). | 
|---|
| 353 |  | 
|---|
| 354 | // Convert l(T), m(T) to power-basis form: | 
|---|
| 355 | // | 
|---|
| 356 | //                                      |  1   1 | | 
|---|
| 357 | //    |l(T)  m(T)| = |T^3  T^2  T  1| * | l2  m2 | | 
|---|
| 358 | //                                      | l1  m1 | | 
|---|
| 359 | //                                      | l0  m0 | | 
|---|
| 360 | // | 
|---|
| 361 | // From here on we use Sk2f with "L" names, but the second lane will be for line M. | 
|---|
| 362 | Sk2f l2 = SkNx_fma(Sk2f(-2), T2, -T1); | 
|---|
| 363 | Sk2f l1 = T2 * SkNx_fma(Sk2f(2), T1, T2); | 
|---|
| 364 | Sk2f l0 = -T2*T2*T1; | 
|---|
| 365 |  | 
|---|
| 366 | // The equation for line L can be found as follows: | 
|---|
| 367 | // | 
|---|
| 368 | //     L = C^-1 * (l excluding skipTerm) | 
|---|
| 369 | // | 
|---|
| 370 | // (See comments for GrPathUtils::calcCubicInverseTransposePowerBasisMatrix.) | 
|---|
| 371 | // We are only interested in the normal to L, so only need the upper 2x2 of C^-1. And rather | 
|---|
| 372 | // than divide by determinant(C) here, we have already performed this divide on padRadius. | 
|---|
| 373 | Sk2f l2or1 = (ExcludedTerm::kLinearTerm == skipTerm) ? l2 : l1; | 
|---|
| 374 | Sk2f Lx = -C0[1]*l2or1 + C1[1]; // l3 is always 1. | 
|---|
| 375 | Sk2f Ly =  C0[0]*l2or1 - C1[0]; | 
|---|
| 376 |  | 
|---|
| 377 | // A box of radius "padRadius" is touching line L if "center dot L" is less than the Manhattan | 
|---|
| 378 | // with of L. (See rationale in are_collinear.) | 
|---|
| 379 | Sk2f Lwidth = Lx.abs() + Ly.abs(); | 
|---|
| 380 | Sk2f pad = Lwidth * padRadius; | 
|---|
| 381 |  | 
|---|
| 382 | // Is l(T=0) outside the padding around line L? | 
|---|
| 383 | Sk2f lT0 = l0; // l(T=0) = |0  0  0  1| dot |1  l2  l1  l0| = l0 | 
|---|
| 384 | Sk2f outsideT0 = lT0.abs() - pad; | 
|---|
| 385 |  | 
|---|
| 386 | // Is l(T=1) outside the padding around line L? | 
|---|
| 387 | Sk2f lT1 = (Sk2f(1) + l2 + l1 + l0).abs(); // l(T=1) = |1  1  1  1| dot |1  l2  l1  l0| | 
|---|
| 388 | Sk2f outsideT1 = lT1.abs() - pad; | 
|---|
| 389 |  | 
|---|
| 390 | // Values for solving the cubic. | 
|---|
| 391 | Sk2f p, q, qqq, discr, numRoots, D; | 
|---|
| 392 | bool hasDiscr = false; | 
|---|
| 393 |  | 
|---|
| 394 | // Values for calculating one root (rarely needed). | 
|---|
| 395 | Sk2f R, QQ; | 
|---|
| 396 | bool hasOneRootVals = false; | 
|---|
| 397 |  | 
|---|
| 398 | // Values for calculating three roots. | 
|---|
| 399 | Sk2f P, cosTheta3; | 
|---|
| 400 | bool hasThreeRootVals = false; | 
|---|
| 401 |  | 
|---|
| 402 | // Solve for the T values where l(T) = +pad and m(T) = -pad. | 
|---|
| 403 | for (int i = 0; i < 2; ++i) { | 
|---|
| 404 | float T = T2[i]; // T is the point we are chopping around. | 
|---|
