| 1 | /* |
| 2 | Stockfish, a UCI chess playing engine derived from Glaurung 2.1 |
| 3 | Copyright (C) 2004-2008 Tord Romstad (Glaurung author) |
| 4 | Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad |
| 5 | Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad |
| 6 | |
| 7 | Stockfish is free software: you can redistribute it and/or modify |
| 8 | it under the terms of the GNU General Public License as published by |
| 9 | the Free Software Foundation, either version 3 of the License, or |
| 10 | (at your option) any later version. |
| 11 | |
| 12 | Stockfish is distributed in the hope that it will be useful, |
| 13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 15 | GNU General Public License for more details. |
| 16 | |
| 17 | You should have received a copy of the GNU General Public License |
| 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
| 19 | */ |
| 20 | |
| 21 | #include <cassert> |
| 22 | |
| 23 | #include "bitboard.h" |
| 24 | #include "endgame.h" |
| 25 | #include "movegen.h" |
| 26 | |
| 27 | using std::string; |
| 28 | |
| 29 | namespace { |
| 30 | |
| 31 | // Table used to drive the king towards the edge of the board |
| 32 | // in KX vs K and KQ vs KR endgames. |
| 33 | constexpr int PushToEdges[SQUARE_NB] = { |
| 34 | 100, 90, 80, 70, 70, 80, 90, 100, |
| 35 | 90, 70, 60, 50, 50, 60, 70, 90, |
| 36 | 80, 60, 40, 30, 30, 40, 60, 80, |
| 37 | 70, 50, 30, 20, 20, 30, 50, 70, |
| 38 | 70, 50, 30, 20, 20, 30, 50, 70, |
| 39 | 80, 60, 40, 30, 30, 40, 60, 80, |
| 40 | 90, 70, 60, 50, 50, 60, 70, 90, |
| 41 | 100, 90, 80, 70, 70, 80, 90, 100 |
| 42 | }; |
| 43 | |
| 44 | // Table used to drive the king towards a corner square of the |
| 45 | // right color in KBN vs K endgames. |
| 46 | constexpr int PushToCorners[SQUARE_NB] = { |
| 47 | 6400, 6080, 5760, 5440, 5120, 4800, 4480, 4160, |
| 48 | 6080, 5760, 5440, 5120, 4800, 4480, 4160, 4480, |
| 49 | 5760, 5440, 4960, 4480, 4480, 4000, 4480, 4800, |
| 50 | 5440, 5120, 4480, 3840, 3520, 4480, 4800, 5120, |
| 51 | 5120, 4800, 4480, 3520, 3840, 4480, 5120, 5440, |
| 52 | 4800, 4480, 4000, 4480, 4480, 4960, 5440, 5760, |
| 53 | 4480, 4160, 4480, 4800, 5120, 5440, 5760, 6080, |
| 54 | 4160, 4480, 4800, 5120, 5440, 5760, 6080, 6400 |
| 55 | }; |
| 56 | |
| 57 | // Tables used to drive a piece towards or away from another piece |
| 58 | constexpr int PushClose[8] = { 0, 0, 100, 80, 60, 40, 20, 10 }; |
| 59 | constexpr int PushAway [8] = { 0, 5, 20, 40, 60, 80, 90, 100 }; |
| 60 | |
| 61 | // Pawn Rank based scaling factors used in KRPPKRP endgame |
| 62 | constexpr int KRPPKRPScaleFactors[RANK_NB] = { 0, 9, 10, 14, 21, 44, 0, 0 }; |
| 63 | |
| 64 | #ifndef NDEBUG |
| 65 | bool verify_material(const Position& pos, Color c, Value npm, int pawnsCnt) { |
| 66 | return pos.non_pawn_material(c) == npm && pos.count<PAWN>(c) == pawnsCnt; |
| 67 | } |
| 68 | #endif |
| 69 | |
| 70 | // Map the square as if strongSide is white and strongSide's only pawn |
| 71 | // is on the left half of the board. |
| 72 | Square normalize(const Position& pos, Color strongSide, Square sq) { |
| 73 | |
| 74 | assert(pos.count<PAWN>(strongSide) == 1); |
| 75 | |
| 76 | if (file_of(pos.square<PAWN>(strongSide)) >= FILE_E) |
| 77 | sq = Square(sq ^ 7); // Mirror SQ_H1 -> SQ_A1 |
| 78 | |
| 79 | return strongSide == WHITE ? sq : ~sq; |
| 80 | } |
| 81 | |
| 82 | } // namespace |
| 83 | |
| 84 | |
| 85 | namespace Endgames { |
| 86 | |
| 87 | std::pair<Map<Value>, Map<ScaleFactor>> maps; |
| 88 | |
| 89 | void init() { |
| 90 | |
| 91 | add<KPK>("KPK" ); |
| 92 | add<KNNK>("KNNK" ); |
| 93 | add<KBNK>("KBNK" ); |
| 94 | add<KRKP>("KRKP" ); |
| 95 | add<KRKB>("KRKB" ); |
| 96 | add<KRKN>("KRKN" ); |
| 97 | add<KQKP>("KQKP" ); |
| 98 | add<KQKR>("KQKR" ); |
| 99 | add<KNNKP>("KNNKP" ); |
| 100 | |
| 101 | add<KNPK>("KNPK" ); |
| 102 | add<KNPKB>("KNPKB" ); |
| 103 | add<KRPKR>("KRPKR" ); |
| 104 | add<KRPKB>("KRPKB" ); |
| 105 | add<KBPKB>("KBPKB" ); |
| 106 | add<KBPKN>("KBPKN" ); |
| 107 | add<KBPPKB>("KBPPKB" ); |
| 108 | add<KRPPKRP>("KRPPKRP" ); |
| 109 | } |
| 110 | } |
| 111 | |
| 112 | |
| 113 | /// Mate with KX vs K. This function is used to evaluate positions with |
| 114 | /// king and plenty of material vs a lone king. It simply gives the |
| 115 | /// attacking side a bonus for driving the defending king towards the edge |
| 116 | /// of the board, and for keeping the distance between the two kings small. |
| 117 | template<> |
