1 | /* |
2 | Stockfish, a UCI chess playing engine derived from Glaurung 2.1 |
3 | Copyright (c) 2013 Ronald de Man |
4 | Copyright (C) 2016-2019 Marco Costalba, Lucas Braesch |
5 | |
6 | Stockfish is free software: you can redistribute it and/or modify |
7 | it under the terms of the GNU General Public License as published by |
8 | the Free Software Foundation, either version 3 of the License, or |
9 | (at your option) any later version. |
10 | |
11 | Stockfish is distributed in the hope that it will be useful, |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
14 | GNU General Public License for more details. |
15 | |
16 | You should have received a copy of the GNU General Public License |
17 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
18 | */ |
19 | |
20 | #include <algorithm> |
21 | #include <atomic> |
22 | #include <cstdint> |
23 | #include <cstring> // For std::memset and std::memcpy |
24 | #include <deque> |
25 | #include <fstream> |
26 | #include <iostream> |
27 | #include <list> |
28 | #include <sstream> |
29 | #include <type_traits> |
30 | |
31 | #include "../bitboard.h" |
32 | #include "../movegen.h" |
33 | #include "../position.h" |
34 | #include "../search.h" |
35 | #include "../thread_win32_osx.h" |
36 | #include "../types.h" |
37 | #include "../uci.h" |
38 | |
39 | #include "tbprobe.h" |
40 | |
41 | #ifndef _WIN32 |
42 | #include <fcntl.h> |
43 | #include <unistd.h> |
44 | #include <sys/mman.h> |
45 | #include <sys/stat.h> |
46 | #else |
47 | #define WIN32_LEAN_AND_MEAN |
48 | #define NOMINMAX |
49 | #include <windows.h> |
50 | #endif |
51 | |
52 | using namespace Tablebases; |
53 | |
54 | int Tablebases::MaxCardinality; |
55 | |
56 | namespace { |
57 | |
58 | constexpr int TBPIECES = 7; // Max number of supported pieces |
59 | |
60 | enum { BigEndian, LittleEndian }; |
61 | enum TBType { KEY, WDL, DTZ }; // Used as template parameter |
62 | |
63 | // Each table has a set of flags: all of them refer to DTZ tables, the last one to WDL tables |
64 | enum TBFlag { STM = 1, Mapped = 2, WinPlies = 4, LossPlies = 8, Wide = 16, SingleValue = 128 }; |
65 | |
66 | inline WDLScore operator-(WDLScore d) { return WDLScore(-int(d)); } |
67 | inline Square operator^=(Square& s, int i) { return s = Square(int(s) ^ i); } |
68 | inline Square operator^(Square s, int i) { return Square(int(s) ^ i); } |
69 | |
70 | const std::string PieceToChar = " PNBRQK pnbrqk" ; |
71 | |
72 | int MapPawns[SQUARE_NB]; |
73 | int MapB1H1H7[SQUARE_NB]; |
74 | int MapA1D1D4[SQUARE_NB]; |
75 | int MapKK[10][SQUARE_NB]; // [MapA1D1D4][SQUARE_NB] |
76 | |
77 | int Binomial[6][SQUARE_NB]; // [k][n] k elements from a set of n elements |
78 | int LeadPawnIdx[6][SQUARE_NB]; // [leadPawnsCnt][SQUARE_NB] |
79 | int LeadPawnsSize[6][4]; // [leadPawnsCnt][FILE_A..FILE_D] |
80 | |
81 | // Comparison function to sort leading pawns in ascending MapPawns[] order |
82 | bool pawns_comp(Square i, Square j) { return MapPawns[i] < MapPawns[j]; } |
83 | int off_A1H8(Square sq) { return int(rank_of(sq)) - file_of(sq); } |
84 | |
85 | constexpr Value WDL_to_value[] = { |
86 | -VALUE_MATE + MAX_PLY + 1, |
87 | VALUE_DRAW - 2, |
88 | VALUE_DRAW, |
89 | VALUE_DRAW + 2, |
90 | VALUE_MATE - MAX_PLY - 1 |
91 | }; |
92 | |
93 | template<typename T, int Half = sizeof(T) / 2, int End = sizeof(T) - 1> |
94 | inline void swap_endian(T& x) |
95 | { |
96 | static_assert(std::is_unsigned<T>::value, "Argument of swap_endian not unsigned" ); |
97 | |
98 | uint8_t tmp, *c = (uint8_t*)&x; |
99 | for (int i = 0; i < Half; ++i) |
100 | tmp = c[i], c[i] = c[End - i], c[End - i] = tmp; |
101 | } |
102 | template<> inline void swap_endian<uint8_t>(uint8_t&) {} |
103 | |
104 | template<typename T, int LE> T number(void* addr) |
105 | { |
106 | static const union { uint32_t i; char c[4]; } Le = { 0x01020304 }; |
107 | static const bool IsLittleEndian = (Le.c[0] == 4); |
108 | |
109 | T v; |
110 | |
111 | if ((uintptr_t)addr & (alignof(T) - 1)) // Unaligned pointer (very rare) |
112 | std::memcpy(&v, addr, sizeof(T)); |
113 | else |
114 | v = *((T*)addr); |
115 | |
116 | if (LE != IsLittleEndian) |
117 | swap_endian(v); |
118 | return v; |
119 | } |
120 | |
121 | // DTZ tables don't store valid scores for moves that reset the rule50 counter |
122 | // like captures and pawn moves but we can easily recover the correct dtz of the |
123 | // previous move if we know the position's WDL score. |
124 | int dtz_before_zeroing(WDLScore wdl) { |
125 | return wdl == WDLWin ? 1 : |
126 | wdl == WDLCursedWin ? 101 : |
127 | wdl == WDLBlessedLoss ? -101 : |
128 | wdl == WDLLoss ? -1 : 0; |
129 | } |
130 | |
131 | // Return the sign of a number (-1, 0, 1) |
132 | template <typename T> int sign_of(T val) { |
133 | return (T(0) < val) - (val < T(0)); |
134 | } |
135 | |
136 | // Numbers in little endian used by sparseIndex[] to point into blockLength[] |
137 | struct SparseEntry { |
138 | char block[4]; // Number of block |
139 | char offset[2]; // Offset within the block |
140 | }; |
141 | |
142 | static_assert(sizeof(SparseEntry) == 6, "SparseEntry must be 6 bytes" ); |
143 | |
144 | typedef uint16_t Sym; // Huffman symbol |
145 | |
146 | struct LR { |
147 | enum Side { Left, Right }; |
148 | |
149 | uint8_t lr[3]; // The first 12 bits is the left-hand symbol, the second 12 |
150 | // bits is the right-hand symbol. If symbol has length 1, |
151 | // then the left-hand symbol is the stored value. |
152 | template<Side S> |
153 | Sym get() { |
154 | return S == Left ? ((lr[1] & 0xF) << 8) | lr[0] : |
155 | S == Right ? (lr[2] << 4) | (lr[1] >> 4) : (assert(false), Sym(-1)); |
156 | } |
157 | }; |
158 | |
159 | static_assert(sizeof(LR) == 3, "LR tree entry must be 3 bytes" ); |
160 | |
161 | // Tablebases data layout is structured as following: |
162 | // |
163 | // TBFile: memory maps/unmaps the physical .rtbw and .rtbz files |
164 | // TBTable: one object for each file with corresponding indexing information |
165 | // TBTables: has ownership of TBTable objects, keeping a list and a hash |
166 | |
167 | // class TBFile memory maps/unmaps the single .rtbw and .rtbz files. Files are |
168 | // memory mapped for best performance. Files are mapped at first access: at init |
169 | // time only existence of the file is checked. |
170 | class TBFile : public std::ifstream { |
171 | |
172 | std::string fname; |
173 | |
174 | public: |
175 | // Look for and open the file among the Paths directories where the .rtbw |
176 | // and .rtbz files can be found. Multiple directories are separated by ";" |
177 | // on Windows and by ":" on Unix-based operating systems. |
178 | // |
179 | // Example: |
180 | // C:\tb\wdl345;C:\tb\wdl6;D:\tb\dtz345;D:\tb\dtz6 |
181 | static std::string Paths; |
182 | |
183 | TBFile(const std::string& f) { |
184 | |
185 | #ifndef _WIN32 |
186 | constexpr char SepChar = ':'; |
187 | #else |
188 | constexpr char SepChar = ';'; |
189 | #endif |
190 | std::stringstream ss(Paths); |
191 | std::string path; |
192 | |
193 | while (std::getline(ss, path, SepChar)) { |
194 | fname = path + "/" + f; |
195 | std::ifstream::open(fname); |
196 | if (is_open()) |
197 | return; |
198 | } |
199 | } |
200 | |
201 | // Memory map the file and check it. File should be already open and will be |
202 | // closed after mapping. |
203 | uint8_t* map(void** baseAddress, uint64_t* mapping, TBType type) { |
204 | |
205 | assert(is_open()); |
206 | |
207 | close(); // Need to re-open to get native file descriptor |
208 | |
209 | #ifndef _WIN32 |
210 | struct stat statbuf; |
211 | int fd = ::open(fname.c_str(), O_RDONLY); |
212 | |
213 | if (fd == -1) |
214 | return *baseAddress = nullptr, nullptr; |
215 | |
216 | fstat(fd, &statbuf); |
217 | |
218 | if (statbuf.st_size % 64 != 16) |
219 | { |
220 | std::cerr << "Corrupt tablebase file " << fname << std::endl; |
221 | exit(EXIT_FAILURE); |
222 | } |
223 | |
224 | *mapping = statbuf.st_size; |
225 | *baseAddress = mmap(nullptr, statbuf.st_size, PROT_READ, MAP_SHARED, fd, 0); |
226 | madvise(*baseAddress, statbuf.st_size, MADV_RANDOM); |
227 | ::close(fd); |
228 | |
229 | if (*baseAddress == MAP_FAILED) |
230 | { |
231 | std::cerr << "Could not mmap() " << fname << std::endl; |
232 | exit(EXIT_FAILURE); |
