| 1 | /* | 
|---|
| 2 | * Copyright 2015 Google Inc. | 
|---|
| 3 | * | 
|---|
| 4 | * Use of this source code is governed by a BSD-style license that can be | 
|---|
| 5 | * found in the LICENSE file. | 
|---|
| 6 | */ | 
|---|
| 7 | #include "src/pathops/SkIntersections.h" | 
|---|
| 8 | #include "src/pathops/SkLineParameters.h" | 
|---|
| 9 | #include "src/pathops/SkPathOpsConic.h" | 
|---|
| 10 | #include "src/pathops/SkPathOpsCubic.h" | 
|---|
| 11 | #include "src/pathops/SkPathOpsQuad.h" | 
|---|
| 12 | #include "src/pathops/SkPathOpsRect.h" | 
|---|
| 13 |  | 
|---|
| 14 | // cribbed from the float version in SkGeometry.cpp | 
|---|
| 15 | static void conic_deriv_coeff(const double src[], | 
|---|
| 16 | SkScalar w, | 
|---|
| 17 | double coeff[3]) { | 
|---|
| 18 | const double P20 = src[4] - src[0]; | 
|---|
| 19 | const double P10 = src[2] - src[0]; | 
|---|
| 20 | const double wP10 = w * P10; | 
|---|
| 21 | coeff[0] = w * P20 - P20; | 
|---|
| 22 | coeff[1] = P20 - 2 * wP10; | 
|---|
| 23 | coeff[2] = wP10; | 
|---|
| 24 | } | 
|---|
| 25 |  | 
|---|
| 26 | static double conic_eval_tan(const double coord[], SkScalar w, double t) { | 
|---|
| 27 | double coeff[3]; | 
|---|
| 28 | conic_deriv_coeff(coord, w, coeff); | 
|---|
| 29 | return t * (t * coeff[0] + coeff[1]) + coeff[2]; | 
|---|
| 30 | } | 
|---|
| 31 |  | 
|---|
| 32 | int SkDConic::FindExtrema(const double src[], SkScalar w, double t[1]) { | 
|---|
| 33 | double coeff[3]; | 
|---|
| 34 | conic_deriv_coeff(src, w, coeff); | 
|---|
| 35 |  | 
|---|
| 36 | double tValues[2]; | 
|---|
| 37 | int roots = SkDQuad::RootsValidT(coeff[0], coeff[1], coeff[2], tValues); | 
|---|
| 38 | // In extreme cases, the number of roots returned can be 2. Pathops | 
|---|
| 39 | // will fail later on, so there's no advantage to plumbing in an error | 
|---|
| 40 | // return here. | 
|---|
| 41 | // SkASSERT(0 == roots || 1 == roots); | 
|---|
| 42 |  | 
|---|
| 43 | if (1 == roots) { | 
|---|
| 44 | t[0] = tValues[0]; | 
|---|
| 45 | return 1; | 
|---|
| 46 | } | 
|---|
| 47 | return 0; | 
|---|
| 48 | } | 
|---|
| 49 |  | 
|---|
| 50 | SkDVector SkDConic::dxdyAtT(double t) const { | 
|---|
| 51 | SkDVector result = { | 
|---|
| 52 | conic_eval_tan(&fPts[0].fX, fWeight, t), | 
|---|
| 53 | conic_eval_tan(&fPts[0].fY, fWeight, t) | 
|---|
| 54 | }; | 
|---|
| 55 | if (result.fX == 0 && result.fY == 0) { | 
|---|
| 56 | if (zero_or_one(t)) { | 
|---|
| 57 | result = fPts[2] - fPts[0]; | 
|---|
| 58 | } else { | 
|---|
| 59 | // incomplete | 
|---|
| 60 | SkDebugf( "!k"); | 
|---|
| 61 | } | 
|---|
| 62 | } | 
|---|
| 63 | return result; | 
|---|
| 64 | } | 
|---|
| 65 |  | 
|---|
| 66 | static double conic_eval_numerator(const double src[], SkScalar w, double t) { | 
|---|
| 67 | SkASSERT(src); | 
|---|