| 118 | Value Endgame<KXK>::operator()(const Position& pos) const { |
| 119 | |
| 120 | assert(verify_material(pos, weakSide, VALUE_ZERO, 0)); |
| 121 | assert(!pos.checkers()); // Eval is never called when in check |
| 122 | |
| 123 | // Stalemate detection with lone king |
| 124 | if (pos.side_to_move() == weakSide && !MoveList<LEGAL>(pos).size()) |
| 125 | return VALUE_DRAW; |
| 126 | |
| 127 | Square winnerKSq = pos.square<KING>(strongSide); |
| 128 | Square loserKSq = pos.square<KING>(weakSide); |
| 129 | |
| 130 | Value result = pos.non_pawn_material(strongSide) |
| 131 | + pos.count<PAWN>(strongSide) * PawnValueEg |
| 132 | + PushToEdges[loserKSq] |
| 133 | + PushClose[distance(winnerKSq, loserKSq)]; |
| 134 | |
| 135 | if ( pos.count<QUEEN>(strongSide) |
| 136 | || pos.count<ROOK>(strongSide) |
| 137 | ||(pos.count<BISHOP>(strongSide) && pos.count<KNIGHT>(strongSide)) |
| 138 | || ( (pos.pieces(strongSide, BISHOP) & ~DarkSquares) |
| 139 | && (pos.pieces(strongSide, BISHOP) & DarkSquares))) |
| 140 | result = std::min(result + VALUE_KNOWN_WIN, VALUE_MATE_IN_MAX_PLY - 1); |
| 141 | |
| 142 | return strongSide == pos.side_to_move() ? result : -result; |
| 143 | } |
| 144 | |
| 145 | |
| 146 | /// Mate with KBN vs K. This is similar to KX vs K, but we have to drive the |
| 147 | /// defending king towards a corner square that our bishop attacks. |
| 148 | template<> |
| 149 | Value Endgame<KBNK>::operator()(const Position& pos) const { |
| 150 | |
| 151 | assert(verify_material(pos, strongSide, KnightValueMg + BishopValueMg, 0)); |
| 152 | assert(verify_material(pos, weakSide, VALUE_ZERO, 0)); |
| 153 | |
| 154 | Square winnerKSq = pos.square<KING>(strongSide); |
| 155 | Square loserKSq = pos.square<KING>(weakSide); |
| 156 | Square bishopSq = pos.square<BISHOP>(strongSide); |
| 157 | |
| 158 | // If our Bishop does not attack A1/H8, we flip the enemy king square |
| 159 | // to drive to opposite corners (A8/H1). |
| 160 | |
| 161 | Value result = VALUE_KNOWN_WIN |
| 162 | + PushClose[distance(winnerKSq, loserKSq)] |
| 163 | + PushToCorners[opposite_colors(bishopSq, SQ_A1) ? ~loserKSq : loserKSq]; |
| 164 | |
| 165 | assert(abs(result) < VALUE_MATE_IN_MAX_PLY); |
| 166 | return strongSide == pos.side_to_move() ? result : -result; |
| 167 | } |
| 168 | |
| 169 | |
| 170 | /// KP vs K. This endgame is evaluated with the help of a bitbase. |
| 171 | template<> |
| 172 | Value Endgame<KPK>::operator()(const Position& pos) const { |
| 173 | |
| 174 | assert(verify_material(pos, strongSide, VALUE_ZERO, 1)); |
| 175 | assert(verify_material(pos, weakSide, VALUE_ZERO, 0)); |
| 176 | |
| 177 | // Assume strongSide is white and the pawn is on files A-D |
| 178 | Square wksq = normalize(pos, strongSide, pos.square<KING>(strongSide)); |
| 179 | Square bksq = normalize(pos, strongSide, pos.square<KING>(weakSide)); |
| 180 | Square psq = normalize(pos, strongSide, pos.square<PAWN>(strongSide)); |
| 181 | |
| 182 | Color us = strongSide == pos.side_to_move() ? WHITE : BLACK; |
| 183 | |
| 184 | if (!Bitbases::probe(wksq, psq, bksq, us)) |
| 185 | return VALUE_DRAW; |
| 186 | |
| 187 | Value result = VALUE_KNOWN_WIN + PawnValueEg + Value(rank_of(psq)); |
| 188 | |
| 189 | return strongSide == pos.side_to_move() ? result : -result; |
| 190 | } |
| 191 | |
| 192 | |
| 193 | /// KR vs KP. This is a somewhat tricky endgame to evaluate precisely without |
| 194 | /// a bitbase. The function below returns drawish scores when the pawn is |
| 195 | /// far advanced with support of the king, while the attacking king is far |
| 196 | /// away. |
| 197 | template<> |
| 198 | Value Endgame<KRKP>::operator()(const Position& pos) const { |
| 199 | |
| 200 | assert(verify_material(pos, strongSide, RookValueMg, 0)); |
| 201 | assert(verify_material(pos, weakSide, VALUE_ZERO, 1)); |
| 202 | |
| 203 | Square wksq = relative_square(strongSide, pos.square<KING>(strongSide)); |
| 204 | Square bksq = relative_square(strongSide, pos.square<KING>(weakSide)); |
| 205 | Square rsq = relative_square(strongSide, pos.square<ROOK>(strongSide)); |
| 206 | Square psq = relative_square(strongSide, pos.square<PAWN>(weakSide)); |
| 207 | |
| 208 | Square queeningSq = make_square(file_of(psq), RANK_1); |
| 209 | Value result; |
| 210 | |
| 211 | // If the stronger side's king is in front of the pawn, it's a win |
| 212 | if (forward_file_bb(WHITE, wksq) & psq) |
| 213 | result = RookValueEg - distance(wksq, psq); |
| 214 | |
