1 | /* |
2 | * Copyright 2017 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "src/gpu/ccpr/GrCCFillGeometry.h" |
9 | |
10 | #include "include/gpu/GrTypes.h" |
11 | #include "src/core/SkGeometry.h" |
12 | #include <algorithm> |
13 | #include <cmath> |
14 | #include <cstdlib> |
15 | |
16 | static constexpr float kFlatnessThreshold = 1/16.f; // 1/16 of a pixel. |
17 | |
18 | void GrCCFillGeometry::beginPath() { |
19 | SkASSERT(!fBuildingContour); |
20 | fVerbs.push_back(Verb::kBeginPath); |
21 | } |
22 | |
23 | void GrCCFillGeometry::beginContour(const SkPoint& pt) { |
24 | SkASSERT(!fBuildingContour); |
25 | // Store the current verb count in the fTriangles field for now. When we close the contour we |
26 | // will use this value to calculate the actual number of triangles in its fan. |
27 | fCurrContourTallies = {fVerbs.count(), 0, 0, 0, 0}; |
28 | |
29 | fPoints.push_back(pt); |
30 | fVerbs.push_back(Verb::kBeginContour); |
31 | fCurrAnchorPoint = pt; |
32 | |
33 | SkDEBUGCODE(fBuildingContour = true); |
34 | } |
35 | |
36 | void GrCCFillGeometry::lineTo(const SkPoint P[2]) { |
37 | SkASSERT(fBuildingContour); |
38 | SkASSERT(P[0] == fPoints.back()); |
39 | Sk2f p0 = Sk2f::Load(P); |
40 | Sk2f p1 = Sk2f::Load(P+1); |
41 | this->appendLine(p0, p1); |
42 | } |
43 | |
44 | inline void GrCCFillGeometry::appendLine(const Sk2f& p0, const Sk2f& p1) { |
45 | SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1])); |
46 | if ((p0 == p1).allTrue()) { |
47 | return; |
48 | } |
49 | p1.store(&fPoints.push_back()); |
50 | fVerbs.push_back(Verb::kLineTo); |
51 | } |
52 | |
53 | static inline Sk2f normalize(const Sk2f& n) { |
54 | Sk2f nn = n*n; |
55 | return n * (nn + SkNx_shuffle<1,0>(nn)).rsqrt(); |
56 | } |
57 | |
58 | static inline float dot(const Sk2f& a, const Sk2f& b) { |
59 | float product[2]; |
60 | (a * b).store(product); |
61 | return product[0] + product[1]; |
62 | } |
63 | |
64 | static inline bool are_collinear(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, |
65 | float tolerance = kFlatnessThreshold) { |
66 | Sk2f l = p2 - p0; // Line from p0 -> p2. |
67 | |
68 | // lwidth = Manhattan width of l. |
69 | Sk2f labs = l.abs(); |
70 | float lwidth = labs[0] + labs[1]; |
71 | |
72 | // d = |p1 - p0| dot | l.y| |
73 | // |-l.x| = distance from p1 to l. |
74 | Sk2f dd = (p1 - p0) * SkNx_shuffle<1,0>(l); |
75 | float d = dd[0] - dd[1]; |
76 | |
77 | // We are collinear if a box with radius "tolerance", centered on p1, touches the line l. |
78 | // To decide this, we check if the distance from p1 to the line is less than the distance from |
79 | // p1 to the far corner of this imaginary box, along that same normal vector. |
80 | // The far corner of the box can be found at "p1 + sign(n) * tolerance", where n is normal to l: |
81 | // |
82 | // abs(dot(p1 - p0, n)) <= dot(sign(n) * tolerance, n) |
83 | // |
84 | // Which reduces to: |
85 | // |
86 | // abs(d) <= (n.x * sign(n.x) + n.y * sign(n.y)) * tolerance |
87 | // abs(d) <= (abs(n.x) + abs(n.y)) * tolerance |
88 | // |
89 | // Use "<=" in case l == 0. |
90 | return std::abs(d) <= lwidth * tolerance; |
91 | } |
92 | |
93 | static inline bool are_collinear(const SkPoint P[4], float tolerance = kFlatnessThreshold) { |
94 | Sk4f Px, Py; // |Px Py| |p0 - p3| |
95 | Sk4f::Load2(P, &Px, &Py); // |. . | = |p1 - p3| |
96 | Px -= Px[3]; // |. . | |p2 - p3| |
97 | Py -= Py[3]; // |. . | | 0 | |
98 | |
99 | // Find [lx, ly] = the line from p3 to the furthest-away point from p3. |
100 | Sk4f Pwidth = Px.abs() + Py.abs(); // Pwidth = Manhattan width of each point. |
101 | int lidx = Pwidth[0] > Pwidth[1] ? 0 : 1; |
102 | lidx = Pwidth[lidx] > Pwidth[2] ? lidx : 2; |
103 | float lx = Px[lidx], ly = Py[lidx]; |
104 | float lwidth = Pwidth[lidx]; // lwidth = Manhattan width of [lx, ly]. |
105 | |
106 | // |Px Py| |
107 | // d = |. . | * | ly| = distances from each point to l (two of the distances will be zero). |
108 | // |. . | |-lx| |
109 | // |. . | |
110 | Sk4f d = Px*ly - Py*lx; |
111 | |
112 | // We are collinear if boxes with radius "tolerance", centered on all 4 points all touch line l. |
