1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************// |
2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********// |
3 | #include "Animation/BsAnimationCurve.h" |
4 | #include "Private/RTTI/BsAnimationCurveRTTI.h" |
5 | #include "Math/BsVector3.h" |
6 | #include "Math/BsVector2.h" |
7 | #include "Math/BsQuaternion.h" |
8 | #include "Math/BsMath.h" |
9 | #include "Animation/BsAnimationUtility.h" |
10 | |
11 | namespace bs |
12 | { |
13 | namespace impl |
14 | { |
15 | /** |
16 | * Checks if any components of the keyframes are constant (step) functions and updates the hermite curve coefficients |
17 | * accordingly. |
18 | */ |
19 | void setStepCoefficients(const TKeyframe<float>& lhs, const TKeyframe<float>& rhs, float(&coefficients)[4]) |
20 | { |
21 | if (lhs.outTangent != std::numeric_limits<float>::infinity() && |
22 | rhs.inTangent != std::numeric_limits<float>::infinity()) |
23 | return; |
24 | |
25 | coefficients[0] = 0.0f; |
26 | coefficients[1] = 0.0f; |
27 | coefficients[2] = 0.0f; |
28 | coefficients[3] = lhs.value; |
29 | } |
30 | |
31 | void setStepCoefficients(const TKeyframe<Vector3>& lhs, const TKeyframe<Vector3>& rhs, Vector3(&coefficients)[4]) |
32 | { |
33 | for (UINT32 i = 0; i < 3; i++) |
34 | { |
35 | if (lhs.outTangent[i] != std::numeric_limits<float>::infinity() && |
36 | rhs.inTangent[i] != std::numeric_limits<float>::infinity()) |
37 | continue; |
38 | |
39 | coefficients[0][i] = 0.0f; |
40 | coefficients[1][i] = 0.0f; |
41 | coefficients[2][i] = 0.0f; |
42 | coefficients[3][i] = lhs.value[i]; |
43 | } |
44 | } |
45 | |
46 | void setStepCoefficients(const TKeyframe<Vector2>& lhs, const TKeyframe<Vector2>& rhs, Vector2(&coefficients)[4]) |
47 | { |
48 | for (UINT32 i = 0; i < 2; i++) |
49 | { |
50 | if (lhs.outTangent[i] != std::numeric_limits<float>::infinity() && |
51 | rhs.inTangent[i] != std::numeric_limits<float>::infinity()) |
52 | continue; |
53 | |
54 | coefficients[0][i] = 0.0f; |
55 | coefficients[1][i] = 0.0f; |
56 | coefficients[2][i] = 0.0f; |
57 | coefficients[3][i] = lhs.value[i]; |
58 | } |
59 | } |
60 | |
61 | void setStepCoefficients(const TKeyframe<Quaternion>& lhs, const TKeyframe<Quaternion>& rhs, Quaternion(&coefficients)[4]) |
62 | { |
63 | for (UINT32 i = 0; i < 4; i++) |
64 | { |
65 | if (lhs.outTangent[i] != std::numeric_limits<float>::infinity() && |
66 | rhs.inTangent[i] != std::numeric_limits<float>::infinity()) |
67 | continue; |
68 | |
69 | coefficients[0][i] = 0.0f; |
70 | coefficients[1][i] = 0.0f; |
71 | coefficients[2][i] = 0.0f; |
72 | coefficients[3][i] = lhs.value[i]; |
73 | } |
74 | } |
75 | |
76 | /** Checks if any components of the keyframes are constant (step) functions and updates the key value. */ |
77 | void setStepValue(const TKeyframe<float>& lhs, const TKeyframe<float>& rhs, float& value) |
78 | { |
79 | if (lhs.outTangent != std::numeric_limits<float>::infinity() && |
80 | rhs.inTangent != std::numeric_limits<float>::infinity()) |
81 | return; |
82 | |
83 | value = lhs.value; |
84 | } |
85 | |
86 | void setStepValue(const TKeyframe<Vector3>& lhs, const TKeyframe<Vector3>& rhs, Vector3& value) |
87 | { |
88 | for (UINT32 i = 0; i < 3; i++) |
89 | { |
90 | if (lhs.outTangent[i] != std::numeric_limits<float>::infinity() && |
91 | rhs.inTangent[i] != std::numeric_limits<float>::infinity()) |
92 | continue; |
93 | |
94 | value[i] = lhs.value[i]; |
95 | } |
96 | } |
97 | |
98 | void setStepValue(const TKeyframe<Vector2>& lhs, const TKeyframe<Vector2>& rhs, Vector2& value) |
99 | { |
100 | for (UINT32 i = 0; i < 2; i++) |
101 | { |
102 | if (lhs.outTangent[i] != std::numeric_limits<float>::infinity() && |
103 | rhs.inTangent[i] != std::numeric_limits<float>::infinity()) |
104 | continue; |
105 | |
106 | value[i] = lhs.value[i]; |
107 | } |
108 | } |
109 | |
110 | void setStepValue(const TKeyframe<Quaternion>& lhs, const TKeyframe<Quaternion>& rhs, Quaternion& value) |
111 | { |
112 | for (UINT32 i = 0; i < 4; i++) |
113 | { |
114 | if (lhs.outTangent[i] != std::numeric_limits<float>::infinity() && |
115 | rhs.inTangent[i] != std::numeric_limits<float>::infinity()) |
116 | continue; |
117 | |
118 | value[i] = lhs.value[i]; |
119 | } |
120 | } |
121 | |
122 | /** Checks if any components of the keyframes are constant (step) functions and updates the key tangent. */ |
123 | void setStepTangent(const TKeyframe<float>& lhs, const TKeyframe<float>& rhs, float& tangent) |
124 | { |
125 | if (lhs.outTangent != std::numeric_limits<float>::infinity() && |
126 | rhs.inTangent != std::numeric_limits<float>::infinity()) |
127 | return; |
128 | |
129 | tangent = std::numeric_limits<float>::infinity(); |
130 | } |
131 | |
132 | void setStepTangent(const TKeyframe<Vector3>& lhs, const TKeyframe<Vector3>& rhs, Vector3& tangent) |
