| 1 | // Copyright 2006 Google Inc. All Rights Reserved. |
| 2 | |
| 3 | #include "s2polygonbuilder.h" |
| 4 | |
| 5 | #include <algorithm> |
| 6 | using std::min; |
| 7 | using std::max; |
| 8 | using std::swap; |
| 9 | using std::reverse; |
| 10 | |
| 11 | #include <hash_map> |
| 12 | using __gnu_cxx::hash_map; |
| 13 | |
| 14 | #include <hash_set> |
| 15 | using __gnu_cxx::hash_set; |
| 16 | |
| 17 | #include <iomanip> |
| 18 | using std::setprecision; |
| 19 | |
| 20 | #include <iostream> |
| 21 | using std::ostream; |
| 22 | using std::cout; |
| 23 | using std::endl; |
| 24 | |
| 25 | #include <map> |
| 26 | using std::map; |
| 27 | using std::multimap; |
| 28 | |
| 29 | #include <set> |
| 30 | using std::set; |
| 31 | using std::multiset; |
| 32 | |
| 33 | #include <vector> |
| 34 | using std::vector; |
| 35 | |
| 36 | |
| 37 | #include "base/logging.h" |
| 38 | #include "base/macros.h" |
| 39 | #include "base/scoped_ptr.h" |
| 40 | #include "s2.h" |
| 41 | #include "s2cellid.h" |
| 42 | #include "s2polygon.h" |
| 43 | #include "util/math/matrix3x3-inl.h" |
| 44 | |
| 45 | void S2PolygonBuilderOptions::set_undirected_edges(bool undirected_edges) { |
| 46 | undirected_edges_ = undirected_edges; |
| 47 | } |
| 48 | |
| 49 | void S2PolygonBuilderOptions::set_xor_edges(bool xor_edges) { |
| 50 | xor_edges_ = xor_edges; |
| 51 | } |
| 52 | |
| 53 | void S2PolygonBuilderOptions::set_validate(bool validate) { |
| 54 | validate_ = validate; |
| 55 | } |
| 56 | |
| 57 | void S2PolygonBuilderOptions::set_vertex_merge_radius(S1Angle const& angle) { |
| 58 | vertex_merge_radius_ = angle; |
| 59 | } |
| 60 | |
| 61 | void S2PolygonBuilderOptions::set_edge_splice_fraction(double fraction) { |
| 62 | CHECK(fraction < sqrt(3) / 2); |
| 63 | edge_splice_fraction_ = fraction; |
| 64 | } |
| 65 | |
| 66 | S2PolygonBuilder::S2PolygonBuilder(S2PolygonBuilderOptions const& options) |
| 67 | : options_(options), edges_(new EdgeSet) { |
| 68 | } |
| 69 | |
| 70 | S2PolygonBuilder::~S2PolygonBuilder() { |
| 71 | } |
| 72 | |
| 73 | bool S2PolygonBuilder::HasEdge(S2Point const& v0, S2Point const& v1) { |
| 74 | EdgeSet::const_iterator candidates = edges_->find(v0); |
| 75 | return (candidates != edges_->end() && |
| 76 | candidates->second.find(v1) != candidates->second.end()); |
| 77 | } |
| 78 | |
| 79 | bool S2PolygonBuilder::AddEdge(S2Point const& v0, S2Point const& v1) { |
| 80 | // If xor_edges is true, we look for an existing edge in the opposite |
| 81 | // direction. We either delete that edge or insert a new one. |
| 82 | |
| 83 | if (v0 == v1) return false; |
| 84 | if (options_.xor_edges() && HasEdge(v1, v0)) { |
| 85 | EraseEdge(v1, v0); |
| 86 | return false; |
| 87 | } |
| 88 | if (edges_->find(v0) == edges_->end()) starting_vertices_.push_back(v0); |
| 89 | (*edges_)[v0].insert(v1); |
| 90 | if (options_.undirected_edges()) { |
| 91 | if (edges_->find(v1) == edges_->end()) starting_vertices_.push_back(v1); |
| 92 | (*edges_)[v1].insert(v0); |
| 93 | } |
| 94 | return true; |
| 95 | } |
| 96 | |
| 97 | void S2PolygonBuilder::AddLoop(S2Loop const* loop) { |
| 98 | int sign = loop->sign(); |
| 99 | for (int i = loop->num_vertices(); i > 0; --i) { |
| 100 | // Vertex indices need to be in the range [0, 2*num_vertices()-1]. |
| 101 | AddEdge(loop->vertex(i), loop->vertex(i + sign)); |