113 | // (See the rationale for this formula in the above, 3-point version of this function.) |
114 | // Use "<=" in case l == 0. |
115 | return (d.abs() <= lwidth * tolerance).allTrue(); |
116 | } |
117 | |
118 | // Returns whether the (convex) curve segment is monotonic with respect to [endPt - startPt]. |
119 | static inline bool is_convex_curve_monotonic(const Sk2f& startPt, const Sk2f& tan0, |
120 | const Sk2f& endPt, const Sk2f& tan1) { |
121 | Sk2f v = endPt - startPt; |
122 | float dot0 = dot(tan0, v); |
123 | float dot1 = dot(tan1, v); |
124 | |
125 | // A small, negative tolerance handles floating-point error in the case when one tangent |
126 | // approaches 0 length, meaning the (convex) curve segment is effectively a flat line. |
127 | float tolerance = -std::max(std::abs(dot0), std::abs(dot1)) * SK_ScalarNearlyZero; |
128 | return dot0 >= tolerance && dot1 >= tolerance; |
129 | } |
130 | |
131 | template<int N> static inline SkNx<N,float> lerp(const SkNx<N,float>& a, const SkNx<N,float>& b, |
132 | const SkNx<N,float>& t) { |
133 | return SkNx_fma(t, b - a, a); |
134 | } |
135 | |
136 | void GrCCFillGeometry::quadraticTo(const SkPoint P[3]) { |
137 | SkASSERT(fBuildingContour); |
138 | SkASSERT(P[0] == fPoints.back()); |
139 | Sk2f p0 = Sk2f::Load(P); |
140 | Sk2f p1 = Sk2f::Load(P+1); |
141 | Sk2f p2 = Sk2f::Load(P+2); |
142 | |
143 | // Don't crunch on the curve if it is nearly flat (or just very small). Flat curves can break |
144 | // The monotonic chopping math. |
145 | if (are_collinear(p0, p1, p2)) { |
146 | this->appendLine(p0, p2); |
147 | return; |
148 | } |
149 | |
150 | this->appendQuadratics(p0, p1, p2); |
151 | } |
152 | |
153 | inline void GrCCFillGeometry::appendQuadratics(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2) { |
154 | Sk2f tan0 = p1 - p0; |
155 | Sk2f tan1 = p2 - p1; |
156 | |
157 | // This should almost always be this case for well-behaved curves in the real world. |
158 | if (is_convex_curve_monotonic(p0, tan0, p2, tan1)) { |
159 | this->appendMonotonicQuadratic(p0, p1, p2); |
160 | return; |
161 | } |
162 | |
163 | // Chop the curve into two segments with equal curvature. To do this we find the T value whose |
164 | // tangent angle is halfway between tan0 and tan1. |
165 | Sk2f n = normalize(tan0) - normalize(tan1); |
166 | |
167 | // The midtangent can be found where (dQ(t) dot n) = 0: |
168 | // |
169 | // 0 = (dQ(t) dot n) = | 2*t 1 | * | p0 - 2*p1 + p2 | * | n | |
170 | // | -2*p0 + 2*p1 | | . | |
171 | // |
172 | // = | 2*t 1 | * | tan1 - tan0 | * | n | |
173 | // | 2*tan0 | | . | |
174 | // |
175 | // = 2*t * ((tan1 - tan0) dot n) + (2*tan0 dot n) |
176 | // |
177 | // t = (tan0 dot n) / ((tan0 - tan1) dot n) |
178 | Sk2f dQ1n = (tan0 - tan1) * n; |
179 | Sk2f dQ0n = tan0 * n; |
180 | Sk2f t = (dQ0n + SkNx_shuffle<1,0>(dQ0n)) / (dQ1n + SkNx_shuffle<1,0>(dQ1n)); |
181 | t = Sk2f::Min(Sk2f::Max(t, 0), 1); // Clamp for FP error. |
182 | |
183 | Sk2f p01 = SkNx_fma(t, tan0, p0); |
184 | Sk2f p12 = SkNx_fma(t, tan1, p1); |
185 | Sk2f p012 = lerp(p01, p12, t); |
186 | |
187 | this->appendMonotonicQuadratic(p0, p01, p012); |
188 | this->appendMonotonicQuadratic(p012, p12, p2); |
189 | } |
190 | |
191 | inline void GrCCFillGeometry::appendMonotonicQuadratic(const Sk2f& p0, const Sk2f& p1, |
192 | const Sk2f& p2) { |
193 | // Don't send curves to the GPU if we know they are nearly flat (or just very small). |
194 | if (are_collinear(p0, p1, p2)) { |
195 | this->appendLine(p0, p2); |
196 | return; |
197 | } |
198 | |
199 | SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1])); |
200 | SkASSERT((p0 != p2).anyTrue()); |
201 | p1.store(&fPoints.push_back()); |
202 | p2.store(&fPoints.push_back()); |
203 | fVerbs.push_back(Verb::kMonotonicQuadraticTo); |
204 | ++fCurrContourTallies.fQuadratics; |
205 | } |
206 | |
207 | static inline Sk2f first_unless_nearly_zero(const Sk2f& a, const Sk2f& b) { |
208 | Sk2f aa = a*a; |
209 | aa += SkNx_shuffle<1,0>(aa); |
210 | SkASSERT(aa[0] == aa[1]); |
211 | |
212 | Sk2f bb = b*b; |