| 215 | // If the weaker side's king is too far from the pawn and the rook, |
| 216 | // it's a win. |
| 217 | else if ( distance(bksq, psq) >= 3 + (pos.side_to_move() == weakSide) |
| 218 | && distance(bksq, rsq) >= 3) |
| 219 | result = RookValueEg - distance(wksq, psq); |
| 220 | |
| 221 | // If the pawn is far advanced and supported by the defending king, |
| 222 | // the position is drawish |
| 223 | else if ( rank_of(bksq) <= RANK_3 |
| 224 | && distance(bksq, psq) == 1 |
| 225 | && rank_of(wksq) >= RANK_4 |
| 226 | && distance(wksq, psq) > 2 + (pos.side_to_move() == strongSide)) |
| 227 | result = Value(80) - 8 * distance(wksq, psq); |
| 228 | |
| 229 | else |
| 230 | result = Value(200) - 8 * ( distance(wksq, psq + SOUTH) |
| 231 | - distance(bksq, psq + SOUTH) |
| 232 | - distance(psq, queeningSq)); |
| 233 | |
| 234 | return strongSide == pos.side_to_move() ? result : -result; |
| 235 | } |
| 236 | |
| 237 | |
| 238 | /// KR vs KB. This is very simple, and always returns drawish scores. The |
| 239 | /// score is slightly bigger when the defending king is close to the edge. |
| 240 | template<> |
| 241 | Value Endgame<KRKB>::operator()(const Position& pos) const { |
| 242 | |
| 243 | assert(verify_material(pos, strongSide, RookValueMg, 0)); |
| 244 | assert(verify_material(pos, weakSide, BishopValueMg, 0)); |
| 245 | |
| 246 | Value result = Value(PushToEdges[pos.square<KING>(weakSide)]); |
| 247 | return strongSide == pos.side_to_move() ? result : -result; |
| 248 | } |
| 249 | |
| 250 | |
| 251 | /// KR vs KN. The attacking side has slightly better winning chances than |
| 252 | /// in KR vs KB, particularly if the king and the knight are far apart. |
| 253 | template<> |
| 254 | Value Endgame<KRKN>::operator()(const Position& pos) const { |
| 255 | |
| 256 | assert(verify_material(pos, strongSide, RookValueMg, 0)); |
| 257 | assert(verify_material(pos, weakSide, KnightValueMg, 0)); |
| 258 | |
| 259 | Square bksq = pos.square<KING>(weakSide); |
| 260 | Square bnsq = pos.square<KNIGHT>(weakSide); |
| 261 | Value result = Value(PushToEdges[bksq] + PushAway[distance(bksq, bnsq)]); |
| 262 | return strongSide == pos.side_to_move() ? result : -result; |
| 263 | } |
| 264 | |
| 265 | |
| 266 | /// KQ vs KP. In general, this is a win for the stronger side, but there are a |
| 267 | /// few important exceptions. A pawn on 7th rank and on the A,C,F or H files |
| 268 | /// with a king positioned next to it can be a draw, so in that case, we only |
| 269 | /// use the distance between the kings. |
| 270 | template<> |
| 271 | Value Endgame<KQKP>::operator()(const Position& pos) const { |
| 272 | |
| 273 | assert(verify_material(pos, strongSide, QueenValueMg, 0)); |
| 274 | assert(verify_material(pos, weakSide, VALUE_ZERO, 1)); |
| 275 | |
| 276 | Square winnerKSq = pos.square<KING>(strongSide); |
| 277 | Square loserKSq = pos.square<KING>(weakSide); |
| 278 | Square pawnSq = pos.square<PAWN>(weakSide); |
| 279 | |
| 280 | Value result = Value(PushClose[distance(winnerKSq, loserKSq)]); |
| 281 | |
| 282 | if ( relative_rank(weakSide, pawnSq) != RANK_7 |
| 283 | || distance(loserKSq, pawnSq) != 1 |
| 284 | || !((FileABB | FileCBB | FileFBB | FileHBB) & pawnSq)) |
| 285 | result += QueenValueEg - PawnValueEg; |
| 286 | |
| 287 | return strongSide == pos.side_to_move() ? result : -result; |
| 288 | } |
| 289 | |
| 290 | |
| 291 | /// KQ vs KR. This is almost identical to KX vs K: We give the attacking |
| 292 | /// king a bonus for having the kings close together, and for forcing the |
| 293 | /// defending king towards the edge. If we also take care to avoid null move for |
| 294 | /// the defending side in the search, this is usually sufficient to win KQ vs KR. |
| 295 | template<> |
| 296 | Value Endgame<KQKR>::operator()(const Position& pos) const { |
| 297 | |
| 298 | assert(verify_material(pos, strongSide, QueenValueMg, 0)); |
| 299 | assert(verify_material(pos, weakSide, RookValueMg, 0)); |
| 300 | |
| 301 | Square winnerKSq = pos.square<KING>(strongSide); |
| 302 | Square loserKSq = pos.square<KING>(weakSide); |
| 303 | |
| 304 | Value result = QueenValueEg |
| 305 | - RookValueEg |
| 306 | + PushToEdges[loserKSq] |
| 307 | + PushClose[distance(winnerKSq, loserKSq)]; |
| 308 | |
| 309 | return strongSide == pos.side_to_move() ? result : -result; |
| 310 | } |
| 311 | |
| 312 | |
| 313 | /// KNN vs KP. Simply push the opposing king to the corner |
| 314 | template<> |