| 102 | } |
| 103 | } |
| 104 | |
| 105 | void S2PolygonBuilder::AddPolygon(S2Polygon const* polygon) { |
| 106 | for (int i = 0; i < polygon->num_loops(); ++i) { |
| 107 | AddLoop(polygon->loop(i)); |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | void S2PolygonBuilder::EraseEdge(S2Point const& v0, S2Point const& v1) { |
| 112 | // Note that there may be more than one copy of an edge if we are not XORing |
| 113 | // them, so a VertexSet is a multiset. |
| 114 | |
| 115 | VertexSet* vset = &(*edges_)[v0]; |
| 116 | DCHECK(vset->find(v1) != vset->end()); |
| 117 | vset->erase(vset->find(v1)); |
| 118 | if (vset->empty()) edges_->erase(v0); |
| 119 | |
| 120 | if (options_.undirected_edges()) { |
| 121 | vset = &(*edges_)[v1]; |
| 122 | DCHECK(vset->find(v0) != vset->end()); |
| 123 | vset->erase(vset->find(v0)); |
| 124 | if (vset->empty()) edges_->erase(v1); |
| 125 | } |
| 126 | } |
| 127 | |
| 128 | void S2PolygonBuilder::set_debug_matrix(Matrix3x3_d const& m) { |
| 129 | debug_matrix_.reset(new Matrix3x3_d(m)); |
| 130 | } |
| 131 | |
| 132 | void S2PolygonBuilder::DumpVertex(S2Point const& v) const { |
| 133 | if (debug_matrix_.get()) { |
| 134 | // For orthonormal matrices, Inverse() == Transpose(). |
| 135 | cout << S2LatLng(debug_matrix_->Transpose() * v); |
| 136 | } else { |
| 137 | cout << setprecision(17) << v << setprecision(6); |
| 138 | } |
| 139 | } |
| 140 | |
| 141 | void S2PolygonBuilder::DumpEdges(S2Point const& v0) const { |
| 142 | DumpVertex(v0); |
| 143 | cout << ":\n" ; |
| 144 | EdgeSet::const_iterator candidates = edges_->find(v0); |
| 145 | if (candidates != edges_->end()) { |
| 146 | VertexSet const& vset = candidates->second; |
| 147 | for (VertexSet::const_iterator i = vset.begin(); i != vset.end(); ++i) { |
| 148 | cout << " " ; |
| 149 | DumpVertex(*i); |
| 150 | cout << "\n" ; |
| 151 | } |
| 152 | } |
| 153 | } |
| 154 | |
| 155 | void S2PolygonBuilder::Dump() const { |
| 156 | for (EdgeSet::const_iterator i = edges_->begin(); i != edges_->end(); ++i) { |
| 157 | DumpEdges(i->first); |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | void S2PolygonBuilder::EraseLoop(S2Point const* v, int n) { |
| 162 | for (int i = n - 1, j = 0; j < n; i = j++) { |
| 163 | EraseEdge(v[i], v[j]); |
| 164 | } |
| 165 | } |
| 166 | |
| 167 | void S2PolygonBuilder::RejectLoop(S2Point const* v, int n, |
| 168 | EdgeList* unused_edges) { |
| 169 | for (int i = n - 1, j = 0; j < n; i = j++) { |
| 170 | unused_edges->push_back(make_pair(v[i], v[j])); |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | S2Loop* S2PolygonBuilder::AssembleLoop(S2Point const& v0, S2Point const& v1, |
| 175 | EdgeList* unused_edges) { |
| 176 | // We start at the given edge and assemble a loop taking left turns |
| 177 | // whenever possible. We stop the loop as soon as we encounter any |
| 178 | // vertex that we have seen before *except* for the first vertex (v0). |
| 179 | // This ensures that only CCW loops are constructed when possible. |
| 180 | |
| 181 | vector<S2Point> path; // The path so far. |
| 182 | hash_map<S2Point, int> index; // Maps a vertex to its index in "path". |
| 183 | path.push_back(v0); |
| 184 | path.push_back(v1); |
| 185 | index[v1] = 1; |
| 186 | while (path.size() >= 2) { |
| 187 | // Note that "v0" and "v1" become invalid if "path" is modified. |
