| 1 | /* |
| 2 | * Copyright 2019 Google LLC. |
| 3 | * |
| 4 | * Use of this source code is governed by a BSD-style license that can be |
| 5 | * found in the LICENSE file. |
| 6 | */ |
| 7 | |
| 8 | #include "src/gpu/tessellate/GrStencilPathShader.h" |
| 9 | |
| 10 | #include "src/gpu/glsl/GrGLSLGeometryProcessor.h" |
| 11 | #include "src/gpu/glsl/GrGLSLVarying.h" |
| 12 | #include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h" |
| 13 | |
| 14 | // Wang's formula for cubics (1985) gives us the number of evenly spaced (in the |
| 15 | // parametric sense) line segments that are guaranteed to be within a distance of |
| 16 | // "MAX_LINEARIZATION_ERROR" from the actual curve. |
| 17 | constexpr char kWangsFormulaCubicFn[] = R"( |
| 18 | #define MAX_LINEARIZATION_ERROR 0.25 // 1/4 pixel |
| 19 | float wangs_formula_cubic(vec2 p0, vec2 p1, vec2 p2, vec2 p3) { |
| 20 | float k = (3.0 * 2.0) / (8.0 * MAX_LINEARIZATION_ERROR); |
| 21 | float f = sqrt(k * length(max(abs(p2 - p1*2.0 + p0), |
| 22 | abs(p3 - p2*2.0 + p1)))); |
| 23 | return max(1.0, ceil(f)); |
| 24 | })" ; |
| 25 | |
| 26 | // Evaluate our point of interest using numerically stable mix() operations. |
| 27 | constexpr char kEvalCubicFn[] = R"( |
| 28 | vec2 eval_cubic(mat4x2 P, float T) { |
| 29 | vec2 ab = mix(P[0], P[1], T); |
| 30 | vec2 bc = mix(P[1], P[2], T); |
| 31 | vec2 cd = mix(P[2], P[3], T); |
| 32 | vec2 abc = mix(ab, bc, T); |
| 33 | vec2 bcd = mix(bc, cd, T); |
| 34 | return mix(abc, bcd, T); |
| 35 | })" ; |
| 36 | |
| 37 | class GrStencilPathShader::Impl : public GrGLSLGeometryProcessor { |
| 38 | void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { |
| 39 | const auto& shader = args.fGP.cast<GrStencilPathShader>(); |
| 40 | args.fVaryingHandler->emitAttributes(shader); |
| 41 | |
| 42 | GrShaderVar vertexPos = (*shader.vertexAttributes().begin()).asShaderVar(); |
| 43 | if (!shader.viewMatrix().isIdentity()) { |
| 44 | const char* viewMatrix; |
| 45 | fViewMatrixUniform = args.fUniformHandler->addUniform( |
| 46 | nullptr, kVertex_GrShaderFlag, kFloat3x3_GrSLType, "view_matrix" , &viewMatrix); |
| 47 | args.fVertBuilder->codeAppendf( |
| 48 | "float2 vertexpos = (%s * float3(point, 1)).xy;" , viewMatrix); |
| 49 | vertexPos.set(kFloat2_GrSLType, "vertexpos" ); |
| 50 | } |
| 51 | |
| 52 | if (!shader.willUseTessellationShaders()) { |
| 53 | gpArgs->fPositionVar = vertexPos; |
| 54 | } else { |
| 55 | args.fVertBuilder->declareGlobal(GrShaderVar( |
| 56 | "P" , kFloat2_GrSLType, GrShaderVar::TypeModifier::Out)); |
| 57 | args.fVertBuilder->codeAppendf("P = %s;" , vertexPos.c_str()); |
| 58 | } |
| 59 | |
| 60 | // No fragment shader. |
| 61 | } |
| 62 | |
| 63 | void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& primProc, |
| 64 | const CoordTransformRange& transformRange) override { |
| 65 | const auto& shader = primProc.cast<GrStencilPathShader>(); |
| 66 | if (!shader.viewMatrix().isIdentity()) { |
| 67 | pdman.setSkMatrix(fViewMatrixUniform, shader.viewMatrix()); |
| 68 | } |
| 69 | } |
| 70 | |
