1 | /* |
2 | * Copyright 2015 Google Inc. |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | #include "src/pathops/SkIntersections.h" |
8 | #include "src/pathops/SkLineParameters.h" |
9 | #include "src/pathops/SkPathOpsConic.h" |
10 | #include "src/pathops/SkPathOpsCubic.h" |
11 | #include "src/pathops/SkPathOpsQuad.h" |
12 | #include "src/pathops/SkPathOpsRect.h" |
13 | |
14 | // cribbed from the float version in SkGeometry.cpp |
15 | static void conic_deriv_coeff(const double src[], |
16 | SkScalar w, |
17 | double coeff[3]) { |
18 | const double P20 = src[4] - src[0]; |
19 | const double P10 = src[2] - src[0]; |
20 | const double wP10 = w * P10; |
21 | coeff[0] = w * P20 - P20; |
22 | coeff[1] = P20 - 2 * wP10; |
23 | coeff[2] = wP10; |
24 | } |
25 | |
26 | static double conic_eval_tan(const double coord[], SkScalar w, double t) { |
27 | double coeff[3]; |
28 | conic_deriv_coeff(coord, w, coeff); |
29 | return t * (t * coeff[0] + coeff[1]) + coeff[2]; |
30 | } |
31 | |
32 | int SkDConic::FindExtrema(const double src[], SkScalar w, double t[1]) { |
33 | double coeff[3]; |
34 | conic_deriv_coeff(src, w, coeff); |
35 | |
36 | double tValues[2]; |
37 | int roots = SkDQuad::RootsValidT(coeff[0], coeff[1], coeff[2], tValues); |
38 | // In extreme cases, the number of roots returned can be 2. Pathops |
39 | // will fail later on, so there's no advantage to plumbing in an error |
40 | // return here. |
41 | // SkASSERT(0 == roots || 1 == roots); |
42 | |
43 | if (1 == roots) { |
44 | t[0] = tValues[0]; |
45 | return 1; |
46 | } |
47 | return 0; |
48 | } |
49 | |
50 | SkDVector SkDConic::dxdyAtT(double t) const { |
51 | SkDVector result = { |
52 | conic_eval_tan(&fPts[0].fX, fWeight, t), |
53 | conic_eval_tan(&fPts[0].fY, fWeight, t) |
54 | }; |
55 | if (result.fX == 0 && result.fY == 0) { |
56 | if (zero_or_one(t)) { |
57 | result = fPts[2] - fPts[0]; |
58 | } else { |
59 | // incomplete |
60 | SkDebugf("!k" ); |
61 | } |
62 | } |
63 | return result; |
64 | } |
65 | |
66 | static double conic_eval_numerator(const double src[], SkScalar w, double t) { |
67 | SkASSERT(src); |
68 | SkASSERT(t >= 0 && t <= 1); |
69 | double src2w = src[2] * w; |
70 | double C = src[0]; |
71 | double A = src[4] - 2 * src2w + C; |
72 | double B = 2 * (src2w - C); |
73 | return (A * t + B) * t + C; |
74 | } |
75 | |
76 | |
77 | static double conic_eval_denominator(SkScalar w, double t) { |
78 | double B = 2 * (w - 1); |
79 | double C = 1; |
80 | double A = -B; |
81 | return (A * t + B) * t + C; |
82 | } |
83 | |
84 | bool SkDConic::hullIntersects(const SkDCubic& cubic, bool* isLinear) const { |
85 | return cubic.hullIntersects(*this, isLinear); |
86 | } |
87 | |
88 | SkDPoint SkDConic::ptAtT(double t) const { |
89 | if (t == 0) { |
90 | return fPts[0]; |
91 | } |
92 | if (t == 1) { |
93 | return fPts[2]; |
94 | } |
95 | double denominator = conic_eval_denominator(fWeight, t); |
96 | SkDPoint result = { |
97 | sk_ieee_double_divide(conic_eval_numerator(&fPts[0].fX, fWeight, t), denominator), |
98 | sk_ieee_double_divide(conic_eval_numerator(&fPts[0].fY, fWeight, t), denominator) |
99 | }; |
100 | return result; |
101 | } |
102 | |
103 | /* see quad subdivide for point rationale */ |
104 | /* w rationale : the mid point between t1 and t2 could be determined from the computed a/b/c |