| 405 | if ((T < 0 && outsideT0[i] >= 0) || (T > 1 && outsideT1[i] >= 0)) { | 
|---|
| 406 | // The padding around T is completely out of range. No point solving for it. | 
|---|
| 407 | continue; | 
|---|
| 408 | } | 
|---|
| 409 |  | 
|---|
| 410 | if (!hasDiscr) { | 
|---|
| 411 | p = Sk2f(+.5f, -.5f) * pad; | 
|---|
| 412 | q = (1.f/3) * (T2 - T1); | 
|---|
| 413 | qqq = q*q*q; | 
|---|
| 414 | discr = qqq*p*2 + p*p; | 
|---|
| 415 | numRoots = (discr < 0).thenElse(3, 1); | 
|---|
| 416 | D = T2 - q; | 
|---|
| 417 | hasDiscr = true; | 
|---|
| 418 | } | 
|---|
| 419 |  | 
|---|
| 420 | if (1 == numRoots[i]) { | 
|---|
| 421 | if (!hasOneRootVals) { | 
|---|
| 422 | Sk2f r = qqq + p; | 
|---|
| 423 | Sk2f s = r.abs() + discr.sqrt(); | 
|---|
| 424 | R = (r > 0).thenElse(-s, s); | 
|---|
| 425 | QQ = q*q; | 
|---|
| 426 | hasOneRootVals = true; | 
|---|
| 427 | } | 
|---|
| 428 |  | 
|---|
| 429 | float A = cbrtf(R[i]); | 
|---|
| 430 | float B = A != 0 ? QQ[i]/A : 0; | 
|---|
| 431 | // When there is only one root, ine L chops from root..1, line M chops from 0..root. | 
|---|
| 432 | if (1 == i) { | 
|---|
| 433 | chops->push_back(0); | 
|---|
| 434 | } | 
|---|
| 435 | chops->push_back(A + B + D[i]); | 
|---|
| 436 | if (0 == i) { | 
|---|
| 437 | chops->push_back(1); | 
|---|
| 438 | } | 
|---|
| 439 | continue; | 
|---|
| 440 | } | 
|---|
| 441 |  | 
|---|
| 442 | if (!hasThreeRootVals) { | 
|---|
| 443 | P = q.abs() * -2; | 
|---|
| 444 | cosTheta3 = (q >= 0).thenElse(1, -1) + p / qqq.abs(); | 
|---|
| 445 | hasThreeRootVals = true; | 
|---|
| 446 | } | 
|---|
| 447 |  | 
|---|
| 448 | static constexpr float k2PiOver3 = 2 * SK_ScalarPI / 3; | 
|---|
| 449 | float theta = std::acos(cosTheta3[i]) * (1.f/3); | 
|---|
| 450 | float roots[3] = {P[i] * std::cos(theta) + D[i], | 
|---|
| 451 | P[i] * std::cos(theta + k2PiOver3) + D[i], | 
|---|
| 452 | P[i] * std::cos(theta - k2PiOver3) + D[i]}; | 
|---|
| 453 |  | 
|---|
| 454 | // Sort the three roots. | 
|---|
| 455 | swap_if_greater(roots[0], roots[1]); | 
|---|
| 456 | swap_if_greater(roots[1], roots[2]); | 
|---|
| 457 | swap_if_greater(roots[0], roots[1]); | 
|---|
| 458 |  | 
|---|
| 459 | // Line L chops around the first 2 roots, line M chops around the second 2. | 
|---|
| 460 | chops->push_back_n(2, &roots[i]); | 
|---|
| 461 | } | 
|---|
| 462 | } | 
|---|
| 463 |  | 
|---|
| 464 | void GrCCFillGeometry::cubicTo(const SkPoint P[4], float inflectPad, float loopIntersectPad) { | 
|---|
| 465 | SkASSERT(fBuildingContour); | 
|---|
| 466 | SkASSERT(P[0] == fPoints.back()); | 
|---|
| 467 |  | 
|---|
| 468 | // Don't crunch on the curve or inflate geometry if it is nearly flat (or just very small). | 
|---|
| 469 | // Flat curves can break the math below. | 
|---|
| 470 | if (are_collinear(P)) { | 
|---|
| 471 | Sk2f p0 = Sk2f::Load(P); | 
|---|
