1 | /* |
2 | Stockfish, a UCI chess playing engine derived from Glaurung 2.1 |
3 | Copyright (C) 2004-2008 Tord Romstad (Glaurung author) |
4 | Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad |
5 | Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad |
6 | |
7 | Stockfish is free software: you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by |
9 | the Free Software Foundation, either version 3 of the License, or |
10 | (at your option) any later version. |
11 | |
12 | Stockfish is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
15 | GNU General Public License for more details. |
16 | |
17 | You should have received a copy of the GNU General Public License |
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
19 | */ |
20 | |
21 | #include <cstring> // For std::memset |
22 | #include <iostream> |
23 | #include <thread> |
24 | |
25 | #include "bitboard.h" |
26 | #include "misc.h" |
27 | #include "thread.h" |
28 | #include "tt.h" |
29 | #include "uci.h" |
30 | |
31 | TranspositionTable TT; // Our global transposition table |
32 | |
33 | /// TTEntry::save populates the TTEntry with a new node's data, possibly |
34 | /// overwriting an old position. Update is not atomic and can be racy. |
35 | |
36 | void TTEntry::save(Key k, Value v, bool pv, Bound b, Depth d, Move m, Value ev) { |
37 | |
38 | assert(d / ONE_PLY * ONE_PLY == d); |
39 | |
40 | // Preserve any existing move for the same position |
41 | if (m || (k >> 48) != key16) |
42 | move16 = (uint16_t)m; |
43 | |
44 | // Overwrite less valuable entries |
45 | if ( (k >> 48) != key16 |
46 | ||(d - DEPTH_OFFSET) / ONE_PLY > depth8 - 4 |
47 | || b == BOUND_EXACT) |
48 | { |
49 | assert((d - DEPTH_OFFSET) / ONE_PLY >= 0); |
50 | |
51 | key16 = (uint16_t)(k >> 48); |
52 | value16 = (int16_t)v; |
53 | eval16 = (int16_t)ev; |
54 | genBound8 = (uint8_t)(TT.generation8 | uint8_t(pv) << 2 | b); |
55 | depth8 = (uint8_t)((d - DEPTH_OFFSET) / ONE_PLY); |
56 | } |
57 | } |
58 | |
59 | |
60 | /// TranspositionTable::resize() sets the size of the transposition table, |
61 | /// measured in megabytes. Transposition table consists of a power of 2 number |
62 | /// of clusters and each cluster consists of ClusterSize number of TTEntry. |
63 | |
64 | void TranspositionTable::resize(size_t mbSize) { |
65 | |
66 | Threads.main()->wait_for_search_finished(); |
67 | |
68 | clusterCount = mbSize * 1024 * 1024 / sizeof(Cluster); |
69 | |
70 | free(mem); |
71 | mem = malloc(clusterCount * sizeof(Cluster) + CacheLineSize - 1); |
72 | |
73 | if (!mem) |
74 | { |
75 | std::cerr << "Failed to allocate " << mbSize |
76 | << "MB for transposition table." << std::endl; |
77 | exit(EXIT_FAILURE); |
78 | } |
79 | |
80 | table = (Cluster*)((uintptr_t(mem) + CacheLineSize - 1) & ~(CacheLineSize - 1)); |
81 | clear(); |
82 | } |
83 | |
84 | |
85 | /// TranspositionTable::clear() initializes the entire transposition table to zero, |
86 | // in a multi-threaded way. |
87 | |
88 | void TranspositionTable::clear() { |
89 | |
90 | std::vector<std::thread> threads; |
91 | |
92 | for (size_t idx = 0; idx < Options["Threads" ]; ++idx) |
93 | { |
94 | threads.emplace_back([this, idx]() { |
95 | |
96 | // Thread binding gives faster search on systems with a first-touch policy |
97 | if (Options["Threads" ] > 8) |
98 | WinProcGroup::bindThisThread(idx); |
99 | |
100 | // Each thread will zero its part of the hash table |
101 | const size_t stride = clusterCount / Options["Threads" ], |
102 | start = stride * idx, |
103 | len = idx != Options["Threads" ] - 1 ? |
104 | stride : clusterCount - start; |
105 | |
106 | std::memset(&table[start], 0, len * sizeof(Cluster)); |
107 | }); |
108 | } |
109 | |
110 | for (std::thread& th: threads) |
111 | th.join(); |
112 | } |
113 | |
114 | /// TranspositionTable::probe() looks up the current position in the transposition |
115 | /// table. It returns true and a pointer to the TTEntry if the position is found. |
116 | /// Otherwise, it returns false and a pointer to an empty or least valuable TTEntry |
117 | /// to be replaced later. The replace value of an entry is calculated as its depth |
118 | /// minus 8 times its relative age. TTEntry t1 is considered more valuable than |
119 | /// TTEntry t2 if its replace value is greater than that of t2. |
120 | |
121 | TTEntry* TranspositionTable::probe(const Key key, bool& found) const { |
122 | |
123 | TTEntry* const tte = first_entry(key); |
124 | const uint16_t key16 = key >> 48; // Use the high 16 bits as key inside the cluster |
125 | |
126 | for (int i = 0; i < ClusterSize; ++i) |
127 | if (!tte[i].key16 || tte[i].key16 == key16) |
128 | { |
129 | tte[i].genBound8 = uint8_t(generation8 | (tte[i].genBound8 & 0x7)); // Refresh |
130 | |
131 | return found = (bool)tte[i].key16, &tte[i]; |
132 | } |
133 | |
134 | // Find an entry to be replaced according to the replacement strategy |
135 | TTEntry* replace = tte; |
136 | for (int i = 1; i < ClusterSize; ++i) |
137 | // Due to our packed storage format for generation and its cyclic |
138 | // nature we add 263 (256 is the modulus plus 7 to keep the unrelated |
139 | // lowest three bits from affecting the result) to calculate the entry |
140 | // age correctly even after generation8 overflows into the next cycle. |
141 | if ( replace->depth8 - ((263 + generation8 - replace->genBound8) & 0xF8) |
142 | > tte[i].depth8 - ((263 + generation8 - tte[i].genBound8) & 0xF8)) |
143 | replace = &tte[i]; |
144 | |
145 | return found = false, replace; |
146 | } |
147 | |
148 | |
149 | /// TranspositionTable::hashfull() returns an approximation of the hashtable |
150 | /// occupation during a search. The hash is x permill full, as per UCI protocol. |
151 | |
152 | int TranspositionTable::hashfull() const { |
153 | |
154 | int cnt = 0; |
155 | for (int i = 0; i < 1000 / ClusterSize; ++i) |
156 | for (int j = 0; j < ClusterSize; ++j) |
157 | cnt += (table[i].entry[j].genBound8 & 0xF8) == generation8; |
158 | |
159 | return cnt * 1000 / (ClusterSize * (1000 / ClusterSize)); |
160 | } |
161 | |