1 | // Copyright 2006 Google Inc. All Rights Reserved. |
2 | |
3 | #include "s2polygonbuilder.h" |
4 | |
5 | #include <algorithm> |
6 | using std::min; |
7 | using std::max; |
8 | using std::swap; |
9 | using std::reverse; |
10 | |
11 | #include <hash_map> |
12 | using __gnu_cxx::hash_map; |
13 | |
14 | #include <hash_set> |
15 | using __gnu_cxx::hash_set; |
16 | |
17 | #include <iomanip> |
18 | using std::setprecision; |
19 | |
20 | #include <iostream> |
21 | using std::ostream; |
22 | using std::cout; |
23 | using std::endl; |
24 | |
25 | #include <map> |
26 | using std::map; |
27 | using std::multimap; |
28 | |
29 | #include <set> |
30 | using std::set; |
31 | using std::multiset; |
32 | |
33 | #include <vector> |
34 | using std::vector; |
35 | |
36 | |
37 | #include "base/logging.h" |
38 | #include "base/macros.h" |
39 | #include "base/scoped_ptr.h" |
40 | #include "s2.h" |
41 | #include "s2cellid.h" |
42 | #include "s2polygon.h" |
43 | #include "util/math/matrix3x3-inl.h" |
44 | |
45 | void S2PolygonBuilderOptions::set_undirected_edges(bool undirected_edges) { |
46 | undirected_edges_ = undirected_edges; |
47 | } |
48 | |
49 | void S2PolygonBuilderOptions::set_xor_edges(bool xor_edges) { |
50 | xor_edges_ = xor_edges; |
51 | } |
52 | |
53 | void S2PolygonBuilderOptions::set_validate(bool validate) { |
54 | validate_ = validate; |
55 | } |
56 | |
57 | void S2PolygonBuilderOptions::set_vertex_merge_radius(S1Angle const& angle) { |
58 | vertex_merge_radius_ = angle; |
59 | } |
60 | |
61 | void S2PolygonBuilderOptions::set_edge_splice_fraction(double fraction) { |
62 | CHECK(fraction < sqrt(3) / 2); |
63 | edge_splice_fraction_ = fraction; |
64 | } |
65 | |
66 | S2PolygonBuilder::S2PolygonBuilder(S2PolygonBuilderOptions const& options) |
67 | : options_(options), edges_(new EdgeSet) { |
68 | } |
69 | |
70 | S2PolygonBuilder::~S2PolygonBuilder() { |
71 | } |
72 | |
73 | bool S2PolygonBuilder::HasEdge(S2Point const& v0, S2Point const& v1) { |
74 | EdgeSet::const_iterator candidates = edges_->find(v0); |
75 | return (candidates != edges_->end() && |
76 | candidates->second.find(v1) != candidates->second.end()); |
77 | } |
78 | |
79 | bool S2PolygonBuilder::AddEdge(S2Point const& v0, S2Point const& v1) { |
80 | // If xor_edges is true, we look for an existing edge in the opposite |
81 | // direction. We either delete that edge or insert a new one. |
82 | |
83 | if (v0 == v1) return false; |
84 | if (options_.xor_edges() && HasEdge(v1, v0)) { |
85 | EraseEdge(v1, v0); |
86 | return false; |
87 | } |
88 | if (edges_->find(v0) == edges_->end()) starting_vertices_.push_back(v0); |
89 | (*edges_)[v0].insert(v1); |
90 | if (options_.undirected_edges()) { |
91 | if (edges_->find(v1) == edges_->end()) starting_vertices_.push_back(v1); |
92 | (*edges_)[v1].insert(v0); |
93 | } |
94 | return true; |
95 | } |
96 | |
97 | void S2PolygonBuilder::AddLoop(S2Loop const* loop) { |
98 | int sign = loop->sign(); |
99 | for (int i = loop->num_vertices(); i > 0; --i) { |
100 | // Vertex indices need to be in the range [0, 2*num_vertices()-1]. |
101 | AddEdge(loop->vertex(i), loop->vertex(i + sign)); |
102 | } |
103 | } |
104 | |
105 | void S2PolygonBuilder::AddPolygon(S2Polygon const* polygon) { |
106 | for (int i = 0; i < polygon->num_loops(); ++i) { |
107 | AddLoop(polygon->loop(i)); |
108 | } |
109 | } |
110 | |
111 | void S2PolygonBuilder::EraseEdge(S2Point const& v0, S2Point const& v1) { |
112 | // Note that there may be more than one copy of an edge if we are not XORing |
113 | // them, so a VertexSet is a multiset. |
114 | |
115 | VertexSet* vset = &(*edges_)[v0]; |
116 | DCHECK(vset->find(v1) != vset->end()); |