213 | bb += SkNx_shuffle<1,0>(bb); |
214 | SkASSERT(bb[0] == bb[1]); |
215 | |
216 | return (aa > bb * SK_ScalarNearlyZero).thenElse(a, b); |
217 | } |
218 | |
219 | static inline void get_cubic_tangents(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, |
220 | const Sk2f& p3, Sk2f* tan0, Sk2f* tan1) { |
221 | *tan0 = first_unless_nearly_zero(p1 - p0, p2 - p0); |
222 | *tan1 = first_unless_nearly_zero(p3 - p2, p3 - p1); |
223 | } |
224 | |
225 | static inline bool is_cubic_nearly_quadratic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, |
226 | const Sk2f& p3, const Sk2f& tan0, const Sk2f& tan1, |
227 | Sk2f* c) { |
228 | Sk2f c1 = SkNx_fma(Sk2f(1.5f), tan0, p0); |
229 | Sk2f c2 = SkNx_fma(Sk2f(-1.5f), tan1, p3); |
230 | *c = (c1 + c2) * .5f; // Hopefully optimized out if not used? |
231 | return ((c1 - c2).abs() <= 1).allTrue(); |
232 | } |
233 | |
234 | enum class ExcludedTerm : bool { |
235 | kQuadraticTerm, |
236 | kLinearTerm |
237 | }; |
238 | |
239 | // Finds where to chop a non-loop around its inflection points. The resulting cubic segments will be |
240 | // chopped such that a box of radius 'padRadius', centered at any point along the curve segment, is |
241 | // guaranteed to not cross the tangent lines at the inflection points (a.k.a lines L & M). |
242 | // |
243 | // 'chops' will be filled with 0, 2, or 4 T values. The segments between T0..T1 and T2..T3 must be |
244 | // drawn with flat lines instead of cubics. |
245 | // |
246 | // A serpentine cubic has two inflection points, so this method takes Sk2f and computes the padding |
247 | // for both in SIMD. |
248 | static inline void find_chops_around_inflection_points(float padRadius, Sk2f tl, Sk2f sl, |
249 | const Sk2f& C0, const Sk2f& C1, |
250 | ExcludedTerm skipTerm, float Cdet, |
251 | SkSTArray<4, float>* chops) { |
252 | SkASSERT(chops->empty()); |
253 | SkASSERT(padRadius >= 0); |
254 | |
255 | padRadius /= std::abs(Cdet); // Scale this single value rather than all of C^-1 later on. |
256 | |
257 | // The homogeneous parametric functions for distance from lines L & M are: |
258 | // |
259 | // l(t,s) = (t*sl - s*tl)^3 |
260 | // m(t,s) = (t*sm - s*tm)^3 |
261 | // |
262 | // See "Resolution Independent Curve Rendering using Programmable Graphics Hardware", |
263 | // 4.3 Finding klmn: |
264 | // |
265 | // https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf |
266 | // |
267 | // From here on we use Sk2f with "L" names, but the second lane will be for line M. |
268 | tl = (sl > 0).thenElse(tl, -tl); // Tl=tl/sl is the triple root of l(t,s). Normalize so s >= 0. |
269 | sl = sl.abs(); |
270 | |
271 | // Convert l(t,s), m(t,s) to power-basis form: |
272 | // |
273 | // | l3 m3 | |
274 | // |l(t,s) m(t,s)| = |t^3 t^2*s t*s^2 s^3| * | l2 m2 | |
275 | // | l1 m1 | |
276 | // | l0 m0 | |
277 | // |
278 | Sk2f l3 = sl*sl*sl; |
279 | Sk2f l2or1 = (ExcludedTerm::kLinearTerm == skipTerm) ? sl*sl*tl*-3 : sl*tl*tl*3; |
280 | |
281 | // The equation for line L can be found as follows: |
282 | // |
283 | // L = C^-1 * (l excluding skipTerm) |
284 | // |
285 | // (See comments for GrPathUtils::calcCubicInverseTransposePowerBasisMatrix.) |
286 | // We are only interested in the normal to L, so only need the upper 2x2 of C^-1. And rather |
287 | // than divide by determinant(C) here, we have already performed this divide on padRadius. |
288 | Sk2f Lx = C1[1]*l3 - C0[1]*l2or1; |
289 | Sk2f Ly = -C1[0]*l3 + C0[0]*l2or1; |
290 | |
291 | // A box of radius "padRadius" is touching line L if "center dot L" is less than the Manhattan |
292 | // with of L. (See rationale in are_collinear.) |
293 | Sk2f Lwidth = Lx.abs() + Ly.abs(); |
294 | Sk2f pad = Lwidth * padRadius; |
295 | |
296 | // Will T=(t + cbrt(pad))/s be greater than 0? No need to solve roots outside T=0..1. |
297 | Sk2f insideLeftPad = pad + tl*tl*tl; |
298 | |
299 | // Will T=(t - cbrt(pad))/s be less than 1? No need to solve roots outside T=0..1. |
300 | Sk2f tms = tl - sl; |
301 | Sk2f insideRightPad = pad - tms*tms*tms; |
302 | |
303 | // Solve for the T values where abs(l(T)) = pad. |