| 472 | Sk2f p3 = Sk2f::Load(P+3); | 
|---|
| 473 | this->appendLine(p0, p3); | 
|---|
| 474 | return; | 
|---|
| 475 | } | 
|---|
| 476 |  | 
|---|
| 477 | Sk2f p0 = Sk2f::Load(P); | 
|---|
| 478 | Sk2f p1 = Sk2f::Load(P+1); | 
|---|
| 479 | Sk2f p2 = Sk2f::Load(P+2); | 
|---|
| 480 | Sk2f p3 = Sk2f::Load(P+3); | 
|---|
| 481 |  | 
|---|
| 482 | // Also detect near-quadratics ahead of time. | 
|---|
| 483 | Sk2f tan0, tan1, c; | 
|---|
| 484 | get_cubic_tangents(p0, p1, p2, p3, &tan0, &tan1); | 
|---|
| 485 | if (is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan1, &c)) { | 
|---|
| 486 | this->appendQuadratics(p0, c, p3); | 
|---|
| 487 | return; | 
|---|
| 488 | } | 
|---|
| 489 |  | 
|---|
| 490 | double tt[2], ss[2], D[4]; | 
|---|
| 491 | fCurrCubicType = SkClassifyCubic(P, tt, ss, D); | 
|---|
| 492 | SkASSERT(!SkCubicIsDegenerate(fCurrCubicType)); | 
|---|
| 493 | Sk2f t = Sk2f(static_cast<float>(tt[0]), static_cast<float>(tt[1])); | 
|---|
| 494 | Sk2f s = Sk2f(static_cast<float>(ss[0]), static_cast<float>(ss[1])); | 
|---|
| 495 |  | 
|---|
| 496 | ExcludedTerm skipTerm = (std::abs(D[2]) > std::abs(D[1])) | 
|---|
| 497 | ? ExcludedTerm::kQuadraticTerm | 
|---|
| 498 | : ExcludedTerm::kLinearTerm; | 
|---|
| 499 | Sk2f C0 = SkNx_fma(Sk2f(3), p1 - p2, p3 - p0); | 
|---|
| 500 | Sk2f C1 = (ExcludedTerm::kLinearTerm == skipTerm | 
|---|
| 501 | ? SkNx_fma(Sk2f(-2), p1, p0 + p2) | 
|---|
| 502 | : p1 - p0) * 3; | 
|---|
| 503 | Sk2f C0x1 = C0 * SkNx_shuffle<1,0>(C1); | 
|---|
| 504 | float Cdet = C0x1[0] - C0x1[1]; | 
|---|
| 505 |  | 
|---|
| 506 | SkSTArray<4, float> chops; | 
|---|
| 507 | if (SkCubicType::kLoop != fCurrCubicType) { | 
|---|
| 508 | find_chops_around_inflection_points(inflectPad, t, s, C0, C1, skipTerm, Cdet, &chops); | 
|---|
| 509 | } else { | 
|---|
| 510 | find_chops_around_loop_intersection(loopIntersectPad, t, s, C0, C1, skipTerm, Cdet, &chops); | 
|---|
| 511 | } | 
|---|
| 512 | if (4 == chops.count() && chops[1] >= chops[2]) { | 
|---|
| 513 | // This just the means the KLM roots are so close that their paddings overlap. We will | 
|---|
| 514 | // approximate the entire middle section, but still have it chopped midway. For loops this | 
|---|
| 515 | // chop guarantees the append code only sees convex segments. Otherwise, it means we are (at | 
|---|
| 516 | // least almost) a cusp and the chop makes sure we get a sharp point. | 
|---|
| 517 | Sk2f ts = t * SkNx_shuffle<1,0>(s); | 
|---|
| 518 | chops[1] = chops[2] = (ts[0] + ts[1]) / (2*s[0]*s[1]); | 
|---|
| 519 | } | 
|---|
| 520 |  | 
|---|
| 521 | #ifdef SK_DEBUG | 
|---|
| 522 | for (int i = 1; i < chops.count(); ++i) { | 
|---|
| 523 | SkASSERT(chops[i] >= chops[i - 1]); | 
|---|
| 524 | } | 
|---|
| 525 | #endif | 
|---|
| 526 | this->appendCubics(AppendCubicMode::kLiteral, p0, p1, p2, p3, chops.begin(), chops.count()); | 