117 | vset->erase(vset->find(v1)); |
118 | if (vset->empty()) edges_->erase(v0); |
119 | |
120 | if (options_.undirected_edges()) { |
121 | vset = &(*edges_)[v1]; |
122 | DCHECK(vset->find(v0) != vset->end()); |
123 | vset->erase(vset->find(v0)); |
124 | if (vset->empty()) edges_->erase(v1); |
125 | } |
126 | } |
127 | |
128 | void S2PolygonBuilder::set_debug_matrix(Matrix3x3_d const& m) { |
129 | debug_matrix_.reset(new Matrix3x3_d(m)); |
130 | } |
131 | |
132 | void S2PolygonBuilder::DumpVertex(S2Point const& v) const { |
133 | if (debug_matrix_.get()) { |
134 | // For orthonormal matrices, Inverse() == Transpose(). |
135 | cout << S2LatLng(debug_matrix_->Transpose() * v); |
136 | } else { |
137 | cout << setprecision(17) << v << setprecision(6); |
138 | } |
139 | } |
140 | |
141 | void S2PolygonBuilder::DumpEdges(S2Point const& v0) const { |
142 | DumpVertex(v0); |
143 | cout << ":\n" ; |
144 | EdgeSet::const_iterator candidates = edges_->find(v0); |
145 | if (candidates != edges_->end()) { |
146 | VertexSet const& vset = candidates->second; |
147 | for (VertexSet::const_iterator i = vset.begin(); i != vset.end(); ++i) { |
148 | cout << " " ; |
149 | DumpVertex(*i); |
150 | cout << "\n" ; |
151 | } |
152 | } |
153 | } |
154 | |
155 | void S2PolygonBuilder::Dump() const { |
156 | for (EdgeSet::const_iterator i = edges_->begin(); i != edges_->end(); ++i) { |
157 | DumpEdges(i->first); |
158 | } |
159 | } |
160 | |
161 | void S2PolygonBuilder::EraseLoop(S2Point const* v, int n) { |
162 | for (int i = n - 1, j = 0; j < n; i = j++) { |
163 | EraseEdge(v[i], v[j]); |
164 | } |
165 | } |
166 | |
167 | void S2PolygonBuilder::RejectLoop(S2Point const* v, int n, |
168 | EdgeList* unused_edges) { |
169 | for (int i = n - 1, j = 0; j < n; i = j++) { |
170 | unused_edges->push_back(make_pair(v[i], v[j])); |
171 | } |
172 | } |
173 | |
174 | S2Loop* S2PolygonBuilder::AssembleLoop(S2Point const& v0, S2Point const& v1, |
175 | EdgeList* unused_edges) { |
176 | // We start at the given edge and assemble a loop taking left turns |
177 | // whenever possible. We stop the loop as soon as we encounter any |
178 | // vertex that we have seen before *except* for the first vertex (v0). |
179 | // This ensures that only CCW loops are constructed when possible. |
180 | |
181 | vector<S2Point> path; // The path so far. |
182 | hash_map<S2Point, int> index; // Maps a vertex to its index in "path". |
183 | path.push_back(v0); |
184 | path.push_back(v1); |
185 | index[v1] = 1; |
186 | while (path.size() >= 2) { |
187 | // Note that "v0" and "v1" become invalid if "path" is modified. |
188 | S2Point const& v0 = path.end()[-2]; |
189 | S2Point const& v1 = path.end()[-1]; |
190 | S2Point v2; |
191 | bool v2_found = false; |
192 | EdgeSet::const_iterator candidates = edges_->find(v1); |
193 | if (candidates != edges_->end()) { |
194 | VertexSet const& vset = candidates->second; |
195 | for (VertexSet::const_iterator i = vset.begin(); i != vset.end(); ++i) { |
196 | // We prefer the leftmost outgoing edge, ignoring any reverse edges. |
197 | if (*i == v0) continue; |
198 | if (!v2_found || S2::OrderedCCW(v0, v2, *i, v1)) { v2 = *i; } |
199 | v2_found = true; |
200 | } |
201 | } |
202 | if (!v2_found) { |
203 | // We've hit a dead end. Remove this edge and backtrack. |
204 | unused_edges->push_back(make_pair(v0, v1)); |
205 | EraseEdge(v0, v1); |
206 | index.erase(v1); |
207 | path.pop_back(); |
208 | } else if (index.insert(make_pair(v2, path.size())).second) { |
209 | // This is the first time we've visited this vertex. |
210 | path.push_back(v2); |
211 | } else { |
212 | // We've completed a loop. Throw away any initial vertices that |
213 | // are not part of the loop. |
