1 | /* |
2 | * Copyright 2006 The Android Open Source Project |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #include "include/core/SkMatrix.h" |
9 | #include "include/core/SkPoint3.h" |
10 | #include "include/private/SkNx.h" |
11 | #include "src/core/SkGeometry.h" |
12 | #include "src/core/SkPointPriv.h" |
13 | |
14 | #include <utility> |
15 | |
16 | static SkVector to_vector(const Sk2s& x) { |
17 | SkVector vector; |
18 | x.store(&vector); |
19 | return vector; |
20 | } |
21 | |
22 | //////////////////////////////////////////////////////////////////////// |
23 | |
24 | static int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c) { |
25 | SkScalar ab = a - b; |
26 | SkScalar bc = b - c; |
27 | if (ab < 0) { |
28 | bc = -bc; |
29 | } |
30 | return ab == 0 || bc < 0; |
31 | } |
32 | |
33 | //////////////////////////////////////////////////////////////////////// |
34 | |
35 | static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) { |
36 | SkASSERT(ratio); |
37 | |
38 | if (numer < 0) { |
39 | numer = -numer; |
40 | denom = -denom; |
41 | } |
42 | |
43 | if (denom == 0 || numer == 0 || numer >= denom) { |
44 | return 0; |
45 | } |
46 | |
47 | SkScalar r = numer / denom; |
48 | if (SkScalarIsNaN(r)) { |
49 | return 0; |
50 | } |
51 | SkASSERTF(r >= 0 && r < SK_Scalar1, "numer %f, denom %f, r %f" , numer, denom, r); |
52 | if (r == 0) { // catch underflow if numer <<<< denom |
53 | return 0; |
54 | } |
55 | *ratio = r; |
56 | return 1; |
57 | } |
58 | |
59 | // Just returns its argument, but makes it easy to set a break-point to know when |
60 | // SkFindUnitQuadRoots is going to return 0 (an error). |
61 | static int return_check_zero(int value) { |
62 | if (value == 0) { |
63 | return 0; |
64 | } |
65 | return value; |
66 | } |
67 | |
68 | /** From Numerical Recipes in C. |
69 | |
70 | Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C]) |
71 | x1 = Q / A |
72 | x2 = C / Q |
73 | */ |
74 | int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) { |
75 | SkASSERT(roots); |
76 | |
77 | if (A == 0) { |
78 | return return_check_zero(valid_unit_divide(-C, B, roots)); |
79 | } |
80 | |
81 | SkScalar* r = roots; |
82 | |
83 | // use doubles so we don't overflow temporarily trying to compute R |
84 | double dr = (double)B * B - 4 * (double)A * C; |
85 | if (dr < 0) { |
86 | return return_check_zero(0); |
87 | } |
88 | dr = sqrt(dr); |
89 | SkScalar R = SkDoubleToScalar(dr); |
90 | if (!SkScalarIsFinite(R)) { |
91 | return return_check_zero(0); |
92 | } |
93 | |
94 | SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2; |
95 | r += valid_unit_divide(Q, A, r); |
96 | r += valid_unit_divide(C, Q, r); |
97 | if (r - roots == 2) { |
98 | if (roots[0] > roots[1]) { |
99 | using std::swap; |
100 | swap(roots[0], roots[1]); |
101 | } else if (roots[0] == roots[1]) { // nearly-equal? |
102 | r -= 1; // skip the double root |
103 | } |
104 | } |
105 | return return_check_zero((int)(r - roots)); |
106 | } |
107 | |
108 | /////////////////////////////////////////////////////////////////////////////// |
109 | /////////////////////////////////////////////////////////////////////////////// |
110 | |
111 | void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent) { |
112 | SkASSERT(src); |
113 | SkASSERT(t >= 0 && t <= SK_Scalar1); |
114 | |
115 | if (pt) { |
116 | *pt = SkEvalQuadAt(src, t); |
117 | } |
118 | if (tangent) { |
119 | *tangent = SkEvalQuadTangentAt(src, t); |
120 | } |
121 | } |
122 | |
123 | SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t) { |
124 | return to_point(SkQuadCoeff(src).eval(t)); |
125 | } |
126 | |
127 | SkVector SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t) { |
128 | // The derivative equation is 2(b - a +(a - 2b +c)t). This returns a |
129 | // zero tangent vector when t is 0 or 1, and the control point is equal |
130 | // to the end point. In this case, use the quad end points to compute the tangent. |
131 | if ((t == 0 && src[0] == src[1]) || (t == 1 && src[1] == src[2])) { |
132 | return src[2] - src[0]; |
133 | } |
134 | SkASSERT(src); |
135 | SkASSERT(t >= 0 && t <= SK_Scalar1); |
136 | |
137 | Sk2s P0 = from_point(src[0]); |
138 | Sk2s P1 = from_point(src[1]); |
139 | Sk2s P2 = from_point(src[2]); |
140 | |
141 | Sk2s B = P1 - P0; |
142 | Sk2s A = P2 - P1 - B; |
143 | Sk2s T = A * Sk2s(t) + B; |
144 | |
145 | return to_vector(T + T); |
146 | } |
147 | |
148 | static inline Sk2s interp(const Sk2s& v0, const Sk2s& v1, const Sk2s& t) { |
149 | return v0 + (v1 - v0) * t; |
150 | } |
151 | |
152 | void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) { |
153 | SkASSERT(t > 0 && t < SK_Scalar1); |
154 | |
155 | Sk2s p0 = from_point(src[0]); |
156 | Sk2s p1 = from_point(src[1]); |
157 | Sk2s p2 = from_point(src[2]); |
158 | Sk2s tt(t); |
159 | |
160 | Sk2s p01 = interp(p0, p1, tt); |
161 | Sk2s p12 = interp(p1, p2, tt); |
162 | |
163 | dst[0] = to_point(p0); |
164 | dst[1] = to_point(p01); |
165 | dst[2] = to_point(interp(p01, p12, tt)); |
166 | dst[3] = to_point(p12); |
167 | dst[4] = to_point(p2); |
168 | } |
169 | |
170 | void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) { |
171 | SkChopQuadAt(src, dst, 0.5f); |
172 | } |
173 | |
174 | /** Quad'(t) = At + B, where |
175 | A = 2(a - 2b + c) |
176 | B = 2(b - a) |
177 | Solve for t, only if it fits between 0 < t < 1 |
178 | */ |
179 | int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) { |
180 | /* At + B == 0 |
181 | t = -B / A |
182 | */ |
183 | return valid_unit_divide(a - b, a - b - b + c, tValue); |
184 | } |
185 | |
186 | static inline void flatten_double_quad_extrema(SkScalar coords[14]) { |
187 | coords[2] = coords[6] = coords[4]; |
188 | } |
189 | |
190 | /* Returns 0 for 1 quad, and 1 for two quads, either way the answer is |
191 | stored in dst[]. Guarantees that the 1/2 quads will be monotonic. |
192 | */ |
193 | int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) { |
194 | SkASSERT(src); |
195 | SkASSERT(dst); |
196 | |
197 | SkScalar a = src[0].fY; |
198 | SkScalar b = src[1].fY; |
199 | SkScalar c = src[2].fY; |
200 | |
201 | if (is_not_monotonic(a, b, c)) { |
202 | SkScalar tValue; |
203 | if (valid_unit_divide(a - b, a - b - b + c, &tValue)) { |
204 | SkChopQuadAt(src, dst, tValue); |
205 | flatten_double_quad_extrema(&dst[0].fY); |
206 | return 1; |
207 | } |
208 | // if we get here, we need to force dst to be monotonic, even though |
209 | // we couldn't compute a unit_divide value (probably underflow). |
210 | b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c; |
211 | } |
212 | dst[0].set(src[0].fX, a); |
213 | dst[1].set(src[1].fX, b); |