304 | if (insideLeftPad[0] > 0 && insideRightPad[0] > 0) { |
305 | float padT = cbrtf(pad[0]); |
306 | Sk2f pts = (tl[0] + Sk2f(-padT, +padT)) / sl[0]; |
307 | pts.store(chops->push_back_n(2)); |
308 | } |
309 | |
310 | // Solve for the T values where abs(m(T)) = pad. |
311 | if (insideLeftPad[1] > 0 && insideRightPad[1] > 0) { |
312 | float padT = cbrtf(pad[1]); |
313 | Sk2f pts = (tl[1] + Sk2f(-padT, +padT)) / sl[1]; |
314 | pts.store(chops->push_back_n(2)); |
315 | } |
316 | } |
317 | |
318 | static inline void swap_if_greater(float& a, float& b) { |
319 | if (a > b) { |
320 | std::swap(a, b); |
321 | } |
322 | } |
323 | |
324 | // Finds where to chop a non-loop around its intersection point. The resulting cubic segments will |
325 | // be chopped such that a box of radius 'padRadius', centered at any point along the curve segment, |
326 | // is guaranteed to not cross the tangent lines at the intersection point (a.k.a lines L & M). |
327 | // |
328 | // 'chops' will be filled with 0, 2, or 4 T values. The segments between T0..T1 and T2..T3 must be |
329 | // drawn with quadratic splines instead of cubics. |
330 | // |
331 | // A loop intersection falls at two different T values, so this method takes Sk2f and computes the |
332 | // padding for both in SIMD. |
333 | static inline void find_chops_around_loop_intersection(float padRadius, Sk2f t2, Sk2f s2, |
334 | const Sk2f& C0, const Sk2f& C1, |
335 | ExcludedTerm skipTerm, float Cdet, |
336 | SkSTArray<4, float>* chops) { |
337 | SkASSERT(chops->empty()); |
338 | SkASSERT(padRadius >= 0); |
339 | |
340 | padRadius /= std::abs(Cdet); // Scale this single value rather than all of C^-1 later on. |
341 | |
342 | // The parametric functions for distance from lines L & M are: |
343 | // |
344 | // l(T) = (T - Td)^2 * (T - Te) |
345 | // m(T) = (T - Td) * (T - Te)^2 |
346 | // |
347 | // See "Resolution Independent Curve Rendering using Programmable Graphics Hardware", |
348 | // 4.3 Finding klmn: |
349 | // |
350 | // https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf |
351 | Sk2f T2 = t2/s2; // T2 is the double root of l(T). |
352 | Sk2f T1 = SkNx_shuffle<1,0>(T2); // T1 is the other root of l(T). |
353 | |
354 | // Convert l(T), m(T) to power-basis form: |
355 | // |
356 | // | 1 1 | |
357 | // |l(T) m(T)| = |T^3 T^2 T 1| * | l2 m2 | |
358 | // | l1 m1 | |
359 | // | l0 m0 | |
360 | // |
361 | // From here on we use Sk2f with "L" names, but the second lane will be for line M. |
362 | Sk2f l2 = SkNx_fma(Sk2f(-2), T2, -T1); |
363 | Sk2f l1 = T2 * SkNx_fma(Sk2f(2), T1, T2); |
364 | Sk2f l0 = -T2*T2*T1; |
365 | |
366 | // The equation for line L can be found as follows: |
367 | // |
368 | // L = C^-1 * (l excluding skipTerm) |
369 | // |
370 | // (See comments for GrPathUtils::calcCubicInverseTransposePowerBasisMatrix.) |
371 | // We are only interested in the normal to L, so only need the upper 2x2 of C^-1. And rather |
372 | // than divide by determinant(C) here, we have already performed this divide on padRadius. |
373 | Sk2f l2or1 = (ExcludedTerm::kLinearTerm == skipTerm) ? l2 : l1; |
374 | Sk2f Lx = -C0[1]*l2or1 + C1[1]; // l3 is always 1. |
375 | Sk2f Ly = C0[0]*l2or1 - C1[0]; |
376 | |
377 | // A box of radius "padRadius" is touching line L if "center dot L" is less than the Manhattan |
378 | // with of L. (See rationale in are_collinear.) |
379 | Sk2f Lwidth = Lx.abs() + Ly.abs(); |
380 | Sk2f pad = Lwidth * padRadius; |
381 | |
382 | // Is l(T=0) outside the padding around line L? |
383 | Sk2f lT0 = l0; // l(T=0) = |0 0 0 1| dot |1 l2 l1 l0| = l0 |
384 | Sk2f outsideT0 = lT0.abs() - pad; |
385 | |
386 | // Is l(T=1) outside the padding around line L? |
387 | Sk2f lT1 = (Sk2f(1) + l2 + l1 + l0).abs(); // l(T=1) = |1 1 1 1| dot |1 l2 l1 l0| |
388 | Sk2f outsideT1 = lT1.abs() - pad; |
389 | |
390 | // Values for solving the cubic. |
391 | Sk2f p, q, qqq, discr, numRoots, D; |
392 | bool hasDiscr = false; |
393 | |
394 | // Values for calculating one root (rarely needed). |
395 | Sk2f R, QQ; |
396 | bool hasOneRootVals = false; |
397 | |