| 188 | S2Point const& v0 = path.end()[-2]; |
| 189 | S2Point const& v1 = path.end()[-1]; |
| 190 | S2Point v2; |
| 191 | bool v2_found = false; |
| 192 | EdgeSet::const_iterator candidates = edges_->find(v1); |
| 193 | if (candidates != edges_->end()) { |
| 194 | VertexSet const& vset = candidates->second; |
| 195 | for (VertexSet::const_iterator i = vset.begin(); i != vset.end(); ++i) { |
| 196 | // We prefer the leftmost outgoing edge, ignoring any reverse edges. |
| 197 | if (*i == v0) continue; |
| 198 | if (!v2_found || S2::OrderedCCW(v0, v2, *i, v1)) { v2 = *i; } |
| 199 | v2_found = true; |
| 200 | } |
| 201 | } |
| 202 | if (!v2_found) { |
| 203 | // We've hit a dead end. Remove this edge and backtrack. |
| 204 | unused_edges->push_back(make_pair(v0, v1)); |
| 205 | EraseEdge(v0, v1); |
| 206 | index.erase(v1); |
| 207 | path.pop_back(); |
| 208 | } else if (index.insert(make_pair(v2, path.size())).second) { |
| 209 | // This is the first time we've visited this vertex. |
| 210 | path.push_back(v2); |
| 211 | } else { |
| 212 | // We've completed a loop. Throw away any initial vertices that |
| 213 | // are not part of the loop. |
| 214 | path.erase(path.begin(), path.begin() + index[v2]); |
| 215 | |
| 216 | // In the case of undirected edges, we may have assembled a clockwise |
| 217 | // loop while trying to assemble a CCW loop. To fix this, we assemble |
| 218 | // a new loop starting with an arbitrary edge in the reverse direction. |
| 219 | // This is guaranteed to assemble a loop that is interior to the previous |
| 220 | // one and will therefore eventually terminate. |
| 221 | |
| 222 | S2Loop* loop = new S2Loop(path); |
| 223 | if (options_.validate() && !loop->IsValid()) { |
| 224 | // We've constructed a loop that crosses itself, which can only |
| 225 | // happen if there is bad input data. Throw away the whole loop. |
| 226 | RejectLoop(&path[0], path.size(), unused_edges); |
| 227 | EraseLoop(&path[0], path.size()); |
| 228 | delete loop; |
| 229 | return NULL; |
| 230 | } |
| 231 | |
| 232 | if (options_.undirected_edges() && !loop->IsNormalized()) { |
| 233 | scoped_ptr<S2Loop> deleter(loop); // XXX for debugging |
| 234 | return AssembleLoop(path[1], path[0], unused_edges); |
| 235 | } |
| 236 | return loop; |
| 237 | } |
| 238 | } |
| 239 | return NULL; |
| 240 | } |
| 241 | |
| 242 | class S2PolygonBuilder::PointIndex { |
| 243 | // A PointIndex is a cheap spatial index to help us find mergeable |
| 244 | // vertices. Given a set of points, it can efficiently find all of the |
| 245 | // points within a given search radius of an arbitrary query location. |
| 246 | // It is essentially just a hash map from cell ids at a given fixed level to |
| 247 | // the set of points contained by that cell id. |
| 248 | // |
| 249 | // This class is not suitable for general use because it only supports |
| 250 | // fixed-radius queries and has various special-purpose operations to avoid |
| 251 | // the need for additional data structures. |
| 252 | |
| 253 | private: |
| 254 | typedef multimap<S2CellId, S2Point> Map; |
| 255 | Map map_; |
| 256 | |
| 257 | double vertex_radius_; |
| 258 | double edge_fraction_; |
| 259 | int level_; |
| 260 | vector<S2CellId> ids_; // Allocated here for efficiency. |
| 261 | |
