| 1 | /* |
| 2 | * Copyright 2015 Google Inc. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #ifndef GrQuad_DEFINED |
| 9 | #define GrQuad_DEFINED |
| 10 | |
| 11 | #include "include/core/SkMatrix.h" |
| 12 | #include "include/core/SkPoint.h" |
| 13 | #include "include/core/SkPoint3.h" |
| 14 | #include "include/private/SkVx.h" |
| 15 | |
| 16 | enum class GrQuadAAFlags; |
| 17 | |
| 18 | /** |
| 19 | * GrQuad is a collection of 4 points which can be used to represent an arbitrary quadrilateral. The |
| 20 | * points make a triangle strip with CCW triangles (top-left, bottom-left, top-right, bottom-right). |
| 21 | */ |
| 22 | class GrQuad { |
| 23 | public: |
| 24 | // Quadrilaterals can be classified in several useful ways that assist AA tessellation and other |
| 25 | // analysis when drawing, in particular, knowing if it was originally a rectangle transformed by |
| 26 | // certain types of matrices: |
| 27 | enum class Type { |
| 28 | // The 4 points remain an axis-aligned rectangle; their logical indices may not respect |
| 29 | // TL, BL, TR, BR ordering if the transform was a 90 degree rotation or mirror. |
| 30 | kAxisAligned, |
| 31 | // The 4 points represent a rectangle subjected to a rotation, its corners are right angles. |
| 32 | kRectilinear, |
| 33 | // Arbitrary 2D quadrilateral; may have been a rectangle transformed with skew or some |
| 34 | // clipped polygon. Its w coordinates will all be 1. |
| 35 | kGeneral, |
| 36 | // Even more general-purpose than kGeneral, this allows the w coordinates to be non-unity. |
| 37 | kPerspective, |
| 38 | kLast = kPerspective |
| 39 | }; |
| 40 | static const int kTypeCount = static_cast<int>(Type::kLast) + 1; |
| 41 | |
| 42 | // This enforces W == 1 for non-perspective quads, but does not initialize X or Y. |
| 43 | GrQuad() = default; |
| 44 | |
| 45 | explicit GrQuad(const SkRect& rect) |
| 46 | : fX{rect.fLeft, rect.fLeft, rect.fRight, rect.fRight} |
| 47 | , fY{rect.fTop, rect.fBottom, rect.fTop, rect.fBottom} {} |
| 48 | |
| 49 | static GrQuad MakeFromRect(const SkRect&, const SkMatrix&); |
| 50 | |
| 51 | // Creates a GrQuad from the quadrilateral 'pts', transformed by the matrix. The input |
| 52 | // points array is arranged as per SkRect::toQuad (top-left, top-right, bottom-right, |
| 53 | // bottom-left). The returned instance's point order will still be CCW tri-strip order. |
| 54 | static GrQuad MakeFromSkQuad(const SkPoint pts[4], const SkMatrix&); |
| 55 | |
| 56 | GrQuad& operator=(const GrQuad&) = default; |
| 57 | |
| 58 | SkPoint3 point3(int i) const { return {fX[i], fY[i], fW[i]}; } |
| 59 | |
| 60 | SkPoint point(int i) const { |
| 61 | if (fType == Type::kPerspective) { |
| 62 | return {fX[i] / fW[i], fY[i] / fW[i]}; |
| 63 | } else { |
| 64 | return {fX[i], fY[i]}; |
| 65 | } |
| 66 | } |
| 67 | |
| 68 | SkRect bounds() const { |
| 69 | if (fType == GrQuad::Type::kPerspective) { |
| 70 | return this->projectedBounds(); |
| 71 | } |
| 72 | // Calculate min/max directly on the 4 floats, instead of loading/unloading into SIMD. Since |
| 73 | // there's no horizontal min/max, it's not worth it. Defining non-perspective case in header |
| 74 | // also leads to substantial performance boost due to inlining. |
| 75 | auto min = [](const float c[4]) { return std::min(std::min(c[0], c[1]), |
| 76 | std::min(c[2], c[3]));}; |
| 77 | auto max = [](const float c[4]) { return std::max(std::max(c[0], c[1]), |
| 78 | std::max(c[2], c[3]));}; |
| 79 | return { min(fX), min(fY), max(fX), max(fY) }; |
| 80 | } |
| 81 | |
| 82 | bool isFinite() const { |
| 83 | // If any coordinate is infinity or NaN, then multiplying it with 0 will make accum NaN |
| 84 | float accum = 0; |
| 85 | for (int i = 0; i < 4; ++i) { |