233 | } |
234 | #else |
235 | // Note FILE_FLAG_RANDOM_ACCESS is only a hint to Windows and as such may get ignored. |
236 | HANDLE fd = CreateFile(fname.c_str(), GENERIC_READ, FILE_SHARE_READ, nullptr, |
237 | OPEN_EXISTING, FILE_FLAG_RANDOM_ACCESS, nullptr); |
238 | |
239 | if (fd == INVALID_HANDLE_VALUE) |
240 | return *baseAddress = nullptr, nullptr; |
241 | |
242 | DWORD size_high; |
243 | DWORD size_low = GetFileSize(fd, &size_high); |
244 | |
245 | if (size_low % 64 != 16) |
246 | { |
247 | std::cerr << "Corrupt tablebase file " << fname << std::endl; |
248 | exit(EXIT_FAILURE); |
249 | } |
250 | |
251 | HANDLE mmap = CreateFileMapping(fd, nullptr, PAGE_READONLY, size_high, size_low, nullptr); |
252 | CloseHandle(fd); |
253 | |
254 | if (!mmap) |
255 | { |
256 | std::cerr << "CreateFileMapping() failed" << std::endl; |
257 | exit(EXIT_FAILURE); |
258 | } |
259 | |
260 | *mapping = (uint64_t)mmap; |
261 | *baseAddress = MapViewOfFile(mmap, FILE_MAP_READ, 0, 0, 0); |
262 | |
263 | if (!*baseAddress) |
264 | { |
265 | std::cerr << "MapViewOfFile() failed, name = " << fname |
266 | << ", error = " << GetLastError() << std::endl; |
267 | exit(EXIT_FAILURE); |
268 | } |
269 | #endif |
270 | uint8_t* data = (uint8_t*)*baseAddress; |
271 | |
272 | constexpr uint8_t Magics[][4] = { { 0xD7, 0x66, 0x0C, 0xA5 }, |
273 | { 0x71, 0xE8, 0x23, 0x5D } }; |
274 | |
275 | if (memcmp(data, Magics[type == WDL], 4)) |
276 | { |
277 | std::cerr << "Corrupted table in file " << fname << std::endl; |
278 | unmap(*baseAddress, *mapping); |
279 | return *baseAddress = nullptr, nullptr; |
280 | } |
281 | |
282 | return data + 4; // Skip Magics's header |
283 | } |
284 | |
285 | static void unmap(void* baseAddress, uint64_t mapping) { |
286 | |
287 | #ifndef _WIN32 |
288 | munmap(baseAddress, mapping); |
289 | #else |
290 | UnmapViewOfFile(baseAddress); |
291 | CloseHandle((HANDLE)mapping); |
292 | #endif |
293 | } |
294 | }; |
295 | |
296 | std::string TBFile::Paths; |
297 | |
298 | // struct PairsData contains low level indexing information to access TB data. |
299 | // There are 8, 4 or 2 PairsData records for each TBTable, according to type of |
300 | // table and if positions have pawns or not. It is populated at first access. |
301 | struct PairsData { |
302 | uint8_t flags; // Table flags, see enum TBFlag |
303 | uint8_t maxSymLen; // Maximum length in bits of the Huffman symbols |
304 | uint8_t minSymLen; // Minimum length in bits of the Huffman symbols |
305 | uint32_t blocksNum; // Number of blocks in the TB file |
306 | size_t sizeofBlock; // Block size in bytes |
307 | size_t span; // About every span values there is a SparseIndex[] entry |
308 | Sym* lowestSym; // lowestSym[l] is the symbol of length l with the lowest value |
309 | LR* btree; // btree[sym] stores the left and right symbols that expand sym |
310 | uint16_t* blockLength; // Number of stored positions (minus one) for each block: 1..65536 |
311 | uint32_t blockLengthSize; // Size of blockLength[] table: padded so it's bigger than blocksNum |
312 | SparseEntry* sparseIndex; // Partial indices into blockLength[] |
313 | size_t sparseIndexSize; // Size of SparseIndex[] table |
314 | uint8_t* data; // Start of Huffman compressed data |
315 | std::vector<uint64_t> base64; // base64[l - min_sym_len] is the 64bit-padded lowest symbol of length l |
316 | std::vector<uint8_t> symlen; // Number of values (-1) represented by a given Huffman symbol: 1..256 |
317 | Piece pieces[TBPIECES]; // Position pieces: the order of pieces defines the groups |
318 | uint64_t groupIdx[TBPIECES+1]; // Start index used for the encoding of the group's pieces |
319 | int groupLen[TBPIECES+1]; // Number of pieces in a given group: KRKN -> (3, 1) |
320 | uint16_t map_idx[4]; // WDLWin, WDLLoss, WDLCursedWin, WDLBlessedLoss (used in DTZ) |
321 | }; |
322 | |
323 | // struct TBTable contains indexing information to access the corresponding TBFile. |
324 | // There are 2 types of TBTable, corresponding to a WDL or a DTZ file. TBTable |
325 | // is populated at init time but the nested PairsData records are populated at |
326 | // first access, when the corresponding file is memory mapped. |
327 | template<TBType Type> |
328 | struct TBTable { |
329 | typedef typename std::conditional<Type == WDL, WDLScore, int>::type Ret; |
330 | |
331 | static constexpr int Sides = Type == WDL ? 2 : 1; |
332 | |
333 | std::atomic_bool ready; |
334 | void* baseAddress; |
335 | uint8_t* map; |
336 | uint64_t mapping; |
337 | Key key; |
338 | Key key2; |
339 | int pieceCount; |
340 | bool hasPawns; |
341 | bool hasUniquePieces; |
342 | uint8_t pawnCount[2]; // [Lead color / other color] |
343 | PairsData items[Sides][4]; // [wtm / btm][FILE_A..FILE_D or 0] |
344 | |
345 | PairsData* get(int stm, int f) { |
346 | return &items[stm % Sides][hasPawns ? f : 0]; |
347 | } |
348 | |
349 | TBTable() : ready(false), baseAddress(nullptr) {} |
350 | explicit TBTable(const std::string& code); |
351 | explicit TBTable(const TBTable<WDL>& wdl); |
352 | |
353 | ~TBTable() { |
354 | if (baseAddress) |
355 | TBFile::unmap(baseAddress, mapping); |
356 | } |
357 | }; |
358 | |
359 | template<> |
360 | TBTable<WDL>::TBTable(const std::string& code) : TBTable() { |
361 | |
362 | StateInfo st; |
363 | Position pos; |
364 | |
365 | key = pos.set(code, WHITE, &st).material_key(); |
366 | pieceCount = pos.count<ALL_PIECES>(); |
367 | hasPawns = pos.pieces(PAWN); |
368 | |
369 | hasUniquePieces = false; |
370 | for (Color c : { WHITE, BLACK }) |
371 | for (PieceType pt = PAWN; pt < KING; ++pt) |
372 | if (popcount(pos.pieces(c, pt)) == 1) |
373 | hasUniquePieces = true; |
374 | |
375 | // Set the leading color. In case both sides have pawns the leading color |
376 | // is the side with less pawns because this leads to better compression. |
377 | bool c = !pos.count<PAWN>(BLACK) |
378 | || ( pos.count<PAWN>(WHITE) |
379 | && pos.count<PAWN>(BLACK) >= pos.count<PAWN>(WHITE)); |
380 | |
381 | pawnCount[0] = pos.count<PAWN>(c ? WHITE : BLACK); |
382 | pawnCount[1] = pos.count<PAWN>(c ? BLACK : WHITE); |
383 | |
384 | key2 = pos.set(code, BLACK, &st).material_key(); |
385 | } |
386 | |
387 | template<> |
388 | TBTable<DTZ>::TBTable(const TBTable<WDL>& wdl) : TBTable() { |
389 | |
390 | // Use the corresponding WDL table to avoid recalculating all from scratch |
391 | key = wdl.key; |
392 | key2 = wdl.key2; |
393 | pieceCount = wdl.pieceCount; |
394 | hasPawns = wdl.hasPawns; |
395 | hasUniquePieces = wdl.hasUniquePieces; |
396 | pawnCount[0] = wdl.pawnCount[0]; |
397 | pawnCount[1] = wdl.pawnCount[1]; |
398 | } |
399 | |
400 | // class TBTables creates and keeps ownership of the TBTable objects, one for |
401 | // each TB file found. It supports a fast, hash based, table lookup. Populated |
402 | // at init time, accessed at probe time. |
403 | class TBTables { |
404 | |
405 | typedef std::tuple<Key, TBTable<WDL>*, TBTable<DTZ>*> Entry; |
406 | |
407 | static constexpr int Size = 1 << 12; // 4K table, indexed by key's 12 lsb |
408 | static constexpr int Overflow = 1; // Number of elements allowed to map to the last bucket |
409 | |
410 | Entry hashTable[Size + Overflow]; |
411 | |
412 | std::deque<TBTable<WDL>> wdlTable; |
413 | std::deque<TBTable<DTZ>> dtzTable; |
414 | |
415 | void insert(Key key, TBTable<WDL>* wdl, TBTable<DTZ>* dtz) { |
416 | uint32_t homeBucket = (uint32_t)key & (Size - 1); |
417 | Entry entry = std::make_tuple(key, wdl, dtz); |
418 | |
419 | // Ensure last element is empty to avoid overflow when looking up |
420 | for (uint32_t bucket = homeBucket; bucket < Size + Overflow - 1; ++bucket) { |
421 | Key otherKey = std::get<KEY>(hashTable[bucket]); |
422 | if (otherKey == key || !std::get<WDL>(hashTable[bucket])) { |
423 | hashTable[bucket] = entry; |
424 | return; |
425 | } |
426 | |
427 | // Robin Hood hashing: If we've probed for longer than this element, |
428 | // insert here and search for a new spot for the other element instead. |
429 | uint32_t otherHomeBucket = (uint32_t)otherKey & (Size - 1); |
430 | if (otherHomeBucket > homeBucket) { |
431 | swap(entry, hashTable[bucket]); |
432 | key = otherKey; |
433 | homeBucket = otherHomeBucket; |
434 | } |