| 262 | public: |
| 263 | PointIndex(double vertex_radius, double edge_fraction) |
| 264 | : vertex_radius_(vertex_radius), |
| 265 | edge_fraction_(edge_fraction), |
| 266 | // We compute an S2CellId level such that the vertex neighbors at that |
| 267 | // level of any point A are a covering for spherical cap (i.e. "disc") |
| 268 | // of the given search radius centered at A. This requires that the |
| 269 | // minimum cell width at that level must be twice the search radius. |
| 270 | level_(min(S2::kMinWidth.GetMaxLevel(2 * vertex_radius), |
| 271 | S2CellId::kMaxLevel - 1)) { |
| 272 | // We insert a sentinel so that we don't need to test for map_.end(). |
| 273 | map_.insert(make_pair(S2CellId::Sentinel(), S2Point())); |
| 274 | } |
| 275 | |
| 276 | void Insert(S2Point const& p) { |
| 277 | S2CellId::FromPoint(p).AppendVertexNeighbors(level_, &ids_); |
| 278 | for (int i = ids_.size(); --i >= 0; ) { |
| 279 | map_.insert(make_pair(ids_[i], p)); |
| 280 | } |
| 281 | ids_.clear(); |
| 282 | } |
| 283 | |
| 284 | void Erase(S2Point const& p) { |
| 285 | S2CellId::FromPoint(p).AppendVertexNeighbors(level_, &ids_); |
| 286 | for (int i = ids_.size(); --i >= 0; ) { |
| 287 | Map::iterator j = map_.lower_bound(ids_[i]); |
| 288 | for (; j->second != p; ++j) { |
| 289 | DCHECK_EQ(ids_[i], j->first); |
| 290 | } |
| 291 | map_.erase(j); |
| 292 | } |
| 293 | ids_.clear(); |
| 294 | } |
| 295 | |
| 296 | void QueryCap(S2Point const& axis, vector<S2Point>* output) { |
| 297 | // Return the set the points whose distance to "axis" is less than |
| 298 | // vertex_radius_. |
| 299 | |
| 300 | output->clear(); |
| 301 | S2CellId id = S2CellId::FromPoint(axis).parent(level_); |
| 302 | for (Map::const_iterator i = map_.lower_bound(id); i->first == id; ++i) { |
| 303 | S2Point const& p = i->second; |
| 304 | if (axis.Angle(p) < vertex_radius_) { |
| 305 | output->push_back(p); |
| 306 | } |
| 307 | } |
| 308 | } |
| 309 | |
| 310 | bool FindNearbyPoint(S2Point const& v0, S2Point const& v1, |
| 311 | S2Point* nearby) { |
| 312 | // Return a point whose distance from the edge (v0,v1) is less than |
| 313 | // vertex_radius_, and which is not equal to v0 or v1. The current |
| 314 | // implementation returns the closest such point. |
| 315 | // |
| 316 | // Strategy: we compute a very cheap covering by approximating the edge as |
| 317 | // two spherical caps, one around each endpoint, and then computing a |
| 318 | // 4-cell covering of each one. We could improve the quality of the |
| 319 | // covering by using some intermediate points along the edge as well. |
| 320 | |
| 321 | double length = v0.Angle(v1); |
| 322 | S2Point normal = S2::RobustCrossProd(v0, v1); |
| 323 | int level = min(level_, S2::kMinWidth.GetMaxLevel(length)); |
| 324 | S2CellId::FromPoint(v0).AppendVertexNeighbors(level, &ids_); |
| 325 | S2CellId::FromPoint(v1).AppendVertexNeighbors(level, &ids_); |
| 326 | |
| 327 | // Sort the cell ids so that we can skip duplicates in the loop below. |
| 328 | sort(ids_.begin(), ids_.end()); |
| 329 | |
| 330 | double best_dist = 2 * vertex_radius_; |
| 331 | for (int i = ids_.size(); --i >= 0; ) { |
| 332 | if (i > 0 && ids_[i-1] == ids_[i]) continue; // Skip duplicates. |
| 333 | |
| 334 | S2CellId const& max_id = ids_[i].range_max(); |