133 | { |
134 | for (UINT32 i = 0; i < 3; i++) |
135 | { |
136 | if (lhs.outTangent[i] != std::numeric_limits<float>::infinity() && |
137 | rhs.inTangent[i] != std::numeric_limits<float>::infinity()) |
138 | continue; |
139 | |
140 | tangent[i] = std::numeric_limits<float>::infinity(); |
141 | } |
142 | } |
143 | |
144 | void setStepTangent(const TKeyframe<Vector2>& lhs, const TKeyframe<Vector2>& rhs, Vector2& tangent) |
145 | { |
146 | for (UINT32 i = 0; i < 2; i++) |
147 | { |
148 | if (lhs.outTangent[i] != std::numeric_limits<float>::infinity() && |
149 | rhs.inTangent[i] != std::numeric_limits<float>::infinity()) |
150 | continue; |
151 | |
152 | tangent[i] = std::numeric_limits<float>::infinity(); |
153 | } |
154 | } |
155 | |
156 | void setStepTangent(const TKeyframe<Quaternion>& lhs, const TKeyframe<Quaternion>& rhs, Quaternion& tangent) |
157 | { |
158 | for (UINT32 i = 0; i < 4; i++) |
159 | { |
160 | if (lhs.outTangent[i] != std::numeric_limits<float>::infinity() && |
161 | rhs.inTangent[i] != std::numeric_limits<float>::infinity()) |
162 | continue; |
163 | |
164 | tangent[i] = std::numeric_limits<float>::infinity(); |
165 | } |
166 | } |
167 | |
168 | /** Calculates the difference between two values. */ |
169 | float getDiff(float lhs, float rhs) |
170 | { |
171 | return lhs - rhs; |
172 | } |
173 | |
174 | Vector3 getDiff(const Vector3& lhs, const Vector3& rhs) |
175 | { |
176 | return lhs - rhs; |
177 | } |
178 | |
179 | Vector2 getDiff(const Vector2& lhs, const Vector2& rhs) |
180 | { |
181 | return lhs - rhs; |
182 | } |
183 | |
184 | Quaternion getDiff(const Quaternion& lhs, const Quaternion& rhs) |
185 | { |
186 | return rhs.inverse() * lhs; |
187 | } |
188 | |
189 | INT32 getDiff(INT32 lhs, INT32 rhs) |
190 | { |
191 | return lhs - rhs; |
192 | } |
193 | |
194 | template <class T> |
195 | T getZero() { return 0.0f; } |
196 | |
197 | template<> |
198 | float getZero<float>() { return 0.0f; } |
199 | |
200 | template<> |
201 | Vector3 getZero<Vector3>() { return Vector3(BsZero); } |
202 | |
203 | template<> |
204 | Vector2 getZero<Vector2>() { return Vector2(BsZero); } |
205 | |
206 | template<> |
207 | Quaternion getZero<Quaternion>() { return Quaternion(BsZero); } |
208 | |
209 | template<> |
210 | INT32 getZero<INT32>() { return 0; } |
211 | |
212 | template <class T> |
213 | constexpr UINT32 getNumComponents() { return 1; } |
214 | |
215 | template<> |
216 | constexpr UINT32 getNumComponents<Vector3>() { return 3; } |
217 | |
218 | template<> |
219 | constexpr UINT32 getNumComponents<Vector2>() { return 2; } |
220 | |
221 | template<> |
222 | constexpr UINT32 getNumComponents<Quaternion>() { return 4; } |
223 | |
224 | template <class T> |
225 | float& getComponent(T& val, UINT32 idx) { return val; } |
226 | |
227 | template<> |
228 | float& getComponent(Vector3& val, UINT32 idx) { return val[idx]; } |
229 | |
230 | template<> |
231 | float& getComponent(Vector2& val, UINT32 idx) { return val[idx]; } |
232 | |
233 | template<> |
234 | float& getComponent(Quaternion& val, UINT32 idx) { return val[idx]; } |
235 | |
236 | template <class T> |
237 | float getComponent(const T& val, UINT32 idx) { return val; } |
238 | |
239 | template<> |
240 | float getComponent(const Vector3& val, UINT32 idx) { return val[idx]; } |
241 | |
242 | template<> |
243 | float getComponent(const Vector2& val, UINT32 idx) { return val[idx]; } |
244 | |
245 | template<> |
246 | float getComponent(const Quaternion& val, UINT32 idx) { return val[idx]; } |
247 | |
248 | template <class T> |
249 | void getMinMax(std::pair<T, T>& minmax, const T& value) |
250 | { |
251 | minmax.first = std::min(minmax.first, value); |
252 | minmax.second = std::max(minmax.second, value); |
253 | } |
254 | |
255 | template <> |
256 | void getMinMax(std::pair<Vector3, Vector3>& minmax, const Vector3& value) |
257 | { |
258 | minmax.first = Vector3::min(minmax.first, value); |
259 | minmax.second = Vector3::max(minmax.second, value); |
260 | } |
261 | |
262 | template <> |
263 | void getMinMax(std::pair<Vector2, Vector2>& minmax, const Vector2& value) |
264 | { |
265 | minmax.first = Vector2::min(minmax.first, value); |
266 | minmax.second = Vector2::max(minmax.second, value); |
267 | } |
268 | |
269 | template <> |
270 | void getMinMax(std::pair<Quaternion, Quaternion>& minmax, const Quaternion& value) |
271 | { |
272 | minmax.first = Quaternion::min(minmax.first, value); |
273 | minmax.second = Quaternion::max(minmax.second, value); |
274 | } |
275 | |
276 | template<class T> |
277 | TKeyframe<T> evaluateKey(const TKeyframe<T>& lhs, const TKeyframe<T>& rhs, float time) |
278 | { |
279 | float length = rhs.time - lhs.time; |
280 | |
281 | if (Math::approxEquals(length, 0.0f)) |
282 | return lhs; |