| 71 | GrGLSLUniformHandler::UniformHandle fViewMatrixUniform; |
| 72 | }; |
| 73 | |
| 74 | GrGLSLPrimitiveProcessor* GrStencilPathShader::createGLSLInstance(const GrShaderCaps&) const { |
| 75 | return new Impl; |
| 76 | } |
| 77 | |
| 78 | SkString GrStencilCubicShader::getTessControlShaderGLSL(const char* versionAndExtensionDecls, |
| 79 | const GrShaderCaps&) const { |
| 80 | SkString code(versionAndExtensionDecls); |
| 81 | code.append(kWangsFormulaCubicFn); |
| 82 | code.append(R"( |
| 83 | layout(vertices = 1) out; |
| 84 | |
| 85 | in vec2 P[]; |
| 86 | out vec4 X[]; |
| 87 | out vec4 Y[]; |
| 88 | |
| 89 | void main() { |
| 90 | // Chop the curve at T=1/2. |
| 91 | vec2 ab = mix(P[0], P[1], .5); |
| 92 | vec2 bc = mix(P[1], P[2], .5); |
| 93 | vec2 cd = mix(P[2], P[3], .5); |
| 94 | vec2 abc = mix(ab, bc, .5); |
| 95 | vec2 bcd = mix(bc, cd, .5); |
| 96 | vec2 abcd = mix(abc, bcd, .5); |
| 97 | |
| 98 | // Calculate how many triangles we need to linearize each half of the curve. |
| 99 | float l0 = wangs_formula_cubic(P[0], ab, abc, abcd); |
| 100 | float l1 = wangs_formula_cubic(abcd, bcd, cd, P[3]); |
| 101 | |
| 102 | gl_TessLevelOuter[0] = l1; |
| 103 | gl_TessLevelOuter[1] = 1.0; |
| 104 | gl_TessLevelOuter[2] = l0; |
| 105 | |
| 106 | // Changing the inner level to 1 when l0 == l1 == 1 collapses the entire patch to a |
| 107 | // single triangle. Otherwise, we need an inner level of 2 so our curve triangles |
| 108 | // have an interior point to originate from. |
| 109 | gl_TessLevelInner[0] = min(max(l0, l1), 2.0); |
| 110 | |
| 111 | X[gl_InvocationID /*== 0*/] = vec4(P[0].x, P[1].x, P[2].x, P[3].x); |
| 112 | Y[gl_InvocationID /*== 0*/] = vec4(P[0].y, P[1].y, P[2].y, P[3].y); |
| 113 | })" ); |
| 114 | |
| 115 | return code; |
| 116 | } |
| 117 | |
| 118 | SkString GrStencilCubicShader::getTessEvaluationShaderGLSL(const char* versionAndExtensionDecls, |
| 119 | const GrShaderCaps&) const { |
| 120 | SkString code(versionAndExtensionDecls); |
| 121 | code.append(kEvalCubicFn); |
| 122 | code.append(R"( |
| 123 | layout(triangles, equal_spacing, ccw) in; |
| 124 | |
| 125 | uniform vec4 sk_RTAdjust; |
| 126 | |
| 127 | in vec4 X[]; |
| 128 | in vec4 Y[]; |
| 129 | |
| 130 | void main() { |
| 131 | // Locate our parametric point of interest. T ramps from [0..1/2] on the left edge |
| 132 | // of the triangle, and [1/2..1] on the right. If we are the patch's interior |
| 133 | // vertex, then we want T=1/2. Since the barycentric coords are (1/3, 1/3, 1/3) at |
| 134 | // the interior vertex, the below fma() works in all 3 scenarios. |
| 135 | float T = fma(.5, gl_TessCoord.y, gl_TessCoord.z); |
| 136 | |
| 137 | mat4x2 P = transpose(mat2x4(X[0], Y[0])); |
| 138 | vec2 vertexpos = eval_cubic(P, T); |
| 139 | if (all(notEqual(gl_TessCoord.xz, vec2(0)))) { |
| 140 | // We are the interior point of the patch; center it inside [C(0), C(.5), C(1)]. |
| 141 | vertexpos = (P[0] + vertexpos + P[3]) / 3.0; |
| 142 | } |
| 143 | |
| 144 | gl_Position = vec4(vertexpos * sk_RTAdjust.xz + sk_RTAdjust.yw, 0.0, 1.0); |
| 145 | })" ); |
| 146 | |