214 | path.erase(path.begin(), path.begin() + index[v2]); |
215 | |
216 | // In the case of undirected edges, we may have assembled a clockwise |
217 | // loop while trying to assemble a CCW loop. To fix this, we assemble |
218 | // a new loop starting with an arbitrary edge in the reverse direction. |
219 | // This is guaranteed to assemble a loop that is interior to the previous |
220 | // one and will therefore eventually terminate. |
221 | |
222 | S2Loop* loop = new S2Loop(path); |
223 | if (options_.validate() && !loop->IsValid()) { |
224 | // We've constructed a loop that crosses itself, which can only |
225 | // happen if there is bad input data. Throw away the whole loop. |
226 | RejectLoop(&path[0], path.size(), unused_edges); |
227 | EraseLoop(&path[0], path.size()); |
228 | delete loop; |
229 | return NULL; |
230 | } |
231 | |
232 | if (options_.undirected_edges() && !loop->IsNormalized()) { |
233 | scoped_ptr<S2Loop> deleter(loop); // XXX for debugging |
234 | return AssembleLoop(path[1], path[0], unused_edges); |
235 | } |
236 | return loop; |
237 | } |
238 | } |
239 | return NULL; |
240 | } |
241 | |
242 | class S2PolygonBuilder::PointIndex { |
243 | // A PointIndex is a cheap spatial index to help us find mergeable |
244 | // vertices. Given a set of points, it can efficiently find all of the |
245 | // points within a given search radius of an arbitrary query location. |
246 | // It is essentially just a hash map from cell ids at a given fixed level to |
247 | // the set of points contained by that cell id. |
248 | // |
249 | // This class is not suitable for general use because it only supports |
250 | // fixed-radius queries and has various special-purpose operations to avoid |
251 | // the need for additional data structures. |
252 | |
253 | private: |
254 | typedef multimap<S2CellId, S2Point> Map; |
255 | Map map_; |
256 | |
257 | double vertex_radius_; |
258 | double edge_fraction_; |
259 | int level_; |
260 | vector<S2CellId> ids_; // Allocated here for efficiency. |
261 | |
262 | public: |
263 | PointIndex(double vertex_radius, double edge_fraction) |
264 | : vertex_radius_(vertex_radius), |
265 | edge_fraction_(edge_fraction), |
266 | // We compute an S2CellId level such that the vertex neighbors at that |
267 | // level of any point A are a covering for spherical cap (i.e. "disc") |
268 | // of the given search radius centered at A. This requires that the |
269 | // minimum cell width at that level must be twice the search radius. |
270 | level_(min(S2::kMinWidth.GetMaxLevel(2 * vertex_radius), |
271 | S2CellId::kMaxLevel - 1)) { |
272 | // We insert a sentinel so that we don't need to test for map_.end(). |
273 | map_.insert(make_pair(S2CellId::Sentinel(), S2Point())); |
274 | } |
275 | |
276 | void Insert(S2Point const& p) { |
277 | S2CellId::FromPoint(p).AppendVertexNeighbors(level_, &ids_); |
278 | for (int i = ids_.size(); --i >= 0; ) { |
279 | map_.insert(make_pair(ids_[i], p)); |
280 | } |
281 | ids_.clear(); |
282 | } |
283 | |
284 | void Erase(S2Point const& p) { |
285 | S2CellId::FromPoint(p).AppendVertexNeighbors(level_, &ids_); |
286 | for (int i = ids_.size(); --i >= 0; ) { |
287 | Map::iterator j = map_.lower_bound(ids_[i]); |
288 | for (; j->second != p; ++j) { |
289 | DCHECK_EQ(ids_[i], j->first); |
290 | } |
291 | map_.erase(j); |
292 | } |
293 | ids_.clear(); |
294 | } |
295 | |
296 | void QueryCap(S2Point const& axis, vector<S2Point>* output) { |
297 | // Return the set the points whose distance to "axis" is less than |
298 | // vertex_radius_. |
299 | |
300 | output->clear(); |
301 | S2CellId id = S2CellId::FromPoint(axis).parent(level_); |