435 | } |
436 | std::cerr << "TB hash table size too low!" << std::endl; |
437 | exit(EXIT_FAILURE); |
438 | } |
439 | |
440 | public: |
441 | template<TBType Type> |
442 | TBTable<Type>* get(Key key) { |
443 | for (const Entry* entry = &hashTable[(uint32_t)key & (Size - 1)]; ; ++entry) { |
444 | if (std::get<KEY>(*entry) == key || !std::get<Type>(*entry)) |
445 | return std::get<Type>(*entry); |
446 | } |
447 | } |
448 | |
449 | void clear() { |
450 | memset(hashTable, 0, sizeof(hashTable)); |
451 | wdlTable.clear(); |
452 | dtzTable.clear(); |
453 | } |
454 | size_t size() const { return wdlTable.size(); } |
455 | void add(const std::vector<PieceType>& pieces); |
456 | }; |
457 | |
458 | TBTables TBTables; |
459 | |
460 | // If the corresponding file exists two new objects TBTable<WDL> and TBTable<DTZ> |
461 | // are created and added to the lists and hash table. Called at init time. |
462 | void TBTables::add(const std::vector<PieceType>& pieces) { |
463 | |
464 | std::string code; |
465 | |
466 | for (PieceType pt : pieces) |
467 | code += PieceToChar[pt]; |
468 | |
469 | TBFile file(code.insert(code.find('K', 1), "v" ) + ".rtbw" ); // KRK -> KRvK |
470 | |
471 | if (!file.is_open()) // Only WDL file is checked |
472 | return; |
473 | |
474 | file.close(); |
475 | |
476 | MaxCardinality = std::max((int)pieces.size(), MaxCardinality); |
477 | |
478 | wdlTable.emplace_back(code); |
479 | dtzTable.emplace_back(wdlTable.back()); |
480 | |
481 | // Insert into the hash keys for both colors: KRvK with KR white and black |
482 | insert(wdlTable.back().key , &wdlTable.back(), &dtzTable.back()); |
483 | insert(wdlTable.back().key2, &wdlTable.back(), &dtzTable.back()); |
484 | } |
485 | |
486 | // TB tables are compressed with canonical Huffman code. The compressed data is divided into |
487 | // blocks of size d->sizeofBlock, and each block stores a variable number of symbols. |
488 | // Each symbol represents either a WDL or a (remapped) DTZ value, or a pair of other symbols |
489 | // (recursively). If you keep expanding the symbols in a block, you end up with up to 65536 |
490 | // WDL or DTZ values. Each symbol represents up to 256 values and will correspond after |
491 | // Huffman coding to at least 1 bit. So a block of 32 bytes corresponds to at most |
492 | // 32 x 8 x 256 = 65536 values. This maximum is only reached for tables that consist mostly |
493 | // of draws or mostly of wins, but such tables are actually quite common. In principle, the |
494 | // blocks in WDL tables are 64 bytes long (and will be aligned on cache lines). But for |
495 | // mostly-draw or mostly-win tables this can leave many 64-byte blocks only half-filled, so |
496 | // in such cases blocks are 32 bytes long. The blocks of DTZ tables are up to 1024 bytes long. |
497 | // The generator picks the size that leads to the smallest table. The "book" of symbols and |
498 | // Huffman codes is the same for all blocks in the table. A non-symmetric pawnless TB file |
499 | // will have one table for wtm and one for btm, a TB file with pawns will have tables per |
500 | // file a,b,c,d also in this case one set for wtm and one for btm. |
501 | int decompress_pairs(PairsData* d, uint64_t idx) { |
502 | |
503 | // Special case where all table positions store the same value |
504 | if (d->flags & TBFlag::SingleValue) |
505 | return d->minSymLen; |
506 | |
507 | // First we need to locate the right block that stores the value at index "idx". |
508 | // Because each block n stores blockLength[n] + 1 values, the index i of the block |
509 | // that contains the value at position idx is: |
510 | // |
511 | // for (i = -1, sum = 0; sum <= idx; i++) |
512 | // sum += blockLength[i + 1] + 1; |
513 | // |
514 | // This can be slow, so we use SparseIndex[] populated with a set of SparseEntry that |
515 | // point to known indices into blockLength[]. Namely SparseIndex[k] is a SparseEntry |
516 | // that stores the blockLength[] index and the offset within that block of the value |
517 | // with index I(k), where: |
518 | // |
519 | // I(k) = k * d->span + d->span / 2 (1) |
520 | |
521 | // First step is to get the 'k' of the I(k) nearest to our idx, using definition (1) |
522 | uint32_t k = idx / d->span; |
523 | |
524 | // Then we read the corresponding SparseIndex[] entry |
525 | uint32_t block = number<uint32_t, LittleEndian>(&d->sparseIndex[k].block); |
526 | int offset = number<uint16_t, LittleEndian>(&d->sparseIndex[k].offset); |
527 | |
528 | // Now compute the difference idx - I(k). From definition of k we know that |
529 | // |
530 | // idx = k * d->span + idx % d->span (2) |
531 | // |
532 | // So from (1) and (2) we can compute idx - I(K): |
533 | int diff = idx % d->span - d->span / 2; |
534 | |
535 | // Sum the above to offset to find the offset corresponding to our idx |
536 | offset += diff; |
537 | |
538 | // Move to previous/next block, until we reach the correct block that contains idx, |
539 | // that is when 0 <= offset <= d->blockLength[block] |
540 | while (offset < 0) |
541 | offset += d->blockLength[--block] + 1; |
542 | |
543 | while (offset > d->blockLength[block]) |
544 | offset -= d->blockLength[block++] + 1; |
545 | |
546 | // Finally, we find the start address of our block of canonical Huffman symbols |
547 | uint32_t* ptr = (uint32_t*)(d->data + ((uint64_t)block * d->sizeofBlock)); |
548 | |
549 | // Read the first 64 bits in our block, this is a (truncated) sequence of |
550 | // unknown number of symbols of unknown length but we know the first one |
551 | // is at the beginning of this 64 bits sequence. |
552 | uint64_t buf64 = number<uint64_t, BigEndian>(ptr); ptr += 2; |
553 | int buf64Size = 64; |
554 | Sym sym; |
555 | |
556 | while (true) { |
557 | int len = 0; // This is the symbol length - d->min_sym_len |
558 | |
559 | // Now get the symbol length. For any symbol s64 of length l right-padded |
560 | // to 64 bits we know that d->base64[l-1] >= s64 >= d->base64[l] so we |
561 | // can find the symbol length iterating through base64[]. |
562 | while (buf64 < d->base64[len]) |
563 | ++len; |
564 | |
565 | // All the symbols of a given length are consecutive integers (numerical |
566 | // sequence property), so we can compute the offset of our symbol of |
567 | // length len, stored at the beginning of buf64. |
568 | sym = (buf64 - d->base64[len]) >> (64 - len - d->minSymLen); |
569 | |
570 | // Now add the value of the lowest symbol of length len to get our symbol |
571 | sym += number<Sym, LittleEndian>(&d->lowestSym[len]); |
572 | |
573 | // If our offset is within the number of values represented by symbol sym |
574 | // we are done... |
575 | if (offset < d->symlen[sym] + 1) |
576 | break; |
577 | |
578 | // ...otherwise update the offset and continue to iterate |
579 | offset -= d->symlen[sym] + 1; |
580 | len += d->minSymLen; // Get the real length |
581 | buf64 <<= len; // Consume the just processed symbol |
582 | buf64Size -= len; |
583 | |
584 | if (buf64Size <= 32) { // Refill the buffer |
585 | buf64Size += 32; |
586 | buf64 |= (uint64_t)number<uint32_t, BigEndian>(ptr++) << (64 - buf64Size); |
587 | } |
588 | } |
589 | |
590 | // Ok, now we have our symbol that expands into d->symlen[sym] + 1 symbols. |
591 | // We binary-search for our value recursively expanding into the left and |
592 | // right child symbols until we reach a leaf node where symlen[sym] + 1 == 1 |
593 | // that will store the value we need. |
594 | while (d->symlen[sym]) { |
595 | |
596 | Sym left = d->btree[sym].get<LR::Left>(); |
597 | |
598 | // If a symbol contains 36 sub-symbols (d->symlen[sym] + 1 = 36) and |
599 | // expands in a pair (d->symlen[left] = 23, d->symlen[right] = 11), then |
600 | // we know that, for instance the ten-th value (offset = 10) will be on |
601 | // the left side because in Recursive Pairing child symbols are adjacent. |
602 | if (offset < d->symlen[left] + 1) |
603 | sym = left; |
604 | else { |
605 | offset -= d->symlen[left] + 1; |
606 | sym = d->btree[sym].get<LR::Right>(); |
607 | } |
608 | } |
609 | |
610 | return d->btree[sym].get<LR::Left>(); |
611 | } |
612 | |
613 | bool check_dtz_stm(TBTable<WDL>*, int, File) { return true; } |
614 | |