398 | // Values for calculating three roots. |
399 | Sk2f P, cosTheta3; |
400 | bool hasThreeRootVals = false; |
401 | |
402 | // Solve for the T values where l(T) = +pad and m(T) = -pad. |
403 | for (int i = 0; i < 2; ++i) { |
404 | float T = T2[i]; // T is the point we are chopping around. |
405 | if ((T < 0 && outsideT0[i] >= 0) || (T > 1 && outsideT1[i] >= 0)) { |
406 | // The padding around T is completely out of range. No point solving for it. |
407 | continue; |
408 | } |
409 | |
410 | if (!hasDiscr) { |
411 | p = Sk2f(+.5f, -.5f) * pad; |
412 | q = (1.f/3) * (T2 - T1); |
413 | qqq = q*q*q; |
414 | discr = qqq*p*2 + p*p; |
415 | numRoots = (discr < 0).thenElse(3, 1); |
416 | D = T2 - q; |
417 | hasDiscr = true; |
418 | } |
419 | |
420 | if (1 == numRoots[i]) { |
421 | if (!hasOneRootVals) { |
422 | Sk2f r = qqq + p; |
423 | Sk2f s = r.abs() + discr.sqrt(); |
424 | R = (r > 0).thenElse(-s, s); |
425 | QQ = q*q; |
426 | hasOneRootVals = true; |
427 | } |
428 | |
429 | float A = cbrtf(R[i]); |
430 | float B = A != 0 ? QQ[i]/A : 0; |
431 | // When there is only one root, ine L chops from root..1, line M chops from 0..root. |
432 | if (1 == i) { |
433 | chops->push_back(0); |
434 | } |
435 | chops->push_back(A + B + D[i]); |
436 | if (0 == i) { |
437 | chops->push_back(1); |
438 | } |
439 | continue; |
440 | } |
441 | |
442 | if (!hasThreeRootVals) { |
443 | P = q.abs() * -2; |
444 | cosTheta3 = (q >= 0).thenElse(1, -1) + p / qqq.abs(); |
445 | hasThreeRootVals = true; |
446 | } |
447 | |
448 | static constexpr float k2PiOver3 = 2 * SK_ScalarPI / 3; |
449 | float theta = std::acos(cosTheta3[i]) * (1.f/3); |
450 | float roots[3] = {P[i] * std::cos(theta) + D[i], |
451 | P[i] * std::cos(theta + k2PiOver3) + D[i], |
452 | P[i] * std::cos(theta - k2PiOver3) + D[i]}; |
453 | |
454 | // Sort the three roots. |
455 | swap_if_greater(roots[0], roots[1]); |
456 | swap_if_greater(roots[1], roots[2]); |
457 | swap_if_greater(roots[0], roots[1]); |
458 | |
459 | // Line L chops around the first 2 roots, line M chops around the second 2. |
460 | chops->push_back_n(2, &roots[i]); |
461 | } |
462 | } |
463 | |
464 | void GrCCFillGeometry::cubicTo(const SkPoint P[4], float inflectPad, float loopIntersectPad) { |
465 | SkASSERT(fBuildingContour); |
466 | SkASSERT(P[0] == fPoints.back()); |
467 | |
468 | // Don't crunch on the curve or inflate geometry if it is nearly flat (or just very small). |
469 | // Flat curves can break the math below. |
470 | if (are_collinear(P)) { |
471 | Sk2f p0 = Sk2f::Load(P); |
472 | Sk2f p3 = Sk2f::Load(P+3); |
473 | this->appendLine(p0, p3); |
474 | return; |
475 | } |
476 | |
477 | Sk2f p0 = Sk2f::Load(P); |
478 | Sk2f p1 = Sk2f::Load(P+1); |
479 | Sk2f p2 = Sk2f::Load(P+2); |
480 | Sk2f p3 = Sk2f::Load(P+3); |
481 | |
482 | // Also detect near-quadratics ahead of time. |
483 | Sk2f tan0, tan1, c; |
484 | get_cubic_tangents(p0, p1, p2, p3, &tan0, &tan1); |
485 | if (is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan1, &c)) { |
486 | this->appendQuadratics(p0, c, p3); |
487 | return; |
488 | } |
489 | |
490 | double tt[2], ss[2], D[4]; |
491 | fCurrCubicType = SkClassifyCubic(P, tt, ss, D); |
492 | SkASSERT(!SkCubicIsDegenerate(fCurrCubicType)); |
493 | Sk2f t = Sk2f(static_cast<float>(tt[0]), static_cast<float>(tt[1])); |
494 | Sk2f s = Sk2f(static_cast<float>(ss[0]), static_cast<float>(ss[1])); |
495 | |
496 | ExcludedTerm skipTerm = (std::abs(D[2]) > std::abs(D[1])) |
497 | ? ExcludedTerm::kQuadraticTerm |
498 | : ExcludedTerm::kLinearTerm; |
499 | Sk2f C0 = SkNx_fma(Sk2f(3), p1 - p2, p3 - p0); |
500 | Sk2f C1 = (ExcludedTerm::kLinearTerm == skipTerm |
501 | ? SkNx_fma(Sk2f(-2), p1, p0 + p2) |
502 | : p1 - p0) * 3; |
503 | Sk2f C0x1 = C0 * SkNx_shuffle<1,0>(C1); |
504 | float Cdet = C0x1[0] - C0x1[1]; |
505 | |
506 | SkSTArray<4, float> chops; |
507 | if (SkCubicType::kLoop != fCurrCubicType) { |
508 | find_chops_around_inflection_points(inflectPad, t, s, C0, C1, skipTerm, Cdet, &chops); |
509 | } else { |
510 | find_chops_around_loop_intersection(loopIntersectPad, t, s, C0, C1, skipTerm, Cdet, &chops); |