283 | |
284 | // Resize tangents since we're not evaluating the curve over unit range |
285 | float invLength = 1.0f / length; |
286 | float t = (time - lhs.time) * invLength; |
287 | T leftTangent = lhs.outTangent * length; |
288 | T rightTangent = rhs.inTangent * length; |
289 | |
290 | TKeyframe<T> output; |
291 | output.time = time; |
292 | output.value = Math::cubicHermite(t, lhs.value, rhs.value, leftTangent, rightTangent); |
293 | output.inTangent = Math::cubicHermiteD1(t, lhs.value, rhs.value, leftTangent, rightTangent) * invLength; |
294 | |
295 | setStepValue(lhs, rhs, output.value); |
296 | setStepTangent(lhs, rhs, output.inTangent); |
297 | |
298 | output.outTangent = output.inTangent; |
299 | |
300 | return output; |
301 | } |
302 | |
303 | template<> |
304 | TKeyframe<INT32> evaluateKey(const TKeyframe<INT32>& lhs, const TKeyframe<INT32>& rhs, float time) |
305 | { |
306 | TKeyframe<INT32> output; |
307 | output.time = time; |
308 | output.value = time >= rhs.time ? rhs.value : lhs.value; |
309 | |
310 | return output; |
311 | } |
312 | |
313 | template <class T> |
314 | T evaluateCubic(float time, float start, float end, T (&coeffs)[4]) |
315 | { |
316 | float t = time - start; |
317 | return t * (t * (t * coeffs[0] + coeffs[1]) + coeffs[2]) + coeffs[3]; |
318 | } |
319 | |
320 | template <> |
321 | INT32 evaluateCubic(float time, float start, float end, INT32 (&coeffs)[4]) |
322 | { |
323 | return time >= end ? coeffs[1] : coeffs[0]; |
324 | } |
325 | |
326 | template<class T> |
327 | void calculateCoeffs(const TKeyframe<T>& lhs, const TKeyframe<T>& rhs, float time, T (&coeffs)[4]) |
328 | { |
329 | float length = rhs.time - lhs.time; |
330 | |
331 | // Handle the case where both keys are identical, or close enough to cause precision issues |
332 | if (length < 0.000001f) |
333 | { |
334 | coeffs[0] = impl::getZero<T>(); |
335 | coeffs[1] = impl::getZero<T>(); |
336 | coeffs[2] = impl::getZero<T>(); |
337 | coeffs[3] = lhs.value; |
338 | } |
339 | else |
340 | Math::cubicHermiteCoefficients(lhs.value, rhs.value, lhs.outTangent, rhs.inTangent, length, coeffs); |
341 | |
342 | setStepCoefficients(lhs, rhs, coeffs); |
343 | } |
344 | |
345 | template<> |
346 | void calculateCoeffs(const TKeyframe<INT32>& lhs, const TKeyframe<INT32>& rhs, float time, INT32 (&coeffs)[4]) |
347 | { |
348 | coeffs[0] = lhs.value; |
349 | coeffs[1] = rhs.value; |
350 | } |
351 | |
352 | template<class T> |
353 | T evaluateAndUpdateCache(const TKeyframe<T>& lhs, const TKeyframe<T>& rhs, float time, T (&coeffs)[4]) |
354 | { |
355 | calculateCoeffs(lhs, rhs, time, coeffs); |
356 | |
357 | return impl::evaluateCubic(time, lhs.time, rhs.time, coeffs); |
358 | } |
359 | |
360 | template<> |
361 | INT32 evaluateAndUpdateCache(const TKeyframe<INT32>& lhs, const TKeyframe<INT32>& rhs, float time, |
362 | INT32 (&coeffs)[4]) |
363 | { |
364 | coeffs[0] = lhs.value; |
365 | coeffs[1] = rhs.value; |
366 | |
367 | return time >= rhs.time ? rhs.value : lhs.value; |
368 | } |
369 | |
370 | template<class T> |
371 | T evaluate(const TKeyframe<T>& lhs, const TKeyframe<T>& rhs, float time) |
372 | { |
373 | float length = rhs.time - lhs.time; |
374 | assert(length > 0.0f); |
375 | |
376 | float t; |
377 | T leftTangent; |
378 | T rightTangent; |
379 | |
380 | if (Math::approxEquals(length, 0.0f)) |
381 | { |
382 | t = 0.0f; |
383 | leftTangent = impl::getZero<T>(); |
384 | rightTangent = impl::getZero<T>(); |
385 | } |
386 | else |
387 | { |
388 | // Scale from arbitrary range to [0, 1] |
389 | t = (time - lhs.time) / length; |
390 | leftTangent = lhs.outTangent * length; |
391 | rightTangent = rhs.inTangent * length; |
392 | } |
393 | |
394 | T output = Math::cubicHermite(t, lhs.value, rhs.value, leftTangent, rightTangent); |
395 | setStepValue(lhs, rhs, output); |
396 | |
397 | return output; |
398 | } |
399 | |
400 | template<> |
401 | INT32 evaluate(const TKeyframe<INT32>& lhs, const TKeyframe<INT32>& rhs, float time) |
402 | { |
403 | return time >= rhs.time ? rhs.value : lhs.value; |
404 | } |
405 | |
406 | template <class T> |
407 | void integrate(T (&coeffs)[4]) |
408 | { |
409 | coeffs[0] = (T)(coeffs[0] / 4.0f); |
410 | coeffs[1] = (T)(coeffs[1] / 3.0f); |
411 | coeffs[2] = (T)(coeffs[2] / 2.0f); |
412 | } |
413 | |
414 | template <class T> |
415 | void calcMinMax(std::pair<T, T>& minmax, float start, float end, T(&coeffs)[4]) |
416 | { |
417 | // Differentiate |
418 | T a = (T)(3.0f * coeffs[0]); |
419 | T b = (T)(2.0f * coeffs[1]); |
420 | T c = (T)(1.0f * coeffs[2]); |
421 | |
422 | const UINT32 numComponents = getNumComponents<T>(); |
423 | |
424 | for (UINT32 i = 0; i < numComponents; i++) |
425 | { |
426 | float roots[2]; |
427 | const UINT32 numRoots = Math::solveQuadratic( |