214 | dst[2].set(src[2].fX, c); |
215 | return 0; |
216 | } |
217 | |
218 | /* Returns 0 for 1 quad, and 1 for two quads, either way the answer is |
219 | stored in dst[]. Guarantees that the 1/2 quads will be monotonic. |
220 | */ |
221 | int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) { |
222 | SkASSERT(src); |
223 | SkASSERT(dst); |
224 | |
225 | SkScalar a = src[0].fX; |
226 | SkScalar b = src[1].fX; |
227 | SkScalar c = src[2].fX; |
228 | |
229 | if (is_not_monotonic(a, b, c)) { |
230 | SkScalar tValue; |
231 | if (valid_unit_divide(a - b, a - b - b + c, &tValue)) { |
232 | SkChopQuadAt(src, dst, tValue); |
233 | flatten_double_quad_extrema(&dst[0].fX); |
234 | return 1; |
235 | } |
236 | // if we get here, we need to force dst to be monotonic, even though |
237 | // we couldn't compute a unit_divide value (probably underflow). |
238 | b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c; |
239 | } |
240 | dst[0].set(a, src[0].fY); |
241 | dst[1].set(b, src[1].fY); |
242 | dst[2].set(c, src[2].fY); |
243 | return 0; |
244 | } |
245 | |
246 | // F(t) = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2 |
247 | // F'(t) = 2 (b - a) + 2 (a - 2b + c) t |
248 | // F''(t) = 2 (a - 2b + c) |
249 | // |
250 | // A = 2 (b - a) |
251 | // B = 2 (a - 2b + c) |
252 | // |
253 | // Maximum curvature for a quadratic means solving |
254 | // Fx' Fx'' + Fy' Fy'' = 0 |
255 | // |
256 | // t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2) |
257 | // |
258 | SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]) { |
259 | SkScalar Ax = src[1].fX - src[0].fX; |
260 | SkScalar Ay = src[1].fY - src[0].fY; |
261 | SkScalar Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX; |
262 | SkScalar By = src[0].fY - src[1].fY - src[1].fY + src[2].fY; |
263 | |
264 | SkScalar numer = -(Ax * Bx + Ay * By); |
265 | SkScalar denom = Bx * Bx + By * By; |
266 | if (denom < 0) { |
267 | numer = -numer; |
268 | denom = -denom; |
269 | } |
270 | if (numer <= 0) { |
271 | return 0; |
272 | } |
273 | if (numer >= denom) { // Also catches denom=0. |
274 | return 1; |
275 | } |
276 | SkScalar t = numer / denom; |
277 | SkASSERT((0 <= t && t < 1) || SkScalarIsNaN(t)); |
278 | return t; |
279 | } |
280 | |
281 | int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) { |
282 | SkScalar t = SkFindQuadMaxCurvature(src); |
283 | if (t == 0 || t == 1) { |
284 | memcpy(dst, src, 3 * sizeof(SkPoint)); |
285 | return 1; |
286 | } else { |
287 | SkChopQuadAt(src, dst, t); |
288 | return 2; |
289 | } |
290 | } |
291 | |
292 | void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) { |
293 | Sk2s scale(SkDoubleToScalar(2.0 / 3.0)); |
294 | Sk2s s0 = from_point(src[0]); |
295 | Sk2s s1 = from_point(src[1]); |
296 | Sk2s s2 = from_point(src[2]); |
297 | |
298 | dst[0] = to_point(s0); |
299 | dst[1] = to_point(s0 + (s1 - s0) * scale); |
300 | dst[2] = to_point(s2 + (s1 - s2) * scale); |
301 | dst[3] = to_point(s2); |
302 | } |
303 | |
304 | ////////////////////////////////////////////////////////////////////////////// |
305 | ///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS ///// |
306 | ////////////////////////////////////////////////////////////////////////////// |
307 | |
308 | static SkVector eval_cubic_derivative(const SkPoint src[4], SkScalar t) { |
309 | SkQuadCoeff coeff; |
310 | Sk2s P0 = from_point(src[0]); |
311 | Sk2s P1 = from_point(src[1]); |
312 | Sk2s P2 = from_point(src[2]); |
313 | Sk2s P3 = from_point(src[3]); |
314 | |
315 | coeff.fA = P3 + Sk2s(3) * (P1 - P2) - P0; |
316 | coeff.fB = times_2(P2 - times_2(P1) + P0); |
317 | coeff.fC = P1 - P0; |
318 | return to_vector(coeff.eval(t)); |
319 | } |
320 | |
321 | static SkVector eval_cubic_2ndDerivative(const SkPoint src[4], SkScalar t) { |
322 | Sk2s P0 = from_point(src[0]); |
323 | Sk2s P1 = from_point(src[1]); |
324 | Sk2s P2 = from_point(src[2]); |
325 | Sk2s P3 = from_point(src[3]); |
326 | Sk2s A = P3 + Sk2s(3) * (P1 - P2) - P0; |
327 | Sk2s B = P2 - times_2(P1) + P0; |
328 | |
329 | return to_vector(A * Sk2s(t) + B); |
330 | } |
331 | |
332 | void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc, |
333 | SkVector* tangent, SkVector* curvature) { |
334 | SkASSERT(src); |
335 | SkASSERT(t >= 0 && t <= SK_Scalar1); |
336 | |
337 | if (loc) { |
338 | *loc = to_point(SkCubicCoeff(src).eval(t)); |
339 | } |
340 | if (tangent) { |
341 | // The derivative equation returns a zero tangent vector when t is 0 or 1, and the |
342 | // adjacent control point is equal to the end point. In this case, use the |
343 | // next control point or the end points to compute the tangent. |
344 | if ((t == 0 && src[0] == src[1]) || (t == 1 && src[2] == src[3])) { |
345 | if (t == 0) { |
346 | *tangent = src[2] - src[0]; |
347 | } else { |
348 | *tangent = src[3] - src[1]; |
349 | } |
350 | if (!tangent->fX && !tangent->fY) { |
351 | *tangent = src[3] - src[0]; |
352 | } |
353 | } else { |
354 | *tangent = eval_cubic_derivative(src, t); |
355 | } |
356 | } |
357 | if (curvature) { |
358 | *curvature = eval_cubic_2ndDerivative(src, t); |
359 | } |
360 | } |
361 | |
362 | /** Cubic'(t) = At^2 + Bt + C, where |
363 | A = 3(-a + 3(b - c) + d) |
364 | B = 6(a - 2b + c) |
365 | C = 3(b - a) |
366 | Solve for t, keeping only those that fit betwee 0 < t < 1 |
367 | */ |
368 | int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, |
369 | SkScalar tValues[2]) { |
370 | // we divide A,B,C by 3 to simplify |
371 | SkScalar A = d - a + 3*(b - c); |
372 | SkScalar B = 2*(a - b - b + c); |
373 | SkScalar C = b - a; |
374 | |
375 | return SkFindUnitQuadRoots(A, B, C, tValues); |
376 | } |
377 | |
378 | void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) { |
379 | SkASSERT(t > 0 && t < SK_Scalar1); |
380 | |
381 | Sk2s p0 = from_point(src[0]); |
382 | Sk2s p1 = from_point(src[1]); |
383 | Sk2s p2 = from_point(src[2]); |
384 | Sk2s p3 = from_point(src[3]); |
385 | Sk2s tt(t); |
386 | |
387 | Sk2s ab = interp(p0, p1, tt); |
388 | Sk2s bc = interp(p1, p2, tt); |
389 | Sk2s cd = interp(p2, p3, tt); |
390 | Sk2s abc = interp(ab, bc, tt); |
391 | Sk2s bcd = interp(bc, cd, tt); |
392 | Sk2s abcd = interp(abc, bcd, tt); |
393 | |
394 | dst[0] = to_point(p0); |
395 | dst[1] = to_point(ab); |
396 | dst[2] = to_point(abc); |
397 | dst[3] = to_point(abcd); |
398 | dst[4] = to_point(bcd); |
399 | dst[5] = to_point(cd); |
400 | dst[6] = to_point(p3); |
401 | } |
402 | |
403 | /* http://code.google.com/p/skia/issues/detail?id=32 |
404 | |
405 | This test code would fail when we didn't check the return result of |
406 | valid_unit_divide in SkChopCubicAt(... tValues[], int roots). The reason is |