| 147 | return code; |
| 148 | } |
| 149 | |
| 150 | SkString GrStencilWedgeShader::getTessControlShaderGLSL(const char* versionAndExtensionDecls, |
| 151 | const GrShaderCaps&) const { |
| 152 | SkString code(versionAndExtensionDecls); |
| 153 | code.append(kWangsFormulaCubicFn); |
| 154 | code.append(R"( |
| 155 | layout(vertices = 1) out; |
| 156 | |
| 157 | in vec2 P[]; |
| 158 | out vec4 X[]; |
| 159 | out vec4 Y[]; |
| 160 | out vec2 fanpoint[]; |
| 161 | |
| 162 | void main() { |
| 163 | // Calculate how many triangles we need to linearize the curve. |
| 164 | float num_segments = wangs_formula_cubic(P[0], P[1], P[2], P[3]); |
| 165 | |
| 166 | // Tessellate the first side of the patch into num_segments triangles. |
| 167 | gl_TessLevelOuter[0] = num_segments; |
| 168 | |
| 169 | // Leave the other two sides of the patch as single segments. |
| 170 | gl_TessLevelOuter[1] = 1.0; |
| 171 | gl_TessLevelOuter[2] = 1.0; |
| 172 | |
| 173 | // Changing the inner level to 1 when num_segments == 1 collapses the entire |
| 174 | // patch to a single triangle. Otherwise, we need an inner level of 2 so our curve |
| 175 | // triangles have an interior point to originate from. |
| 176 | gl_TessLevelInner[0] = min(num_segments, 2.0); |
| 177 | |
| 178 | X[gl_InvocationID /*== 0*/] = vec4(P[0].x, P[1].x, P[2].x, P[3].x); |
| 179 | Y[gl_InvocationID /*== 0*/] = vec4(P[0].y, P[1].y, P[2].y, P[3].y); |
| 180 | fanpoint[gl_InvocationID /*== 0*/] = P[4]; |
| 181 | })" ); |
| 182 | |
| 183 | return code; |
| 184 | } |
| 185 | |
| 186 | SkString GrStencilWedgeShader::getTessEvaluationShaderGLSL(const char* versionAndExtensionDecls, |
| 187 | const GrShaderCaps&) const { |
| 188 | SkString code(versionAndExtensionDecls); |
| 189 | code.append(kEvalCubicFn); |
| 190 | code.append(R"( |
| 191 | layout(triangles, equal_spacing, ccw) in; |
| 192 | |
| 193 | uniform vec4 sk_RTAdjust; |
| 194 | |
| 195 | in vec4 X[]; |
| 196 | in vec4 Y[]; |
| 197 | in vec2 fanpoint[]; |
| 198 | |
| 199 | void main() { |
| 200 | // Locate our parametric point of interest. It is equal to the barycentric |
| 201 | // y-coordinate if we are a vertex on the tessellated edge of the triangle patch, |
| 202 | // 0.5 if we are the patch's interior vertex, or N/A if we are the fan point. |
| 203 | // NOTE: We are on the tessellated edge when the barycentric x-coordinate == 0. |
| 204 | float T = (gl_TessCoord.x == 0.0) ? gl_TessCoord.y : 0.5; |
| 205 | |
| 206 | mat4x2 P = transpose(mat2x4(X[0], Y[0])); |
| 207 | vec2 vertexpos = eval_cubic(P, T); |
| 208 | if (gl_TessCoord.x == 1.0) { |
| 209 | // We are the anchor point that fans from the center of the curve's contour. |
| 210 | vertexpos = fanpoint[0]; |
| 211 | } else if (gl_TessCoord.x != 0.0) { |
| 212 | // We are the interior point of the patch; center it inside [C(0), C(.5), C(1)]. |
| 213 | vertexpos = (P[0] + vertexpos + P[3]) / 3.0; |
| 214 | } |
| 215 | |
| 216 | gl_Position = vec4(vertexpos * sk_RTAdjust.xz + sk_RTAdjust.yw, 0.0, 1.0); |
| 217 | })" ); |
| 218 | |
| 219 | return code; |
| 220 | } |
| 221 | |