615 | bool check_dtz_stm(TBTable<DTZ>* entry, int stm, File f) { |
616 | |
617 | auto flags = entry->get(stm, f)->flags; |
618 | return (flags & TBFlag::STM) == stm |
619 | || ((entry->key == entry->key2) && !entry->hasPawns); |
620 | } |
621 | |
622 | // DTZ scores are sorted by frequency of occurrence and then assigned the |
623 | // values 0, 1, 2, ... in order of decreasing frequency. This is done for each |
624 | // of the four WDLScore values. The mapping information necessary to reconstruct |
625 | // the original values is stored in the TB file and read during map[] init. |
626 | WDLScore map_score(TBTable<WDL>*, File, int value, WDLScore) { return WDLScore(value - 2); } |
627 | |
628 | int map_score(TBTable<DTZ>* entry, File f, int value, WDLScore wdl) { |
629 | |
630 | constexpr int WDLMap[] = { 1, 3, 0, 2, 0 }; |
631 | |
632 | auto flags = entry->get(0, f)->flags; |
633 | |
634 | uint8_t* map = entry->map; |
635 | uint16_t* idx = entry->get(0, f)->map_idx; |
636 | if (flags & TBFlag::Mapped) { |
637 | if (flags & TBFlag::Wide) |
638 | value = ((uint16_t *)map)[idx[WDLMap[wdl + 2]] + value]; |
639 | else |
640 | value = map[idx[WDLMap[wdl + 2]] + value]; |
641 | } |
642 | |
643 | // DTZ tables store distance to zero in number of moves or plies. We |
644 | // want to return plies, so we have convert to plies when needed. |
645 | if ( (wdl == WDLWin && !(flags & TBFlag::WinPlies)) |
646 | || (wdl == WDLLoss && !(flags & TBFlag::LossPlies)) |
647 | || wdl == WDLCursedWin |
648 | || wdl == WDLBlessedLoss) |
649 | value *= 2; |
650 | |
651 | return value + 1; |
652 | } |
653 | |
654 | // Compute a unique index out of a position and use it to probe the TB file. To |
655 | // encode k pieces of same type and color, first sort the pieces by square in |
656 | // ascending order s1 <= s2 <= ... <= sk then compute the unique index as: |
657 | // |
658 | // idx = Binomial[1][s1] + Binomial[2][s2] + ... + Binomial[k][sk] |
659 | // |
660 | template<typename T, typename Ret = typename T::Ret> |
661 | Ret do_probe_table(const Position& pos, T* entry, WDLScore wdl, ProbeState* result) { |
662 | |
663 | Square squares[TBPIECES]; |
664 | Piece pieces[TBPIECES]; |
665 | uint64_t idx; |
666 | int next = 0, size = 0, leadPawnsCnt = 0; |
667 | PairsData* d; |
668 | Bitboard b, leadPawns = 0; |
669 | File tbFile = FILE_A; |
670 | |
671 | // A given TB entry like KRK has associated two material keys: KRvk and Kvkr. |
672 | // If both sides have the same pieces keys are equal. In this case TB tables |
673 | // only store the 'white to move' case, so if the position to lookup has black |
674 | // to move, we need to switch the color and flip the squares before to lookup. |
675 | bool symmetricBlackToMove = (entry->key == entry->key2 && pos.side_to_move()); |
676 | |
677 | // TB files are calculated for white as stronger side. For instance we have |
678 | // KRvK, not KvKR. A position where stronger side is white will have its |
679 | // material key == entry->key, otherwise we have to switch the color and |
680 | // flip the squares before to lookup. |
681 | bool blackStronger = (pos.material_key() != entry->key); |
682 | |
683 | int flipColor = (symmetricBlackToMove || blackStronger) * 8; |
684 | int flipSquares = (symmetricBlackToMove || blackStronger) * 070; |
685 | int stm = (symmetricBlackToMove || blackStronger) ^ pos.side_to_move(); |
686 | |
687 | // For pawns, TB files store 4 separate tables according if leading pawn is on |
688 | // file a, b, c or d after reordering. The leading pawn is the one with maximum |
689 | // MapPawns[] value, that is the one most toward the edges and with lowest rank. |
690 | if (entry->hasPawns) { |
691 | |
692 | // In all the 4 tables, pawns are at the beginning of the piece sequence and |
693 | // their color is the reference one. So we just pick the first one. |
694 | Piece pc = Piece(entry->get(0, 0)->pieces[0] ^ flipColor); |
695 | |
696 | assert(type_of(pc) == PAWN); |
697 | |
698 | leadPawns = b = pos.pieces(color_of(pc), PAWN); |
699 | do |
700 | squares[size++] = pop_lsb(&b) ^ flipSquares; |
701 | while (b); |
702 | |
703 | leadPawnsCnt = size; |
704 | |
705 | std::swap(squares[0], *std::max_element(squares, squares + leadPawnsCnt, pawns_comp)); |
706 | |
707 | tbFile = file_of(squares[0]); |
708 | if (tbFile > FILE_D) |
709 | tbFile = file_of(squares[0] ^ 7); // Horizontal flip: SQ_H1 -> SQ_A1 |
710 | } |
711 | |
712 | // DTZ tables are one-sided, i.e. they store positions only for white to |
713 | // move or only for black to move, so check for side to move to be stm, |
714 | // early exit otherwise. |
715 | if (!check_dtz_stm(entry, stm, tbFile)) |
716 | return *result = CHANGE_STM, Ret(); |
717 | |
718 | // Now we are ready to get all the position pieces (but the lead pawns) and |
719 | // directly map them to the correct color and square. |
720 | b = pos.pieces() ^ leadPawns; |
721 | do { |
722 | Square s = pop_lsb(&b); |
723 | squares[size] = s ^ flipSquares; |
724 | pieces[size++] = Piece(pos.piece_on(s) ^ flipColor); |
725 | } while (b); |
726 | |
727 | assert(size >= 2); |
728 | |
729 | d = entry->get(stm, tbFile); |
730 | |
731 | // Then we reorder the pieces to have the same sequence as the one stored |
732 | // in pieces[i]: the sequence that ensures the best compression. |
733 | for (int i = leadPawnsCnt; i < size; ++i) |
734 | for (int j = i; j < size; ++j) |
735 | if (d->pieces[i] == pieces[j]) |
736 | { |
737 | std::swap(pieces[i], pieces[j]); |
738 | std::swap(squares[i], squares[j]); |
739 | break; |
740 | } |
741 | |
742 | // Now we map again the squares so that the square of the lead piece is in |
743 | // the triangle A1-D1-D4. |
744 | if (file_of(squares[0]) > FILE_D) |
745 | for (int i = 0; i < size; ++i) |
746 | squares[i] ^= 7; // Horizontal flip: SQ_H1 -> SQ_A1 |
747 | |
748 | // Encode leading pawns starting with the one with minimum MapPawns[] and |
749 | // proceeding in ascending order. |
750 | if (entry->hasPawns) { |
751 | idx = LeadPawnIdx[leadPawnsCnt][squares[0]]; |
752 | |
753 | std::sort(squares + 1, squares + leadPawnsCnt, pawns_comp); |
754 | |
755 | for (int i = 1; i < leadPawnsCnt; ++i) |
756 | idx += Binomial[i][MapPawns[squares[i]]]; |
757 | |
758 | goto encode_remaining; // With pawns we have finished special treatments |
759 | } |
760 | |
761 | // In positions withouth pawns, we further flip the squares to ensure leading |
762 | // piece is below RANK_5. |
763 | if (rank_of(squares[0]) > RANK_4) |
764 | for (int i = 0; i < size; ++i) |
765 | squares[i] ^= 070; // Vertical flip: SQ_A8 -> SQ_A1 |
766 | |
767 | // Look for the first piece of the leading group not on the A1-D4 diagonal |
768 | // and ensure it is mapped below the diagonal. |
769 | for (int i = 0; i < d->groupLen[0]; ++i) { |
770 | if (!off_A1H8(squares[i])) |
771 | continue; |
772 | |
773 | if (off_A1H8(squares[i]) > 0) // A1-H8 diagonal flip: SQ_A3 -> SQ_C3 |
774 | for (int j = i; j < size; ++j) |
775 | squares[j] = Square(((squares[j] >> 3) | (squares[j] << 3)) & 63); |
776 | break; |
777 | } |
778 | |
779 | // Encode the leading group. |
780 | // |
781 | // Suppose we have KRvK. Let's say the pieces are on square numbers wK, wR |
782 | // and bK (each 0...63). The simplest way to map this position to an index |
783 | // is like this: |
784 | // |
785 | // index = wK * 64 * 64 + wR * 64 + bK; |
786 | // |
787 | // But this way the TB is going to have 64*64*64 = 262144 positions, with |
788 | // lots of positions being equivalent (because they are mirrors of each |
789 | // other) and lots of positions being invalid (two pieces on one square, |
790 | // adjacent kings, etc.). |
791 | // Usually the first step is to take the wK and bK together. There are just |
792 | // 462 ways legal and not-mirrored ways to place the wK and bK on the board. |
793 | // Once we have placed the wK and bK, there are 62 squares left for the wR |
794 | // Mapping its square from 0..63 to available squares 0..61 can be done like: |
795 | // |
796 | // wR -= (wR > wK) + (wR > bK); |
797 | // |
798 | // In words: if wR "comes later" than wK, we deduct 1, and the same if wR |
799 | // "comes later" than bK. In case of two same pieces like KRRvK we want to |