407 | that after the first chop, the parameters to valid_unit_divide are equal |
408 | (thanks to finite float precision and rounding in the subtracts). Thus |
409 | even though the 2nd tValue looks < 1.0, after we renormalize it, we end |
410 | up with 1.0, hence the need to check and just return the last cubic as |
411 | a degenerate clump of 4 points in the sampe place. |
412 | |
413 | static void test_cubic() { |
414 | SkPoint src[4] = { |
415 | { 556.25000, 523.03003 }, |
416 | { 556.23999, 522.96002 }, |
417 | { 556.21997, 522.89001 }, |
418 | { 556.21997, 522.82001 } |
419 | }; |
420 | SkPoint dst[10]; |
421 | SkScalar tval[] = { 0.33333334f, 0.99999994f }; |
422 | SkChopCubicAt(src, dst, tval, 2); |
423 | } |
424 | */ |
425 | |
426 | void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], |
427 | const SkScalar tValues[], int roots) { |
428 | #ifdef SK_DEBUG |
429 | { |
430 | for (int i = 0; i < roots - 1; i++) |
431 | { |
432 | SkASSERT(0 < tValues[i] && tValues[i] < 1); |
433 | SkASSERT(0 < tValues[i+1] && tValues[i+1] < 1); |
434 | SkASSERT(tValues[i] < tValues[i+1]); |
435 | } |
436 | } |
437 | #endif |
438 | |
439 | if (dst) { |
440 | if (roots == 0) { // nothing to chop |
441 | memcpy(dst, src, 4*sizeof(SkPoint)); |
442 | } else { |
443 | SkScalar t = tValues[0]; |
444 | SkPoint tmp[4]; |
445 | |
446 | for (int i = 0; i < roots; i++) { |
447 | SkChopCubicAt(src, dst, t); |
448 | if (i == roots - 1) { |
449 | break; |
450 | } |
451 | |
452 | dst += 3; |
453 | // have src point to the remaining cubic (after the chop) |
454 | memcpy(tmp, dst, 4 * sizeof(SkPoint)); |
455 | src = tmp; |
456 | |
457 | // watch out in case the renormalized t isn't in range |
458 | if (!valid_unit_divide(tValues[i+1] - tValues[i], |
459 | SK_Scalar1 - tValues[i], &t)) { |
460 | // if we can't, just create a degenerate cubic |
461 | dst[4] = dst[5] = dst[6] = src[3]; |
462 | break; |
463 | } |
464 | } |
465 | } |
466 | } |
467 | } |
468 | |
469 | void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) { |
470 | SkChopCubicAt(src, dst, 0.5f); |
471 | } |
472 | |
473 | static void flatten_double_cubic_extrema(SkScalar coords[14]) { |
474 | coords[4] = coords[8] = coords[6]; |
475 | } |
476 | |
477 | /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that |
478 | the resulting beziers are monotonic in Y. This is called by the scan |
479 | converter. Depending on what is returned, dst[] is treated as follows: |
480 | 0 dst[0..3] is the original cubic |
481 | 1 dst[0..3] and dst[3..6] are the two new cubics |
482 | 2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics |
483 | If dst == null, it is ignored and only the count is returned. |
484 | */ |
485 | int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) { |
486 | SkScalar tValues[2]; |
487 | int roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY, |
488 | src[3].fY, tValues); |
489 | |
490 | SkChopCubicAt(src, dst, tValues, roots); |
491 | if (dst && roots > 0) { |
492 | // we do some cleanup to ensure our Y extrema are flat |
493 | flatten_double_cubic_extrema(&dst[0].fY); |
494 | if (roots == 2) { |
495 | flatten_double_cubic_extrema(&dst[3].fY); |
496 | } |
497 | } |
498 | return roots; |
499 | } |
500 | |
501 | int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) { |
502 | SkScalar tValues[2]; |
503 | int roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX, |
504 | src[3].fX, tValues); |
505 | |
506 | SkChopCubicAt(src, dst, tValues, roots); |
507 | if (dst && roots > 0) { |
508 | // we do some cleanup to ensure our Y extrema are flat |
509 | flatten_double_cubic_extrema(&dst[0].fX); |
510 | if (roots == 2) { |
511 | flatten_double_cubic_extrema(&dst[3].fX); |
512 | } |
513 | } |
514 | return roots; |
515 | } |
516 | |
517 | /** http://www.faculty.idc.ac.il/arik/quality/appendixA.html |
518 | |
519 | Inflection means that curvature is zero. |
520 | Curvature is [F' x F''] / [F'^3] |
521 | So we solve F'x X F''y - F'y X F''y == 0 |
522 | After some canceling of the cubic term, we get |
523 | A = b - a |
524 | B = c - 2b + a |
525 | C = d - 3c + 3b - a |
526 | (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0 |
527 | */ |
528 | int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) { |
529 | SkScalar Ax = src[1].fX - src[0].fX; |
530 | SkScalar Ay = src[1].fY - src[0].fY; |
531 | SkScalar Bx = src[2].fX - 2 * src[1].fX + src[0].fX; |
532 | SkScalar By = src[2].fY - 2 * src[1].fY + src[0].fY; |
533 | SkScalar Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX; |
534 | SkScalar Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY; |
535 | |
536 | return SkFindUnitQuadRoots(Bx*Cy - By*Cx, |
537 | Ax*Cy - Ay*Cx, |
538 | Ax*By - Ay*Bx, |
539 | tValues); |
540 | } |
541 | |
542 | int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) { |
543 | SkScalar tValues[2]; |
544 | int count = SkFindCubicInflections(src, tValues); |
545 | |
546 | if (dst) { |
547 | if (count == 0) { |
548 | memcpy(dst, src, 4 * sizeof(SkPoint)); |
549 | } else { |
550 | SkChopCubicAt(src, dst, tValues, count); |
551 | } |
552 | } |
553 | return count + 1; |
554 | } |
555 | |
556 | // Assumes the third component of points is 1. |
557 | // Calcs p0 . (p1 x p2) |
558 | static double calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) { |
559 | const double xComp = (double) p0.fX * ((double) p1.fY - (double) p2.fY); |
560 | const double yComp = (double) p0.fY * ((double) p2.fX - (double) p1.fX); |
561 | const double wComp = (double) p1.fX * (double) p2.fY - (double) p1.fY * (double) p2.fX; |
562 | return (xComp + yComp + wComp); |
563 | } |
564 | |
565 | // Returns a positive power of 2 that, when multiplied by n, and excepting the two edge cases listed |
566 | // below, shifts the exponent of n to yield a magnitude somewhere inside [1..2). |
567 | // Returns 2^1023 if abs(n) < 2^-1022 (including 0). |
568 | // Returns NaN if n is Inf or NaN. |
569 | inline static double previous_inverse_pow2(double n) { |
570 | uint64_t bits; |
571 | memcpy(&bits, &n, sizeof(double)); |
572 | bits = ((1023llu*2 << 52) + ((1llu << 52) - 1)) - bits; // exp=-exp |
573 | bits &= (0x7ffllu) << 52; // mantissa=1.0, sign=0 |
574 | memcpy(&n, &bits, sizeof(double)); |
575 | return n; |
576 | } |
577 | |
578 | inline static void write_cubic_inflection_roots(double t0, double s0, double t1, double s1, |
579 | double* t, double* s) { |
580 | t[0] = t0; |
581 | s[0] = s0; |
582 | |
583 | // This copysign/abs business orients the implicit function so positive values are always on the |
584 | // "left" side of the curve. |
585 | t[1] = -copysign(t1, t1 * s1); |