428 | getComponent(a, i), |
429 | getComponent(b, i), |
430 | getComponent(c, i), |
431 | roots); |
432 | |
433 | for (UINT32 j = 0; j < numRoots; j++) |
434 | { |
435 | if ((roots[j] >= 0.0f) && ((start + roots[j]) < end)) |
436 | { |
437 | float fltCoeffs[4] = |
438 | { |
439 | getComponent(coeffs[0], i), |
440 | getComponent(coeffs[1], i), |
441 | getComponent(coeffs[2], i), |
442 | getComponent(coeffs[3], i) |
443 | }; |
444 | |
445 | float value = evaluateCubic(roots[j], 0.0f, 0.0f, fltCoeffs); |
446 | |
447 | getComponent(minmax.first, i) = std::min(getComponent(minmax.first, i), value); |
448 | getComponent(minmax.second, i) = std::max(getComponent(minmax.second, i), value); |
449 | } |
450 | } |
451 | } |
452 | } |
453 | |
454 | template <> |
455 | void calcMinMax(std::pair<INT32, INT32>& minmax, float start, float end, INT32(&coeffs)[4]) |
456 | { |
457 | getMinMax(minmax, coeffs[0]); |
458 | getMinMax(minmax, coeffs[1]); |
459 | } |
460 | |
461 | template <class T> |
462 | void calcMinMaxIntegrated(std::pair<T, T>& minmax, float start, float end, const T& sum, T(&coeffs)[4]) |
463 | { |
464 | // Differentiate |
465 | T a = 4.0f * coeffs[0]; |
466 | T b = 3.0f * coeffs[1]; |
467 | T c = 2.0f * coeffs[2]; |
468 | T d = 1.0f * coeffs[3]; |
469 | |
470 | const UINT32 numComponents = getNumComponents<T>(); |
471 | |
472 | for (UINT32 i = 0; i < numComponents; i++) |
473 | { |
474 | float roots[3]; |
475 | const UINT32 numRoots = Math::solveCubic( |
476 | getComponent(a, i), |
477 | getComponent(b, i), |
478 | getComponent(c, i), |
479 | getComponent(d, i), |
480 | roots); |
481 | |
482 | for (UINT32 j = 0; j < numRoots; j++) |
483 | { |
484 | if ((roots[j] >= 0.0f) && ((start + roots[j]) < end)) |
485 | { |
486 | float fltCoeffs[4] = |
487 | { |
488 | getComponent(coeffs[0], i), |
489 | getComponent(coeffs[1], i), |
490 | getComponent(coeffs[2], i), |
491 | getComponent(coeffs[3], i) |
492 | }; |
493 | |
494 | float value = getComponent(sum, i) + evaluateCubic(roots[j], 0.0f, 0.0f, fltCoeffs) * roots[j]; |
495 | |
496 | getComponent(minmax.first, i) = std::min(getComponent(minmax.first, i), value); |
497 | getComponent(minmax.second, i) = std::max(getComponent(minmax.second, i), value); |
498 | } |
499 | } |
500 | } |
501 | } |
502 | |
503 | template <> |
504 | void calcMinMaxIntegrated(std::pair<INT32, INT32>& minmax, float start, float end, const INT32& sum, |
505 | INT32(&coeffs)[4]) |
506 | { |
507 | assert(false && "Not implemented" ); |
508 | } |
509 | |
510 | template <class T> |
511 | void calcMinMaxIntegratedDouble(std::pair<T, T>& minmax, float start, float end, const T& doubleSum, |
512 | const T& sum, T(&coeffs)[4]) |
513 | { |
514 | // Differentiate |
515 | T a = 5.0f * coeffs[0]; |
516 | T b = 4.0f * coeffs[1]; |
517 | T c = 3.0f * coeffs[2]; |
518 | T d = 2.0f * coeffs[3]; |
519 | |
520 | const UINT32 numComponents = getNumComponents<T>(); |
521 | |
522 | for (UINT32 i = 0; i < numComponents; i++) |
523 | { |
524 | float roots[4]; |
525 | const UINT32 numRoots = Math::solveQuartic( |
526 | getComponent(a, i), |
527 | getComponent(b, i), |
528 | getComponent(c, i), |
529 | getComponent(d, i), |
530 | 0.0f, |
531 | roots); |
532 | |
533 | for (UINT32 j = 0; j < numRoots; j++) |
534 | { |
535 | if ((roots[j] >= 0.0f) && ((start + roots[j]) < end)) |
536 | { |
537 | float fltCoeffs[4] = |
538 | { |
539 | getComponent(coeffs[0], i), |
540 | getComponent(coeffs[1], i), |
541 | getComponent(coeffs[2], i), |
542 | getComponent(coeffs[3], i) |
543 | }; |
544 | |
545 | float root = roots[j]; |
546 | float value = getComponent(doubleSum, i) + getComponent(sum, i) * root + |
547 | evaluateCubic(root, 0.0f, 0.0f, fltCoeffs) * root * root; |
548 | |
549 | getComponent(minmax.first, i) = std::min(getComponent(minmax.first, i), value); |
550 | getComponent(minmax.second, i) = std::max(getComponent(minmax.second, i), value); |
551 | } |
552 | } |
553 | } |
554 | } |
555 | |
556 | template <> |
557 | void calcMinMaxIntegratedDouble(std::pair<INT32, INT32>& minmax, float start, float end, |
558 | const INT32& doubleSum, const INT32& sum, INT32(&coeffs)[4]) |
559 | { |
560 | assert(false && "Not implemented" ); |
561 | } |
562 | } |
563 | |
564 | template <class T> |
565 | const UINT32 TAnimationCurve<T>::CACHE_LOOKAHEAD = 3; |
566 | |
567 | template <class T> |
568 | TAnimationCurve<T>::TAnimationCurve(const Vector<KeyFrame>& keyframes) |
569 | :mKeyframes(keyframes) |
570 | { |
571 | #if BS_DEBUG_MODE |
572 | // Ensure keyframes are sorted |
573 | if(!keyframes.empty()) |
574 | { |
575 | float time = keyframes[0].time; |
576 | for (UINT32 i = 1; i < (UINT32)keyframes.size(); i++) |
577 | { |
578 | assert(keyframes[i].time >= time); |
579 | time = keyframes[i].time; |
580 | } |
581 | } |