|---|
| 527 | } | 
|---|
| 528 |  | 
|---|
| 529 | static inline void chop_cubic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3, | 
|---|
| 530 | float T, Sk2f* ab, Sk2f* abc, Sk2f* abcd, Sk2f* bcd, Sk2f* cd) { | 
|---|
| 531 | Sk2f TT = T; | 
|---|
| 532 | *ab = lerp(p0, p1, TT); | 
|---|
| 533 | Sk2f bc = lerp(p1, p2, TT); | 
|---|
| 534 | *cd = lerp(p2, p3, TT); | 
|---|
| 535 | *abc = lerp(*ab, bc, TT); | 
|---|
| 536 | *bcd = lerp(bc, *cd, TT); | 
|---|
| 537 | *abcd = lerp(*abc, *bcd, TT); | 
|---|
| 538 | } | 
|---|
| 539 |  | 
|---|
| 540 | void GrCCFillGeometry::appendCubics(AppendCubicMode mode, const Sk2f& p0, const Sk2f& p1, | 
|---|
| 541 | const Sk2f& p2, const Sk2f& p3, const float chops[], | 
|---|
| 542 | int numChops, float localT0, float localT1) { | 
|---|
| 543 | if (numChops) { | 
|---|
| 544 | SkASSERT(numChops > 0); | 
|---|
| 545 | int midChopIdx = numChops/2; | 
|---|
| 546 | float T = chops[midChopIdx]; | 
|---|
| 547 | // Chops alternate between literal and approximate mode. | 
|---|
| 548 | AppendCubicMode rightMode = (AppendCubicMode)((bool)mode ^ (midChopIdx & 1) ^ 1); | 
|---|
| 549 |  | 
|---|
| 550 | if (T <= localT0) { | 
|---|
| 551 | // T is outside 0..1. Append the right side only. | 
|---|
| 552 | this->appendCubics(rightMode, p0, p1, p2, p3, &chops[midChopIdx + 1], | 
|---|
| 553 | numChops - midChopIdx - 1, localT0, localT1); | 
|---|
| 554 | return; | 
|---|
| 555 | } | 
|---|
| 556 |  | 
|---|
| 557 | if (T >= localT1) { | 
|---|
| 558 | // T is outside 0..1. Append the left side only. | 
|---|
| 559 | this->appendCubics(mode, p0, p1, p2, p3, chops, midChopIdx, localT0, localT1); | 
|---|
| 560 | return; | 
|---|
| 561 | } | 
|---|
| 562 |  | 
|---|
| 563 | float localT = (T - localT0) / (localT1 - localT0); | 
|---|
| 564 | Sk2f p01, p02, pT, p11, p12; | 
|---|
| 565 | chop_cubic(p0, p1, p2, p3, localT, &p01, &p02, &pT, &p11, &p12); | 
|---|
| 566 | this->appendCubics(mode, p0, p01, p02, pT, chops, midChopIdx, localT0, T); | 
|---|
| 567 | this->appendCubics(rightMode, pT, p11, p12, p3, &chops[midChopIdx + 1], | 
|---|
| 568 | numChops - midChopIdx - 1, T, localT1); | 
|---|
| 569 | return; | 
|---|
| 570 | } | 
|---|
| 571 |  | 
|---|
| 572 | this->appendCubics(mode, p0, p1, p2, p3); | 
|---|
| 573 | } | 
|---|
| 574 |  | 
|---|
| 575 | void GrCCFillGeometry::appendCubics(AppendCubicMode mode, const Sk2f& p0, const Sk2f& p1, | 
|---|
| 576 | const Sk2f& p2, const Sk2f& p3, int maxSubdivisions) { | 
|---|
| 577 | if (SkCubicType::kLoop != fCurrCubicType) { | 
|---|
| 578 | // Serpentines and cusps are always monotonic after chopping around inflection points. | 
|---|
| 579 | SkASSERT(!SkCubicIsDegenerate(fCurrCubicType)); | 
|---|
| 580 |  | 
|---|
| 581 | if (AppendCubicMode::kApproximate == mode) { | 