586 | s[1] = -fabs(s1); |
587 | |
588 | // Ensure t[0]/s[0] <= t[1]/s[1] (s[1] is negative from above). |
589 | if (copysign(s[1], s[0]) * t[0] > -fabs(s[0]) * t[1]) { |
590 | using std::swap; |
591 | swap(t[0], t[1]); |
592 | swap(s[0], s[1]); |
593 | } |
594 | } |
595 | |
596 | SkCubicType SkClassifyCubic(const SkPoint P[4], double t[2], double s[2], double d[4]) { |
597 | // Find the cubic's inflection function, I = [T^3 -3T^2 3T -1] dot D. (D0 will always be 0 |
598 | // for integral cubics.) |
599 | // |
600 | // See "Resolution Independent Curve Rendering using Programmable Graphics Hardware", |
601 | // 4.2 Curve Categorization: |
602 | // |
603 | // https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf |
604 | double A1 = calc_dot_cross_cubic(P[0], P[3], P[2]); |
605 | double A2 = calc_dot_cross_cubic(P[1], P[0], P[3]); |
606 | double A3 = calc_dot_cross_cubic(P[2], P[1], P[0]); |
607 | |
608 | double D3 = 3 * A3; |
609 | double D2 = D3 - A2; |
610 | double D1 = D2 - A2 + A1; |
611 | |
612 | // Shift the exponents in D so the largest magnitude falls somewhere in 1..2. This protects us |
613 | // from overflow down the road while solving for roots and KLM functionals. |
614 | double Dmax = std::max(std::max(fabs(D1), fabs(D2)), fabs(D3)); |
615 | double norm = previous_inverse_pow2(Dmax); |
616 | D1 *= norm; |
617 | D2 *= norm; |
618 | D3 *= norm; |
619 | |
620 | if (d) { |
621 | d[3] = D3; |
622 | d[2] = D2; |
623 | d[1] = D1; |
624 | d[0] = 0; |
625 | } |
626 | |
627 | // Now use the inflection function to classify the cubic. |
628 | // |
629 | // See "Resolution Independent Curve Rendering using Programmable Graphics Hardware", |
630 | // 4.4 Integral Cubics: |
631 | // |
632 | // https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf |
633 | if (0 != D1) { |
634 | double discr = 3*D2*D2 - 4*D1*D3; |
635 | if (discr > 0) { // Serpentine. |
636 | if (t && s) { |
637 | double q = 3*D2 + copysign(sqrt(3*discr), D2); |
638 | write_cubic_inflection_roots(q, 6*D1, 2*D3, q, t, s); |
639 | } |
640 | return SkCubicType::kSerpentine; |
641 | } else if (discr < 0) { // Loop. |
642 | if (t && s) { |
643 | double q = D2 + copysign(sqrt(-discr), D2); |
644 | write_cubic_inflection_roots(q, 2*D1, 2*(D2*D2 - D3*D1), D1*q, t, s); |
645 | } |
646 | return SkCubicType::kLoop; |
647 | } else { // Cusp. |
648 | if (t && s) { |
649 | write_cubic_inflection_roots(D2, 2*D1, D2, 2*D1, t, s); |
650 | } |
651 | return SkCubicType::kLocalCusp; |
652 | } |
653 | } else { |
654 | if (0 != D2) { // Cusp at T=infinity. |
655 | if (t && s) { |
656 | write_cubic_inflection_roots(D3, 3*D2, 1, 0, t, s); // T1=infinity. |
657 | } |
658 | return SkCubicType::kCuspAtInfinity; |
659 | } else { // Degenerate. |
660 | if (t && s) { |
661 | write_cubic_inflection_roots(1, 0, 1, 0, t, s); // T0=T1=infinity. |
662 | } |
663 | return 0 != D3 ? SkCubicType::kQuadratic : SkCubicType::kLineOrPoint; |
664 | } |
665 | } |
666 | } |
667 | |
668 | template <typename T> void bubble_sort(T array[], int count) { |
669 | for (int i = count - 1; i > 0; --i) |
670 | for (int j = i; j > 0; --j) |
671 | if (array[j] < array[j-1]) |
672 | { |
673 | T tmp(array[j]); |
674 | array[j] = array[j-1]; |
675 | array[j-1] = tmp; |
676 | } |
677 | } |
678 | |
679 | /** |
680 | * Given an array and count, remove all pair-wise duplicates from the array, |
681 | * keeping the existing sorting, and return the new count |
682 | */ |
683 | static int collaps_duplicates(SkScalar array[], int count) { |
684 | for (int n = count; n > 1; --n) { |
685 | if (array[0] == array[1]) { |
686 | for (int i = 1; i < n; ++i) { |
687 | array[i - 1] = array[i]; |
688 | } |
689 | count -= 1; |
690 | } else { |
691 | array += 1; |
692 | } |
693 | } |
694 | return count; |
695 | } |
696 | |
697 | #ifdef SK_DEBUG |
698 | |
699 | #define TEST_COLLAPS_ENTRY(array) array, SK_ARRAY_COUNT(array) |
700 | |
701 | static void test_collaps_duplicates() { |
702 | static bool gOnce; |
703 | if (gOnce) { return; } |
704 | gOnce = true; |
705 | const SkScalar src0[] = { 0 }; |
706 | const SkScalar src1[] = { 0, 0 }; |
707 | const SkScalar src2[] = { 0, 1 }; |
708 | const SkScalar src3[] = { 0, 0, 0 }; |
709 | const SkScalar src4[] = { 0, 0, 1 }; |
710 | const SkScalar src5[] = { 0, 1, 1 }; |
711 | const SkScalar src6[] = { 0, 1, 2 }; |
712 | const struct { |
713 | const SkScalar* fData; |
714 | int fCount; |
715 | int fCollapsedCount; |
716 | } data[] = { |
717 | { TEST_COLLAPS_ENTRY(src0), 1 }, |
718 | { TEST_COLLAPS_ENTRY(src1), 1 }, |
719 | { TEST_COLLAPS_ENTRY(src2), 2 }, |
720 | { TEST_COLLAPS_ENTRY(src3), 1 }, |
721 | { TEST_COLLAPS_ENTRY(src4), 2 }, |
722 | { TEST_COLLAPS_ENTRY(src5), 2 }, |
723 | { TEST_COLLAPS_ENTRY(src6), 3 }, |
724 | }; |
725 | for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) { |
726 | SkScalar dst[3]; |
727 | memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0])); |
728 | int count = collaps_duplicates(dst, data[i].fCount); |
729 | SkASSERT(data[i].fCollapsedCount == count); |
730 | for (int j = 1; j < count; ++j) { |
731 | SkASSERT(dst[j-1] < dst[j]); |
732 | } |
733 | } |
734 | } |
735 | #endif |
736 | |
737 | static SkScalar SkScalarCubeRoot(SkScalar x) { |
738 | return SkScalarPow(x, 0.3333333f); |
739 | } |
740 | |
741 | /* Solve coeff(t) == 0, returning the number of roots that |
742 | lie withing 0 < t < 1. |
743 | coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3] |
744 | |
745 | Eliminates repeated roots (so that all tValues are distinct, and are always |
746 | in increasing order. |
747 | */ |
748 | static int solve_cubic_poly(const SkScalar coeff[4], SkScalar tValues[3]) { |
749 | if (SkScalarNearlyZero(coeff[0])) { // we're just a quadratic |
750 | return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues); |
751 | } |
752 | |
753 | SkScalar a, b, c, Q, R; |
754 | |
755 | { |
756 | SkASSERT(coeff[0] != 0); |
757 | |
758 | SkScalar inva = SkScalarInvert(coeff[0]); |
759 | a = coeff[1] * inva; |
760 | b = coeff[2] * inva; |
761 | c = coeff[3] * inva; |
762 | } |
763 | Q = (a*a - b*3) / 9; |
764 | R = (2*a*a*a - 9*a*b + 27*c) / 54; |
765 | |
766 | SkScalar Q3 = Q * Q * Q; |
767 | SkScalar R2MinusQ3 = R * R - Q3; |
768 | SkScalar adiv3 = a / 3; |
769 | |
770 | if (R2MinusQ3 < 0) { // we have 3 real roots |
771 | // the divide/root can, due to finite precisions, be slightly outside of -1...1 |
772 | SkScalar theta = SkScalarACos(SkTPin(R / SkScalarSqrt(Q3), -1.0f, 1.0f)); |
773 | SkScalar neg2RootQ = -2 * SkScalarSqrt(Q); |
774 | |
775 | tValues[0] = SkTPin(neg2RootQ * SkScalarCos(theta/3) - adiv3, 0.0f, 1.0f); |