302 | for (Map::const_iterator i = map_.lower_bound(id); i->first == id; ++i) { |
303 | S2Point const& p = i->second; |
304 | if (axis.Angle(p) < vertex_radius_) { |
305 | output->push_back(p); |
306 | } |
307 | } |
308 | } |
309 | |
310 | bool FindNearbyPoint(S2Point const& v0, S2Point const& v1, |
311 | S2Point* nearby) { |
312 | // Return a point whose distance from the edge (v0,v1) is less than |
313 | // vertex_radius_, and which is not equal to v0 or v1. The current |
314 | // implementation returns the closest such point. |
315 | // |
316 | // Strategy: we compute a very cheap covering by approximating the edge as |
317 | // two spherical caps, one around each endpoint, and then computing a |
318 | // 4-cell covering of each one. We could improve the quality of the |
319 | // covering by using some intermediate points along the edge as well. |
320 | |
321 | double length = v0.Angle(v1); |
322 | S2Point normal = S2::RobustCrossProd(v0, v1); |
323 | int level = min(level_, S2::kMinWidth.GetMaxLevel(length)); |
324 | S2CellId::FromPoint(v0).AppendVertexNeighbors(level, &ids_); |
325 | S2CellId::FromPoint(v1).AppendVertexNeighbors(level, &ids_); |
326 | |
327 | // Sort the cell ids so that we can skip duplicates in the loop below. |
328 | sort(ids_.begin(), ids_.end()); |
329 | |
330 | double best_dist = 2 * vertex_radius_; |
331 | for (int i = ids_.size(); --i >= 0; ) { |
332 | if (i > 0 && ids_[i-1] == ids_[i]) continue; // Skip duplicates. |
333 | |
334 | S2CellId const& max_id = ids_[i].range_max(); |
335 | for (Map::const_iterator j = map_.lower_bound(ids_[i].range_min()); |
336 | j->first <= max_id; ++j) { |
337 | S2Point const& p = j->second; |
338 | if (p == v0 || p == v1) continue; |
339 | double dist = S2EdgeUtil::GetDistance(p, v0, v1, normal).radians(); |
340 | if (dist < best_dist) { |
341 | best_dist = dist; |
342 | *nearby = p; |
343 | } |
344 | } |
345 | } |
346 | ids_.clear(); |
347 | return (best_dist < edge_fraction_ * vertex_radius_); |
348 | } |
349 | |
350 | private: |
351 | DISALLOW_EVIL_CONSTRUCTORS(PointIndex); |
352 | }; |
353 | |
354 | void S2PolygonBuilder::BuildMergeMap(PointIndex* index, MergeMap* merge_map) { |
355 | // The overall strategy is to start from each vertex and grow a maximal |
356 | // cluster of mergeable vertices. In graph theoretic terms, we find the |
357 | // connected components of the undirected graph whose edges connect pairs of |
358 | // vertices that are separated by at most vertex_merge_radius(). |
359 | // |
360 | // We then choose a single representative vertex for each cluster, and |
361 | // update "merge_map" appropriately. We choose an arbitrary existing |
362 | // vertex rather than computing the centroid of all the vertices to avoid |
363 | // creating new vertex pairs that need to be merged. (We guarantee that all |
364 | // vertex pairs are separated by at least the merge radius in the output.) |
365 | |
366 | // First, we build the set of all the distinct vertices in the input. |
367 | // We need to include the source and destination of every edge. |
368 | hash_set<S2Point> vertices; |
369 | for (EdgeSet::const_iterator i = edges_->begin(); i != edges_->end(); ++i) { |
370 | vertices.insert(i->first); |
371 | VertexSet const& vset = i->second; |
372 | for (VertexSet::const_iterator j = vset.begin(); j != vset.end(); ++j) |
373 | vertices.insert(*j); |
374 | } |
375 | |
376 | // Build a spatial index containing all the distinct vertices. |
377 | for (hash_set<S2Point>::const_iterator i = vertices.begin(); |
378 | i != vertices.end(); ++i) { |
379 | index->Insert(*i); |
380 | } |
381 | |
382 | // Next, we loop through all the vertices and attempt to grow a maximial |