800 | // place the two Rs "together". If we have 62 squares left, we can place two |
801 | // Rs "together" in 62 * 61 / 2 ways (we divide by 2 because rooks can be |
802 | // swapped and still get the same position.) |
803 | // |
804 | // In case we have at least 3 unique pieces (inlcuded kings) we encode them |
805 | // together. |
806 | if (entry->hasUniquePieces) { |
807 | |
808 | int adjust1 = squares[1] > squares[0]; |
809 | int adjust2 = (squares[2] > squares[0]) + (squares[2] > squares[1]); |
810 | |
811 | // First piece is below a1-h8 diagonal. MapA1D1D4[] maps the b1-d1-d3 |
812 | // triangle to 0...5. There are 63 squares for second piece and and 62 |
813 | // (mapped to 0...61) for the third. |
814 | if (off_A1H8(squares[0])) |
815 | idx = ( MapA1D1D4[squares[0]] * 63 |
816 | + (squares[1] - adjust1)) * 62 |
817 | + squares[2] - adjust2; |
818 | |
819 | // First piece is on a1-h8 diagonal, second below: map this occurence to |
820 | // 6 to differentiate from the above case, rank_of() maps a1-d4 diagonal |
821 | // to 0...3 and finally MapB1H1H7[] maps the b1-h1-h7 triangle to 0..27. |
822 | else if (off_A1H8(squares[1])) |
823 | idx = ( 6 * 63 + rank_of(squares[0]) * 28 |
824 | + MapB1H1H7[squares[1]]) * 62 |
825 | + squares[2] - adjust2; |
826 | |
827 | // First two pieces are on a1-h8 diagonal, third below |
828 | else if (off_A1H8(squares[2])) |
829 | idx = 6 * 63 * 62 + 4 * 28 * 62 |
830 | + rank_of(squares[0]) * 7 * 28 |
831 | + (rank_of(squares[1]) - adjust1) * 28 |
832 | + MapB1H1H7[squares[2]]; |
833 | |
834 | // All 3 pieces on the diagonal a1-h8 |
835 | else |
836 | idx = 6 * 63 * 62 + 4 * 28 * 62 + 4 * 7 * 28 |
837 | + rank_of(squares[0]) * 7 * 6 |
838 | + (rank_of(squares[1]) - adjust1) * 6 |
839 | + (rank_of(squares[2]) - adjust2); |
840 | } else |
841 | // We don't have at least 3 unique pieces, like in KRRvKBB, just map |
842 | // the kings. |
843 | idx = MapKK[MapA1D1D4[squares[0]]][squares[1]]; |
844 | |
845 | encode_remaining: |
846 | idx *= d->groupIdx[0]; |
847 | Square* groupSq = squares + d->groupLen[0]; |
848 | |
849 | // Encode remainig pawns then pieces according to square, in ascending order |
850 | bool remainingPawns = entry->hasPawns && entry->pawnCount[1]; |
851 | |
852 | while (d->groupLen[++next]) |
853 | { |
854 | std::sort(groupSq, groupSq + d->groupLen[next]); |
855 | uint64_t n = 0; |
856 | |
857 | // Map down a square if "comes later" than a square in the previous |
858 | // groups (similar to what done earlier for leading group pieces). |
859 | for (int i = 0; i < d->groupLen[next]; ++i) |
860 | { |
861 | auto f = [&](Square s) { return groupSq[i] > s; }; |
862 | auto adjust = std::count_if(squares, groupSq, f); |
863 | n += Binomial[i + 1][groupSq[i] - adjust - 8 * remainingPawns]; |
864 | } |
865 | |
866 | remainingPawns = false; |
867 | idx += n * d->groupIdx[next]; |
868 | groupSq += d->groupLen[next]; |
869 | } |
870 | |
871 | // Now that we have the index, decompress the pair and get the score |
872 | return map_score(entry, tbFile, decompress_pairs(d, idx), wdl); |
873 | } |
874 | |
875 | // Group together pieces that will be encoded together. The general rule is that |
876 | // a group contains pieces of same type and color. The exception is the leading |
877 | // group that, in case of positions withouth pawns, can be formed by 3 different |
878 | // pieces (default) or by the king pair when there is not a unique piece apart |
879 | // from the kings. When there are pawns, pawns are always first in pieces[]. |
880 | // |
881 | // As example KRKN -> KRK + N, KNNK -> KK + NN, KPPKP -> P + PP + K + K |
882 | // |
883 | // The actual grouping depends on the TB generator and can be inferred from the |
884 | // sequence of pieces in piece[] array. |
885 | template<typename T> |
886 | void set_groups(T& e, PairsData* d, int order[], File f) { |
887 | |
888 | int n = 0, firstLen = e.hasPawns ? 0 : e.hasUniquePieces ? 3 : 2; |
889 | d->groupLen[n] = 1; |
890 | |
891 | // Number of pieces per group is stored in groupLen[], for instance in KRKN |
892 | // the encoder will default on '111', so groupLen[] will be (3, 1). |
893 | for (int i = 1; i < e.pieceCount; ++i) |
894 | if (--firstLen > 0 || d->pieces[i] == d->pieces[i - 1]) |
895 | d->groupLen[n]++; |
896 | else |
897 | d->groupLen[++n] = 1; |
898 | |
899 | d->groupLen[++n] = 0; // Zero-terminated |
900 | |
901 | // The sequence in pieces[] defines the groups, but not the order in which |
902 | // they are encoded. If the pieces in a group g can be combined on the board |
903 | // in N(g) different ways, then the position encoding will be of the form: |
904 | // |
905 | // g1 * N(g2) * N(g3) + g2 * N(g3) + g3 |
906 | // |
907 | // This ensures unique encoding for the whole position. The order of the |
908 | // groups is a per-table parameter and could not follow the canonical leading |
909 | // pawns/pieces -> remainig pawns -> remaining pieces. In particular the |
910 | // first group is at order[0] position and the remaining pawns, when present, |
911 | // are at order[1] position. |
912 | bool pp = e.hasPawns && e.pawnCount[1]; // Pawns on both sides |
913 | int next = pp ? 2 : 1; |
914 | int freeSquares = 64 - d->groupLen[0] - (pp ? d->groupLen[1] : 0); |
915 | uint64_t idx = 1; |
916 | |
917 | for (int k = 0; next < n || k == order[0] || k == order[1]; ++k) |
918 | if (k == order[0]) // Leading pawns or pieces |
919 | { |
920 | d->groupIdx[0] = idx; |
921 | idx *= e.hasPawns ? LeadPawnsSize[d->groupLen[0]][f] |
922 | : e.hasUniquePieces ? 31332 : 462; |
923 | } |
924 | else if (k == order[1]) // Remaining pawns |
925 | { |
926 | d->groupIdx[1] = idx; |
927 | idx *= Binomial[d->groupLen[1]][48 - d->groupLen[0]]; |
928 | } |
929 | else // Remainig pieces |
930 | { |
931 | d->groupIdx[next] = idx; |
932 | idx *= Binomial[d->groupLen[next]][freeSquares]; |
933 | freeSquares -= d->groupLen[next++]; |
934 | } |
935 | |
936 | d->groupIdx[n] = idx; |
937 | } |
938 | |
939 | // In Recursive Pairing each symbol represents a pair of childern symbols. So |
940 | // read d->btree[] symbols data and expand each one in his left and right child |
941 | // symbol until reaching the leafs that represent the symbol value. |
942 | uint8_t set_symlen(PairsData* d, Sym s, std::vector<bool>& visited) { |
943 | |
944 | visited[s] = true; // We can set it now because tree is acyclic |
945 | Sym sr = d->btree[s].get<LR::Right>(); |
946 | |
947 | if (sr == 0xFFF) |
948 | return 0; |
949 | |
950 | Sym sl = d->btree[s].get<LR::Left>(); |
951 | |
952 | if (!visited[sl]) |
953 | d->symlen[sl] = set_symlen(d, sl, visited); |
954 | |
955 | if (!visited[sr]) |
956 | d->symlen[sr] = set_symlen(d, sr, visited); |
957 | |
958 | return d->symlen[sl] + d->symlen[sr] + 1; |
959 | } |
960 | |
961 | uint8_t* set_sizes(PairsData* d, uint8_t* data) { |
962 | |
963 | d->flags = *data++; |
964 | |
965 | if (d->flags & TBFlag::SingleValue) { |
966 | d->blocksNum = d->blockLengthSize = 0; |
967 | d->span = d->sparseIndexSize = 0; // Broken MSVC zero-init |
968 | d->minSymLen = *data++; // Here we store the single value |
969 | return data; |
970 | } |
971 | |
972 | // groupLen[] is a zero-terminated list of group lengths, the last groupIdx[] |
973 | // element stores the biggest index that is the tb size. |
974 | uint64_t tbSize = d->groupIdx[std::find(d->groupLen, d->groupLen + 7, 0) - d->groupLen]; |
975 | |
976 | d->sizeofBlock = 1ULL << *data++; |
977 | d->span = 1ULL << *data++; |
978 | d->sparseIndexSize = (tbSize + d->span - 1) / d->span; // Round up |
979 | auto padding = number<uint8_t, LittleEndian>(data++); |
980 | d->blocksNum = number<uint32_t, LittleEndian>(data); data += sizeof(uint32_t); |
981 | d->blockLengthSize = d->blocksNum + padding; // Padded to ensure SparseIndex[] |
982 | // does not point out of range. |
983 | d->maxSymLen = *data++; |
984 | d->minSymLen = *data++; |
985 | d->lowestSym = (Sym*)data; |
986 | d->base64.resize(d->maxSymLen - d->minSymLen + 1); |
987 | |
988 | // The canonical code is ordered such that longer symbols (in terms of |
989 | // the number of bits of their Huffman code) have lower numeric value, |
990 | // so that d->lowestSym[i] >= d->lowestSym[i+1] (when read as LittleEndian). |
