| 1 | /* | 
| 2 |  * Copyright 2015 Google Inc. | 
| 3 |  * | 
| 4 |  * Use of this source code is governed by a BSD-style license that can be | 
| 5 |  * found in the LICENSE file. | 
| 6 |  */ | 
| 7 | #include "src/pathops/SkIntersections.h" | 
| 8 | #include "src/pathops/SkLineParameters.h" | 
| 9 | #include "src/pathops/SkPathOpsConic.h" | 
| 10 | #include "src/pathops/SkPathOpsCubic.h" | 
| 11 | #include "src/pathops/SkPathOpsQuad.h" | 
| 12 | #include "src/pathops/SkPathOpsRect.h" | 
| 13 |  | 
| 14 | // cribbed from the float version in SkGeometry.cpp | 
| 15 | static void conic_deriv_coeff(const double src[], | 
| 16 |                               SkScalar w, | 
| 17 |                               double coeff[3]) { | 
| 18 |     const double P20 = src[4] - src[0]; | 
| 19 |     const double P10 = src[2] - src[0]; | 
| 20 |     const double wP10 = w * P10; | 
| 21 |     coeff[0] = w * P20 - P20; | 
| 22 |     coeff[1] = P20 - 2 * wP10; | 
| 23 |     coeff[2] = wP10; | 
| 24 | } | 
| 25 |  | 
| 26 | static double conic_eval_tan(const double coord[], SkScalar w, double t) { | 
| 27 |     double coeff[3]; | 
| 28 |     conic_deriv_coeff(coord, w, coeff); | 
| 29 |     return t * (t * coeff[0] + coeff[1]) + coeff[2]; | 
| 30 | } | 
| 31 |  | 
| 32 | int SkDConic::FindExtrema(const double src[], SkScalar w, double t[1]) { | 
| 33 |     double coeff[3]; | 
| 34 |     conic_deriv_coeff(src, w, coeff); | 
| 35 |  | 
| 36 |     double tValues[2]; | 
| 37 |     int roots = SkDQuad::RootsValidT(coeff[0], coeff[1], coeff[2], tValues); | 
| 38 |     // In extreme cases, the number of roots returned can be 2. Pathops | 
| 39 |     // will fail later on, so there's no advantage to plumbing in an error | 
| 40 |     // return here. | 
| 41 |     // SkASSERT(0 == roots || 1 == roots); | 
| 42 |  | 
| 43 |     if (1 == roots) { | 
| 44 |         t[0] = tValues[0]; | 
| 45 |         return 1; | 
| 46 |     } | 
| 47 |     return 0; | 
| 48 | } | 
| 49 |  | 
| 50 | SkDVector SkDConic::dxdyAtT(double t) const { | 
| 51 |     SkDVector result = { | 
| 52 |         conic_eval_tan(&fPts[0].fX, fWeight, t), | 
| 53 |         conic_eval_tan(&fPts[0].fY, fWeight, t) | 
| 54 |     }; | 
| 55 |     if (result.fX == 0 && result.fY == 0) { | 
| 56 |         if (zero_or_one(t)) { | 
| 57 |             result = fPts[2] - fPts[0]; | 
| 58 |         } else { | 
| 59 |             // incomplete | 
| 60 |             SkDebugf("!k" ); | 
| 61 |         } | 
| 62 |     } | 
| 63 |     return result; | 
| 64 | } | 
| 65 |  | 
| 66 | static double conic_eval_numerator(const double src[], SkScalar w, double t) { | 
| 67 |     SkASSERT(src); | 
| 68 |     SkASSERT(t >= 0 && t <= 1); | 
| 69 |     double src2w = src[2] * w; | 
| 70 |     double C = src[0]; | 
| 71 |     double A = src[4] - 2 * src2w + C; | 
| 72 |     double B = 2 * (src2w - C); | 
| 73 |     return (A * t + B) * t + C; | 
| 74 | } | 
| 75 |  | 
| 76 |  | 
| 77 | static double conic_eval_denominator(SkScalar w, double t) { | 
| 78 |     double B = 2 * (w - 1); | 
| 79 |     double C = 1; | 
| 80 |     double A = -B; | 
| 81 |     return (A * t + B) * t + C; | 
| 82 | } | 
| 83 |  | 
| 84 | bool SkDConic::hullIntersects(const SkDCubic& cubic, bool* isLinear) const { | 
| 85 |     return cubic.hullIntersects(*this, isLinear); | 
| 86 | } | 
| 87 |  | 
| 88 | SkDPoint SkDConic::ptAtT(double t) const { | 
| 89 |     if (t == 0) { | 
| 90 |         return fPts[0]; | 
| 91 |     } | 
| 92 |     if (t == 1) { | 
| 93 |         return fPts[2]; | 
| 94 |     } | 
| 95 |     double denominator = conic_eval_denominator(fWeight, t); | 
| 96 |     SkDPoint result = { | 
| 97 |         sk_ieee_double_divide(conic_eval_numerator(&fPts[0].fX, fWeight, t), denominator), | 
| 98 |         sk_ieee_double_divide(conic_eval_numerator(&fPts[0].fY, fWeight, t), denominator) | 
| 99 |     }; | 
| 100 |     return result; | 
| 101 | } | 
| 102 |  | 
| 103 | /* see quad subdivide for point rationale */ | 