383 | // mergeable group starting from each vertex. |
384 | vector<S2Point> frontier, mergeable; |
385 | for (hash_set<S2Point>::const_iterator vstart = vertices.begin(); |
386 | vstart != vertices.end(); ++vstart) { |
387 | // Skip any vertices that have already been merged with another vertex. |
388 | if (merge_map->find(*vstart) != merge_map->end()) continue; |
389 | |
390 | // Grow a maximal mergeable component starting from "vstart", the |
391 | // canonical representative of the mergeable group. |
392 | frontier.push_back(*vstart); |
393 | while (!frontier.empty()) { |
394 | index->QueryCap(frontier.back(), &mergeable); |
395 | frontier.pop_back(); // Do this before entering the loop below. |
396 | for (int j = mergeable.size(); --j >= 0; ) { |
397 | S2Point const& v1 = mergeable[j]; |
398 | if (v1 != *vstart) { |
399 | // Erase from the index any vertices that will be merged. This |
400 | // ensures that we won't try to merge the same vertex twice. |
401 | index->Erase(v1); |
402 | frontier.push_back(v1); |
403 | (*merge_map)[v1] = *vstart; |
404 | } |
405 | } |
406 | } |
407 | } |
408 | } |
409 | |
410 | void S2PolygonBuilder::MoveVertices(MergeMap const& merge_map) { |
411 | if (merge_map.empty()) return; |
412 | |
413 | // We need to copy the set of edges affected by the move, since |
414 | // edges_ could be reallocated when we start modifying it. |
415 | vector<pair<S2Point, S2Point> > edges; |
416 | for (EdgeSet::const_iterator i = edges_->begin(); i != edges_->end(); ++i) { |
417 | S2Point const& v0 = i->first; |
418 | VertexSet const& vset = i->second; |
419 | for (VertexSet::const_iterator j = vset.begin(); j != vset.end(); ++j) { |
420 | S2Point const& v1 = *j; |
421 | if (merge_map.find(v0) != merge_map.end() || |
422 | merge_map.find(v1) != merge_map.end()) { |
423 | // We only need to modify one copy of each undirected edge. |
424 | if (!options_.undirected_edges() || v0 < v1) { |
425 | edges.push_back(make_pair(v0, v1)); |
426 | } |
427 | } |
428 | } |
429 | } |
430 | |
431 | // Now erase all the old edges, and add all the new edges. This will |
432 | // automatically take care of any XORing that needs to be done, because |
433 | // EraseEdge also erases the sibling of undirected edges. |
434 | for (int i = 0; i < edges.size(); ++i) { |
435 | S2Point v0 = edges[i].first; |
436 | S2Point v1 = edges[i].second; |
437 | EraseEdge(v0, v1); |
438 | MergeMap::const_iterator new0 = merge_map.find(v0); |
439 | if (new0 != merge_map.end()) v0 = new0->second; |
440 | MergeMap::const_iterator new1 = merge_map.find(v1); |
441 | if (new1 != merge_map.end()) v1 = new1->second; |
442 | AddEdge(v0, v1); |
443 | } |
444 | } |
445 | |
446 | void S2PolygonBuilder::SpliceEdges(PointIndex* index) { |
447 | // We keep a stack of unprocessed edges. Initially all edges are |
448 | // pushed onto the stack. |
449 | vector<pair<S2Point, S2Point> > edges; |
450 | for (EdgeSet::const_iterator i = edges_->begin(); i != edges_->end(); ++i) { |
451 | S2Point const& v0 = i->first; |
452 | VertexSet const& vset = i->second; |
453 | for (VertexSet::const_iterator j = vset.begin(); j != vset.end(); ++j) { |
454 | S2Point const& v1 = *j; |
455 | // We only need to modify one copy of each undirected edge. |
456 | if (!options_.undirected_edges() || v0 < v1) { |
457 | edges.push_back(make_pair(v0, v1)); |
458 | } |
459 | } |
460 | } |
461 | |
462 | // For each edge, we check whether there are any nearby vertices that should |
463 | // be spliced into it. If there are, we choose one such vertex, split |
464 | // the edge into two pieces, and iterate on each piece. |
465 | while (!edges.empty()) { |
466 | S2Point v0 = edges.back().first; |