582 | #endif |
583 | |
584 | if (!keyframes.empty()) |
585 | mEnd = keyframes.back().time; |
586 | else |
587 | mEnd = 0.0f; |
588 | |
589 | mStart = 0.0f; |
590 | mLength = mEnd; |
591 | } |
592 | |
593 | template <class T> |
594 | T TAnimationCurve<T>::evaluate(float time, const TCurveCache<T>& cache, bool loop) const |
595 | { |
596 | if (mKeyframes.empty()) |
597 | return impl::getZero<T>(); |
598 | |
599 | if (Math::approxEquals(mLength, 0.0f)) |
600 | time = 0.0f; |
601 | |
602 | // Wrap time if looping |
603 | if(loop && mLength > 0.0f) |
604 | { |
605 | if (time < mStart) |
606 | time = time + (std::floor(mEnd - time) / mLength) * mLength; |
607 | else if (time > mEnd) |
608 | time = time - std::floor((time - mStart) / mLength) * mLength; |
609 | } |
610 | |
611 | // If time is within cache, evaluate it directly |
612 | if (time >= cache.cachedCurveStart && time < cache.cachedCurveEnd) |
613 | return impl::evaluateCubic(time, cache.cachedCurveStart, cache.cachedCurveEnd, cache.cachedCubicCoefficients); |
614 | |
615 | // Clamp to start, cache constant of the first key and return |
616 | if(time < mStart) |
617 | { |
618 | cache.cachedCurveStart = -std::numeric_limits<float>::infinity(); |
619 | cache.cachedCurveEnd = mStart; |
620 | cache.cachedKey = 0; |
621 | cache.cachedCubicCoefficients[0] = impl::getZero<T>(); |
622 | cache.cachedCubicCoefficients[1] = impl::getZero<T>(); |
623 | cache.cachedCubicCoefficients[2] = impl::getZero<T>(); |
624 | cache.cachedCubicCoefficients[3] = mKeyframes[0].value; |
625 | |
626 | return mKeyframes[0].value; |
627 | } |
628 | |
629 | if(time >= mEnd) // Clamp to end, cache constant of the final key and return |
630 | { |
631 | UINT32 lastKey = (UINT32)mKeyframes.size() - 1; |
632 | |
633 | cache.cachedCurveStart = mEnd; |
634 | cache.cachedCurveEnd = std::numeric_limits<float>::infinity(); |
635 | cache.cachedKey = lastKey; |
636 | cache.cachedCubicCoefficients[0] = impl::getZero<T>(); |
637 | cache.cachedCubicCoefficients[1] = impl::getZero<T>(); |
638 | cache.cachedCubicCoefficients[2] = impl::getZero<T>(); |
639 | cache.cachedCubicCoefficients[3] = mKeyframes[lastKey].value; |
640 | |
641 | return mKeyframes[lastKey].value; |
642 | } |
643 | |
644 | // Since our value is not in cache, search for the valid pair of keys of interpolate |
645 | UINT32 leftKeyIdx; |
646 | UINT32 rightKeyIdx; |
647 | |
648 | findKeys(time, cache, leftKeyIdx, rightKeyIdx); |
649 | |
650 | // Calculate cubic hermite curve coefficients so we can store them in cache |
651 | const KeyFrame& leftKey = mKeyframes[leftKeyIdx]; |
652 | const KeyFrame& rightKey = mKeyframes[rightKeyIdx]; |
653 | |
654 | cache.cachedCurveStart = leftKey.time; |
655 | cache.cachedCurveEnd = rightKey.time; |
656 | |
657 | return impl::evaluateAndUpdateCache(leftKey, rightKey, time, cache.cachedCubicCoefficients); |
658 | } |
659 | |
660 | template <class T> |
661 | T TAnimationCurve<T>::evaluate(float time, bool loop) const |
662 | { |
663 | if (mKeyframes.empty()) |
664 | return impl::getZero<T>(); |
665 | |
666 | AnimationUtility::wrapTime(time, mStart, mEnd, loop); |
667 | |
668 | UINT32 leftKeyIdx; |
669 | UINT32 rightKeyIdx; |
670 | |
671 | findKeys(time, leftKeyIdx, rightKeyIdx); |
672 | |
673 | // Evaluate curve as hermite cubic spline |
674 | const KeyFrame& leftKey = mKeyframes[leftKeyIdx]; |
675 | const KeyFrame& rightKey = mKeyframes[rightKeyIdx]; |
676 | |
677 | if (leftKeyIdx == rightKeyIdx) |
678 | return leftKey.value; |
679 | |
680 | return impl::evaluate(leftKey, rightKey, time); |
681 | } |
682 | |
683 | template <class T> |
684 | T TAnimationCurve<T>::evaluateIntegrated(float time, const TCurveIntegrationCache<T>& integrationCache) const |
685 | { |
686 | const auto numKeyframes = (UINT32)mKeyframes.size(); |
687 | if (numKeyframes == 0) |
688 | return impl::getZero<T>(); |
689 | |
690 | if(time < mStart) |
691 | time = mStart; |
692 | |
693 | // Generate integration cache if required |
694 | if(!integrationCache.segmentSums) |
695 | buildIntegrationCache(integrationCache); |
696 | |
697 | if(numKeyframes == 1) |
698 | return (T)(mKeyframes[0].value * (time - mKeyframes[0].time)); |
699 | |
700 | UINT32 leftKeyIdx; |
701 | UINT32 rightKeyIdx; |
702 | |
703 | findKeys(time, leftKeyIdx, rightKeyIdx); |
704 | |
705 | if(leftKeyIdx == rightKeyIdx) |
706 | return integrationCache.segmentSums[leftKeyIdx]; |
707 | |
708 | const KeyFrame& lhs = mKeyframes[leftKeyIdx]; |
709 | T(&coeffs)[4] = integrationCache.coeffs[leftKeyIdx]; |
710 | |
711 | const float t = time - lhs.time; |
712 | return integrationCache.segmentSums[leftKeyIdx] + (T)(impl::evaluateCubic(t, 0.0f, 0.0f, coeffs) * t); |
713 | } |
714 | |
715 | template <class T> |