|---|
| 582 | // This section passes through an inflection point, so we can get away with a flat line. | 
|---|
| 583 | // This can cause some curves to feel slightly more flat when inspected rigorously back | 
|---|
| 584 | // and forth against another renderer, but for now this seems acceptable given the | 
|---|
| 585 | // simplicity. | 
|---|
| 586 | this->appendLine(p0, p3); | 
|---|
| 587 | return; | 
|---|
| 588 | } | 
|---|
| 589 | } else { | 
|---|
| 590 | Sk2f tan0, tan1; | 
|---|
| 591 | get_cubic_tangents(p0, p1, p2, p3, &tan0, &tan1); | 
|---|
| 592 |  | 
|---|
| 593 | if (maxSubdivisions && !is_convex_curve_monotonic(p0, tan0, p3, tan1)) { | 
|---|
| 594 | this->chopAndAppendCubicAtMidTangent(mode, p0, p1, p2, p3, tan0, tan1, | 
|---|
| 595 | maxSubdivisions - 1); | 
|---|
| 596 | return; | 
|---|
| 597 | } | 
|---|
| 598 |  | 
|---|
| 599 | if (AppendCubicMode::kApproximate == mode) { | 
|---|
| 600 | Sk2f c; | 
|---|
| 601 | if (!is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan1, &c) && maxSubdivisions) { | 
|---|
| 602 | this->chopAndAppendCubicAtMidTangent(mode, p0, p1, p2, p3, tan0, tan1, | 
|---|
| 603 | maxSubdivisions - 1); | 
|---|
| 604 | return; | 
|---|
| 605 | } | 
|---|
| 606 |  | 
|---|
| 607 | this->appendMonotonicQuadratic(p0, c, p3); | 
|---|
| 608 | return; | 
|---|
| 609 | } | 
|---|
| 610 | } | 
|---|
| 611 |  | 
|---|
| 612 | // Don't send curves to the GPU if we know they are nearly flat (or just very small). | 
|---|
| 613 | // Since the cubic segment is known to be convex at this point, our flatness check is simple. | 
|---|
| 614 | if (are_collinear(p0, (p1 + p2) * .5f, p3)) { | 
|---|
| 615 | this->appendLine(p0, p3); | 
|---|
| 616 | return; | 
|---|
| 617 | } | 
|---|
| 618 |  | 
|---|
| 619 | SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1])); | 
|---|
| 620 | SkASSERT((p0 != p3).anyTrue()); | 
|---|
| 621 | p1.store(&fPoints.push_back()); | 
|---|
| 622 | p2.store(&fPoints.push_back()); | 
|---|
| 623 | p3.store(&fPoints.push_back()); | 
|---|
| 624 | fVerbs.push_back(Verb::kMonotonicCubicTo); | 
|---|
| 625 | ++fCurrContourTallies.fCubics; | 
|---|
| 626 | } | 
|---|
| 627 |  | 
|---|
| 628 | // Given a convex curve segment with the following order-2 tangent function: | 
|---|
| 629 | // | 
|---|
| 630 | //                                                       |C2x  C2y| | 
|---|
| 631 | //     tan = some_scale * |dx/dt  dy/dt| = |t^2  t  1| * |C1x  C1y| | 
|---|
| 632 | //                                                       |C0x  C0y| | 
|---|
| 633 | // | 
|---|
| 634 | // This function finds the T value whose tangent angle is halfway between the tangents at T=0 and | 
|---|
| 635 | // T=1 (tan0 and tan1). | 
|---|
| 636 | static inline float find_midtangent(const Sk2f& tan0, const Sk2f& tan1, | 
|---|