| 315 | Value Endgame<KNNKP>::operator()(const Position& pos) const { |
| 316 | |
| 317 | assert(verify_material(pos, strongSide, 2 * KnightValueMg, 0)); |
| 318 | assert(verify_material(pos, weakSide, VALUE_ZERO, 1)); |
| 319 | |
| 320 | Value result = 2 * KnightValueEg |
| 321 | - PawnValueEg |
| 322 | + PushToEdges[pos.square<KING>(weakSide)]; |
| 323 | |
| 324 | return strongSide == pos.side_to_move() ? result : -result; |
| 325 | } |
| 326 | |
| 327 | |
| 328 | /// Some cases of trivial draws |
| 329 | template<> Value Endgame<KNNK>::operator()(const Position&) const { return VALUE_DRAW; } |
| 330 | |
| 331 | |
| 332 | /// KB and one or more pawns vs K. It checks for draws with rook pawns and |
| 333 | /// a bishop of the wrong color. If such a draw is detected, SCALE_FACTOR_DRAW |
| 334 | /// is returned. If not, the return value is SCALE_FACTOR_NONE, i.e. no scaling |
| 335 | /// will be used. |
| 336 | template<> |
| 337 | ScaleFactor Endgame<KBPsK>::operator()(const Position& pos) const { |
| 338 | |
| 339 | assert(pos.non_pawn_material(strongSide) == BishopValueMg); |
| 340 | assert(pos.count<PAWN>(strongSide) >= 1); |
| 341 | |
| 342 | // No assertions about the material of weakSide, because we want draws to |
| 343 | // be detected even when the weaker side has some pawns. |
| 344 | |
| 345 | Bitboard pawns = pos.pieces(strongSide, PAWN); |
| 346 | File pawnsFile = file_of(lsb(pawns)); |
| 347 | |
| 348 | // All pawns are on a single rook file? |
| 349 | if ( (pawnsFile == FILE_A || pawnsFile == FILE_H) |
| 350 | && !(pawns & ~file_bb(pawnsFile))) |
| 351 | { |
| 352 | Square bishopSq = pos.square<BISHOP>(strongSide); |
| 353 | Square queeningSq = relative_square(strongSide, make_square(pawnsFile, RANK_8)); |
| 354 | Square kingSq = pos.square<KING>(weakSide); |
| 355 | |
| 356 | if ( opposite_colors(queeningSq, bishopSq) |
| 357 | && distance(queeningSq, kingSq) <= 1) |
| 358 | return SCALE_FACTOR_DRAW; |
| 359 | } |
| 360 | |
| 361 | // If all the pawns are on the same B or G file, then it's potentially a draw |
| 362 | if ( (pawnsFile == FILE_B || pawnsFile == FILE_G) |
| 363 | && !(pos.pieces(PAWN) & ~file_bb(pawnsFile)) |
| 364 | && pos.non_pawn_material(weakSide) == 0 |
| 365 | && pos.count<PAWN>(weakSide) >= 1) |
| 366 | { |
| 367 | // Get weakSide pawn that is closest to the home rank |
| 368 | Square weakPawnSq = frontmost_sq(strongSide, pos.pieces(weakSide, PAWN)); |
| 369 | |
| 370 | Square strongKingSq = pos.square<KING>(strongSide); |
| 371 | Square weakKingSq = pos.square<KING>(weakSide); |
| 372 | Square bishopSq = pos.square<BISHOP>(strongSide); |
| 373 | |
| 374 | // There's potential for a draw if our pawn is blocked on the 7th rank, |
| 375 | // the bishop cannot attack it or they only have one pawn left |
| 376 | if ( relative_rank(strongSide, weakPawnSq) == RANK_7 |
| 377 | && (pos.pieces(strongSide, PAWN) & (weakPawnSq + pawn_push(weakSide))) |
| 378 | && (opposite_colors(bishopSq, weakPawnSq) || pos.count<PAWN>(strongSide) == 1)) |
| 379 | { |
| 380 | int strongKingDist = distance(weakPawnSq, strongKingSq); |
| 381 | int weakKingDist = distance(weakPawnSq, weakKingSq); |
| 382 | |
| 383 | // It's a draw if the weak king is on its back two ranks, within 2 |
| 384 | // squares of the blocking pawn and the strong king is not |
| 385 | // closer. (I think this rule only fails in practically |
| 386 | // unreachable positions such as 5k1K/6p1/6P1/8/8/3B4/8/8 w |
| 387 | // and positions where qsearch will immediately correct the |
| 388 | // problem such as 8/4k1p1/6P1/1K6/3B4/8/8/8 w) |
| 389 | if ( relative_rank(strongSide, weakKingSq) >= RANK_7 |
| 390 | && weakKingDist <= 2 |
| 391 | && weakKingDist <= strongKingDist) |
| 392 | return SCALE_FACTOR_DRAW; |
| 393 | } |
| 394 | } |
| 395 | |
| 396 | return SCALE_FACTOR_NONE; |
| 397 | } |
| 398 | |
| 399 | |
| 400 | /// KQ vs KR and one or more pawns. It tests for fortress draws with a rook on |
| 401 | /// the third rank defended by a pawn. |
| 402 | template<> |
| 403 | ScaleFactor Endgame<KQKRPs>::operator()(const Position& pos) const { |
| 404 | |
| 405 | assert(verify_material(pos, strongSide, QueenValueMg, 0)); |
| 406 | assert(pos.count<ROOK>(weakSide) == 1); |
| 407 | assert(pos.count<PAWN>(weakSide) >= 1); |
| 408 | |
| 409 | Square kingSq = pos.square<KING>(weakSide); |
| 410 | Square rsq = pos.square<ROOK>(weakSide); |
| 411 | |
| 412 | if ( relative_rank(weakSide, kingSq) <= RANK_2 |