467 | S2Point v1 = edges.back().second; |
468 | edges.pop_back(); // Do this before pushing new edges. |
469 | |
470 | // If we are xoring, edges may be erased before we get to them. |
471 | if (options_.xor_edges() && !HasEdge(v0, v1)) continue; |
472 | |
473 | S2Point vmid; |
474 | if (!index->FindNearbyPoint(v0, v1, &vmid)) continue; |
475 | |
476 | EraseEdge(v0, v1); |
477 | if (AddEdge(v0, vmid)) edges.push_back(make_pair(v0, vmid)); |
478 | if (AddEdge(vmid, v1)) edges.push_back(make_pair(vmid, v1)); |
479 | } |
480 | } |
481 | |
482 | bool S2PolygonBuilder::AssembleLoops(vector<S2Loop*>* loops, |
483 | EdgeList* unused_edges) { |
484 | if (options_.vertex_merge_radius().radians() > 0) { |
485 | PointIndex index(options_.vertex_merge_radius().radians(), |
486 | options_.edge_splice_fraction()); |
487 | MergeMap merge_map; |
488 | BuildMergeMap(&index, &merge_map); |
489 | MoveVertices(merge_map); |
490 | if (options_.edge_splice_fraction() > 0) { |
491 | SpliceEdges(&index); |
492 | } |
493 | } |
494 | |
495 | EdgeList dummy_unused_edges; |
496 | if (unused_edges == NULL) unused_edges = &dummy_unused_edges; |
497 | |
498 | // We repeatedly choose an edge and attempt to assemble a loop |
499 | // starting from that edge. (This is always possible unless the |
500 | // input includes extra edges that are not part of any loop.) To |
501 | // maintain a consistent scanning order over edges_ between |
502 | // different machine architectures (e.g. 'clovertown' vs. 'opteron'), |
503 | // we follow the order they were added to the builder. |
504 | unused_edges->clear(); |
505 | for (int i = 0; i < starting_vertices_.size(); ) { |
506 | S2Point const& v0 = starting_vertices_[i]; |
507 | EdgeSet::const_iterator candidates = edges_->find(v0); |
508 | if (candidates == edges_->end()) { |
509 | ++i; |
510 | continue; |
511 | } |
512 | // NOTE(user): If we have such two S2Points a, b that: |
513 | // |
514 | // a.x = b.x, a.y = b.y and |
515 | // -- a.z = b.z if CPU is Intel |
516 | // -- a.z <> b.z if CPU is AMD |
517 | // |
518 | // then the order of points picked up as v1 on the following line |
519 | // can be inconsistent between different machine architectures. |
520 | // |
521 | // As of b/3088321 and of cl/17847332, it's not clear if such |
522 | // input really exists in our input and probably it's O.K. not to |
523 | // address it in favor of the speed. |
524 | S2Point const& v1 = *(candidates->second.begin()); |
525 | S2Loop* loop = AssembleLoop(v0, v1, unused_edges); |
526 | if (loop != NULL) { |
527 | loops->push_back(loop); |
528 | EraseLoop(&loop->vertex(0), loop->num_vertices()); |
529 | } |
530 | } |
531 | return unused_edges->empty(); |
532 | } |
533 | |
534 | bool S2PolygonBuilder::AssemblePolygon(S2Polygon* polygon, |
535 | EdgeList* unused_edges) { |
536 | vector<S2Loop*> loops; |
537 | bool success = AssembleLoops(&loops, unused_edges); |
538 | |
539 | // If edges are undirected, then all loops are already CCW. Otherwise we |
540 | // need to make sure the loops are normalized. |
541 | if (!options_.undirected_edges()) { |
542 | for (int i = 0; i < loops.size(); ++i) { |
543 | loops[i]->Normalize(); |
544 | } |
545 | } |
546 | if (options_.validate() && !S2Polygon::IsValid(loops)) { |
547 | if (unused_edges != NULL) { |
548 | for (int i = 0; i < loops.size(); ++i) { |
549 | RejectLoop(&loops[i]->vertex(0), loops[i]->num_vertices(), |
550 | unused_edges); |
551 | } |
552 | } |
553 | |
554 | for (int i = 0; i < loops.size(); ++i) { |
555 | delete loops[i]; |
556 | } |
557 | loops.clear(); |
558 | return false; |
559 | } |
560 | polygon->Init(&loops); |
561 | return success; |
562 | } |
563 | |