776 | tValues[1] = SkTPin(neg2RootQ * SkScalarCos((theta + 2*SK_ScalarPI)/3) - adiv3, 0.0f, 1.0f); |
777 | tValues[2] = SkTPin(neg2RootQ * SkScalarCos((theta - 2*SK_ScalarPI)/3) - adiv3, 0.0f, 1.0f); |
778 | SkDEBUGCODE(test_collaps_duplicates();) |
779 | |
780 | // now sort the roots |
781 | bubble_sort(tValues, 3); |
782 | return collaps_duplicates(tValues, 3); |
783 | } else { // we have 1 real root |
784 | SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3); |
785 | A = SkScalarCubeRoot(A); |
786 | if (R > 0) { |
787 | A = -A; |
788 | } |
789 | if (A != 0) { |
790 | A += Q / A; |
791 | } |
792 | tValues[0] = SkTPin(A - adiv3, 0.0f, 1.0f); |
793 | return 1; |
794 | } |
795 | } |
796 | |
797 | /* Looking for F' dot F'' == 0 |
798 | |
799 | A = b - a |
800 | B = c - 2b + a |
801 | C = d - 3c + 3b - a |
802 | |
803 | F' = 3Ct^2 + 6Bt + 3A |
804 | F'' = 6Ct + 6B |
805 | |
806 | F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB |
807 | */ |
808 | static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) { |
809 | SkScalar a = src[2] - src[0]; |
810 | SkScalar b = src[4] - 2 * src[2] + src[0]; |
811 | SkScalar c = src[6] + 3 * (src[2] - src[4]) - src[0]; |
812 | |
813 | coeff[0] = c * c; |
814 | coeff[1] = 3 * b * c; |
815 | coeff[2] = 2 * b * b + c * a; |
816 | coeff[3] = a * b; |
817 | } |
818 | |
819 | /* Looking for F' dot F'' == 0 |
820 | |
821 | A = b - a |
822 | B = c - 2b + a |
823 | C = d - 3c + 3b - a |
824 | |
825 | F' = 3Ct^2 + 6Bt + 3A |
826 | F'' = 6Ct + 6B |
827 | |
828 | F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB |
829 | */ |
830 | int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) { |
831 | SkScalar coeffX[4], coeffY[4]; |
832 | int i; |
833 | |
834 | formulate_F1DotF2(&src[0].fX, coeffX); |
835 | formulate_F1DotF2(&src[0].fY, coeffY); |
836 | |
837 | for (i = 0; i < 4; i++) { |
838 | coeffX[i] += coeffY[i]; |
839 | } |
840 | |
841 | int numRoots = solve_cubic_poly(coeffX, tValues); |
842 | // now remove extrema where the curvature is zero (mins) |
843 | // !!!! need a test for this !!!! |
844 | return numRoots; |
845 | } |
846 | |
847 | int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], |
848 | SkScalar tValues[3]) { |
849 | SkScalar t_storage[3]; |
850 | |
851 | if (tValues == nullptr) { |
852 | tValues = t_storage; |
853 | } |
854 | |
855 | SkScalar roots[3]; |
856 | int rootCount = SkFindCubicMaxCurvature(src, roots); |
857 | |
858 | // Throw out values not inside 0..1. |
859 | int count = 0; |
860 | for (int i = 0; i < rootCount; ++i) { |
861 | if (0 < roots[i] && roots[i] < 1) { |
862 | tValues[count++] = roots[i]; |
863 | } |
864 | } |
865 | |
866 | if (dst) { |
867 | if (count == 0) { |
868 | memcpy(dst, src, 4 * sizeof(SkPoint)); |
869 | } else { |
870 | SkChopCubicAt(src, dst, tValues, count); |
871 | } |
872 | } |
873 | return count + 1; |
874 | } |
875 | |
876 | // Returns a constant proportional to the dimensions of the cubic. |
877 | // Constant found through experimentation -- maybe there's a better way.... |
878 | static SkScalar calc_cubic_precision(const SkPoint src[4]) { |
879 | return (SkPointPriv::DistanceToSqd(src[1], src[0]) + SkPointPriv::DistanceToSqd(src[2], src[1]) |
880 | + SkPointPriv::DistanceToSqd(src[3], src[2])) * 1e-8f; |
881 | } |
882 | |
883 | // Returns true if both points src[testIndex], src[testIndex+1] are in the same half plane defined |
884 | // by the line segment src[lineIndex], src[lineIndex+1]. |
885 | static bool on_same_side(const SkPoint src[4], int testIndex, int lineIndex) { |
886 | SkPoint origin = src[lineIndex]; |
887 | SkVector line = src[lineIndex + 1] - origin; |
888 | SkScalar crosses[2]; |
889 | for (int index = 0; index < 2; ++index) { |
890 | SkVector testLine = src[testIndex + index] - origin; |
891 | crosses[index] = line.cross(testLine); |
892 | } |
893 | return crosses[0] * crosses[1] >= 0; |
894 | } |
895 | |
896 | // Return location (in t) of cubic cusp, if there is one. |
897 | // Note that classify cubic code does not reliably return all cusp'd cubics, so |
898 | // it is not called here. |
899 | SkScalar SkFindCubicCusp(const SkPoint src[4]) { |
900 | // When the adjacent control point matches the end point, it behaves as if |
901 | // the cubic has a cusp: there's a point of max curvature where the derivative |
902 | // goes to zero. Ideally, this would be where t is zero or one, but math |
903 | // error makes not so. It is not uncommon to create cubics this way; skip them. |
904 | if (src[0] == src[1]) { |
905 | return -1; |
906 | } |
907 | if (src[2] == src[3]) { |
908 | return -1; |
909 | } |
910 | // Cubics only have a cusp if the line segments formed by the control and end points cross. |
911 | // Detect crossing if line ends are on opposite sides of plane formed by the other line. |
912 | if (on_same_side(src, 0, 2) || on_same_side(src, 2, 0)) { |
913 | return -1; |
914 | } |
915 | // Cubics may have multiple points of maximum curvature, although at most only |
916 | // one is a cusp. |
917 | SkScalar maxCurvature[3]; |
918 | int roots = SkFindCubicMaxCurvature(src, maxCurvature); |
919 | for (int index = 0; index < roots; ++index) { |
920 | SkScalar testT = maxCurvature[index]; |
921 | if (0 >= testT || testT >= 1) { // no need to consider max curvature on the end |
922 | continue; |
923 | } |
924 | // A cusp is at the max curvature, and also has a derivative close to zero. |
925 | // Choose the 'close to zero' meaning by comparing the derivative length |
926 | // with the overall cubic size. |
927 | SkVector dPt = eval_cubic_derivative(src, testT); |
928 | SkScalar dPtMagnitude = SkPointPriv::LengthSqd(dPt); |
929 | SkScalar precision = calc_cubic_precision(src); |
930 | if (dPtMagnitude < precision) { |
931 | // All three max curvature t values may be close to the cusp; |
932 | // return the first one. |
933 | return testT; |
934 | } |
935 | } |
936 | return -1; |
937 | } |
938 | |
939 | #include "src/pathops/SkPathOpsCubic.h" |
940 | |
941 | typedef int (SkDCubic::*InterceptProc)(double intercept, double roots[3]) const; |
942 | |
943 | static bool cubic_dchop_at_intercept(const SkPoint src[4], SkScalar intercept, SkPoint dst[7], |
944 | InterceptProc method) { |
945 | SkDCubic cubic; |
946 | double roots[3]; |
947 | int count = (cubic.set(src).*method)(intercept, roots); |
948 | if (count > 0) { |
949 | SkDCubicPair pair = cubic.chopAt(roots[0]); |
950 | for (int i = 0; i < 7; ++i) { |
951 | dst[i] = pair.pts[i].asSkPoint(); |
952 | } |
953 | return true; |
954 | } |
955 | return false; |
956 | } |
957 | |
958 | bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar y, SkPoint dst[7]) { |
