| 1 | // Copyright 2005 Google Inc. All Rights Reserved. |
| 2 | |
| 3 | #ifndef UTIL_GEOMETRY_S2R2RECT_H_ |
| 4 | #define UTIL_GEOMETRY_S2R2RECT_H_ |
| 5 | |
| 6 | #include "base/basictypes.h" |
| 7 | #include "base/logging.h" |
| 8 | #include "r1interval.h" |
| 9 | #include "s2region.h" |
| 10 | #include "util/math/vector2-inl.h" |
| 11 | |
| 12 | class S2CellId; |
| 13 | class S2Cell; |
| 14 | |
| 15 | // TODO: Create an r2.h and move this definition into it. |
| 16 | typedef Vector2_d R2Point; |
| 17 | |
| 18 | // This class is a stopgap measure that allows some of the S2 spherical |
| 19 | // geometry machinery to be applied to planar geometry. An S2R2Rect |
| 20 | // represents a closed axis-aligned rectangle in the (x,y) plane, but it also |
| 21 | // happens to be a subtype of S2Region, which means that you can use an |
| 22 | // S2RegionCoverer to approximate it as a collection of S2CellIds. |
| 23 | // |
| 24 | // With respect to the S2Cell decomposition, an S2R2Rect is interpreted as a |
| 25 | // region of (s,t)-space on face 0. In particular, the rectangle [0,1]x[0,1] |
| 26 | // corresponds to the S2CellId that covers all of face 0. This means that |
| 27 | // only rectangles that are subsets of [0,1]x[0,1] can be approximated using |
| 28 | // the S2RegionCoverer interface. |
| 29 | // |
| 30 | // The S2R2Rect class is also a convenient way to find the (s,t)-region |
| 31 | // covered by a given S2CellId (see the FromCell and FromCellId methods). |
| 32 | // |
| 33 | // TODO: If the geometry library is extended to have better support for planar |
| 34 | // geometry, then this class should no longer be necessary. |
| 35 | // |
| 36 | // This class is intended to be copied by value as desired. It uses |
| 37 | // the default copy constructor and assignment operator, however it is |
| 38 | // not a "plain old datatype" (POD) because it has virtual functions. |
| 39 | class S2R2Rect : public S2Region { |
| 40 | public: |
| 41 | // Construct a rectangle from the given lower-left and upper-right points. |
| 42 | inline S2R2Rect(R2Point const& lo, R2Point const& hi); |
| 43 | |
| 44 | // Construct a rectangle from the given intervals in x and y. The two |
| 45 | // intervals must either be both empty or both non-empty. |
| 46 | inline S2R2Rect(R1Interval const& x, R1Interval const& y); |
| 47 | |
| 48 | // Construct a rectangle that corresponds to the boundary of the given cell |
| 49 | // is (s,t)-space. Such rectangles are always a subset of [0,1]x[0,1]. |
| 50 | static S2R2Rect FromCell(S2Cell const& cell); |
| 51 | static S2R2Rect FromCellId(S2CellId const& id); |
| 52 | |
| 53 | // Construct a rectangle from a center point and size in each dimension. |
| 54 | // Both components of size should be non-negative, i.e. this method cannot |
| 55 | // be used to create an empty rectangle. |
| 56 | static S2R2Rect FromCenterSize(R2Point const& center, |
| 57 | R2Point const& size); |
| 58 | |
| 59 | // Convenience method to construct a rectangle containing a single point. |
| 60 | static S2R2Rect FromPoint(R2Point const& p); |
| 61 | |
| 62 | // Convenience method to construct the minimal bounding rectangle containing |
| 63 | // the two given points. This is equivalent to starting with an empty |
| 64 | // rectangle and calling AddPoint() twice. Note that it is different than |
| 65 | // the S2R2Rect(lo, hi) constructor, where the first point is always |
| 66 | // used as the lower-left corner of the resulting rectangle. |
| 67 | static S2R2Rect FromPointPair(R2Point const& p1, R2Point const& p2); |
| 68 | |
| 69 | // Accessor methods. |
| 70 | R1Interval const& x() const { return x_; } |
| 71 | R1Interval const& y() const { return y_; } |
| 72 | R1Interval *mutable_x() { return &x_; } |
| 73 | R1Interval *mutable_y() { return &y_; } |
| 74 | R2Point lo() const { return R2Point(x_.lo(), y_.lo()); } |
| 75 | R2Point hi() const { return R2Point(x_.hi(), y_.hi()); } |
| 76 | |
| 77 | // The canonical empty rectangle. Use is_empty() to test for empty |
| 78 | // rectangles, since they have more than one representation. |
| 79 | static inline S2R2Rect Empty(); |
| 80 | |
| 81 | // Return true if the rectangle is valid, which essentially just means |
| 82 | // that if the bound for either axis is empty then both must be. |
| 83 | inline bool is_valid() const; |
| 84 | |
| 85 | // Return true if the rectangle is empty, i.e. it contains no points at all. |
| 86 | inline bool is_empty() const; |
| 87 | |
| 88 | // Return the k-th vertex of the rectangle (k = 0,1,2,3) in CCW order. |
| 89 | // Vertex 0 is in the lower-left corner. |
| 90 | R2Point GetVertex(int k) const; |
| 91 | |
| 92 | // Return the center of the rectangle in (x,y)-space |
| 93 | // (in general this is not the center of the region on the sphere). |
| 94 | R2Point GetCenter() const; |
| 95 | |
| 96 | // Return the width and height of this rectangle in (x,y)-space. Empty |