| 413 | && relative_rank(weakSide, pos.square<KING>(strongSide)) >= RANK_4 |
| 414 | && relative_rank(weakSide, rsq) == RANK_3 |
| 415 | && ( pos.pieces(weakSide, PAWN) |
| 416 | & pos.attacks_from<KING>(kingSq) |
| 417 | & pos.attacks_from<PAWN>(rsq, strongSide))) |
| 418 | return SCALE_FACTOR_DRAW; |
| 419 | |
| 420 | return SCALE_FACTOR_NONE; |
| 421 | } |
| 422 | |
| 423 | |
| 424 | /// KRP vs KR. This function knows a handful of the most important classes of |
| 425 | /// drawn positions, but is far from perfect. It would probably be a good idea |
| 426 | /// to add more knowledge in the future. |
| 427 | /// |
| 428 | /// It would also be nice to rewrite the actual code for this function, |
| 429 | /// which is mostly copied from Glaurung 1.x, and isn't very pretty. |
| 430 | template<> |
| 431 | ScaleFactor Endgame<KRPKR>::operator()(const Position& pos) const { |
| 432 | |
| 433 | assert(verify_material(pos, strongSide, RookValueMg, 1)); |
| 434 | assert(verify_material(pos, weakSide, RookValueMg, 0)); |
| 435 | |
| 436 | // Assume strongSide is white and the pawn is on files A-D |
| 437 | Square wksq = normalize(pos, strongSide, pos.square<KING>(strongSide)); |
| 438 | Square bksq = normalize(pos, strongSide, pos.square<KING>(weakSide)); |
| 439 | Square wrsq = normalize(pos, strongSide, pos.square<ROOK>(strongSide)); |
| 440 | Square wpsq = normalize(pos, strongSide, pos.square<PAWN>(strongSide)); |
| 441 | Square brsq = normalize(pos, strongSide, pos.square<ROOK>(weakSide)); |
| 442 | |
| 443 | File f = file_of(wpsq); |
| 444 | Rank r = rank_of(wpsq); |
| 445 | Square queeningSq = make_square(f, RANK_8); |
| 446 | int tempo = (pos.side_to_move() == strongSide); |
| 447 | |
| 448 | // If the pawn is not too far advanced and the defending king defends the |
| 449 | // queening square, use the third-rank defence. |
| 450 | if ( r <= RANK_5 |
| 451 | && distance(bksq, queeningSq) <= 1 |
| 452 | && wksq <= SQ_H5 |
| 453 | && (rank_of(brsq) == RANK_6 || (r <= RANK_3 && rank_of(wrsq) != RANK_6))) |
| 454 | return SCALE_FACTOR_DRAW; |
| 455 | |
| 456 | // The defending side saves a draw by checking from behind in case the pawn |
| 457 | // has advanced to the 6th rank with the king behind. |
| 458 | if ( r == RANK_6 |
| 459 | && distance(bksq, queeningSq) <= 1 |
| 460 | && rank_of(wksq) + tempo <= RANK_6 |
| 461 | && (rank_of(brsq) == RANK_1 || (!tempo && distance<File>(brsq, wpsq) >= 3))) |
| 462 | return SCALE_FACTOR_DRAW; |
| 463 | |
| 464 | if ( r >= RANK_6 |
| 465 | && bksq == queeningSq |
| 466 | && rank_of(brsq) == RANK_1 |
| 467 | && (!tempo || distance(wksq, wpsq) >= 2)) |
| 468 | return SCALE_FACTOR_DRAW; |
| 469 | |
| 470 | // White pawn on a7 and rook on a8 is a draw if black's king is on g7 or h7 |
| 471 | // and the black rook is behind the pawn. |
| 472 | if ( wpsq == SQ_A7 |
| 473 | && wrsq == SQ_A8 |
| 474 | && (bksq == SQ_H7 || bksq == SQ_G7) |
| 475 | && file_of(brsq) == FILE_A |
| 476 | && (rank_of(brsq) <= RANK_3 || file_of(wksq) >= FILE_D || rank_of(wksq) <= RANK_5)) |
| 477 | return SCALE_FACTOR_DRAW; |
| 478 | |
| 479 | // If the defending king blocks the pawn and the attacking king is too far |
| 480 | // away, it's a draw. |
| 481 | if ( r <= RANK_5 |
| 482 | && bksq == wpsq + NORTH |
| 483 | && distance(wksq, wpsq) - tempo >= 2 |
| 484 | && distance(wksq, brsq) - tempo >= 2) |
| 485 | return SCALE_FACTOR_DRAW; |
| 486 | |
| 487 | // Pawn on the 7th rank supported by the rook from behind usually wins if the |
| 488 | // attacking king is closer to the queening square than the defending king, |
| 489 | // and the defending king cannot gain tempi by threatening the attacking rook. |
| 490 | if ( r == RANK_7 |
| 491 | && f != FILE_A |
| 492 | && file_of(wrsq) == f |
| 493 | && wrsq != queeningSq |
| 494 | && (distance(wksq, queeningSq) < distance(bksq, queeningSq) - 2 + tempo) |
| 495 | && (distance(wksq, queeningSq) < distance(bksq, wrsq) + tempo)) |
| 496 | return ScaleFactor(SCALE_FACTOR_MAX - 2 * distance(wksq, queeningSq)); |
| 497 | |
| 498 | // Similar to the above, but with the pawn further back |
| 499 | if ( f != FILE_A |
| 500 | && file_of(wrsq) == f |
| 501 | && wrsq < wpsq |
| 502 | && (distance(wksq, queeningSq) < distance(bksq, queeningSq) - 2 + tempo) |
| 503 | && (distance(wksq, wpsq + NORTH) < distance(bksq, wpsq + NORTH) - 2 + tempo) |
| 504 | && ( distance(bksq, wrsq) + tempo >= 3 |
| 505 | || ( distance(wksq, queeningSq) < distance(bksq, wrsq) + tempo |