959 | return cubic_dchop_at_intercept(src, y, dst, &SkDCubic::horizontalIntersect); |
960 | } |
961 | |
962 | bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar x, SkPoint dst[7]) { |
963 | return cubic_dchop_at_intercept(src, x, dst, &SkDCubic::verticalIntersect); |
964 | } |
965 | |
966 | /////////////////////////////////////////////////////////////////////////////// |
967 | // |
968 | // NURB representation for conics. Helpful explanations at: |
969 | // |
970 | // http://citeseerx.ist.psu.edu/viewdoc/ |
971 | // download?doi=10.1.1.44.5740&rep=rep1&type=ps |
972 | // and |
973 | // http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-conics.html |
974 | // |
975 | // F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w) |
976 | // ------------------------------------------ |
977 | // ((1 - t)^2 + t^2 + 2 (1 - t) t w) |
978 | // |
979 | // = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0} |
980 | // ------------------------------------------------ |
981 | // {t^2 (2 - 2 w), t (-2 + 2 w), 1} |
982 | // |
983 | |
984 | // F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w) |
985 | // |
986 | // t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w) |
987 | // t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w) |
988 | // t^0 : -2 P0 w + 2 P1 w |
989 | // |
990 | // We disregard magnitude, so we can freely ignore the denominator of F', and |
991 | // divide the numerator by 2 |
992 | // |
993 | // coeff[0] for t^2 |
994 | // coeff[1] for t^1 |
995 | // coeff[2] for t^0 |
996 | // |
997 | static void conic_deriv_coeff(const SkScalar src[], |
998 | SkScalar w, |
999 | SkScalar coeff[3]) { |
1000 | const SkScalar P20 = src[4] - src[0]; |
1001 | const SkScalar P10 = src[2] - src[0]; |
1002 | const SkScalar wP10 = w * P10; |
1003 | coeff[0] = w * P20 - P20; |
1004 | coeff[1] = P20 - 2 * wP10; |
1005 | coeff[2] = wP10; |
1006 | } |
1007 | |
1008 | static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) { |
1009 | SkScalar coeff[3]; |
1010 | conic_deriv_coeff(src, w, coeff); |
1011 | |
1012 | SkScalar tValues[2]; |
1013 | int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues); |
1014 | SkASSERT(0 == roots || 1 == roots); |
1015 | |
1016 | if (1 == roots) { |
1017 | *t = tValues[0]; |
1018 | return true; |
1019 | } |
1020 | return false; |
1021 | } |
1022 | |
1023 | // We only interpolate one dimension at a time (the first, at +0, +3, +6). |
1024 | static void p3d_interp(const SkScalar src[7], SkScalar dst[7], SkScalar t) { |
1025 | SkScalar ab = SkScalarInterp(src[0], src[3], t); |
1026 | SkScalar bc = SkScalarInterp(src[3], src[6], t); |
1027 | dst[0] = ab; |
1028 | dst[3] = SkScalarInterp(ab, bc, t); |
1029 | dst[6] = bc; |
1030 | } |
1031 | |
1032 | static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkPoint3 dst[3]) { |
1033 | dst[0].set(src[0].fX * 1, src[0].fY * 1, 1); |
1034 | dst[1].set(src[1].fX * w, src[1].fY * w, w); |
1035 | dst[2].set(src[2].fX * 1, src[2].fY * 1, 1); |
1036 | } |
1037 | |
1038 | static SkPoint project_down(const SkPoint3& src) { |
1039 | return {src.fX / src.fZ, src.fY / src.fZ}; |
1040 | } |
1041 | |
1042 | // return false if infinity or NaN is generated; caller must check |
1043 | bool SkConic::chopAt(SkScalar t, SkConic dst[2]) const { |
1044 | SkPoint3 tmp[3], tmp2[3]; |
1045 | |
1046 | ratquad_mapTo3D(fPts, fW, tmp); |
1047 | |
1048 | p3d_interp(&tmp[0].fX, &tmp2[0].fX, t); |
1049 | p3d_interp(&tmp[0].fY, &tmp2[0].fY, t); |
1050 | p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t); |
1051 | |
1052 | dst[0].fPts[0] = fPts[0]; |
1053 | dst[0].fPts[1] = project_down(tmp2[0]); |
1054 | dst[0].fPts[2] = project_down(tmp2[1]); dst[1].fPts[0] = dst[0].fPts[2]; |
1055 | dst[1].fPts[1] = project_down(tmp2[2]); |
1056 | dst[1].fPts[2] = fPts[2]; |
1057 | |
1058 | // to put in "standard form", where w0 and w2 are both 1, we compute the |
1059 | // new w1 as sqrt(w1*w1/w0*w2) |
1060 | // or |
1061 | // w1 /= sqrt(w0*w2) |
1062 | // |
1063 | // However, in our case, we know that for dst[0]: |
1064 | // w0 == 1, and for dst[1], w2 == 1 |
1065 | // |
1066 | SkScalar root = SkScalarSqrt(tmp2[1].fZ); |
1067 | dst[0].fW = tmp2[0].fZ / root; |
1068 | dst[1].fW = tmp2[2].fZ / root; |
1069 | SkASSERT(sizeof(dst[0]) == sizeof(SkScalar) * 7); |
1070 | SkASSERT(0 == offsetof(SkConic, fPts[0].fX)); |
1071 | return SkScalarsAreFinite(&dst[0].fPts[0].fX, 7 * 2); |
1072 | } |
1073 | |
1074 | void SkConic::chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const { |
1075 | if (0 == t1 || 1 == t2) { |
1076 | if (0 == t1 && 1 == t2) { |
1077 | *dst = *this; |
1078 | return; |
1079 | } else { |
1080 | SkConic pair[2]; |
1081 | if (this->chopAt(t1 ? t1 : t2, pair)) { |
1082 | *dst = pair[SkToBool(t1)]; |
1083 | return; |
1084 | } |
1085 | } |
1086 | } |
1087 | SkConicCoeff coeff(*this); |
1088 | Sk2s tt1(t1); |
1089 | Sk2s aXY = coeff.fNumer.eval(tt1); |
1090 | Sk2s aZZ = coeff.fDenom.eval(tt1); |
1091 | Sk2s midTT((t1 + t2) / 2); |
1092 | Sk2s dXY = coeff.fNumer.eval(midTT); |
1093 | Sk2s dZZ = coeff.fDenom.eval(midTT); |
1094 | Sk2s tt2(t2); |
1095 | Sk2s cXY = coeff.fNumer.eval(tt2); |
1096 | Sk2s cZZ = coeff.fDenom.eval(tt2); |
1097 | Sk2s bXY = times_2(dXY) - (aXY + cXY) * Sk2s(0.5f); |
1098 | Sk2s bZZ = times_2(dZZ) - (aZZ + cZZ) * Sk2s(0.5f); |
1099 | dst->fPts[0] = to_point(aXY / aZZ); |
1100 | dst->fPts[1] = to_point(bXY / bZZ); |
1101 | dst->fPts[2] = to_point(cXY / cZZ); |
1102 | Sk2s ww = bZZ / (aZZ * cZZ).sqrt(); |
1103 | dst->fW = ww[0]; |
1104 | } |
1105 | |
1106 | SkPoint SkConic::evalAt(SkScalar t) const { |
1107 | return to_point(SkConicCoeff(*this).eval(t)); |
1108 | } |
1109 | |
1110 | SkVector SkConic::evalTangentAt(SkScalar t) const { |
1111 | // The derivative equation returns a zero tangent vector when t is 0 or 1, |
1112 | // and the control point is equal to the end point. |
1113 | // In this case, use the conic endpoints to compute the tangent. |
1114 | if ((t == 0 && fPts[0] == fPts[1]) || (t == 1 && fPts[1] == fPts[2])) { |
1115 | return fPts[2] - fPts[0]; |
1116 | } |
1117 | Sk2s p0 = from_point(fPts[0]); |
1118 | Sk2s p1 = from_point(fPts[1]); |
1119 | Sk2s p2 = from_point(fPts[2]); |
1120 | Sk2s ww(fW); |
1121 | |
1122 | Sk2s p20 = p2 - p0; |
1123 | Sk2s p10 = p1 - p0; |
1124 | |
1125 | Sk2s C = ww * p10; |
1126 | Sk2s A = ww * p20 - p20; |
1127 | Sk2s B = p20 - C - C; |
1128 | |
1129 | return to_vector(SkQuadCoeff(A, B, C).eval(t)); |
1130 | } |
1131 | |
1132 | void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const { |
1133 | SkASSERT(t >= 0 && t <= SK_Scalar1); |