511 | } |
512 | if (4 == chops.count() && chops[1] >= chops[2]) { |
513 | // This just the means the KLM roots are so close that their paddings overlap. We will |
514 | // approximate the entire middle section, but still have it chopped midway. For loops this |
515 | // chop guarantees the append code only sees convex segments. Otherwise, it means we are (at |
516 | // least almost) a cusp and the chop makes sure we get a sharp point. |
517 | Sk2f ts = t * SkNx_shuffle<1,0>(s); |
518 | chops[1] = chops[2] = (ts[0] + ts[1]) / (2*s[0]*s[1]); |
519 | } |
520 | |
521 | #ifdef SK_DEBUG |
522 | for (int i = 1; i < chops.count(); ++i) { |
523 | SkASSERT(chops[i] >= chops[i - 1]); |
524 | } |
525 | #endif |
526 | this->appendCubics(AppendCubicMode::kLiteral, p0, p1, p2, p3, chops.begin(), chops.count()); |
527 | } |
528 | |
529 | static inline void chop_cubic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, const Sk2f& p3, |
530 | float T, Sk2f* ab, Sk2f* abc, Sk2f* abcd, Sk2f* bcd, Sk2f* cd) { |
531 | Sk2f TT = T; |
532 | *ab = lerp(p0, p1, TT); |
533 | Sk2f bc = lerp(p1, p2, TT); |
534 | *cd = lerp(p2, p3, TT); |
535 | *abc = lerp(*ab, bc, TT); |
536 | *bcd = lerp(bc, *cd, TT); |
537 | *abcd = lerp(*abc, *bcd, TT); |
538 | } |
539 | |
540 | void GrCCFillGeometry::appendCubics(AppendCubicMode mode, const Sk2f& p0, const Sk2f& p1, |
541 | const Sk2f& p2, const Sk2f& p3, const float chops[], |
542 | int numChops, float localT0, float localT1) { |
543 | if (numChops) { |
544 | SkASSERT(numChops > 0); |
545 | int midChopIdx = numChops/2; |
546 | float T = chops[midChopIdx]; |
547 | // Chops alternate between literal and approximate mode. |
548 | AppendCubicMode rightMode = (AppendCubicMode)((bool)mode ^ (midChopIdx & 1) ^ 1); |
549 | |
550 | if (T <= localT0) { |
551 | // T is outside 0..1. Append the right side only. |
552 | this->appendCubics(rightMode, p0, p1, p2, p3, &chops[midChopIdx + 1], |
553 | numChops - midChopIdx - 1, localT0, localT1); |
554 | return; |
555 | } |
556 | |
557 | if (T >= localT1) { |
558 | // T is outside 0..1. Append the left side only. |
559 | this->appendCubics(mode, p0, p1, p2, p3, chops, midChopIdx, localT0, localT1); |
560 | return; |
561 | } |
562 | |
563 | float localT = (T - localT0) / (localT1 - localT0); |
564 | Sk2f p01, p02, pT, p11, p12; |
565 | chop_cubic(p0, p1, p2, p3, localT, &p01, &p02, &pT, &p11, &p12); |
566 | this->appendCubics(mode, p0, p01, p02, pT, chops, midChopIdx, localT0, T); |
567 | this->appendCubics(rightMode, pT, p11, p12, p3, &chops[midChopIdx + 1], |
568 | numChops - midChopIdx - 1, T, localT1); |
569 | return; |
570 | } |
571 | |
572 | this->appendCubics(mode, p0, p1, p2, p3); |
573 | } |
574 | |
575 | void GrCCFillGeometry::appendCubics(AppendCubicMode mode, const Sk2f& p0, const Sk2f& p1, |
576 | const Sk2f& p2, const Sk2f& p3, int maxSubdivisions) { |
577 | if (SkCubicType::kLoop != fCurrCubicType) { |
578 | // Serpentines and cusps are always monotonic after chopping around inflection points. |
579 | SkASSERT(!SkCubicIsDegenerate(fCurrCubicType)); |
580 | |
581 | if (AppendCubicMode::kApproximate == mode) { |
582 | // This section passes through an inflection point, so we can get away with a flat line. |
583 | // This can cause some curves to feel slightly more flat when inspected rigorously back |
584 | // and forth against another renderer, but for now this seems acceptable given the |
585 | // simplicity. |
586 | this->appendLine(p0, p3); |
587 | return; |
588 | } |
589 | } else { |
590 | Sk2f tan0, tan1; |
591 | get_cubic_tangents(p0, p1, p2, p3, &tan0, &tan1); |
592 | |
593 | if (maxSubdivisions && !is_convex_curve_monotonic(p0, tan0, p3, tan1)) { |
594 | this->chopAndAppendCubicAtMidTangent(mode, p0, p1, p2, p3, tan0, tan1, |
595 | maxSubdivisions - 1); |
596 | return; |
597 | } |
598 | |
599 | if (AppendCubicMode::kApproximate == mode) { |
600 | Sk2f c; |
601 | if (!is_cubic_nearly_quadratic(p0, p1, p2, p3, tan0, tan1, &c) && maxSubdivisions) { |
602 | this->chopAndAppendCubicAtMidTangent(mode, p0, p1, p2, p3, tan0, tan1, |
603 | maxSubdivisions - 1); |