| 506 | && (distance(wksq, wpsq + NORTH) < distance(bksq, wrsq) + tempo)))) |
| 507 | return ScaleFactor( SCALE_FACTOR_MAX |
| 508 | - 8 * distance(wpsq, queeningSq) |
| 509 | - 2 * distance(wksq, queeningSq)); |
| 510 | |
| 511 | // If the pawn is not far advanced and the defending king is somewhere in |
| 512 | // the pawn's path, it's probably a draw. |
| 513 | if (r <= RANK_4 && bksq > wpsq) |
| 514 | { |
| 515 | if (file_of(bksq) == file_of(wpsq)) |
| 516 | return ScaleFactor(10); |
| 517 | if ( distance<File>(bksq, wpsq) == 1 |
| 518 | && distance(wksq, bksq) > 2) |
| 519 | return ScaleFactor(24 - 2 * distance(wksq, bksq)); |
| 520 | } |
| 521 | return SCALE_FACTOR_NONE; |
| 522 | } |
| 523 | |
| 524 | template<> |
| 525 | ScaleFactor Endgame<KRPKB>::operator()(const Position& pos) const { |
| 526 | |
| 527 | assert(verify_material(pos, strongSide, RookValueMg, 1)); |
| 528 | assert(verify_material(pos, weakSide, BishopValueMg, 0)); |
| 529 | |
| 530 | // Test for a rook pawn |
| 531 | if (pos.pieces(PAWN) & (FileABB | FileHBB)) |
| 532 | { |
| 533 | Square ksq = pos.square<KING>(weakSide); |
| 534 | Square bsq = pos.square<BISHOP>(weakSide); |
| 535 | Square psq = pos.square<PAWN>(strongSide); |
| 536 | Rank rk = relative_rank(strongSide, psq); |
| 537 | Direction push = pawn_push(strongSide); |
| 538 | |
| 539 | // If the pawn is on the 5th rank and the pawn (currently) is on |
| 540 | // the same color square as the bishop then there is a chance of |
| 541 | // a fortress. Depending on the king position give a moderate |
| 542 | // reduction or a stronger one if the defending king is near the |
| 543 | // corner but not trapped there. |
| 544 | if (rk == RANK_5 && !opposite_colors(bsq, psq)) |
| 545 | { |
| 546 | int d = distance(psq + 3 * push, ksq); |
| 547 | |
| 548 | if (d <= 2 && !(d == 0 && ksq == pos.square<KING>(strongSide) + 2 * push)) |
| 549 | return ScaleFactor(24); |
| 550 | else |
| 551 | return ScaleFactor(48); |
| 552 | } |
| 553 | |
| 554 | // When the pawn has moved to the 6th rank we can be fairly sure |
| 555 | // it's drawn if the bishop attacks the square in front of the |
| 556 | // pawn from a reasonable distance and the defending king is near |
| 557 | // the corner |
| 558 | if ( rk == RANK_6 |
| 559 | && distance(psq + 2 * push, ksq) <= 1 |
| 560 | && (PseudoAttacks[BISHOP][bsq] & (psq + push)) |
| 561 | && distance<File>(bsq, psq) >= 2) |
| 562 | return ScaleFactor(8); |
| 563 | } |
| 564 | |
| 565 | return SCALE_FACTOR_NONE; |
| 566 | } |
| 567 | |
| 568 | /// KRPP vs KRP. There is just a single rule: if the stronger side has no passed |
| 569 | /// pawns and the defending king is actively placed, the position is drawish. |
| 570 | template<> |
| 571 | ScaleFactor Endgame<KRPPKRP>::operator()(const Position& pos) const { |
| 572 | |
| 573 | assert(verify_material(pos, strongSide, RookValueMg, 2)); |
| 574 | assert(verify_material(pos, weakSide, RookValueMg, 1)); |
| 575 | |
| 576 | Square wpsq1 = pos.squares<PAWN>(strongSide)[0]; |
| 577 | Square wpsq2 = pos.squares<PAWN>(strongSide)[1]; |
| 578 | Square bksq = pos.square<KING>(weakSide); |
| 579 | |
| 580 | // Does the stronger side have a passed pawn? |
| 581 | if (pos.pawn_passed(strongSide, wpsq1) || pos.pawn_passed(strongSide, wpsq2)) |
| 582 | return SCALE_FACTOR_NONE; |
| 583 | |
| 584 | Rank r = std::max(relative_rank(strongSide, wpsq1), relative_rank(strongSide, wpsq2)); |
| 585 | |
| 586 | if ( distance<File>(bksq, wpsq1) <= 1 |
| 587 | && distance<File>(bksq, wpsq2) <= 1 |
| 588 | && relative_rank(strongSide, bksq) > r) |
| 589 | { |
| 590 | assert(r > RANK_1 && r < RANK_7); |
| 591 | return ScaleFactor(KRPPKRPScaleFactors[r]); |
| 592 | } |
| 593 | return SCALE_FACTOR_NONE; |
| 594 | } |
| 595 | |
| 596 | |
| 597 | /// K and two or more pawns vs K. There is just a single rule here: If all pawns |
| 598 | /// are on the same rook file and are blocked by the defending king, it's a draw. |
| 599 | template<> |
| 600 | ScaleFactor Endgame<KPsK>::operator()(const Position& pos) const { |
| 601 | |
| 602 | assert(pos.non_pawn_material(strongSide) == VALUE_ZERO); |
| 603 | assert(pos.count<PAWN>(strongSide) >= 2); |
| 604 | assert(verify_material(pos, weakSide, VALUE_ZERO, 0)); |
| 605 | |
| 606 | Square ksq = pos.square<KING>(weakSide); |
| 607 | Bitboard pawns = pos.pieces(strongSide, PAWN); |
| 608 | |
| 609 | // If all pawns are ahead of the king, on a single rook file and |