| 335 | for (Map::const_iterator j = map_.lower_bound(ids_[i].range_min()); |
| 336 | j->first <= max_id; ++j) { |
| 337 | S2Point const& p = j->second; |
| 338 | if (p == v0 || p == v1) continue; |
| 339 | double dist = S2EdgeUtil::GetDistance(p, v0, v1, normal).radians(); |
| 340 | if (dist < best_dist) { |
| 341 | best_dist = dist; |
| 342 | *nearby = p; |
| 343 | } |
| 344 | } |
| 345 | } |
| 346 | ids_.clear(); |
| 347 | return (best_dist < edge_fraction_ * vertex_radius_); |
| 348 | } |
| 349 | |
| 350 | private: |
| 351 | DISALLOW_EVIL_CONSTRUCTORS(PointIndex); |
| 352 | }; |
| 353 | |
| 354 | void S2PolygonBuilder::BuildMergeMap(PointIndex* index, MergeMap* merge_map) { |
| 355 | // The overall strategy is to start from each vertex and grow a maximal |
| 356 | // cluster of mergeable vertices. In graph theoretic terms, we find the |
| 357 | // connected components of the undirected graph whose edges connect pairs of |
| 358 | // vertices that are separated by at most vertex_merge_radius(). |
| 359 | // |
| 360 | // We then choose a single representative vertex for each cluster, and |
| 361 | // update "merge_map" appropriately. We choose an arbitrary existing |
| 362 | // vertex rather than computing the centroid of all the vertices to avoid |
| 363 | // creating new vertex pairs that need to be merged. (We guarantee that all |
| 364 | // vertex pairs are separated by at least the merge radius in the output.) |
| 365 | |
| 366 | // First, we build the set of all the distinct vertices in the input. |
| 367 | // We need to include the source and destination of every edge. |
| 368 | hash_set<S2Point> vertices; |
| 369 | for (EdgeSet::const_iterator i = edges_->begin(); i != edges_->end(); ++i) { |
| 370 | vertices.insert(i->first); |
| 371 | VertexSet const& vset = i->second; |
| 372 | for (VertexSet::const_iterator j = vset.begin(); j != vset.end(); ++j) |
| 373 | vertices.insert(*j); |
| 374 | } |
| 375 | |
| 376 | // Build a spatial index containing all the distinct vertices. |
| 377 | for (hash_set<S2Point>::const_iterator i = vertices.begin(); |
| 378 | i != vertices.end(); ++i) { |
| 379 | index->Insert(*i); |
| 380 | } |
| 381 | |
| 382 | // Next, we loop through all the vertices and attempt to grow a maximial |
| 383 | // mergeable group starting from each vertex. |
| 384 | vector<S2Point> frontier, mergeable; |
| 385 | for (hash_set<S2Point>::const_iterator vstart = vertices.begin(); |
| 386 | vstart != vertices.end(); ++vstart) { |
| 387 | // Skip any vertices that have already been merged with another vertex. |
| 388 | if (merge_map->find(*vstart) != merge_map->end()) continue; |
| 389 | |
| 390 | // Grow a maximal mergeable component starting from "vstart", the |
| 391 | // canonical representative of the mergeable group. |
| 392 | frontier.push_back(*vstart); |
| 393 | while (!frontier.empty()) { |
| 394 | index->QueryCap(frontier.back(), &mergeable); |
| 395 | frontier.pop_back(); // Do this before entering the loop below. |
| 396 | for (int j = mergeable.size(); --j >= 0; ) { |
| 397 | S2Point const& v1 = mergeable[j]; |
| 398 | if (v1 != *vstart) { |
| 399 | // Erase from the index any vertices that will be merged. This |
| 400 | // ensures that we won't try to merge the same vertex twice. |
| 401 | index->Erase(v1); |
| 402 | frontier.push_back(v1); |