1134 | |
1135 | if (pt) { |
1136 | *pt = this->evalAt(t); |
1137 | } |
1138 | if (tangent) { |
1139 | *tangent = this->evalTangentAt(t); |
1140 | } |
1141 | } |
1142 | |
1143 | static SkScalar subdivide_w_value(SkScalar w) { |
1144 | return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf); |
1145 | } |
1146 | |
1147 | void SkConic::chop(SkConic * SK_RESTRICT dst) const { |
1148 | Sk2s scale = Sk2s(SkScalarInvert(SK_Scalar1 + fW)); |
1149 | SkScalar newW = subdivide_w_value(fW); |
1150 | |
1151 | Sk2s p0 = from_point(fPts[0]); |
1152 | Sk2s p1 = from_point(fPts[1]); |
1153 | Sk2s p2 = from_point(fPts[2]); |
1154 | Sk2s ww(fW); |
1155 | |
1156 | Sk2s wp1 = ww * p1; |
1157 | Sk2s m = (p0 + times_2(wp1) + p2) * scale * Sk2s(0.5f); |
1158 | SkPoint mPt = to_point(m); |
1159 | if (!mPt.isFinite()) { |
1160 | double w_d = fW; |
1161 | double w_2 = w_d * 2; |
1162 | double scale_half = 1 / (1 + w_d) * 0.5; |
1163 | mPt.fX = SkDoubleToScalar((fPts[0].fX + w_2 * fPts[1].fX + fPts[2].fX) * scale_half); |
1164 | mPt.fY = SkDoubleToScalar((fPts[0].fY + w_2 * fPts[1].fY + fPts[2].fY) * scale_half); |
1165 | } |
1166 | dst[0].fPts[0] = fPts[0]; |
1167 | dst[0].fPts[1] = to_point((p0 + wp1) * scale); |
1168 | dst[0].fPts[2] = dst[1].fPts[0] = mPt; |
1169 | dst[1].fPts[1] = to_point((wp1 + p2) * scale); |
1170 | dst[1].fPts[2] = fPts[2]; |
1171 | |
1172 | dst[0].fW = dst[1].fW = newW; |
1173 | } |
1174 | |
1175 | /* |
1176 | * "High order approximation of conic sections by quadratic splines" |
1177 | * by Michael Floater, 1993 |
1178 | */ |
1179 | #define AS_QUAD_ERROR_SETUP \ |
1180 | SkScalar a = fW - 1; \ |
1181 | SkScalar k = a / (4 * (2 + a)); \ |
1182 | SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX); \ |
1183 | SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY); |
1184 | |
1185 | void SkConic::computeAsQuadError(SkVector* err) const { |
1186 | AS_QUAD_ERROR_SETUP |
1187 | err->set(x, y); |
1188 | } |
1189 | |
1190 | bool SkConic::asQuadTol(SkScalar tol) const { |
1191 | AS_QUAD_ERROR_SETUP |
1192 | return (x * x + y * y) <= tol * tol; |
1193 | } |
1194 | |
1195 | // Limit the number of suggested quads to approximate a conic |
1196 | #define kMaxConicToQuadPOW2 5 |
1197 | |
1198 | int SkConic::computeQuadPOW2(SkScalar tol) const { |
1199 | if (tol < 0 || !SkScalarIsFinite(tol) || !SkPointPriv::AreFinite(fPts, 3)) { |
1200 | return 0; |
1201 | } |
1202 | |
1203 | AS_QUAD_ERROR_SETUP |
1204 | |
1205 | SkScalar error = SkScalarSqrt(x * x + y * y); |
1206 | int pow2; |
1207 | for (pow2 = 0; pow2 < kMaxConicToQuadPOW2; ++pow2) { |
1208 | if (error <= tol) { |
1209 | break; |
1210 | } |
1211 | error *= 0.25f; |
1212 | } |
1213 | // float version -- using ceil gives the same results as the above. |
1214 | if (false) { |
1215 | SkScalar err = SkScalarSqrt(x * x + y * y); |
1216 | if (err <= tol) { |
1217 | return 0; |
1218 | } |
1219 | SkScalar tol2 = tol * tol; |
1220 | if (tol2 == 0) { |
1221 | return kMaxConicToQuadPOW2; |
1222 | } |
1223 | SkScalar fpow2 = SkScalarLog2((x * x + y * y) / tol2) * 0.25f; |
1224 | int altPow2 = SkScalarCeilToInt(fpow2); |
1225 | if (altPow2 != pow2) { |
1226 | SkDebugf("pow2 %d altPow2 %d fbits %g err %g tol %g\n" , pow2, altPow2, fpow2, err, tol); |
1227 | } |
1228 | pow2 = altPow2; |
1229 | } |
1230 | return pow2; |
1231 | } |
1232 | |
1233 | // This was originally developed and tested for pathops: see SkOpTypes.h |
1234 | // returns true if (a <= b <= c) || (a >= b >= c) |
1235 | static bool between(SkScalar a, SkScalar b, SkScalar c) { |
1236 | return (a - b) * (c - b) <= 0; |
1237 | } |
1238 | |
1239 | static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) { |
1240 | SkASSERT(level >= 0); |
1241 | |
1242 | if (0 == level) { |
1243 | memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint)); |
1244 | return pts + 2; |
1245 | } else { |
1246 | SkConic dst[2]; |
1247 | src.chop(dst); |
1248 | const SkScalar startY = src.fPts[0].fY; |
1249 | SkScalar endY = src.fPts[2].fY; |
1250 | if (between(startY, src.fPts[1].fY, endY)) { |
1251 | // If the input is monotonic and the output is not, the scan converter hangs. |
1252 | // Ensure that the chopped conics maintain their y-order. |
1253 | SkScalar midY = dst[0].fPts[2].fY; |
1254 | if (!between(startY, midY, endY)) { |
1255 | // If the computed midpoint is outside the ends, move it to the closer one. |
1256 | SkScalar closerY = SkTAbs(midY - startY) < SkTAbs(midY - endY) ? startY : endY; |
1257 | dst[0].fPts[2].fY = dst[1].fPts[0].fY = closerY; |
1258 | } |
1259 | if (!between(startY, dst[0].fPts[1].fY, dst[0].fPts[2].fY)) { |
1260 | // If the 1st control is not between the start and end, put it at the start. |
1261 | // This also reduces the quad to a line. |
1262 | dst[0].fPts[1].fY = startY; |
1263 | } |
1264 | if (!between(dst[1].fPts[0].fY, dst[1].fPts[1].fY, endY)) { |
1265 | // If the 2nd control is not between the start and end, put it at the end. |
1266 | // This also reduces the quad to a line. |
1267 | dst[1].fPts[1].fY = endY; |
1268 | } |
1269 | // Verify that all five points are in order. |
1270 | SkASSERT(between(startY, dst[0].fPts[1].fY, dst[0].fPts[2].fY)); |
1271 | SkASSERT(between(dst[0].fPts[1].fY, dst[0].fPts[2].fY, dst[1].fPts[1].fY)); |
1272 | SkASSERT(between(dst[0].fPts[2].fY, dst[1].fPts[1].fY, endY)); |
1273 | } |
1274 | --level; |
1275 | pts = subdivide(dst[0], pts, level); |
1276 | return subdivide(dst[1], pts, level); |
1277 | } |
1278 | } |
1279 | |
1280 | int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const { |
1281 | SkASSERT(pow2 >= 0); |
1282 | *pts = fPts[0]; |
1283 | SkDEBUGCODE(SkPoint* endPts); |
1284 | if (pow2 == kMaxConicToQuadPOW2) { // If an extreme weight generates many quads ... |
1285 | SkConic dst[2]; |
1286 | this->chop(dst); |
1287 | // check to see if the first chop generates a pair of lines |
1288 | if (SkPointPriv::EqualsWithinTolerance(dst[0].fPts[1], dst[0].fPts[2]) && |
1289 | SkPointPriv::EqualsWithinTolerance(dst[1].fPts[0], dst[1].fPts[1])) { |
1290 | pts[1] = pts[2] = pts[3] = dst[0].fPts[1]; // set ctrl == end to make lines |
1291 | pts[4] = dst[1].fPts[2]; |
1292 | pow2 = 1; |
1293 | SkDEBUGCODE(endPts = &pts[5]); |
1294 | goto commonFinitePtCheck; |
1295 | } |
1296 | } |
1297 | SkDEBUGCODE(endPts = ) subdivide(*this, pts + 1, pow2); |
1298 | commonFinitePtCheck: |
1299 | const int quadCount = 1 << pow2; |
1300 | const int ptCount = 2 * quadCount + 1; |
1301 | SkASSERT(endPts - pts == ptCount); |
1302 | if (!SkPointPriv::AreFinite(pts, ptCount)) { |
1303 | // if we generated a non-finite, pin ourselves to the middle of the hull, |