105 | values if the computed w was known. Since we know the mid point at (t1+t2)/2, we'll assume |
106 | that it is the same as the point on the new curve t==(0+1)/2. |
107 | |
108 | d / dz == conic_poly(dst, unknownW, .5) / conic_weight(unknownW, .5); |
109 | |
110 | conic_poly(dst, unknownW, .5) |
111 | = a / 4 + (b * unknownW) / 2 + c / 4 |
112 | = (a + c) / 4 + (bx * unknownW) / 2 |
113 | |
114 | conic_weight(unknownW, .5) |
115 | = unknownW / 2 + 1 / 2 |
116 | |
117 | d / dz == ((a + c) / 2 + b * unknownW) / (unknownW + 1) |
118 | d / dz * (unknownW + 1) == (a + c) / 2 + b * unknownW |
119 | unknownW = ((a + c) / 2 - d / dz) / (d / dz - b) |
120 | |
121 | Thus, w is the ratio of the distance from the mid of end points to the on-curve point, and the |
122 | distance of the on-curve point to the control point. |
123 | */ |
124 | SkDConic SkDConic::subDivide(double t1, double t2) const { |
125 | double ax, ay, az; |
126 | if (t1 == 0) { |
127 | ax = fPts[0].fX; |
128 | ay = fPts[0].fY; |
129 | az = 1; |
130 | } else if (t1 != 1) { |
131 | ax = conic_eval_numerator(&fPts[0].fX, fWeight, t1); |
132 | ay = conic_eval_numerator(&fPts[0].fY, fWeight, t1); |
133 | az = conic_eval_denominator(fWeight, t1); |
134 | } else { |
135 | ax = fPts[2].fX; |
136 | ay = fPts[2].fY; |
137 | az = 1; |
138 | } |
139 | double midT = (t1 + t2) / 2; |
140 | double dx = conic_eval_numerator(&fPts[0].fX, fWeight, midT); |
141 | double dy = conic_eval_numerator(&fPts[0].fY, fWeight, midT); |
142 | double dz = conic_eval_denominator(fWeight, midT); |
143 | double cx, cy, cz; |
144 | if (t2 == 1) { |
145 | cx = fPts[2].fX; |
146 | cy = fPts[2].fY; |
147 | cz = 1; |
148 | } else if (t2 != 0) { |
149 | cx = conic_eval_numerator(&fPts[0].fX, fWeight, t2); |
150 | cy = conic_eval_numerator(&fPts[0].fY, fWeight, t2); |
151 | cz = conic_eval_denominator(fWeight, t2); |
152 | } else { |
153 | cx = fPts[0].fX; |
154 | cy = fPts[0].fY; |
155 | cz = 1; |
156 | } |
157 | double bx = 2 * dx - (ax + cx) / 2; |
158 | double by = 2 * dy - (ay + cy) / 2; |
159 | double bz = 2 * dz - (az + cz) / 2; |
160 | if (!bz) { |
161 | bz = 1; // if bz is 0, weight is 0, control point has no effect: any value will do |
162 | } |
163 | SkDConic dst = {{{{ax / az, ay / az}, {bx / bz, by / bz}, {cx / cz, cy / cz}} |
164 | SkDEBUGPARAMS(fPts.fDebugGlobalState) }, |
165 | SkDoubleToScalar(bz / sqrt(az * cz)) }; |
166 | return dst; |
167 | } |
168 | |
169 | SkDPoint SkDConic::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2, |
170 | SkScalar* weight) const { |
171 | SkDConic chopped = this->subDivide(t1, t2); |
172 | *weight = chopped.fWeight; |
173 | return chopped[1]; |
174 | } |
175 | |
176 | int SkTConic::intersectRay(SkIntersections* i, const SkDLine& line) const { |
177 | return i->intersectRay(fConic, line); |
178 | } |
179 | |
180 | bool SkTConic::hullIntersects(const SkDQuad& quad, bool* isLinear) const { |
181 | return quad.hullIntersects(fConic, isLinear); |
182 | } |
183 | |
184 | bool SkTConic::hullIntersects(const SkDCubic& cubic, bool* isLinear) const { |
185 | return cubic.hullIntersects(fConic, isLinear); |
186 | } |
187 | |
188 | void SkTConic::setBounds(SkDRect* rect) const { |
189 | rect->setBounds(fConic); |
190 | } |
191 | |