| 97 | // rectangles have a negative width and height. |
| 98 | R2Point GetSize() const; |
| 99 | |
| 100 | // Return true if the rectangle contains the given point. Note that |
| 101 | // rectangles are closed regions, i.e. they contain their boundary. |
| 102 | bool Contains(R2Point const& p) const; |
| 103 | |
| 104 | // Return true if and only if the given point is contained in the interior |
| 105 | // of the region (i.e. the region excluding its boundary). |
| 106 | bool InteriorContains(R2Point const& p) const; |
| 107 | |
| 108 | // Return true if and only if the rectangle contains the given other |
| 109 | // rectangle. |
| 110 | bool Contains(S2R2Rect const& other) const; |
| 111 | |
| 112 | // Return true if and only if the interior of this rectangle contains all |
| 113 | // points of the given other rectangle (including its boundary). |
| 114 | bool InteriorContains(S2R2Rect const& other) const; |
| 115 | |
| 116 | // Return true if this rectangle and the given other rectangle have any |
| 117 | // points in common. |
| 118 | bool Intersects(S2R2Rect const& other) const; |
| 119 | |
| 120 | // Return true if and only if the interior of this rectangle intersects |
| 121 | // any point (including the boundary) of the given other rectangle. |
| 122 | bool InteriorIntersects(S2R2Rect const& other) const; |
| 123 | |
| 124 | // Increase the size of the bounding rectangle to include the given point. |
| 125 | // The rectangle is expanded by the minimum amount possible. |
| 126 | void AddPoint(R2Point const& p); |
| 127 | |
| 128 | // Return a rectangle that contains all points whose x-distance from this |
| 129 | // rectangle is at most margin.x(), and whose y-distance from this rectangle |
| 130 | // is at most margin.y(). Note that any expansion of an empty interval |
| 131 | // remains empty, and both components of the given margin must be |
| 132 | // non-negative. |
| 133 | S2R2Rect Expanded(R2Point const& margin) const; |
| 134 | |
| 135 | // Return the smallest rectangle containing the union of this rectangle and |
| 136 | // the given rectangle. |
| 137 | S2R2Rect Union(S2R2Rect const& other) const; |
| 138 | |
| 139 | // Return the smallest rectangle containing the intersection of this |
| 140 | // rectangle and the given rectangle. |
| 141 | S2R2Rect Intersection(S2R2Rect const& other) const; |
| 142 | |
| 143 | // Return true if two rectangles contains the same set of points. |
| 144 | inline bool operator==(S2R2Rect const& other) const; |
| 145 | |
| 146 | // Return true if the x- and y-intervals of the two rectangles are the same |
| 147 | // up to the given tolerance (see r1interval.h for details). |
| 148 | bool ApproxEquals(S2R2Rect const& other, double max_error = 1e-15) const; |
| 149 | |
| 150 | // Return the unit-length S2Point corresponding to the given point "p" in |
| 151 | // the (s,t)-plane. "p" need not be restricted to the range [0,1]x[0,1]. |
| 152 | static S2Point ToS2Point(R2Point const& p); |
| 153 | |
| 154 | //////////////////////////////////////////////////////////////////////// |
| 155 | // S2Region interface (see s2region.h for details): |
| 156 | |
| 157 | virtual S2R2Rect* Clone() const; |
| 158 | virtual S2Cap GetCapBound() const; |
| 159 | virtual S2LatLngRect GetRectBound() const; |
| 160 | virtual bool VirtualContainsPoint(S2Point const& p) const { |
| 161 | return Contains(p); // The same as Contains() below, just virtual. |
| 162 | } |
| 163 | bool Contains(S2Point const& p) const; |
| 164 | virtual bool Contains(S2Cell const& cell) const; |
| 165 | virtual bool MayIntersect(S2Cell const& cell) const; |
| 166 | virtual void Encode(Encoder* const encoder) const { |
| 167 | LOG(FATAL) << "Unimplemented" ; |
| 168 | } |
| 169 | virtual bool Decode(Decoder* const decoder) { return false; } |
| 170 | |
| 171 | private: |
| 172 | R1Interval x_; |
| 173 | R1Interval y_; |
| 174 | }; |
| 175 | |
| 176 | inline S2R2Rect::S2R2Rect(R2Point const& lo, R2Point const& hi) |
| 177 | : x_(lo.x(), hi.x()), y_(lo.y(), hi.y()) { |
| 178 | DCHECK(is_valid()); |
| 179 | } |
| 180 | |
| 181 | inline S2R2Rect::S2R2Rect(R1Interval const& x, R1Interval const& y) |
| 182 | : x_(x), y_(y) { |
| 183 | DCHECK(is_valid()); |
| 184 | } |
| 185 | |
| 186 | inline S2R2Rect S2R2Rect::Empty() { |
| 187 | return S2R2Rect(R1Interval::Empty(), R1Interval::Empty()); |
| 188 | } |
| 189 | |
| 190 | inline bool S2R2Rect::is_valid() const { |
| 191 | // The x/y ranges must either be both empty or both non-empty. |
| 192 | return x_.is_empty() == y_.is_empty(); |
| 193 | } |
| 194 | |
| 195 | inline bool S2R2Rect::is_empty() const { |
| 196 | return x_.is_empty(); |
| 197 | } |
| 198 | |
| 199 | inline bool S2R2Rect::operator==(S2R2Rect const& other) const { |
| 200 | return x_ == other.x_ && y_ == other.y_; |
| 201 | } |
| 202 | |
| 203 | ostream& operator<<(ostream& os, S2R2Rect const& r); |
| 204 | |
| 205 | #endif // UTIL_GEOMETRY_S2R2RECT_H_ |
| 206 | |