| 68 | SkASSERT(t >= 0 && t <= 1); | 
|---|
| 69 | double src2w = src[2] * w; | 
|---|
| 70 | double C = src[0]; | 
|---|
| 71 | double A = src[4] - 2 * src2w + C; | 
|---|
| 72 | double B = 2 * (src2w - C); | 
|---|
| 73 | return (A * t + B) * t + C; | 
|---|
| 74 | } | 
|---|
| 75 |  | 
|---|
| 76 |  | 
|---|
| 77 | static double conic_eval_denominator(SkScalar w, double t) { | 
|---|
| 78 | double B = 2 * (w - 1); | 
|---|
| 79 | double C = 1; | 
|---|
| 80 | double A = -B; | 
|---|
| 81 | return (A * t + B) * t + C; | 
|---|
| 82 | } | 
|---|
| 83 |  | 
|---|
| 84 | bool SkDConic::hullIntersects(const SkDCubic& cubic, bool* isLinear) const { | 
|---|
| 85 | return cubic.hullIntersects(*this, isLinear); | 
|---|
| 86 | } | 
|---|
| 87 |  | 
|---|
| 88 | SkDPoint SkDConic::ptAtT(double t) const { | 
|---|
| 89 | if (t == 0) { | 
|---|
| 90 | return fPts[0]; | 
|---|
| 91 | } | 
|---|
| 92 | if (t == 1) { | 
|---|
| 93 | return fPts[2]; | 
|---|
| 94 | } | 
|---|
| 95 | double denominator = conic_eval_denominator(fWeight, t); | 
|---|
| 96 | SkDPoint result = { | 
|---|
| 97 | sk_ieee_double_divide(conic_eval_numerator(&fPts[0].fX, fWeight, t), denominator), | 
|---|
| 98 | sk_ieee_double_divide(conic_eval_numerator(&fPts[0].fY, fWeight, t), denominator) | 
|---|
| 99 | }; | 
|---|
| 100 | return result; | 
|---|
| 101 | } | 
|---|
| 102 |  | 
|---|
| 103 | /* see quad subdivide for point rationale */ | 
|---|
| 104 | /* w rationale : the mid point between t1 and t2 could be determined from the computed a/b/c | 
|---|
| 105 | values if the computed w was known. Since we know the mid point at (t1+t2)/2, we'll assume | 
|---|
| 106 | that it is the same as the point on the new curve t==(0+1)/2. | 
|---|
| 107 |  | 
|---|
| 108 | d / dz == conic_poly(dst, unknownW, .5) / conic_weight(unknownW, .5); | 
|---|
| 109 |  | 
|---|
| 110 | conic_poly(dst, unknownW, .5) | 
|---|
| 111 | =   a / 4 + (b * unknownW) / 2 + c / 4 | 
|---|
| 112 | =  (a + c) / 4 + (bx * unknownW) / 2 | 
|---|
| 113 |  | 
|---|
| 114 | conic_weight(unknownW, .5) | 
|---|
| 115 | =   unknownW / 2 + 1 / 2 | 
|---|
| 116 |  | 
|---|
| 117 | d / dz                  == ((a + c) / 2 + b * unknownW) / (unknownW + 1) | 
|---|
| 118 | d / dz * (unknownW + 1) ==  (a + c) / 2 + b * unknownW | 
|---|
| 119 | unknownW       = ((a + c) / 2 - d / dz) / (d / dz - b) | 
|---|
| 120 |  | 
|---|
| 121 | Thus, w is the ratio of the distance from the mid of end points to the on-curve point, and the | 
|---|
| 122 | distance of the on-curve point to the control point. | 
|---|
| 123 | */ | 
|---|
| 124 | SkDConic SkDConic::subDivide(double t1, double t2) const { | 
|---|
| 125 | double ax, ay, az; | 
|---|
| 126 | if (t1 == 0) { | 
|---|
| 127 | ax = fPts[0].fX; | 
|---|
| 128 | ay = fPts[0].fY; | 
|---|
| 129 | az = 1; | 