716 | T TAnimationCurve<T>::evaluateIntegratedDouble(float time, const TCurveIntegrationCache<T>& integrationCache) const |
717 | { |
718 | const auto numKeyframes = (UINT32)mKeyframes.size(); |
719 | if (numKeyframes == 0) |
720 | return impl::getZero<T>(); |
721 | |
722 | if(time < mStart) |
723 | time = mStart; |
724 | |
725 | // Generate integration cache if required |
726 | if(!integrationCache.segmentSums) |
727 | buildDoubleIntegrationCache(integrationCache); |
728 | |
729 | if(numKeyframes == 1) |
730 | { |
731 | float t = time - mKeyframes[0].time; |
732 | return (T)(mKeyframes[0].value * t * t * 0.5f); |
733 | } |
734 | |
735 | UINT32 leftKeyIdx; |
736 | UINT32 rightKeyIdx; |
737 | |
738 | findKeys(time, leftKeyIdx, rightKeyIdx); |
739 | |
740 | const KeyFrame& lhs = mKeyframes[leftKeyIdx]; |
741 | const float t = time - lhs.time; |
742 | |
743 | const T sum = (T)(integrationCache.doubleSegmentSums[leftKeyIdx] + integrationCache.segmentSums[leftKeyIdx] * t); |
744 | if(leftKeyIdx == rightKeyIdx) |
745 | return sum; |
746 | |
747 | T(&coeffs)[4] = integrationCache.coeffs[leftKeyIdx]; |
748 | return sum + (T)(impl::evaluateCubic(t, 0.0f, 0.0f, coeffs) * t * t); |
749 | } |
750 | |
751 | template <class T> |
752 | TKeyframe<T> TAnimationCurve<T>::evaluateKey(float time, bool loop) const |
753 | { |
754 | if (mKeyframes.empty()) |
755 | return TKeyframe<T>(); |
756 | |
757 | AnimationUtility::wrapTime(time, mStart, mEnd, loop); |
758 | |
759 | UINT32 leftKeyIdx; |
760 | UINT32 rightKeyIdx; |
761 | |
762 | findKeys(time, leftKeyIdx, rightKeyIdx); |
763 | |
764 | const KeyFrame& leftKey = mKeyframes[leftKeyIdx]; |
765 | const KeyFrame& rightKey = mKeyframes[rightKeyIdx]; |
766 | |
767 | if (leftKeyIdx == rightKeyIdx) |
768 | return leftKey; |
769 | |
770 | return evaluateKey(leftKey, rightKey, time); |
771 | } |
772 | |
773 | template <class T> |
774 | void TAnimationCurve<T>::findKeys(float time, const TCurveCache<T>& animInstance, UINT32& leftKey, UINT32& rightKey) const |
775 | { |
776 | // Check nearby keys first if there is cached data |
777 | if (animInstance.cachedKey != (UINT32)-1) |
778 | { |
779 | const KeyFrame& curKey = mKeyframes[animInstance.cachedKey]; |
780 | if (time >= curKey.time) |
781 | { |
782 | const UINT32 end = std::min((UINT32)mKeyframes.size(), animInstance.cachedKey + CACHE_LOOKAHEAD + 1); |
783 | for (UINT32 i = animInstance.cachedKey + 1; i < end; i++) |
784 | { |
785 | const KeyFrame& nextKey = mKeyframes[i]; |
786 | |
787 | if (time < nextKey.time) |
788 | { |
789 | leftKey = i - 1; |
790 | rightKey = i; |
791 | |
792 | animInstance.cachedKey = leftKey; |
793 | return; |
794 | } |
795 | } |
796 | } |
797 | else |
798 | { |
799 | const UINT32 start = (UINT32)std::max(0, (INT32)animInstance.cachedKey - (INT32)CACHE_LOOKAHEAD); |
800 | for(UINT32 i = start; i < animInstance.cachedKey; i++) |
801 | { |
802 | const KeyFrame& prevKey = mKeyframes[i]; |
803 | |
804 | if (time >= prevKey.time) |
805 | { |
806 | leftKey = i; |
807 | rightKey = i + 1; |
808 | |
809 | animInstance.cachedKey = leftKey; |
810 | return; |
811 | } |
812 | } |
813 | } |
814 | } |
815 | |
816 | // Cannot find nearby ones, search all keys |
817 | findKeys(time, leftKey, rightKey); |
818 | animInstance.cachedKey = leftKey; |
819 | } |
820 | |
821 | template <class T> |
822 | void TAnimationCurve<T>::findKeys(float time, UINT32& leftKey, UINT32& rightKey) const |
823 | { |
824 | INT32 start = 0; |
825 | auto searchLength = (INT32)mKeyframes.size(); |
826 | |
827 | while(searchLength > 0) |
828 | { |
829 | INT32 half = searchLength >> 1; |
830 | INT32 mid = start + half; |
831 | |
832 | if(time < mKeyframes[mid].time) |
833 | { |
834 | searchLength = half; |
835 | } |
836 | else |
837 | { |
838 | start = mid + 1; |
839 | searchLength -= (half + 1); |
840 | } |
841 | } |
842 | |
843 | leftKey = std::max(0, start - 1); |
844 | rightKey = std::min(start, (INT32)mKeyframes.size() - 1); |
845 | } |
846 | |
847 | template <class T> |
848 | UINT32 TAnimationCurve<T>::findKey(float time) |
849 | { |
850 | UINT32 leftKeyIdx; |
851 | UINT32 rightKeyIdx; |
852 | |
853 | findKeys(time, leftKeyIdx, rightKeyIdx); |
854 | |
855 | const KeyFrame& leftKey = mKeyframes[leftKeyIdx]; |
856 | const KeyFrame& rightKey = mKeyframes[rightKeyIdx]; |
857 | |
858 | if (Math::abs(leftKey.time - time) <= Math::abs(rightKey.time - time)) |
859 | return leftKeyIdx; |
860 | |
861 | return rightKeyIdx; |
862 | } |
863 | |
864 | template <class T> |
865 | TKeyframe<T> TAnimationCurve<T>::evaluateKey(const KeyFrame& lhs, const KeyFrame& rhs, float time) const |
866 | { |
867 | return impl::evaluateKey(lhs, rhs, time); |
868 | } |
869 | |
870 | template <class T> |
871 | TAnimationCurve<T> TAnimationCurve<T>::split(float start, float end) |
872 | { |