| 86 | accum *= fX[i]; |
| 87 | accum *= fY[i]; |
| 88 | accum *= fW[i]; |
| 89 | } |
| 90 | SkASSERT(0 == accum || SkScalarIsNaN(accum)); |
| 91 | return !SkScalarIsNaN(accum); |
| 92 | } |
| 93 | |
| 94 | float x(int i) const { return fX[i]; } |
| 95 | float y(int i) const { return fY[i]; } |
| 96 | float w(int i) const { return fW[i]; } |
| 97 | float iw(int i) const { return sk_ieee_float_divide(1.f, fW[i]); } |
| 98 | |
| 99 | skvx::Vec<4, float> x4f() const { return skvx::Vec<4, float>::Load(fX); } |
| 100 | skvx::Vec<4, float> y4f() const { return skvx::Vec<4, float>::Load(fY); } |
| 101 | skvx::Vec<4, float> w4f() const { return skvx::Vec<4, float>::Load(fW); } |
| 102 | skvx::Vec<4, float> iw4f() const { return 1.f / this->w4f(); } |
| 103 | |
| 104 | Type quadType() const { return fType; } |
| 105 | |
| 106 | bool hasPerspective() const { return fType == Type::kPerspective; } |
| 107 | |
| 108 | // True if anti-aliasing affects this quad. Only valid when quadType == kAxisAligned |
| 109 | bool aaHasEffectOnRect() const; |
| 110 | |
| 111 | // True if this quad is axis-aligned and still has its top-left corner at v0. Equivalently, |
| 112 | // quad == GrQuad(quad->bounds()). Axis-aligned quads with flips and rotations may exactly |
| 113 | // fill their bounds, but their vertex order will not match TL BL TR BR anymore. |
| 114 | bool asRect(SkRect* rect) const; |
| 115 | |
| 116 | // The non-const pointers are provided to support modifying a GrQuad in-place, but care must be |
| 117 | // taken to keep its quad type aligned with the geometric nature of the new coordinates. |
| 118 | const float* xs() const { return fX; } |
| 119 | float* xs() { return fX; } |
| 120 | const float* ys() const { return fY; } |
| 121 | float* ys() { return fY; } |
| 122 | const float* ws() const { return fW; } |
| 123 | float* ws() { return fW; } |
| 124 | |
| 125 | // Automatically ensures ws are 1 if new type is not perspective. |
| 126 | void setQuadType(Type newType) { |
| 127 | if (newType != Type::kPerspective && fType == Type::kPerspective) { |
| 128 | fW[0] = fW[1] = fW[2] = fW[3] = 1.f; |
| 129 | } |
| 130 | SkASSERT(newType == Type::kPerspective || |
| 131 | (SkScalarNearlyEqual(fW[0], 1.f) && SkScalarNearlyEqual(fW[1], 1.f) && |
| 132 | SkScalarNearlyEqual(fW[2], 1.f) && SkScalarNearlyEqual(fW[3], 1.f))); |
| 133 | |
| 134 | fType = newType; |
| 135 | } |
| 136 | private: |
| 137 | template<typename T> |
| 138 | friend class GrQuadListBase; // for access to fX, fY, fW |
| 139 | |
| 140 | GrQuad(const skvx::Vec<4, float>& xs, const skvx::Vec<4, float>& ys, Type type) |
| 141 | : fType(type) { |
| 142 | SkASSERT(type != Type::kPerspective); |
| 143 | xs.store(fX); |
| 144 | ys.store(fY); |
| 145 | } |
| 146 | |
| 147 | GrQuad(const skvx::Vec<4, float>& xs, const skvx::Vec<4, float>& ys, |
| 148 | const skvx::Vec<4, float>& ws, Type type) |
| 149 | : fW{} // Include fW in member initializer to avoid redundant default initializer |
| 150 | , fType(type) { |
| 151 | xs.store(fX); |
| 152 | ys.store(fY); |
| 153 | ws.store(fW); |
| 154 | } |
| 155 | |
| 156 | // Defined in GrQuadUtils.cpp to share the coord clipping code |
| 157 | SkRect projectedBounds() const; |
| 158 | |
| 159 | float fX[4]; |
| 160 | float fY[4]; |
| 161 | float fW[4] = {1.f, 1.f, 1.f, 1.f}; |
| 162 | |
| 163 | Type fType = Type::kAxisAligned; |
| 164 | }; |
| 165 | |
| 166 | // A simple struct representing the common work unit of a pair of device and local coordinates, as |
| 167 | // well as the edge flags controlling anti-aliasing for the quadrilateral when drawn. |
| 168 | struct DrawQuad { |
| 169 | GrQuad fDevice; |
| 170 | GrQuad fLocal; |
| 171 | GrQuadAAFlags fEdgeFlags; |
| 172 | }; |
| 173 | |
| 174 | #endif |
| 175 | |