991 | // Starting from this we compute a base64[] table indexed by symbol length |
992 | // and containing 64 bit values so that d->base64[i] >= d->base64[i+1]. |
993 | // See http://www.eecs.harvard.edu/~michaelm/E210/huffman.pdf |
994 | for (int i = d->base64.size() - 2; i >= 0; --i) { |
995 | d->base64[i] = (d->base64[i + 1] + number<Sym, LittleEndian>(&d->lowestSym[i]) |
996 | - number<Sym, LittleEndian>(&d->lowestSym[i + 1])) / 2; |
997 | |
998 | assert(d->base64[i] * 2 >= d->base64[i+1]); |
999 | } |
1000 | |
1001 | // Now left-shift by an amount so that d->base64[i] gets shifted 1 bit more |
1002 | // than d->base64[i+1] and given the above assert condition, we ensure that |
1003 | // d->base64[i] >= d->base64[i+1]. Moreover for any symbol s64 of length i |
1004 | // and right-padded to 64 bits holds d->base64[i-1] >= s64 >= d->base64[i]. |
1005 | for (size_t i = 0; i < d->base64.size(); ++i) |
1006 | d->base64[i] <<= 64 - i - d->minSymLen; // Right-padding to 64 bits |
1007 | |
1008 | data += d->base64.size() * sizeof(Sym); |
1009 | d->symlen.resize(number<uint16_t, LittleEndian>(data)); data += sizeof(uint16_t); |
1010 | d->btree = (LR*)data; |
1011 | |
1012 | // The compression scheme used is "Recursive Pairing", that replaces the most |
1013 | // frequent adjacent pair of symbols in the source message by a new symbol, |
1014 | // reevaluating the frequencies of all of the symbol pairs with respect to |
1015 | // the extended alphabet, and then repeating the process. |
1016 | // See http://www.larsson.dogma.net/dcc99.pdf |
1017 | std::vector<bool> visited(d->symlen.size()); |
1018 | |
1019 | for (Sym sym = 0; sym < d->symlen.size(); ++sym) |
1020 | if (!visited[sym]) |
1021 | d->symlen[sym] = set_symlen(d, sym, visited); |
1022 | |
1023 | return data + d->symlen.size() * sizeof(LR) + (d->symlen.size() & 1); |
1024 | } |
1025 | |
1026 | uint8_t* set_dtz_map(TBTable<WDL>&, uint8_t* data, File) { return data; } |
1027 | |
1028 | uint8_t* set_dtz_map(TBTable<DTZ>& e, uint8_t* data, File maxFile) { |
1029 | |
1030 | e.map = data; |
1031 | |
1032 | for (File f = FILE_A; f <= maxFile; ++f) { |
1033 | auto flags = e.get(0, f)->flags; |
1034 | if (flags & TBFlag::Mapped) { |
1035 | if (flags & TBFlag::Wide) { |
1036 | data += (uintptr_t)data & 1; // Word alignment, we may have a mixed table |
1037 | for (int i = 0; i < 4; ++i) { // Sequence like 3,x,x,x,1,x,0,2,x,x |
1038 | e.get(0, f)->map_idx[i] = (uint16_t)((uint16_t *)data - (uint16_t *)e.map + 1); |
1039 | data += 2 * number<uint16_t, LittleEndian>(data) + 2; |
1040 | } |
1041 | } |
1042 | else { |
1043 | for (int i = 0; i < 4; ++i) { |
1044 | e.get(0, f)->map_idx[i] = (uint16_t)(data - e.map + 1); |
1045 | data += *data + 1; |
1046 | } |
1047 | } |
1048 | } |
1049 | } |
1050 | |
1051 | return data += (uintptr_t)data & 1; // Word alignment |
1052 | } |
1053 | |
1054 | // Populate entry's PairsData records with data from the just memory mapped file. |
1055 | // Called at first access. |
1056 | template<typename T> |
1057 | void set(T& e, uint8_t* data) { |
1058 | |
1059 | PairsData* d; |
1060 | |
1061 | enum { Split = 1, HasPawns = 2 }; |
1062 | |
1063 | assert(e.hasPawns == !!(*data & HasPawns)); |
1064 | assert((e.key != e.key2) == !!(*data & Split)); |
1065 | |
1066 | data++; // First byte stores flags |
1067 | |
1068 | const int sides = T::Sides == 2 && (e.key != e.key2) ? 2 : 1; |
1069 | const File maxFile = e.hasPawns ? FILE_D : FILE_A; |
1070 | |
1071 | bool pp = e.hasPawns && e.pawnCount[1]; // Pawns on both sides |
1072 | |
1073 | assert(!pp || e.pawnCount[0]); |
1074 | |
1075 | for (File f = FILE_A; f <= maxFile; ++f) { |
1076 | |
1077 | for (int i = 0; i < sides; i++) |
1078 | *e.get(i, f) = PairsData(); |
1079 | |
1080 | int order[][2] = { { *data & 0xF, pp ? *(data + 1) & 0xF : 0xF }, |
1081 | { *data >> 4, pp ? *(data + 1) >> 4 : 0xF } }; |
1082 | data += 1 + pp; |
1083 | |
1084 | for (int k = 0; k < e.pieceCount; ++k, ++data) |
1085 | for (int i = 0; i < sides; i++) |
1086 | e.get(i, f)->pieces[k] = Piece(i ? *data >> 4 : *data & 0xF); |
1087 | |
1088 | for (int i = 0; i < sides; ++i) |
1089 | set_groups(e, e.get(i, f), order[i], f); |
1090 | } |
1091 | |
1092 | data += (uintptr_t)data & 1; // Word alignment |
1093 | |
1094 | for (File f = FILE_A; f <= maxFile; ++f) |
1095 | for (int i = 0; i < sides; i++) |
1096 | data = set_sizes(e.get(i, f), data); |
1097 | |
1098 | data = set_dtz_map(e, data, maxFile); |
1099 | |
1100 | for (File f = FILE_A; f <= maxFile; ++f) |
1101 | for (int i = 0; i < sides; i++) { |
1102 | (d = e.get(i, f))->sparseIndex = (SparseEntry*)data; |
1103 | data += d->sparseIndexSize * sizeof(SparseEntry); |
1104 | } |
1105 | |
1106 | for (File f = FILE_A; f <= maxFile; ++f) |
1107 | for (int i = 0; i < sides; i++) { |
1108 | (d = e.get(i, f))->blockLength = (uint16_t*)data; |
1109 | data += d->blockLengthSize * sizeof(uint16_t); |
1110 | } |
1111 | |
1112 | for (File f = FILE_A; f <= maxFile; ++f) |
1113 | for (int i = 0; i < sides; i++) { |
1114 | data = (uint8_t*)(((uintptr_t)data + 0x3F) & ~0x3F); // 64 byte alignment |
1115 | (d = e.get(i, f))->data = data; |
1116 | data += d->blocksNum * d->sizeofBlock; |
1117 | } |
1118 | } |
1119 | |
1120 | // If the TB file corresponding to the given position is already memory mapped |
1121 | // then return its base address, otherwise try to memory map and init it. Called |
1122 | // at every probe, memory map and init only at first access. Function is thread |
1123 | // safe and can be called concurrently. |
1124 | template<TBType Type> |
1125 | void* mapped(TBTable<Type>& e, const Position& pos) { |
1126 | |
1127 | static Mutex mutex; |
1128 | |
1129 | // Use 'acquire' to avoid a thread reading 'ready' == true while |
1130 | // another is still working. (compiler reordering may cause this). |
1131 | if (e.ready.load(std::memory_order_acquire)) |
1132 | return e.baseAddress; // Could be nullptr if file does not exist |
1133 | |
1134 | std::unique_lock<Mutex> lk(mutex); |
1135 | |
1136 | if (e.ready.load(std::memory_order_relaxed)) // Recheck under lock |
1137 | return e.baseAddress; |
1138 | |
1139 | // Pieces strings in decreasing order for each color, like ("KPP","KR") |
1140 | std::string fname, w, b; |
1141 | for (PieceType pt = KING; pt >= PAWN; --pt) { |
1142 | w += std::string(popcount(pos.pieces(WHITE, pt)), PieceToChar[pt]); |
1143 | b += std::string(popcount(pos.pieces(BLACK, pt)), PieceToChar[pt]); |
1144 | } |
1145 | |
1146 | fname = (e.key == pos.material_key() ? w + 'v' + b : b + 'v' + w) |
1147 | + (Type == WDL ? ".rtbw" : ".rtbz" ); |
1148 | |
1149 | uint8_t* data = TBFile(fname).map(&e.baseAddress, &e.mapping, Type); |
1150 | |
1151 | if (data) |
1152 | set(e, data); |
1153 | |
1154 | e.ready.store(true, std::memory_order_release); |
1155 | return e.baseAddress; |
1156 | } |
1157 | |
1158 | template<TBType Type, typename Ret = typename TBTable<Type>::Ret> |
1159 | Ret probe_table(const Position& pos, ProbeState* result, WDLScore wdl = WDLDraw) { |
1160 | |
1161 | if (pos.count<ALL_PIECES>() == 2) // KvK |
1162 | return Ret(WDLDraw); |
1163 | |
1164 | TBTable<Type>* entry = TBTables.get<Type>(pos.material_key()); |
1165 | |
1166 | if (!entry || !mapped(*entry, pos)) |
1167 | return *result = FAIL, Ret(); |
1168 | |
1169 | return do_probe_table(pos, entry, wdl, result); |
1170 | } |
1171 | |
1172 | // For a position where the side to move has a winning capture it is not necessary |
1173 | // to store a winning value so the generator treats such positions as "don't cares" |
1174 | // and tries to assign to it a value that improves the compression ratio. Similarly, |
1175 | // if the side to move has a drawing capture, then the position is at least drawn. |
1176 | // If the position is won, then the TB needs to store a win value. But if the |
1177 | // position is drawn, the TB may store a loss value if that is better for compression. |
1178 | // All of this means that during probing, the engine must look at captures and probe |
1179 | // their results and must probe the position itself. The "best" result of these |
1180 | // probes is the correct result for the position. |