873 | Vector<TKeyframe<T>> keyFrames; |
874 | |
875 | start = Math::clamp(start, mStart, mEnd); |
876 | end = Math::clamp(end, mStart, mEnd); |
877 | |
878 | UINT32 startKeyIdx = findKey(start); |
879 | UINT32 endKeyIdx = findKey(end); |
880 | |
881 | keyFrames.reserve(endKeyIdx - startKeyIdx + 2); |
882 | |
883 | const KeyFrame& startKey = mKeyframes[startKeyIdx]; |
884 | |
885 | if (!Math::approxEquals(startKey.time, start)) |
886 | { |
887 | if(start > startKey.time) |
888 | { |
889 | if (mKeyframes.size() > (startKeyIdx + 1)) |
890 | keyFrames.push_back(evaluateKey(startKey, mKeyframes[startKeyIdx + 1], start)); |
891 | else |
892 | { |
893 | TKeyframe<T> keyCopy = startKey; |
894 | keyCopy.time = start; |
895 | |
896 | keyFrames.push_back(keyCopy); |
897 | } |
898 | |
899 | startKeyIdx++; |
900 | } |
901 | else |
902 | { |
903 | |
904 | if (startKeyIdx > 0) |
905 | keyFrames.push_back(evaluateKey(mKeyframes[startKeyIdx - 1], startKey , start)); |
906 | else |
907 | { |
908 | TKeyframe<T> keyCopy = startKey; |
909 | keyCopy.time = start; |
910 | |
911 | keyFrames.push_back(keyCopy); |
912 | } |
913 | } |
914 | } |
915 | else |
916 | { |
917 | keyFrames.push_back(startKey); |
918 | startKeyIdx++; |
919 | } |
920 | |
921 | if (!Math::approxEquals(end - start, 0.0f)) |
922 | { |
923 | const KeyFrame& endKey = mKeyframes[endKeyIdx]; |
924 | if(!Math::approxEquals(endKey.time, end)) |
925 | { |
926 | if(end > endKey.time) |
927 | { |
928 | if (mKeyframes.size() > (endKeyIdx + 1)) |
929 | keyFrames.push_back(evaluateKey(endKey, mKeyframes[endKeyIdx + 1], end)); |
930 | else |
931 | { |
932 | TKeyframe<T> keyCopy = endKey; |
933 | keyCopy.time = end; |
934 | |
935 | keyFrames.push_back(keyCopy); |
936 | } |
937 | } |
938 | else |
939 | { |
940 | if(endKeyIdx > 0) |
941 | { |
942 | keyFrames.push_back(evaluateKey(mKeyframes[endKeyIdx - 1], endKey, end)); |
943 | endKeyIdx--; |
944 | } |
945 | else |
946 | { |
947 | TKeyframe<T> keyCopy = endKey; |
948 | keyCopy.time = end; |
949 | |
950 | keyFrames.push_back(keyCopy); |
951 | } |
952 | } |
953 | } |
954 | |
955 | if (startKeyIdx < (UINT32)mKeyframes.size() && endKeyIdx > startKeyIdx) |
956 | keyFrames.insert(keyFrames.begin() + 1, mKeyframes.begin() + startKeyIdx, mKeyframes.begin() + endKeyIdx + 1); |
957 | } |
958 | |
959 | for (auto& entry : keyFrames) |
960 | entry.time -= start; |
961 | |
962 | return TAnimationCurve<T>(keyFrames); |
963 | } |
964 | |
965 | template <class T> |
966 | void TAnimationCurve<T>::makeAdditive() |
967 | { |
968 | if (mKeyframes.size() < 2) |
969 | return; |
970 | |
971 | const KeyFrame& refKey = mKeyframes[0]; |
972 | const auto numKeys = (UINT32)mKeyframes.size(); |
973 | |
974 | for(UINT32 i = 1; i < numKeys; i++) |
975 | mKeyframes[i].value = impl::getDiff(mKeyframes[i].value, refKey.value); |
976 | } |
977 | |
978 | template <class T> |
979 | std::pair<float, float> TAnimationCurve<T>::getTimeRange() const |
980 | { |
981 | if(mKeyframes.empty()) |
982 | return std::make_pair(0.0f, 0.0f); |
983 | |
984 | if(mKeyframes.size() == 1) |
985 | return std::make_pair(mKeyframes[0].time, mKeyframes[0].time); |
986 | |
987 | return std::make_pair(mKeyframes[0].time, mKeyframes[mKeyframes.size() - 1].time); |
988 | } |
989 | |
990 | template <class T> |
991 | std::pair<T, T> TAnimationCurve<T>::calculateRange() const |
992 | { |
993 | const auto numKeys = (UINT32)mKeyframes.size(); |
994 | if(numKeys == 0) |
995 | return std::make_pair(impl::getZero<T>(), impl::getZero<T>()); |
996 | |
997 | std::pair<T, T> output = { std::numeric_limits<T>::infinity(), -std::numeric_limits<T>::infinity() }; |
998 | impl::getMinMax(output, mKeyframes[0].value); |
999 | |
1000 | for(UINT32 i = 1; i < numKeys; i++) |
1001 | { |
1002 | const KeyFrame& lhs = mKeyframes[i - 1]; |
1003 | const KeyFrame& rhs = mKeyframes[i]; |
1004 | |
1005 | T coeffs[4]; |
1006 | impl::calculateCoeffs(lhs, rhs, lhs.time, coeffs); |
1007 | impl::calcMinMax(output, lhs.time, rhs.time, coeffs); |
1008 | |
1009 | T endVal = impl::evaluateCubic(rhs.time, lhs.time, 0.0f, coeffs); |
1010 | impl::getMinMax(output, endVal); |
1011 | } |
1012 | |
1013 | return output; |
1014 | } |
1015 | |
1016 | template <class T> |
1017 | std::pair<T, T> TAnimationCurve<T>::calculateRangeIntegrated(const TCurveIntegrationCache<T>& cache) const |
1018 | { |
1019 | std::pair<T, T> output = std::make_pair(impl::getZero<T>(), impl::getZero<T>()); |
1020 | |
1021 | const auto numKeys = (UINT32)mKeyframes.size(); |
1022 | if(numKeys == 0) |
1023 | return output; |
1024 | |
1025 | if(!cache.segmentSums) |
1026 | buildIntegrationCache(cache); |
1027 | |
1028 | for(UINT32 i = 1; i < numKeys; i++) |
1029 | { |
1030 | const KeyFrame& lhs = mKeyframes[i - 1]; |
1031 | const KeyFrame& rhs = mKeyframes[i]; |