| 637 | const Sk2f& C2, const Sk2f& C1, const Sk2f& C0) { | 
|---|
| 638 | // Tangents point in the direction of increasing T, so tan0 and -tan1 both point toward the | 
|---|
| 639 | // midtangent. 'n' will therefore bisect tan0 and -tan1, giving us the normal to the midtangent. | 
|---|
| 640 | // | 
|---|
| 641 | //     n dot midtangent = 0 | 
|---|
| 642 | // | 
|---|
| 643 | Sk2f n = normalize(tan0) - normalize(tan1); | 
|---|
| 644 |  | 
|---|
| 645 | // Find the T value at the midtangent. This is a simple quadratic equation: | 
|---|
| 646 | // | 
|---|
| 647 | //     midtangent dot n = 0 | 
|---|
| 648 | // | 
|---|
| 649 | //     (|t^2  t  1| * C) dot n = 0 | 
|---|
| 650 | // | 
|---|
| 651 | //     |t^2  t  1| dot C*n = 0 | 
|---|
| 652 | // | 
|---|
| 653 | // First find coeffs = C*n. | 
|---|
| 654 | Sk4f C[2]; | 
|---|
| 655 | Sk2f::Store4(C, C2, C1, C0, 0); | 
|---|
| 656 | Sk4f coeffs = C[0]*n[0] + C[1]*n[1]; | 
|---|
| 657 |  | 
|---|
| 658 | // Now solve the quadratic. | 
|---|
| 659 | float a = coeffs[0], b = coeffs[1], c = coeffs[2]; | 
|---|
| 660 | float discr = b*b - 4*a*c; | 
|---|
| 661 | if (discr < 0) { | 
|---|
| 662 | return 0; // This will only happen if the curve is a line. | 
|---|
| 663 | } | 
|---|
| 664 |  | 
|---|
| 665 | // The roots are q/a and c/q. Pick the one closer to T=.5. | 
|---|
| 666 | float q = -.5f * (b + copysignf(std::sqrt(discr), b)); | 
|---|
| 667 | float r = .5f*q*a; | 
|---|
| 668 | return std::abs(q*q - r) < std::abs(a*c - r) ? q/a : c/q; | 
|---|
| 669 | } | 
|---|
| 670 |  | 
|---|
| 671 | inline void GrCCFillGeometry::chopAndAppendCubicAtMidTangent(AppendCubicMode mode, const Sk2f& p0, | 
|---|
| 672 | const Sk2f& p1, const Sk2f& p2, | 
|---|
| 673 | const Sk2f& p3, const Sk2f& tan0, | 
|---|
| 674 | const Sk2f& tan1, | 
|---|
| 675 | int maxFutureSubdivisions) { | 
|---|
| 676 | float midT = find_midtangent(tan0, tan1, p3 + (p1 - p2)*3 - p0, | 
|---|
| 677 | (p0 - p1*2 + p2)*2, | 
|---|
| 678 | p1 - p0); | 
|---|
| 679 | // Use positive logic since NaN fails comparisons. (However midT should not be NaN since we cull | 
|---|
| 680 | // near-flat cubics in cubicTo().) | 
|---|
| 681 | if (!(midT > 0 && midT < 1)) { | 
|---|
| 682 | // The cubic is flat. Otherwise there would be a real midtangent inside T=0..1. | 
|---|
| 683 | this->appendLine(p0, p3); | 
|---|
| 684 | return; | 
|---|
| 685 | } | 
|---|
| 686 |  | 
|---|
| 687 | Sk2f p01, p02, pT, p11, p12; | 
|---|
| 688 | chop_cubic(p0, p1, p2, p3, midT, &p01, &p02, &pT, &p11, &p12); | 
|---|
| 689 | this->appendCubics(mode, p0, p01, p02, pT, maxFutureSubdivisions); | 
|---|
| 690 | this->appendCubics(mode, pT, p11, p12, p3, maxFutureSubdivisions); | 
|---|
| 691 | } | 
|---|
| 692 |  | 
|---|
| 693 | void GrCCFillGeometry::conicTo(const SkPoint P[3], float w) { | 
|---|