| 610 | // the king is within one file of the pawns, it's a draw. |
| 611 | if ( !(pawns & ~forward_ranks_bb(weakSide, ksq)) |
| 612 | && !((pawns & ~FileABB) && (pawns & ~FileHBB)) |
| 613 | && distance<File>(ksq, lsb(pawns)) <= 1) |
| 614 | return SCALE_FACTOR_DRAW; |
| 615 | |
| 616 | return SCALE_FACTOR_NONE; |
| 617 | } |
| 618 | |
| 619 | |
| 620 | /// KBP vs KB. There are two rules: if the defending king is somewhere along the |
| 621 | /// path of the pawn, and the square of the king is not of the same color as the |
| 622 | /// stronger side's bishop, it's a draw. If the two bishops have opposite color, |
| 623 | /// it's almost always a draw. |
| 624 | template<> |
| 625 | ScaleFactor Endgame<KBPKB>::operator()(const Position& pos) const { |
| 626 | |
| 627 | assert(verify_material(pos, strongSide, BishopValueMg, 1)); |
| 628 | assert(verify_material(pos, weakSide, BishopValueMg, 0)); |
| 629 | |
| 630 | Square pawnSq = pos.square<PAWN>(strongSide); |
| 631 | Square strongBishopSq = pos.square<BISHOP>(strongSide); |
| 632 | Square weakBishopSq = pos.square<BISHOP>(weakSide); |
| 633 | Square weakKingSq = pos.square<KING>(weakSide); |
| 634 | |
| 635 | // Case 1: Defending king blocks the pawn, and cannot be driven away |
| 636 | if ( file_of(weakKingSq) == file_of(pawnSq) |
| 637 | && relative_rank(strongSide, pawnSq) < relative_rank(strongSide, weakKingSq) |
| 638 | && ( opposite_colors(weakKingSq, strongBishopSq) |
| 639 | || relative_rank(strongSide, weakKingSq) <= RANK_6)) |
| 640 | return SCALE_FACTOR_DRAW; |
| 641 | |
| 642 | // Case 2: Opposite colored bishops |
| 643 | if (opposite_colors(strongBishopSq, weakBishopSq)) |
| 644 | return SCALE_FACTOR_DRAW; |
| 645 | |
| 646 | return SCALE_FACTOR_NONE; |
| 647 | } |
| 648 | |
| 649 | |
| 650 | /// KBPP vs KB. It detects a few basic draws with opposite-colored bishops |
| 651 | template<> |
| 652 | ScaleFactor Endgame<KBPPKB>::operator()(const Position& pos) const { |
| 653 | |
| 654 | assert(verify_material(pos, strongSide, BishopValueMg, 2)); |
| 655 | assert(verify_material(pos, weakSide, BishopValueMg, 0)); |
| 656 | |
| 657 | Square wbsq = pos.square<BISHOP>(strongSide); |
| 658 | Square bbsq = pos.square<BISHOP>(weakSide); |
| 659 | |
| 660 | if (!opposite_colors(wbsq, bbsq)) |
| 661 | return SCALE_FACTOR_NONE; |
| 662 | |
| 663 | Square ksq = pos.square<KING>(weakSide); |
| 664 | Square psq1 = pos.squares<PAWN>(strongSide)[0]; |
| 665 | Square psq2 = pos.squares<PAWN>(strongSide)[1]; |
| 666 | Square blockSq1, blockSq2; |
| 667 | |
| 668 | if (relative_rank(strongSide, psq1) > relative_rank(strongSide, psq2)) |
| 669 | { |
| 670 | blockSq1 = psq1 + pawn_push(strongSide); |
| 671 | blockSq2 = make_square(file_of(psq2), rank_of(psq1)); |
| 672 | } |
| 673 | else |
| 674 | { |
| 675 | blockSq1 = psq2 + pawn_push(strongSide); |
| 676 | blockSq2 = make_square(file_of(psq1), rank_of(psq2)); |
| 677 | } |
| 678 | |
| 679 | switch (distance<File>(psq1, psq2)) |
| 680 | { |
| 681 | case 0: |
| 682 | // Both pawns are on the same file. It's an easy draw if the defender firmly |
| 683 | // controls some square in the frontmost pawn's path. |
| 684 | if ( file_of(ksq) == file_of(blockSq1) |
| 685 | && relative_rank(strongSide, ksq) >= relative_rank(strongSide, blockSq1) |
| 686 | && opposite_colors(ksq, wbsq)) |
| 687 | return SCALE_FACTOR_DRAW; |
| 688 | else |
| 689 | return SCALE_FACTOR_NONE; |
| 690 | |
| 691 | case 1: |
| 692 | // Pawns on adjacent files. It's a draw if the defender firmly controls the |
| 693 | // square in front of the frontmost pawn's path, and the square diagonally |
| 694 | // behind this square on the file of the other pawn. |
| 695 | if ( ksq == blockSq1 |
| 696 | && opposite_colors(ksq, wbsq) |
| 697 | && ( bbsq == blockSq2 |
| 698 | || (pos.attacks_from<BISHOP>(blockSq2) & pos.pieces(weakSide, BISHOP)) |
| 699 | || distance<Rank>(psq1, psq2) >= 2)) |
| 700 | return SCALE_FACTOR_DRAW; |
| 701 | |
| 702 | else if ( ksq == blockSq2 |
| 703 | && opposite_colors(ksq, wbsq) |
| 704 | && ( bbsq == blockSq1 |
| 705 | || (pos.attacks_from<BISHOP>(blockSq1) & pos.pieces(weakSide, BISHOP)))) |
| 706 | return SCALE_FACTOR_DRAW; |
| 707 | else |
| 708 | return SCALE_FACTOR_NONE; |
| 709 | |
| 710 | default: |
| 711 | // The pawns are not on the same file or adjacent files. No scaling. |
| 712 | return SCALE_FACTOR_NONE; |
| 713 | } |
| 714 | } |
| 715 | |
| 716 | |