604 | return; |
605 | } |
606 | |
607 | this->appendMonotonicQuadratic(p0, c, p3); |
608 | return; |
609 | } |
610 | } |
611 | |
612 | // Don't send curves to the GPU if we know they are nearly flat (or just very small). |
613 | // Since the cubic segment is known to be convex at this point, our flatness check is simple. |
614 | if (are_collinear(p0, (p1 + p2) * .5f, p3)) { |
615 | this->appendLine(p0, p3); |
616 | return; |
617 | } |
618 | |
619 | SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1])); |
620 | SkASSERT((p0 != p3).anyTrue()); |
621 | p1.store(&fPoints.push_back()); |
622 | p2.store(&fPoints.push_back()); |
623 | p3.store(&fPoints.push_back()); |
624 | fVerbs.push_back(Verb::kMonotonicCubicTo); |
625 | ++fCurrContourTallies.fCubics; |
626 | } |
627 | |
628 | // Given a convex curve segment with the following order-2 tangent function: |
629 | // |
630 | // |C2x C2y| |
631 | // tan = some_scale * |dx/dt dy/dt| = |t^2 t 1| * |C1x C1y| |
632 | // |C0x C0y| |
633 | // |
634 | // This function finds the T value whose tangent angle is halfway between the tangents at T=0 and |
635 | // T=1 (tan0 and tan1). |
636 | static inline float find_midtangent(const Sk2f& tan0, const Sk2f& tan1, |
637 | const Sk2f& C2, const Sk2f& C1, const Sk2f& C0) { |
638 | // Tangents point in the direction of increasing T, so tan0 and -tan1 both point toward the |
639 | // midtangent. 'n' will therefore bisect tan0 and -tan1, giving us the normal to the midtangent. |
640 | // |
641 | // n dot midtangent = 0 |
642 | // |
643 | Sk2f n = normalize(tan0) - normalize(tan1); |
644 | |
645 | // Find the T value at the midtangent. This is a simple quadratic equation: |
646 | // |
647 | // midtangent dot n = 0 |
648 | // |
649 | // (|t^2 t 1| * C) dot n = 0 |
650 | // |
651 | // |t^2 t 1| dot C*n = 0 |
652 | // |
653 | // First find coeffs = C*n. |
654 | Sk4f C[2]; |
655 | Sk2f::Store4(C, C2, C1, C0, 0); |
656 | Sk4f coeffs = C[0]*n[0] + C[1]*n[1]; |
657 | |
658 | // Now solve the quadratic. |
659 | float a = coeffs[0], b = coeffs[1], c = coeffs[2]; |
660 | float discr = b*b - 4*a*c; |
661 | if (discr < 0) { |
662 | return 0; // This will only happen if the curve is a line. |
663 | } |
664 | |
665 | // The roots are q/a and c/q. Pick the one closer to T=.5. |
666 | float q = -.5f * (b + copysignf(std::sqrt(discr), b)); |
667 | float r = .5f*q*a; |
668 | return std::abs(q*q - r) < std::abs(a*c - r) ? q/a : c/q; |
669 | } |
670 | |
671 | inline void GrCCFillGeometry::chopAndAppendCubicAtMidTangent(AppendCubicMode mode, const Sk2f& p0, |
672 | const Sk2f& p1, const Sk2f& p2, |
673 | const Sk2f& p3, const Sk2f& tan0, |
674 | const Sk2f& tan1, |
675 | int maxFutureSubdivisions) { |
676 | float midT = find_midtangent(tan0, tan1, p3 + (p1 - p2)*3 - p0, |
677 | (p0 - p1*2 + p2)*2, |
678 | p1 - p0); |
679 | // Use positive logic since NaN fails comparisons. (However midT should not be NaN since we cull |
680 | // near-flat cubics in cubicTo().) |
681 | if (!(midT > 0 && midT < 1)) { |
682 | // The cubic is flat. Otherwise there would be a real midtangent inside T=0..1. |
683 | this->appendLine(p0, p3); |
684 | return; |
685 | } |
686 | |
687 | Sk2f p01, p02, pT, p11, p12; |
688 | chop_cubic(p0, p1, p2, p3, midT, &p01, &p02, &pT, &p11, &p12); |
689 | this->appendCubics(mode, p0, p01, p02, pT, maxFutureSubdivisions); |
690 | this->appendCubics(mode, pT, p11, p12, p3, maxFutureSubdivisions); |
691 | } |
692 | |
693 | void GrCCFillGeometry::conicTo(const SkPoint P[3], float w) { |
694 | SkASSERT(fBuildingContour); |
695 | SkASSERT(P[0] == fPoints.back()); |
696 | Sk2f p0 = Sk2f::Load(P); |
697 | Sk2f p1 = Sk2f::Load(P+1); |
698 | Sk2f p2 = Sk2f::Load(P+2); |
699 | |
700 | Sk2f tan0 = p1 - p0; |
701 | Sk2f tan1 = p2 - p1; |
702 | |
703 | if (!is_convex_curve_monotonic(p0, tan0, p2, tan1)) { |
704 | // The derivative of a conic has a cumbersome order-4 denominator. However, this isn't |
705 | // necessary if we are only interested in a vector in the same *direction* as a given |
706 | // tangent line. Since the denominator scales dx and dy uniformly, we can throw it out |