1304 | // as our first and last are already on the first/last pts of the hull. |
1305 | for (int i = 1; i < ptCount - 1; ++i) { |
1306 | pts[i] = fPts[1]; |
1307 | } |
1308 | } |
1309 | return 1 << pow2; |
1310 | } |
1311 | |
1312 | bool SkConic::findXExtrema(SkScalar* t) const { |
1313 | return conic_find_extrema(&fPts[0].fX, fW, t); |
1314 | } |
1315 | |
1316 | bool SkConic::findYExtrema(SkScalar* t) const { |
1317 | return conic_find_extrema(&fPts[0].fY, fW, t); |
1318 | } |
1319 | |
1320 | bool SkConic::chopAtXExtrema(SkConic dst[2]) const { |
1321 | SkScalar t; |
1322 | if (this->findXExtrema(&t)) { |
1323 | if (!this->chopAt(t, dst)) { |
1324 | // if chop can't return finite values, don't chop |
1325 | return false; |
1326 | } |
1327 | // now clean-up the middle, since we know t was meant to be at |
1328 | // an X-extrema |
1329 | SkScalar value = dst[0].fPts[2].fX; |
1330 | dst[0].fPts[1].fX = value; |
1331 | dst[1].fPts[0].fX = value; |
1332 | dst[1].fPts[1].fX = value; |
1333 | return true; |
1334 | } |
1335 | return false; |
1336 | } |
1337 | |
1338 | bool SkConic::chopAtYExtrema(SkConic dst[2]) const { |
1339 | SkScalar t; |
1340 | if (this->findYExtrema(&t)) { |
1341 | if (!this->chopAt(t, dst)) { |
1342 | // if chop can't return finite values, don't chop |
1343 | return false; |
1344 | } |
1345 | // now clean-up the middle, since we know t was meant to be at |
1346 | // an Y-extrema |
1347 | SkScalar value = dst[0].fPts[2].fY; |
1348 | dst[0].fPts[1].fY = value; |
1349 | dst[1].fPts[0].fY = value; |
1350 | dst[1].fPts[1].fY = value; |
1351 | return true; |
1352 | } |
1353 | return false; |
1354 | } |
1355 | |
1356 | void SkConic::computeTightBounds(SkRect* bounds) const { |
1357 | SkPoint pts[4]; |
1358 | pts[0] = fPts[0]; |
1359 | pts[1] = fPts[2]; |
1360 | int count = 2; |
1361 | |
1362 | SkScalar t; |
1363 | if (this->findXExtrema(&t)) { |
1364 | this->evalAt(t, &pts[count++]); |
1365 | } |
1366 | if (this->findYExtrema(&t)) { |
1367 | this->evalAt(t, &pts[count++]); |
1368 | } |
1369 | bounds->setBounds(pts, count); |
1370 | } |
1371 | |
1372 | void SkConic::computeFastBounds(SkRect* bounds) const { |
1373 | bounds->setBounds(fPts, 3); |
1374 | } |
1375 | |
1376 | #if 0 // unimplemented |
1377 | bool SkConic::findMaxCurvature(SkScalar* t) const { |
1378 | // TODO: Implement me |
1379 | return false; |
1380 | } |
1381 | #endif |
1382 | |
1383 | SkScalar SkConic::TransformW(const SkPoint pts[], SkScalar w, const SkMatrix& matrix) { |
1384 | if (!matrix.hasPerspective()) { |
1385 | return w; |
1386 | } |
1387 | |
1388 | SkPoint3 src[3], dst[3]; |
1389 | |
1390 | ratquad_mapTo3D(pts, w, src); |
1391 | |
1392 | matrix.mapHomogeneousPoints(dst, src, 3); |
1393 | |
1394 | // w' = sqrt(w1*w1/w0*w2) |
1395 | // use doubles temporarily, to handle small numer/denom |
1396 | double w0 = dst[0].fZ; |
1397 | double w1 = dst[1].fZ; |
1398 | double w2 = dst[2].fZ; |
1399 | return sk_double_to_float(sqrt(sk_ieee_double_divide(w1 * w1, w0 * w2))); |
1400 | } |
1401 | |
1402 | int SkConic::BuildUnitArc(const SkVector& uStart, const SkVector& uStop, SkRotationDirection dir, |
1403 | const SkMatrix* userMatrix, SkConic dst[kMaxConicsForArc]) { |
1404 | // rotate by x,y so that uStart is (1.0) |
1405 | SkScalar x = SkPoint::DotProduct(uStart, uStop); |
1406 | SkScalar y = SkPoint::CrossProduct(uStart, uStop); |
1407 | |
1408 | SkScalar absY = SkScalarAbs(y); |
1409 | |
1410 | // check for (effectively) coincident vectors |
1411 | // this can happen if our angle is nearly 0 or nearly 180 (y == 0) |
1412 | // ... we use the dot-prod to distinguish between 0 and 180 (x > 0) |
1413 | if (absY <= SK_ScalarNearlyZero && x > 0 && ((y >= 0 && kCW_SkRotationDirection == dir) || |
1414 | (y <= 0 && kCCW_SkRotationDirection == dir))) { |
1415 | return 0; |
1416 | } |
1417 | |
1418 | if (dir == kCCW_SkRotationDirection) { |
1419 | y = -y; |
1420 | } |
1421 | |
1422 | // We decide to use 1-conic per quadrant of a circle. What quadrant does [xy] lie in? |
1423 | // 0 == [0 .. 90) |
1424 | // 1 == [90 ..180) |
1425 | // 2 == [180..270) |
1426 | // 3 == [270..360) |
1427 | // |
1428 | int quadrant = 0; |
1429 | if (0 == y) { |
1430 | quadrant = 2; // 180 |
1431 | SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero); |
1432 | } else if (0 == x) { |
1433 | SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero); |
1434 | quadrant = y > 0 ? 1 : 3; // 90 : 270 |
1435 | } else { |
1436 | if (y < 0) { |
1437 | quadrant += 2; |
1438 | } |
1439 | if ((x < 0) != (y < 0)) { |
1440 | quadrant += 1; |
1441 | } |
1442 | } |
1443 | |
1444 | const SkPoint quadrantPts[] = { |
1445 | { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, { -1, 0 }, { -1, -1 }, { 0, -1 }, { 1, -1 } |
1446 | }; |
1447 | const SkScalar quadrantWeight = SK_ScalarRoot2Over2; |
1448 | |
1449 | int conicCount = quadrant; |
1450 | for (int i = 0; i < conicCount; ++i) { |
1451 | dst[i].set(&quadrantPts[i * 2], quadrantWeight); |
1452 | } |
1453 | |
1454 | // Now compute any remaing (sub-90-degree) arc for the last conic |
1455 | const SkPoint finalP = { x, y }; |
1456 | const SkPoint& lastQ = quadrantPts[quadrant * 2]; // will already be a unit-vector |
1457 | const SkScalar dot = SkVector::DotProduct(lastQ, finalP); |
1458 | SkASSERT(0 <= dot && dot <= SK_Scalar1 + SK_ScalarNearlyZero); |
1459 | |
1460 | if (dot < 1) { |
1461 | SkVector offCurve = { lastQ.x() + x, lastQ.y() + y }; |
1462 | // compute the bisector vector, and then rescale to be the off-curve point. |
1463 | // we compute its length from cos(theta/2) = length / 1, using half-angle identity we get |
1464 | // length = sqrt(2 / (1 + cos(theta)). We already have cos() when to computed the dot. |
1465 | // This is nice, since our computed weight is cos(theta/2) as well! |
1466 | // |
1467 | const SkScalar cosThetaOver2 = SkScalarSqrt((1 + dot) / 2); |
1468 | offCurve.setLength(SkScalarInvert(cosThetaOver2)); |
1469 | if (!SkPointPriv::EqualsWithinTolerance(lastQ, offCurve)) { |
1470 | dst[conicCount].set(lastQ, offCurve, finalP, cosThetaOver2); |
1471 | conicCount += 1; |
1472 | } |
1473 | } |
1474 | |
1475 | // now handle counter-clockwise and the initial unitStart rotation |
1476 | SkMatrix matrix; |
1477 | matrix.setSinCos(uStart.fY, uStart.fX); |
1478 | if (dir == kCCW_SkRotationDirection) { |
1479 | matrix.preScale(SK_Scalar1, -SK_Scalar1); |
1480 | } |
1481 | if (userMatrix) { |
1482 | matrix.postConcat(*userMatrix); |
1483 | } |
1484 | for (int i = 0; i < conicCount; ++i) { |
1485 | matrix.mapPoints(dst[i].fPts, 3); |
1486 | } |
1487 | return conicCount; |
1488 | } |
1489 | |