| 104 | /* w rationale : the mid point between t1 and t2 could be determined from the computed a/b/c | 
| 105 |    values if the computed w was known. Since we know the mid point at (t1+t2)/2, we'll assume | 
| 106 |    that it is the same as the point on the new curve t==(0+1)/2. | 
| 107 |  | 
| 108 |     d / dz == conic_poly(dst, unknownW, .5) / conic_weight(unknownW, .5); | 
| 109 |  | 
| 110 |     conic_poly(dst, unknownW, .5) | 
| 111 |                   =   a / 4 + (b * unknownW) / 2 + c / 4 | 
| 112 |                   =  (a + c) / 4 + (bx * unknownW) / 2 | 
| 113 |  | 
| 114 |     conic_weight(unknownW, .5) | 
| 115 |                   =   unknownW / 2 + 1 / 2 | 
| 116 |  | 
| 117 |     d / dz                  == ((a + c) / 2 + b * unknownW) / (unknownW + 1) | 
| 118 |     d / dz * (unknownW + 1) ==  (a + c) / 2 + b * unknownW | 
| 119 |               unknownW       = ((a + c) / 2 - d / dz) / (d / dz - b) | 
| 120 |  | 
| 121 |     Thus, w is the ratio of the distance from the mid of end points to the on-curve point, and the | 
| 122 |     distance of the on-curve point to the control point. | 
| 123 |  */ | 
| 124 | SkDConic SkDConic::subDivide(double t1, double t2) const { | 
| 125 |     double ax, ay, az; | 
| 126 |     if (t1 == 0) { | 
| 127 |         ax = fPts[0].fX; | 
| 128 |         ay = fPts[0].fY; | 
| 129 |         az = 1; | 
| 130 |     } else if (t1 != 1) { | 
| 131 |         ax = conic_eval_numerator(&fPts[0].fX, fWeight, t1); | 
| 132 |         ay = conic_eval_numerator(&fPts[0].fY, fWeight, t1); | 
| 133 |         az = conic_eval_denominator(fWeight, t1); | 
| 134 |     } else { | 
| 135 |         ax = fPts[2].fX; | 
| 136 |         ay = fPts[2].fY; | 
| 137 |         az = 1; | 
| 138 |     } | 
| 139 |     double midT = (t1 + t2) / 2; | 
| 140 |     double dx = conic_eval_numerator(&fPts[0].fX, fWeight, midT); | 
| 141 |     double dy = conic_eval_numerator(&fPts[0].fY, fWeight, midT); | 
| 142 |     double dz = conic_eval_denominator(fWeight, midT); | 
| 143 |     double cx, cy, cz; | 
| 144 |     if (t2 == 1) { | 
| 145 |         cx = fPts[2].fX; | 
| 146 |         cy = fPts[2].fY; | 
| 147 |         cz = 1; | 
| 148 |     } else if (t2 != 0) { | 
| 149 |         cx = conic_eval_numerator(&fPts[0].fX, fWeight, t2); | 
| 150 |         cy = conic_eval_numerator(&fPts[0].fY, fWeight, t2); | 
| 151 |         cz = conic_eval_denominator(fWeight, t2); | 
| 152 |     } else { | 
| 153 |         cx = fPts[0].fX; | 
| 154 |         cy = fPts[0].fY; | 
| 155 |         cz = 1; | 
| 156 |     } | 
| 157 |     double bx = 2 * dx - (ax + cx) / 2; | 
| 158 |     double by = 2 * dy - (ay + cy) / 2; | 
| 159 |     double bz = 2 * dz - (az + cz) / 2; | 
| 160 |     if (!bz) { | 
| 161 |         bz = 1; // if bz is 0, weight is 0, control point has no effect: any value will do | 
| 162 |     } | 
| 163 |     SkDConic dst = {{{{ax / az, ay / az}, {bx / bz, by / bz}, {cx / cz, cy / cz}} | 
| 164 |             SkDEBUGPARAMS(fPts.fDebugGlobalState) }, | 
| 165 |             SkDoubleToScalar(bz / sqrt(az * cz)) }; | 
| 166 |     return dst; | 
| 167 | } | 
| 168 |  | 
| 169 | SkDPoint SkDConic::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2, | 
| 170 |         SkScalar* weight) const { | 
| 171 |     SkDConic chopped = this->subDivide(t1, t2); | 
| 172 |     *weight = chopped.fWeight; | 
| 173 |     return chopped[1]; | 
| 174 | } | 
| 175 |  | 
| 176 | int SkTConic::intersectRay(SkIntersections* i, const SkDLine& line) const { | 
| 177 |     return i->intersectRay(fConic, line); | 
| 178 | } | 
| 179 |  | 
| 180 | bool SkTConic::hullIntersects(const SkDQuad& quad, bool* isLinear) const  { | 
| 181 |     return quad.hullIntersects(fConic, isLinear); | 
| 182 | } | 
| 183 |  | 
| 184 | bool SkTConic::hullIntersects(const SkDCubic& cubic, bool* isLinear) const { | 
| 185 |     return cubic.hullIntersects(fConic, isLinear); | 
| 186 | } | 
| 187 |  | 
| 188 | void SkTConic::setBounds(SkDRect* rect) const { | 
| 189 |     rect->setBounds(fConic); | 
| 190 | } | 
| 191 |  |