| 403 | (*merge_map)[v1] = *vstart; |
| 404 | } |
| 405 | } |
| 406 | } |
| 407 | } |
| 408 | } |
| 409 | |
| 410 | void S2PolygonBuilder::MoveVertices(MergeMap const& merge_map) { |
| 411 | if (merge_map.empty()) return; |
| 412 | |
| 413 | // We need to copy the set of edges affected by the move, since |
| 414 | // edges_ could be reallocated when we start modifying it. |
| 415 | vector<pair<S2Point, S2Point> > edges; |
| 416 | for (EdgeSet::const_iterator i = edges_->begin(); i != edges_->end(); ++i) { |
| 417 | S2Point const& v0 = i->first; |
| 418 | VertexSet const& vset = i->second; |
| 419 | for (VertexSet::const_iterator j = vset.begin(); j != vset.end(); ++j) { |
| 420 | S2Point const& v1 = *j; |
| 421 | if (merge_map.find(v0) != merge_map.end() || |
| 422 | merge_map.find(v1) != merge_map.end()) { |
| 423 | // We only need to modify one copy of each undirected edge. |
| 424 | if (!options_.undirected_edges() || v0 < v1) { |
| 425 | edges.push_back(make_pair(v0, v1)); |
| 426 | } |
| 427 | } |
| 428 | } |
| 429 | } |
| 430 | |
| 431 | // Now erase all the old edges, and add all the new edges. This will |
| 432 | // automatically take care of any XORing that needs to be done, because |
| 433 | // EraseEdge also erases the sibling of undirected edges. |
| 434 | for (int i = 0; i < edges.size(); ++i) { |
| 435 | S2Point v0 = edges[i].first; |
| 436 | S2Point v1 = edges[i].second; |
| 437 | EraseEdge(v0, v1); |
| 438 | MergeMap::const_iterator new0 = merge_map.find(v0); |
| 439 | if (new0 != merge_map.end()) v0 = new0->second; |
| 440 | MergeMap::const_iterator new1 = merge_map.find(v1); |
| 441 | if (new1 != merge_map.end()) v1 = new1->second; |
| 442 | AddEdge(v0, v1); |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | void S2PolygonBuilder::SpliceEdges(PointIndex* index) { |
| 447 | // We keep a stack of unprocessed edges. Initially all edges are |
| 448 | // pushed onto the stack. |
| 449 | vector<pair<S2Point, S2Point> > edges; |
| 450 | for (EdgeSet::const_iterator i = edges_->begin(); i != edges_->end(); ++i) { |
| 451 | S2Point const& v0 = i->first; |
| 452 | VertexSet const& vset = i->second; |
| 453 | for (VertexSet::const_iterator j = vset.begin(); j != vset.end(); ++j) { |
| 454 | S2Point const& v1 = *j; |
| 455 | // We only need to modify one copy of each undirected edge. |
| 456 | if (!options_.undirected_edges() || v0 < v1) { |
| 457 | edges.push_back(make_pair(v0, v1)); |
| 458 | } |
| 459 | } |
| 460 | } |
| 461 | |
| 462 | // For each edge, we check whether there are any nearby vertices that should |
| 463 | // be spliced into it. If there are, we choose one such vertex, split |
| 464 | // the edge into two pieces, and iterate on each piece. |
| 465 | while (!edges.empty()) { |
| 466 | S2Point v0 = edges.back().first; |
| 467 | S2Point v1 = edges.back().second; |
| 468 | edges.pop_back(); // Do this before pushing new edges. |
| 469 | |
| 470 | // If we are xoring, edges may be erased before we get to them. |
| 471 | if (options_.xor_edges() && !HasEdge(v0, v1)) continue; |
| 472 | |
| 473 | S2Point vmid; |
| 474 | if (!index->FindNearbyPoint(v0, v1, &vmid)) continue; |
| 475 | |
| 476 | EraseEdge(v0, v1); |
| 477 | if (AddEdge(v0, vmid)) edges.push_back(make_pair(v0, vmid)); |
| 478 | if (AddEdge(vmid, v1)) edges.push_back(make_pair(vmid, v1)); |