|---|
| 130 | } else if (t1 != 1) { | 
|---|
| 131 | ax = conic_eval_numerator(&fPts[0].fX, fWeight, t1); | 
|---|
| 132 | ay = conic_eval_numerator(&fPts[0].fY, fWeight, t1); | 
|---|
| 133 | az = conic_eval_denominator(fWeight, t1); | 
|---|
| 134 | } else { | 
|---|
| 135 | ax = fPts[2].fX; | 
|---|
| 136 | ay = fPts[2].fY; | 
|---|
| 137 | az = 1; | 
|---|
| 138 | } | 
|---|
| 139 | double midT = (t1 + t2) / 2; | 
|---|
| 140 | double dx = conic_eval_numerator(&fPts[0].fX, fWeight, midT); | 
|---|
| 141 | double dy = conic_eval_numerator(&fPts[0].fY, fWeight, midT); | 
|---|
| 142 | double dz = conic_eval_denominator(fWeight, midT); | 
|---|
| 143 | double cx, cy, cz; | 
|---|
| 144 | if (t2 == 1) { | 
|---|
| 145 | cx = fPts[2].fX; | 
|---|
| 146 | cy = fPts[2].fY; | 
|---|
| 147 | cz = 1; | 
|---|
| 148 | } else if (t2 != 0) { | 
|---|
| 149 | cx = conic_eval_numerator(&fPts[0].fX, fWeight, t2); | 
|---|
| 150 | cy = conic_eval_numerator(&fPts[0].fY, fWeight, t2); | 
|---|
| 151 | cz = conic_eval_denominator(fWeight, t2); | 
|---|
| 152 | } else { | 
|---|
| 153 | cx = fPts[0].fX; | 
|---|
| 154 | cy = fPts[0].fY; | 
|---|
| 155 | cz = 1; | 
|---|
| 156 | } | 
|---|
| 157 | double bx = 2 * dx - (ax + cx) / 2; | 
|---|
| 158 | double by = 2 * dy - (ay + cy) / 2; | 
|---|
| 159 | double bz = 2 * dz - (az + cz) / 2; | 
|---|
| 160 | if (!bz) { | 
|---|
| 161 | bz = 1; // if bz is 0, weight is 0, control point has no effect: any value will do | 
|---|
| 162 | } | 
|---|
| 163 | SkDConic dst = {{{{ax / az, ay / az}, {bx / bz, by / bz}, {cx / cz, cy / cz}} | 
|---|
| 164 | SkDEBUGPARAMS(fPts.fDebugGlobalState) }, | 
|---|
| 165 | SkDoubleToScalar(bz / sqrt(az * cz)) }; | 
|---|
| 166 | return dst; | 
|---|
| 167 | } | 
|---|
| 168 |  | 
|---|
| 169 | SkDPoint SkDConic::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2, | 
|---|
| 170 | SkScalar* weight) const { | 
|---|
| 171 | SkDConic chopped = this->subDivide(t1, t2); | 
|---|
| 172 | *weight = chopped.fWeight; | 
|---|
| 173 | return chopped[1]; | 
|---|
| 174 | } | 
|---|
| 175 |  | 
|---|
| 176 | int SkTConic::intersectRay(SkIntersections* i, const SkDLine& line) const { | 
|---|
| 177 | return i->intersectRay(fConic, line); | 
|---|
| 178 | } | 
|---|
| 179 |  | 
|---|
| 180 | bool SkTConic::hullIntersects(const SkDQuad& quad, bool* isLinear) const  { | 
|---|
| 181 | return quad.hullIntersects(fConic, isLinear); | 
|---|
| 182 | } | 
|---|
| 183 |  | 
|---|
| 184 | bool SkTConic::hullIntersects(const SkDCubic& cubic, bool* isLinear) const { | 
|---|
| 185 | return cubic.hullIntersects(fConic, isLinear); | 
|---|
| 186 | } | 
|---|
| 187 |  | 
|---|
| 188 | void SkTConic::setBounds(SkDRect* rect) const { | 
|---|
| 189 | rect->setBounds(fConic); | 
|---|
| 190 | } | 
|---|
| 191 |  | 
|---|