| 694 | SkASSERT(fBuildingContour); | 
|---|
| 695 | SkASSERT(P[0] == fPoints.back()); | 
|---|
| 696 | Sk2f p0 = Sk2f::Load(P); | 
|---|
| 697 | Sk2f p1 = Sk2f::Load(P+1); | 
|---|
| 698 | Sk2f p2 = Sk2f::Load(P+2); | 
|---|
| 699 |  | 
|---|
| 700 | Sk2f tan0 = p1 - p0; | 
|---|
| 701 | Sk2f tan1 = p2 - p1; | 
|---|
| 702 |  | 
|---|
| 703 | if (!is_convex_curve_monotonic(p0, tan0, p2, tan1)) { | 
|---|
| 704 | // The derivative of a conic has a cumbersome order-4 denominator. However, this isn't | 
|---|
| 705 | // necessary if we are only interested in a vector in the same *direction* as a given | 
|---|
| 706 | // tangent line. Since the denominator scales dx and dy uniformly, we can throw it out | 
|---|
| 707 | // completely after evaluating the derivative with the standard quotient rule. This leaves | 
|---|
| 708 | // us with a simpler quadratic function that we use to find the midtangent. | 
|---|
| 709 | float midT = find_midtangent(tan0, tan1, (w - 1) * (p2 - p0), | 
|---|
| 710 | (p2 - p0) - 2*w*(p1 - p0), | 
|---|
| 711 | w*(p1 - p0)); | 
|---|
| 712 | // Use positive logic since NaN fails comparisons. (However midT should not be NaN since we | 
|---|
| 713 | // cull near-linear conics above. And while w=0 is flat, it's not a line and has valid | 
|---|
| 714 | // midtangents.) | 
|---|
| 715 | if (!(midT > 0 && midT < 1)) { | 
|---|
| 716 | // The conic is flat. Otherwise there would be a real midtangent inside T=0..1. | 
|---|
| 717 | this->appendLine(p0, p2); | 
|---|
| 718 | return; | 
|---|
| 719 | } | 
|---|
| 720 |  | 
|---|
| 721 | // Chop the conic at midtangent to produce two monotonic segments. | 
|---|
| 722 | Sk4f p3d0 = Sk4f(p0[0], p0[1], 1, 0); | 
|---|
| 723 | Sk4f p3d1 = Sk4f(p1[0], p1[1], 1, 0) * w; | 
|---|
| 724 | Sk4f p3d2 = Sk4f(p2[0], p2[1], 1, 0); | 
|---|
| 725 | Sk4f midT4 = midT; | 
|---|
| 726 |  | 
|---|
| 727 | Sk4f p3d01 = lerp(p3d0, p3d1, midT4); | 
|---|
| 728 | Sk4f p3d12 = lerp(p3d1, p3d2, midT4); | 
|---|
| 729 | Sk4f p3d012 = lerp(p3d01, p3d12, midT4); | 
|---|
| 730 |  | 
|---|
| 731 | Sk2f midpoint = Sk2f(p3d012[0], p3d012[1]) / p3d012[2]; | 
|---|
| 732 | Sk2f ww = Sk2f(p3d01[2], p3d12[2]) * Sk2f(p3d012[2]).rsqrt(); | 
|---|
| 733 |  | 
|---|
| 734 | this->appendMonotonicConic(p0, Sk2f(p3d01[0], p3d01[1]) / p3d01[2], midpoint, ww[0]); | 
|---|
| 735 | this->appendMonotonicConic(midpoint, Sk2f(p3d12[0], p3d12[1]) / p3d12[2], p2, ww[1]); | 
|---|
| 736 | return; | 
|---|
| 737 | } | 
|---|
| 738 |  | 
|---|
| 739 | this->appendMonotonicConic(p0, p1, p2, w); | 
|---|
| 740 | } | 
|---|
| 741 |  | 
|---|
| 742 | void GrCCFillGeometry::appendMonotonicConic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, | 
|---|
| 743 | float w) { | 
|---|
| 744 | SkASSERT(w >= 0); | 
|---|
| 745 |  | 
|---|
| 746 | Sk2f base = p2 - p0; | 
|---|