1032 | |
1033 | T (&coeffs)[4] = cache.coeffs[i - 1]; |
1034 | impl::calcMinMaxIntegrated(output, lhs.time, rhs.time, cache.segmentSums[i - 1], coeffs); |
1035 | |
1036 | float t = rhs.time - lhs.time; |
1037 | T endVal = (T)(cache.segmentSums[i - 1] + impl::evaluateCubic(t, 0.0f, 0.0f, coeffs) * t); |
1038 | impl::getMinMax(output, endVal); |
1039 | } |
1040 | |
1041 | return output; |
1042 | } |
1043 | |
1044 | template <class T> |
1045 | std::pair<T, T> TAnimationCurve<T>::calculateRangeIntegratedDouble(const TCurveIntegrationCache<T>& cache) const |
1046 | { |
1047 | std::pair<T, T> output = std::make_pair(impl::getZero<T>(), impl::getZero<T>()); |
1048 | |
1049 | const auto numKeys = (UINT32)mKeyframes.size(); |
1050 | if(numKeys == 0) |
1051 | return output; |
1052 | |
1053 | if(!cache.segmentSums) |
1054 | buildDoubleIntegrationCache(cache); |
1055 | |
1056 | for(UINT32 i = 1; i < numKeys; i++) |
1057 | { |
1058 | const KeyFrame& lhs = mKeyframes[i - 1]; |
1059 | const KeyFrame& rhs = mKeyframes[i]; |
1060 | |
1061 | T (&coeffs)[4] = cache.coeffs[i - 1]; |
1062 | impl::calcMinMaxIntegratedDouble(output, lhs.time, rhs.time, cache.doubleSegmentSums[i - 1], |
1063 | cache.segmentSums[i - 1], coeffs); |
1064 | |
1065 | float t = rhs.time - lhs.time; |
1066 | T endVal = (T)(cache.doubleSegmentSums[i - 1] + cache.segmentSums[i - 1] * t + |
1067 | impl::evaluateCubic(t, 0.0f, 0.0f, coeffs) * t * t); |
1068 | impl::getMinMax(output, endVal); |
1069 | } |
1070 | |
1071 | return output; |
1072 | } |
1073 | |
1074 | template <class T> |
1075 | void TAnimationCurve<T>::buildIntegrationCache(const TCurveIntegrationCache<T>& cache) const |
1076 | { |
1077 | assert(!cache.segmentSums); |
1078 | |
1079 | const auto numKeyframes = (UINT32)mKeyframes.size(); |
1080 | if(numKeyframes <= 1) |
1081 | return; |
1082 | |
1083 | cache.init(numKeyframes); |
1084 | cache.segmentSums[0] = impl::getZero<T>(); |
1085 | |
1086 | for (UINT32 i = 1; i < numKeyframes; i++) |
1087 | { |
1088 | const TKeyframe<T>& lhs = mKeyframes[i - 1]; |
1089 | const TKeyframe<T>& rhs = mKeyframes[i]; |
1090 | |
1091 | T(&coeffs)[4] = cache.coeffs[i - 1]; |
1092 | impl::calculateCoeffs(lhs, rhs, lhs.time, coeffs); |
1093 | impl::integrate(coeffs); |
1094 | |
1095 | // Evaluate value at the end of the segment and add to the cache (this value is the total area under |
1096 | // the segment) |
1097 | const float t = rhs.time - lhs.time; |
1098 | const T value = (T)(impl::evaluateCubic(t, 0.0f, 0.0f, coeffs) * t); |
1099 | cache.segmentSums[i] = cache.segmentSums[i - 1] + value; |
1100 | } |
1101 | } |
1102 | |
1103 | template <class T> |
1104 | void TAnimationCurve<T>::buildDoubleIntegrationCache(const TCurveIntegrationCache<T>& cache) const |
1105 | { |
1106 | assert(!cache.segmentSums); |
1107 | |
1108 | const auto numKeyframes = (UINT32)mKeyframes.size(); |
1109 | if(numKeyframes <= 1) |
1110 | return; |
1111 | |
1112 | cache.initDouble(numKeyframes); |
1113 | cache.segmentSums[0] = impl::getZero<T>(); |
1114 | cache.doubleSegmentSums[0] = impl::getZero<T>(); |
1115 | |
1116 | for (UINT32 i = 1; i < numKeyframes; i++) |
1117 | { |
1118 | const TKeyframe<T>& lhs = mKeyframes[i - 1]; |
1119 | const TKeyframe<T>& rhs = mKeyframes[i]; |
1120 | |
1121 | T(&coeffs)[4] = cache.coeffs[i - 1]; |
1122 | impl::calculateCoeffs(lhs, rhs, lhs.time, coeffs); |
1123 | impl::integrate(coeffs); |
1124 | |
1125 | // Evaluate value at the end of the segment and add to the cache (this value is the total area under |
1126 | // the segment) |
1127 | const float t = rhs.time - lhs.time; |
1128 | T value = (T)(impl::evaluateCubic(t, 0.0f, 0.0f, coeffs) * t); |
1129 | cache.segmentSums[i] = cache.segmentSums[i - 1] + value; |
1130 | |
1131 | // Double integrate the already integrated coeffs |
1132 | coeffs[0] = (T)(coeffs[0] / 5.0f); |
1133 | coeffs[1] = (T)(coeffs[1] / 4.0f); |
1134 | coeffs[2] = (T)(coeffs[2] / 3.0f); |
1135 | coeffs[3] = (T)(coeffs[3] / 2.0f); |
1136 | |
1137 | value = (T)(impl::evaluateCubic(t, 0.0f, 0.0f, coeffs) * t * t + cache.segmentSums[i - 1] * t); |
1138 | cache.doubleSegmentSums[i] = cache.doubleSegmentSums[i - 1] + value; |
1139 | } |
1140 | } |
1141 | |
1142 | template <class T> |
1143 | bool TAnimationCurve<T>::operator==(const TAnimationCurve<T>& rhs) const |
1144 | { |
1145 | if(mLength != rhs.mLength || mStart != rhs.mStart || mEnd != rhs.mEnd) |
1146 | return false; |
1147 | |
1148 | return mKeyframes == rhs.mKeyframes; |
1149 | } |
1150 | |
1151 | template class TAnimationCurve<Vector3>; |
1152 | template class TAnimationCurve<Vector2>; |
1153 | template class TAnimationCurve<Quaternion>; |
1154 | template class TAnimationCurve<float>; |
1155 | template class TAnimationCurve<INT32>; |
1156 | } |