1181 | // DTZ tables do not store values when a following move is a zeroing winning move |
1182 | // (winning capture or winning pawn move). Also DTZ store wrong values for positions |
1183 | // where the best move is an ep-move (even if losing). So in all these cases set |
1184 | // the state to ZEROING_BEST_MOVE. |
1185 | template<bool CheckZeroingMoves> |
1186 | WDLScore search(Position& pos, ProbeState* result) { |
1187 | |
1188 | WDLScore value, bestValue = WDLLoss; |
1189 | StateInfo st; |
1190 | |
1191 | auto moveList = MoveList<LEGAL>(pos); |
1192 | size_t totalCount = moveList.size(), moveCount = 0; |
1193 | |
1194 | for (const Move& move : moveList) |
1195 | { |
1196 | if ( !pos.capture(move) |
1197 | && (!CheckZeroingMoves || type_of(pos.moved_piece(move)) != PAWN)) |
1198 | continue; |
1199 | |
1200 | moveCount++; |
1201 | |
1202 | pos.do_move(move, st); |
1203 | value = -search<false>(pos, result); |
1204 | pos.undo_move(move); |
1205 | |
1206 | if (*result == FAIL) |
1207 | return WDLDraw; |
1208 | |
1209 | if (value > bestValue) |
1210 | { |
1211 | bestValue = value; |
1212 | |
1213 | if (value >= WDLWin) |
1214 | { |
1215 | *result = ZEROING_BEST_MOVE; // Winning DTZ-zeroing move |
1216 | return value; |
1217 | } |
1218 | } |
1219 | } |
1220 | |
1221 | // In case we have already searched all the legal moves we don't have to probe |
1222 | // the TB because the stored score could be wrong. For instance TB tables |
1223 | // do not contain information on position with ep rights, so in this case |
1224 | // the result of probe_wdl_table is wrong. Also in case of only capture |
1225 | // moves, for instance here 4K3/4q3/6p1/2k5/6p1/8/8/8 w - - 0 7, we have to |
1226 | // return with ZEROING_BEST_MOVE set. |
1227 | bool noMoreMoves = (moveCount && moveCount == totalCount); |
1228 | |
1229 | if (noMoreMoves) |
1230 | value = bestValue; |
1231 | else |
1232 | { |
1233 | value = probe_table<WDL>(pos, result); |
1234 | |
1235 | if (*result == FAIL) |
1236 | return WDLDraw; |
1237 | } |
1238 | |
1239 | // DTZ stores a "don't care" value if bestValue is a win |
1240 | if (bestValue >= value) |
1241 | return *result = ( bestValue > WDLDraw |
1242 | || noMoreMoves ? ZEROING_BEST_MOVE : OK), bestValue; |
1243 | |
1244 | return *result = OK, value; |
1245 | } |
1246 | |
1247 | } // namespace |
1248 | |
1249 | |
1250 | /// Tablebases::init() is called at startup and after every change to |
1251 | /// "SyzygyPath" UCI option to (re)create the various tables. It is not thread |
1252 | /// safe, nor it needs to be. |
1253 | void Tablebases::init(const std::string& paths) { |
1254 | |
1255 | TBTables.clear(); |
1256 | MaxCardinality = 0; |
1257 | TBFile::Paths = paths; |
1258 | |
1259 | if (paths.empty() || paths == "<empty>" ) |
1260 | return; |
1261 | |
1262 | // MapB1H1H7[] encodes a square below a1-h8 diagonal to 0..27 |
1263 | int code = 0; |
1264 | for (Square s = SQ_A1; s <= SQ_H8; ++s) |
1265 | if (off_A1H8(s) < 0) |
1266 | MapB1H1H7[s] = code++; |
1267 | |
1268 | // MapA1D1D4[] encodes a square in the a1-d1-d4 triangle to 0..9 |
1269 | std::vector<Square> diagonal; |
1270 | code = 0; |
1271 | for (Square s = SQ_A1; s <= SQ_D4; ++s) |
1272 | if (off_A1H8(s) < 0 && file_of(s) <= FILE_D) |
1273 | MapA1D1D4[s] = code++; |
1274 | |
1275 | else if (!off_A1H8(s) && file_of(s) <= FILE_D) |
1276 | diagonal.push_back(s); |
1277 | |
1278 | // Diagonal squares are encoded as last ones |
1279 | for (auto s : diagonal) |
1280 | MapA1D1D4[s] = code++; |
1281 | |
1282 | // MapKK[] encodes all the 461 possible legal positions of two kings where |
1283 | // the first is in the a1-d1-d4 triangle. If the first king is on the a1-d4 |
1284 | // diagonal, the other one shall not to be above the a1-h8 diagonal. |
1285 | std::vector<std::pair<int, Square>> bothOnDiagonal; |
1286 | code = 0; |
1287 | for (int idx = 0; idx < 10; idx++) |
1288 | for (Square s1 = SQ_A1; s1 <= SQ_D4; ++s1) |
1289 | if (MapA1D1D4[s1] == idx && (idx || s1 == SQ_B1)) // SQ_B1 is mapped to 0 |
1290 | { |
1291 | for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) |
1292 | if ((PseudoAttacks[KING][s1] | s1) & s2) |
1293 | continue; // Illegal position |
1294 | |
1295 | else if (!off_A1H8(s1) && off_A1H8(s2) > 0) |
1296 | continue; // First on diagonal, second above |
1297 | |
1298 | else if (!off_A1H8(s1) && !off_A1H8(s2)) |
1299 | bothOnDiagonal.emplace_back(idx, s2); |
1300 | |
1301 | else |
1302 | MapKK[idx][s2] = code++; |
1303 | } |
1304 | |
1305 | // Legal positions with both kings on diagonal are encoded as last ones |
1306 | for (auto p : bothOnDiagonal) |
1307 | MapKK[p.first][p.second] = code++; |
1308 | |
1309 | // Binomial[] stores the Binomial Coefficents using Pascal rule. There |
1310 | // are Binomial[k][n] ways to choose k elements from a set of n elements. |
1311 | Binomial[0][0] = 1; |
1312 | |
1313 | for (int n = 1; n < 64; n++) // Squares |
1314 | for (int k = 0; k < 6 && k <= n; ++k) // Pieces |
1315 | Binomial[k][n] = (k > 0 ? Binomial[k - 1][n - 1] : 0) |
1316 | + (k < n ? Binomial[k ][n - 1] : 0); |
1317 | |
1318 | // MapPawns[s] encodes squares a2-h7 to 0..47. This is the number of possible |
1319 | // available squares when the leading one is in 's'. Moreover the pawn with |
1320 | // highest MapPawns[] is the leading pawn, the one nearest the edge and, |
1321 | // among pawns with same file, the one with lowest rank. |
1322 | int availableSquares = 47; // Available squares when lead pawn is in a2 |
1323 | |
1324 | // Init the tables for the encoding of leading pawns group: with 7-men TB we |
1325 | // can have up to 5 leading pawns (KPPPPPK). |
1326 | for (int leadPawnsCnt = 1; leadPawnsCnt <= 5; ++leadPawnsCnt) |
1327 | for (File f = FILE_A; f <= FILE_D; ++f) |
1328 | { |
1329 | // Restart the index at every file because TB table is splitted |
1330 | // by file, so we can reuse the same index for different files. |
1331 | int idx = 0; |
1332 | |
1333 | // Sum all possible combinations for a given file, starting with |
1334 | // the leading pawn on rank 2 and increasing the rank. |
1335 | for (Rank r = RANK_2; r <= RANK_7; ++r) |
1336 | { |
1337 | Square sq = make_square(f, r); |
1338 | |
1339 | // Compute MapPawns[] at first pass. |
1340 | // If sq is the leading pawn square, any other pawn cannot be |
1341 | // below or more toward the edge of sq. There are 47 available |
1342 | // squares when sq = a2 and reduced by 2 for any rank increase |
1343 | // due to mirroring: sq == a3 -> no a2, h2, so MapPawns[a3] = 45 |
1344 | if (leadPawnsCnt == 1) |
1345 | { |
1346 | MapPawns[sq] = availableSquares--; |
1347 | MapPawns[sq ^ 7] = availableSquares--; // Horizontal flip |
1348 | } |
1349 | LeadPawnIdx[leadPawnsCnt][sq] = idx; |
1350 | idx += Binomial[leadPawnsCnt - 1][MapPawns[sq]]; |
1351 | } |
1352 | // After a file is traversed, store the cumulated per-file index |
1353 | LeadPawnsSize[leadPawnsCnt][f] = idx; |
1354 | } |
1355 | |
1356 | // Add entries in TB tables if the corresponding ".rtbw" file exsists |
1357 | for (PieceType p1 = PAWN; p1 < KING; ++p1) { |
1358 | TBTables.add({KING, p1, KING}); |
1359 | |
1360 | for (PieceType p2 = PAWN; p2 <= p1; ++p2) { |
1361 | TBTables.add({KING, p1, p2, KING}); |
1362 | TBTables.add({KING, p1, KING, p2}); |
1363 | |
1364 | for (PieceType p3 = PAWN; p3 < KING; ++p3) |
1365 | TBTables.add({KING, p1, p2, KING, p3}); |
1366 | |
1367 | for (PieceType p3 = PAWN; p3 <= p2; ++p3) { |
1368 | TBTables.add({KING, p1, p2, p3, KING}); |
1369 | |
1370 | for (PieceType p4 = PAWN; p4 <= p3; ++p4) { |
1371 | TBTables.add({KING, p1, p2, p3, p4, KING}); |
1372 | |
1373 | for (PieceType p5 = PAWN; p5 <= p4; ++p5) |
1374 | TBTables.add({KING, p1, p2, p3, p4, p5, KING}); |
1375 | |
1376 | for (PieceType p5 = PAWN; p5 < KING; ++p5) |
1377 | TBTables.add({KING, p1, p2, p3, p4, KING, p5}); |
1378 | } |
1379 | |
1380 | for (PieceType p4 = PAWN; p4 < KING; ++p4) { |
1381 | TBTables.add({KING, p1, p2, p3, KING, p4}); |
1382 | |
1383 | for (PieceType p5 = PAWN; p5 <= p4; ++p5) |
1384 | TBTables.add({KING, p1, p2, p3, KING, p4, p5}); |
1385 | } |
1386 | } |
1387 | |
1388 | for (PieceType p3 = PAWN; p3 <= p1; ++p3) |
1389 | for (PieceType p4 = PAWN; p4 <= (p1 == p3 ? p2 : p3); ++p4) |