| 747 | Sk2f baseAbs = base.abs(); | 
|---|
| 748 | float baseWidth = baseAbs[0] + baseAbs[1]; | 
|---|
| 749 |  | 
|---|
| 750 | // Find the height of the curve. Max height always occurs at T=.5 for conics. | 
|---|
| 751 | Sk2f d = (p1 - p0) * SkNx_shuffle<1,0>(base); | 
|---|
| 752 | float h1 = std::abs(d[1] - d[0]); // Height of p1 above the base. | 
|---|
| 753 | float ht = h1*w, hs = 1 + w; // Height of the conic = ht/hs. | 
|---|
| 754 |  | 
|---|
| 755 | // i.e. (ht/hs <= baseWidth * kFlatnessThreshold). Use "<=" in case base == 0. | 
|---|
| 756 | if (ht <= (baseWidth*hs) * kFlatnessThreshold) { | 
|---|
| 757 | // We are flat. (See rationale in are_collinear.) | 
|---|
| 758 | this->appendLine(p0, p2); | 
|---|
| 759 | return; | 
|---|
| 760 | } | 
|---|
| 761 |  | 
|---|
| 762 | // i.e. (w > 1 && h1 - ht/hs < baseWidth). | 
|---|
| 763 | if (w > 1 && h1*hs - ht < baseWidth*hs) { | 
|---|
| 764 | // If we get within 1px of p1 when w > 1, we will pick up artifacts from the implicit | 
|---|
| 765 | // function's reflection. Chop at max height (T=.5) and draw a triangle instead. | 
|---|
| 766 | Sk2f p1w = p1*w; | 
|---|
| 767 | Sk2f ab = p0 + p1w; | 
|---|
| 768 | Sk2f bc = p1w + p2; | 
|---|
| 769 | Sk2f highpoint = (ab + bc) / (2*(1 + w)); | 
|---|
| 770 | this->appendLine(p0, highpoint); | 
|---|
| 771 | this->appendLine(highpoint, p2); | 
|---|
| 772 | return; | 
|---|
| 773 | } | 
|---|
| 774 |  | 
|---|
| 775 | SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1])); | 
|---|
| 776 | SkASSERT((p0 != p2).anyTrue()); | 
|---|
| 777 | p1.store(&fPoints.push_back()); | 
|---|
| 778 | p2.store(&fPoints.push_back()); | 
|---|
| 779 | fConicWeights.push_back(w); | 
|---|
| 780 | fVerbs.push_back(Verb::kMonotonicConicTo); | 
|---|
| 781 | ++fCurrContourTallies.fConics; | 
|---|
| 782 | } | 
|---|
| 783 |  | 
|---|
| 784 | GrCCFillGeometry::PrimitiveTallies GrCCFillGeometry::endContour() { | 
|---|
| 785 | SkASSERT(fBuildingContour); | 
|---|
| 786 | SkASSERT(fVerbs.count() >= fCurrContourTallies.fTriangles); | 
|---|
| 787 |  | 
|---|
| 788 | // The fTriangles field currently contains this contour's starting verb index. We can now | 
|---|
| 789 | // use it to calculate the size of the contour's fan. | 
|---|
| 790 | int fanSize = fVerbs.count() - fCurrContourTallies.fTriangles; | 
|---|
| 791 | if (fPoints.back() == fCurrAnchorPoint) { | 
|---|
| 792 | --fanSize; | 
|---|
| 793 | fVerbs.push_back(Verb::kEndClosedContour); | 
|---|
| 794 | } else { | 
|---|
| 795 | fVerbs.push_back(Verb::kEndOpenContour); | 
|---|
| 796 | } | 
|---|
| 797 |  | 
|---|
| 798 | fCurrContourTallies.fTriangles = std::max(fanSize - 2, 0); | 
|---|
| 799 |  | 
|---|
| 800 | SkDEBUGCODE(fBuildingContour = false); | 
|---|
| 801 | return fCurrContourTallies; | 
|---|
| 802 | } | 
|---|
| 803 |  | 
|---|