707 | // completely after evaluating the derivative with the standard quotient rule. This leaves |
708 | // us with a simpler quadratic function that we use to find the midtangent. |
709 | float midT = find_midtangent(tan0, tan1, (w - 1) * (p2 - p0), |
710 | (p2 - p0) - 2*w*(p1 - p0), |
711 | w*(p1 - p0)); |
712 | // Use positive logic since NaN fails comparisons. (However midT should not be NaN since we |
713 | // cull near-linear conics above. And while w=0 is flat, it's not a line and has valid |
714 | // midtangents.) |
715 | if (!(midT > 0 && midT < 1)) { |
716 | // The conic is flat. Otherwise there would be a real midtangent inside T=0..1. |
717 | this->appendLine(p0, p2); |
718 | return; |
719 | } |
720 | |
721 | // Chop the conic at midtangent to produce two monotonic segments. |
722 | Sk4f p3d0 = Sk4f(p0[0], p0[1], 1, 0); |
723 | Sk4f p3d1 = Sk4f(p1[0], p1[1], 1, 0) * w; |
724 | Sk4f p3d2 = Sk4f(p2[0], p2[1], 1, 0); |
725 | Sk4f midT4 = midT; |
726 | |
727 | Sk4f p3d01 = lerp(p3d0, p3d1, midT4); |
728 | Sk4f p3d12 = lerp(p3d1, p3d2, midT4); |
729 | Sk4f p3d012 = lerp(p3d01, p3d12, midT4); |
730 | |
731 | Sk2f midpoint = Sk2f(p3d012[0], p3d012[1]) / p3d012[2]; |
732 | Sk2f ww = Sk2f(p3d01[2], p3d12[2]) * Sk2f(p3d012[2]).rsqrt(); |
733 | |
734 | this->appendMonotonicConic(p0, Sk2f(p3d01[0], p3d01[1]) / p3d01[2], midpoint, ww[0]); |
735 | this->appendMonotonicConic(midpoint, Sk2f(p3d12[0], p3d12[1]) / p3d12[2], p2, ww[1]); |
736 | return; |
737 | } |
738 | |
739 | this->appendMonotonicConic(p0, p1, p2, w); |
740 | } |
741 | |
742 | void GrCCFillGeometry::appendMonotonicConic(const Sk2f& p0, const Sk2f& p1, const Sk2f& p2, |
743 | float w) { |
744 | SkASSERT(w >= 0); |
745 | |
746 | Sk2f base = p2 - p0; |
747 | Sk2f baseAbs = base.abs(); |
748 | float baseWidth = baseAbs[0] + baseAbs[1]; |
749 | |
750 | // Find the height of the curve. Max height always occurs at T=.5 for conics. |
751 | Sk2f d = (p1 - p0) * SkNx_shuffle<1,0>(base); |
752 | float h1 = std::abs(d[1] - d[0]); // Height of p1 above the base. |
753 | float ht = h1*w, hs = 1 + w; // Height of the conic = ht/hs. |
754 | |
755 | // i.e. (ht/hs <= baseWidth * kFlatnessThreshold). Use "<=" in case base == 0. |
756 | if (ht <= (baseWidth*hs) * kFlatnessThreshold) { |
757 | // We are flat. (See rationale in are_collinear.) |
758 | this->appendLine(p0, p2); |
759 | return; |
760 | } |
761 | |
762 | // i.e. (w > 1 && h1 - ht/hs < baseWidth). |
763 | if (w > 1 && h1*hs - ht < baseWidth*hs) { |
764 | // If we get within 1px of p1 when w > 1, we will pick up artifacts from the implicit |
765 | // function's reflection. Chop at max height (T=.5) and draw a triangle instead. |
766 | Sk2f p1w = p1*w; |
767 | Sk2f ab = p0 + p1w; |
768 | Sk2f bc = p1w + p2; |
769 | Sk2f highpoint = (ab + bc) / (2*(1 + w)); |
770 | this->appendLine(p0, highpoint); |
771 | this->appendLine(highpoint, p2); |
772 | return; |
773 | } |
774 | |
775 | SkASSERT(fPoints.back() == SkPoint::Make(p0[0], p0[1])); |
776 | SkASSERT((p0 != p2).anyTrue()); |
777 | p1.store(&fPoints.push_back()); |
778 | p2.store(&fPoints.push_back()); |
779 | fConicWeights.push_back(w); |
780 | fVerbs.push_back(Verb::kMonotonicConicTo); |
781 | ++fCurrContourTallies.fConics; |
782 | } |
783 | |
784 | GrCCFillGeometry::PrimitiveTallies GrCCFillGeometry::endContour() { |
785 | SkASSERT(fBuildingContour); |
786 | SkASSERT(fVerbs.count() >= fCurrContourTallies.fTriangles); |
787 | |
788 | // The fTriangles field currently contains this contour's starting verb index. We can now |
789 | // use it to calculate the size of the contour's fan. |
790 | int fanSize = fVerbs.count() - fCurrContourTallies.fTriangles; |
791 | if (fPoints.back() == fCurrAnchorPoint) { |
792 | --fanSize; |
793 | fVerbs.push_back(Verb::kEndClosedContour); |
794 | } else { |
795 | fVerbs.push_back(Verb::kEndOpenContour); |
796 | } |
797 | |
798 | fCurrContourTallies.fTriangles = std::max(fanSize - 2, 0); |
799 | |
800 | SkDEBUGCODE(fBuildingContour = false); |
801 | return fCurrContourTallies; |
802 | } |
803 | |