| 479 | } |
| 480 | } |
| 481 | |
| 482 | bool S2PolygonBuilder::AssembleLoops(vector<S2Loop*>* loops, |
| 483 | EdgeList* unused_edges) { |
| 484 | if (options_.vertex_merge_radius().radians() > 0) { |
| 485 | PointIndex index(options_.vertex_merge_radius().radians(), |
| 486 | options_.edge_splice_fraction()); |
| 487 | MergeMap merge_map; |
| 488 | BuildMergeMap(&index, &merge_map); |
| 489 | MoveVertices(merge_map); |
| 490 | if (options_.edge_splice_fraction() > 0) { |
| 491 | SpliceEdges(&index); |
| 492 | } |
| 493 | } |
| 494 | |
| 495 | EdgeList dummy_unused_edges; |
| 496 | if (unused_edges == NULL) unused_edges = &dummy_unused_edges; |
| 497 | |
| 498 | // We repeatedly choose an edge and attempt to assemble a loop |
| 499 | // starting from that edge. (This is always possible unless the |
| 500 | // input includes extra edges that are not part of any loop.) To |
| 501 | // maintain a consistent scanning order over edges_ between |
| 502 | // different machine architectures (e.g. 'clovertown' vs. 'opteron'), |
| 503 | // we follow the order they were added to the builder. |
| 504 | unused_edges->clear(); |
| 505 | for (int i = 0; i < starting_vertices_.size(); ) { |
| 506 | S2Point const& v0 = starting_vertices_[i]; |
| 507 | EdgeSet::const_iterator candidates = edges_->find(v0); |
| 508 | if (candidates == edges_->end()) { |
| 509 | ++i; |
| 510 | continue; |
| 511 | } |
| 512 | // NOTE(user): If we have such two S2Points a, b that: |
| 513 | // |
| 514 | // a.x = b.x, a.y = b.y and |
| 515 | // -- a.z = b.z if CPU is Intel |
| 516 | // -- a.z <> b.z if CPU is AMD |
| 517 | // |
| 518 | // then the order of points picked up as v1 on the following line |
| 519 | // can be inconsistent between different machine architectures. |
| 520 | // |
| 521 | // As of b/3088321 and of cl/17847332, it's not clear if such |
| 522 | // input really exists in our input and probably it's O.K. not to |
| 523 | // address it in favor of the speed. |
| 524 | S2Point const& v1 = *(candidates->second.begin()); |
| 525 | S2Loop* loop = AssembleLoop(v0, v1, unused_edges); |
| 526 | if (loop != NULL) { |
| 527 | loops->push_back(loop); |
| 528 | EraseLoop(&loop->vertex(0), loop->num_vertices()); |
| 529 | } |
| 530 | } |
| 531 | return unused_edges->empty(); |
| 532 | } |
| 533 | |
| 534 | bool S2PolygonBuilder::AssemblePolygon(S2Polygon* polygon, |
| 535 | EdgeList* unused_edges) { |
| 536 | vector<S2Loop*> loops; |
| 537 | bool success = AssembleLoops(&loops, unused_edges); |
| 538 | |
| 539 | // If edges are undirected, then all loops are already CCW. Otherwise we |
| 540 | // need to make sure the loops are normalized. |
| 541 | if (!options_.undirected_edges()) { |
| 542 | for (int i = 0; i < loops.size(); ++i) { |
| 543 | loops[i]->Normalize(); |
| 544 | } |
| 545 | } |
| 546 | if (options_.validate() && !S2Polygon::IsValid(loops)) { |
| 547 | if (unused_edges != NULL) { |
| 548 | for (int i = 0; i < loops.size(); ++i) { |
| 549 | RejectLoop(&loops[i]->vertex(0), loops[i]->num_vertices(), |
| 550 | unused_edges); |
| 551 | } |
| 552 | } |
| 553 | |
| 554 | for (int i = 0; i < loops.size(); ++i) { |
| 555 | delete loops[i]; |
| 556 | } |
| 557 | loops.clear(); |
| 558 | return false; |
| 559 | } |
| 560 | polygon->Init(&loops); |
| 561 | return success; |
| 562 | } |
| 563 | |