| 717 | /// KBP vs KN. There is a single rule: If the defending king is somewhere along |
| 718 | /// the path of the pawn, and the square of the king is not of the same color as |
| 719 | /// the stronger side's bishop, it's a draw. |
| 720 | template<> |
| 721 | ScaleFactor Endgame<KBPKN>::operator()(const Position& pos) const { |
| 722 | |
| 723 | assert(verify_material(pos, strongSide, BishopValueMg, 1)); |
| 724 | assert(verify_material(pos, weakSide, KnightValueMg, 0)); |
| 725 | |
| 726 | Square pawnSq = pos.square<PAWN>(strongSide); |
| 727 | Square strongBishopSq = pos.square<BISHOP>(strongSide); |
| 728 | Square weakKingSq = pos.square<KING>(weakSide); |
| 729 | |
| 730 | if ( file_of(weakKingSq) == file_of(pawnSq) |
| 731 | && relative_rank(strongSide, pawnSq) < relative_rank(strongSide, weakKingSq) |
| 732 | && ( opposite_colors(weakKingSq, strongBishopSq) |
| 733 | || relative_rank(strongSide, weakKingSq) <= RANK_6)) |
| 734 | return SCALE_FACTOR_DRAW; |
| 735 | |
| 736 | return SCALE_FACTOR_NONE; |
| 737 | } |
| 738 | |
| 739 | |
| 740 | /// KNP vs K. There is a single rule: if the pawn is a rook pawn on the 7th rank |
| 741 | /// and the defending king prevents the pawn from advancing, the position is drawn. |
| 742 | template<> |
| 743 | ScaleFactor Endgame<KNPK>::operator()(const Position& pos) const { |
| 744 | |
| 745 | assert(verify_material(pos, strongSide, KnightValueMg, 1)); |
| 746 | assert(verify_material(pos, weakSide, VALUE_ZERO, 0)); |
| 747 | |
| 748 | // Assume strongSide is white and the pawn is on files A-D |
| 749 | Square pawnSq = normalize(pos, strongSide, pos.square<PAWN>(strongSide)); |
| 750 | Square weakKingSq = normalize(pos, strongSide, pos.square<KING>(weakSide)); |
| 751 | |
| 752 | if (pawnSq == SQ_A7 && distance(SQ_A8, weakKingSq) <= 1) |
| 753 | return SCALE_FACTOR_DRAW; |
| 754 | |
| 755 | return SCALE_FACTOR_NONE; |
| 756 | } |
| 757 | |
| 758 | |
| 759 | /// KNP vs KB. If knight can block bishop from taking pawn, it's a win. |
| 760 | /// Otherwise the position is drawn. |
| 761 | template<> |
| 762 | ScaleFactor Endgame<KNPKB>::operator()(const Position& pos) const { |
| 763 | |
| 764 | assert(verify_material(pos, strongSide, KnightValueMg, 1)); |
| 765 | assert(verify_material(pos, weakSide, BishopValueMg, 0)); |
| 766 | |
| 767 | Square pawnSq = pos.square<PAWN>(strongSide); |
| 768 | Square bishopSq = pos.square<BISHOP>(weakSide); |
| 769 | Square weakKingSq = pos.square<KING>(weakSide); |
| 770 | |
| 771 | // King needs to get close to promoting pawn to prevent knight from blocking. |
| 772 | // Rules for this are very tricky, so just approximate. |
| 773 | if (forward_file_bb(strongSide, pawnSq) & pos.attacks_from<BISHOP>(bishopSq)) |
| 774 | return ScaleFactor(distance(weakKingSq, pawnSq)); |
| 775 | |
| 776 | return SCALE_FACTOR_NONE; |
| 777 | } |
| 778 | |
| 779 | |
| 780 | /// KP vs KP. This is done by removing the weakest side's pawn and probing the |
| 781 | /// KP vs K bitbase: If the weakest side has a draw without the pawn, it probably |
| 782 | /// has at least a draw with the pawn as well. The exception is when the stronger |
| 783 | /// side's pawn is far advanced and not on a rook file; in this case it is often |
| 784 | /// possible to win (e.g. 8/4k3/3p4/3P4/6K1/8/8/8 w - - 0 1). |
| 785 | template<> |
| 786 | ScaleFactor Endgame<KPKP>::operator()(const Position& pos) const { |
| 787 | |
| 788 | assert(verify_material(pos, strongSide, VALUE_ZERO, 1)); |
| 789 | assert(verify_material(pos, weakSide, VALUE_ZERO, 1)); |
| 790 | |
| 791 | // Assume strongSide is white and the pawn is on files A-D |
| 792 | Square wksq = normalize(pos, strongSide, pos.square<KING>(strongSide)); |
| 793 | Square bksq = normalize(pos, strongSide, pos.square<KING>(weakSide)); |
| 794 | Square psq = normalize(pos, strongSide, pos.square<PAWN>(strongSide)); |
| 795 | |
| 796 | Color us = strongSide == pos.side_to_move() ? WHITE : BLACK; |
| 797 | |
| 798 | // If the pawn has advanced to the fifth rank or further, and is not a |
| 799 | // rook pawn, it's too dangerous to assume that it's at least a draw. |
| 800 | if (rank_of(psq) >= RANK_5 && file_of(psq) != FILE_A) |
| 801 | return SCALE_FACTOR_NONE; |
| 802 | |
| 803 | // Probe the KPK bitbase with the weakest side's pawn removed. If it's a draw, |
| 804 | // it's probably at least a draw even with the pawn. |
| 805 | return Bitbases::probe(wksq, psq, bksq, us) ? SCALE_FACTOR_NONE : SCALE_FACTOR_DRAW; |
| 806 | } |
| 807 | |