1390 | TBTables.add({KING, p1, p2, KING, p3, p4}); |
1391 | } |
1392 | } |
1393 | |
1394 | sync_cout << "info string Found " << TBTables.size() << " tablebases" << sync_endl; |
1395 | } |
1396 | |
1397 | // Probe the WDL table for a particular position. |
1398 | // If *result != FAIL, the probe was successful. |
1399 | // The return value is from the point of view of the side to move: |
1400 | // -2 : loss |
1401 | // -1 : loss, but draw under 50-move rule |
1402 | // 0 : draw |
1403 | // 1 : win, but draw under 50-move rule |
1404 | // 2 : win |
1405 | WDLScore Tablebases::probe_wdl(Position& pos, ProbeState* result) { |
1406 | |
1407 | *result = OK; |
1408 | return search<false>(pos, result); |
1409 | } |
1410 | |
1411 | // Probe the DTZ table for a particular position. |
1412 | // If *result != FAIL, the probe was successful. |
1413 | // The return value is from the point of view of the side to move: |
1414 | // n < -100 : loss, but draw under 50-move rule |
1415 | // -100 <= n < -1 : loss in n ply (assuming 50-move counter == 0) |
1416 | // -1 : loss, the side to move is mated |
1417 | // 0 : draw |
1418 | // 1 < n <= 100 : win in n ply (assuming 50-move counter == 0) |
1419 | // 100 < n : win, but draw under 50-move rule |
1420 | // |
1421 | // The return value n can be off by 1: a return value -n can mean a loss |
1422 | // in n+1 ply and a return value +n can mean a win in n+1 ply. This |
1423 | // cannot happen for tables with positions exactly on the "edge" of |
1424 | // the 50-move rule. |
1425 | // |
1426 | // This implies that if dtz > 0 is returned, the position is certainly |
1427 | // a win if dtz + 50-move-counter <= 99. Care must be taken that the engine |
1428 | // picks moves that preserve dtz + 50-move-counter <= 99. |
1429 | // |
1430 | // If n = 100 immediately after a capture or pawn move, then the position |
1431 | // is also certainly a win, and during the whole phase until the next |
1432 | // capture or pawn move, the inequality to be preserved is |
1433 | // dtz + 50-movecounter <= 100. |
1434 | // |
1435 | // In short, if a move is available resulting in dtz + 50-move-counter <= 99, |
1436 | // then do not accept moves leading to dtz + 50-move-counter == 100. |
1437 | int Tablebases::probe_dtz(Position& pos, ProbeState* result) { |
1438 | |
1439 | *result = OK; |
1440 | WDLScore wdl = search<true>(pos, result); |
1441 | |
1442 | if (*result == FAIL || wdl == WDLDraw) // DTZ tables don't store draws |
1443 | return 0; |
1444 | |
1445 | // DTZ stores a 'don't care' value in this case, or even a plain wrong |
1446 | // one as in case the best move is a losing ep, so it cannot be probed. |
1447 | if (*result == ZEROING_BEST_MOVE) |
1448 | return dtz_before_zeroing(wdl); |
1449 | |
1450 | int dtz = probe_table<DTZ>(pos, result, wdl); |
1451 | |
1452 | if (*result == FAIL) |
1453 | return 0; |
1454 | |
1455 | if (*result != CHANGE_STM) |
1456 | return (dtz + 100 * (wdl == WDLBlessedLoss || wdl == WDLCursedWin)) * sign_of(wdl); |
1457 | |
1458 | // DTZ stores results for the other side, so we need to do a 1-ply search and |
1459 | // find the winning move that minimizes DTZ. |
1460 | StateInfo st; |
1461 | int minDTZ = 0xFFFF; |
1462 | |
1463 | for (const Move& move : MoveList<LEGAL>(pos)) |
1464 | { |
1465 | bool zeroing = pos.capture(move) || type_of(pos.moved_piece(move)) == PAWN; |
1466 | |
1467 | pos.do_move(move, st); |
1468 | |
1469 | // For zeroing moves we want the dtz of the move _before_ doing it, |
1470 | // otherwise we will get the dtz of the next move sequence. Search the |
1471 | // position after the move to get the score sign (because even in a |
1472 | // winning position we could make a losing capture or going for a draw). |
1473 | dtz = zeroing ? -dtz_before_zeroing(search<false>(pos, result)) |
1474 | : -probe_dtz(pos, result); |
1475 | |
1476 | // If the move mates, force minDTZ to 1 |
1477 | if (dtz == 1 && pos.checkers() && MoveList<LEGAL>(pos).size() == 0) |
1478 | minDTZ = 1; |
1479 | |
1480 | // Convert result from 1-ply search. Zeroing moves are already accounted |
1481 | // by dtz_before_zeroing() that returns the DTZ of the previous move. |
1482 | if (!zeroing) |
1483 | dtz += sign_of(dtz); |
1484 | |
1485 | // Skip the draws and if we are winning only pick positive dtz |
1486 | if (dtz < minDTZ && sign_of(dtz) == sign_of(wdl)) |
1487 | minDTZ = dtz; |
1488 | |
1489 | pos.undo_move(move); |
1490 | |
1491 | if (*result == FAIL) |
1492 | return 0; |
1493 | } |
1494 | |
1495 | // When there are no legal moves, the position is mate: we return -1 |
1496 | return minDTZ == 0xFFFF ? -1 : minDTZ; |
1497 | } |
1498 | |
1499 | |
1500 | // Use the DTZ tables to rank root moves. |
1501 | // |
1502 | // A return value false indicates that not all probes were successful. |
1503 | bool Tablebases::root_probe(Position& pos, Search::RootMoves& rootMoves) { |
1504 | |
1505 | ProbeState result; |
1506 | StateInfo st; |
1507 | |
1508 | // Obtain 50-move counter for the root position |
1509 | int cnt50 = pos.rule50_count(); |
1510 | |
1511 | // Check whether a position was repeated since the last zeroing move. |
1512 | bool rep = pos.has_repeated(); |
1513 | |
1514 | int dtz, bound = Options["Syzygy50MoveRule" ] ? 900 : 1; |
1515 | |
1516 | // Probe and rank each move |
1517 | for (auto& m : rootMoves) |
1518 | { |
1519 | pos.do_move(m.pv[0], st); |
1520 | |
1521 | // Calculate dtz for the current move counting from the root position |
1522 | if (pos.rule50_count() == 0) |
1523 | { |
1524 | // In case of a zeroing move, dtz is one of -101/-1/0/1/101 |
1525 | WDLScore wdl = -probe_wdl(pos, &result); |
1526 | dtz = dtz_before_zeroing(wdl); |
1527 | } |
1528 | else |
1529 | { |
1530 | // Otherwise, take dtz for the new position and correct by 1 ply |
1531 | dtz = -probe_dtz(pos, &result); |
1532 | dtz = dtz > 0 ? dtz + 1 |
1533 | : dtz < 0 ? dtz - 1 : dtz; |
1534 | } |
1535 | |
1536 | // Make sure that a mating move is assigned a dtz value of 1 |
1537 | if ( pos.checkers() |
1538 | && dtz == 2 |
1539 | && MoveList<LEGAL>(pos).size() == 0) |
1540 | dtz = 1; |
1541 | |
1542 | pos.undo_move(m.pv[0]); |
1543 | |
1544 | if (result == FAIL) |
1545 | return false; |
1546 | |
1547 | // Better moves are ranked higher. Certain wins are ranked equally. |
1548 | // Losing moves are ranked equally unless a 50-move draw is in sight. |
1549 | int r = dtz > 0 ? (dtz + cnt50 <= 99 && !rep ? 1000 : 1000 - (dtz + cnt50)) |
1550 | : dtz < 0 ? (-dtz * 2 + cnt50 < 100 ? -1000 : -1000 + (-dtz + cnt50)) |
1551 | : 0; |
1552 | m.tbRank = r; |
1553 | |
1554 | // Determine the score to be displayed for this move. Assign at least |
1555 | // 1 cp to cursed wins and let it grow to 49 cp as the positions gets |
1556 | // closer to a real win. |
1557 | m.tbScore = r >= bound ? VALUE_MATE - MAX_PLY - 1 |
1558 | : r > 0 ? Value((std::max( 3, r - 800) * int(PawnValueEg)) / 200) |
1559 | : r == 0 ? VALUE_DRAW |
1560 | : r > -bound ? Value((std::min(-3, r + 800) * int(PawnValueEg)) / 200) |
1561 | : -VALUE_MATE + MAX_PLY + 1; |
1562 | } |
1563 | |
1564 | return true; |
1565 | } |
1566 | |
1567 | |
1568 | // Use the WDL tables to rank root moves. |
1569 | // This is a fallback for the case that some or all DTZ tables are missing. |
1570 | // |
1571 | // A return value false indicates that not all probes were successful. |
1572 | bool Tablebases::root_probe_wdl(Position& pos, Search::RootMoves& rootMoves) { |
1573 | |
1574 | static const int WDL_to_rank[] = { -1000, -899, 0, 899, 1000 }; |
1575 | |
1576 | ProbeState result; |
1577 | StateInfo st; |
1578 | |
1579 | bool rule50 = Options["Syzygy50MoveRule" ]; |
1580 | |
1581 | // Probe and rank each move |
1582 | for (auto& m : rootMoves) |
1583 | { |
1584 | pos.do_move(m.pv[0], st); |
1585 | |
1586 | WDLScore wdl = -probe_wdl(pos, &result); |
1587 | |
1588 | pos.undo_move(m.pv[0]); |
1589 | |
1590 | if (result == FAIL) |
1591 | return false; |
1592 | |
1593 | m.tbRank = WDL_to_rank[wdl + 2]; |
1594 | |
1595 | if (!rule50) |
1596 | wdl = wdl > WDLDraw ? WDLWin |
1597 | : wdl < WDLDraw ? WDLLoss : WDLDraw; |
1598 | m.tbScore = WDL_to_value[wdl + 2]; |
1599 | } |
1600 | |
1601 | return true; |
1602 | } |
1603 | |