| 1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************// |
| 2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********// |
| 3 | #include "Animation/BsAnimationCurve.h" |
| 4 | #include "Private/RTTI/BsAnimationCurveRTTI.h" |
| 5 | #include "Math/BsVector3.h" |
| 6 | #include "Math/BsVector2.h" |
| 7 | #include "Math/BsQuaternion.h" |
| 8 | #include "Math/BsMath.h" |
| 9 | #include "Animation/BsAnimationUtility.h" |
| 10 | |
| 11 | namespace bs |
| 12 | { |
| 13 | namespace impl |
| 14 | { |
| 15 | /** |
| 16 | * Checks if any components of the keyframes are constant (step) functions and updates the hermite curve coefficients |
| 17 | * accordingly. |
| 18 | */ |
| 19 | void setStepCoefficients(const TKeyframe<float>& lhs, const TKeyframe<float>& rhs, float(&coefficients)[4]) |
| 20 | { |
| 21 | if (lhs.outTangent != std::numeric_limits<float>::infinity() && |
| 22 | rhs.inTangent != std::numeric_limits<float>::infinity()) |
| 23 | return; |
| 24 | |
| 25 | coefficients[0] = 0.0f; |
| 26 | coefficients[1] = 0.0f; |
| 27 | coefficients[2] = 0.0f; |
| 28 | coefficients[3] = lhs.value; |
| 29 | } |
| 30 | |
| 31 | void setStepCoefficients(const TKeyframe<Vector3>& lhs, const TKeyframe<Vector3>& rhs, Vector3(&coefficients)[4]) |
| 32 | { |
| 33 | for (UINT32 i = 0; i < 3; i++) |
| 34 | { |
| 35 | if (lhs.outTangent[i] != std::numeric_limits<float>::infinity() && |
| 36 | rhs.inTangent[i] != std::numeric_limits<float>::infinity()) |
| 37 | continue; |
| 38 | |
| 39 | coefficients[0][i] = 0.0f; |
| 40 | coefficients[1][i] = 0.0f; |
| 41 | coefficients[2][i] = 0.0f; |
| 42 | coefficients[3][i] = lhs.value[i]; |
| 43 | } |
| 44 | } |
| 45 | |
| 46 | void setStepCoefficients(const TKeyframe<Vector2>& lhs, const TKeyframe<Vector2>& rhs, Vector2(&coefficients)[4]) |
| 47 | { |
| 48 | for (UINT32 i = 0; i < 2; i++) |
| 49 | { |
| 50 | if (lhs.outTangent[i] != std::numeric_limits<float>::infinity() && |
| 51 | rhs.inTangent[i] != std::numeric_limits<float>::infinity()) |
| 52 | continue; |
| 53 | |
| 54 | coefficients[0][i] = 0.0f; |
| 55 | coefficients[1][i] = 0.0f; |
| 56 | coefficients[2][i] = 0.0f; |
| 57 | coefficients[3][i] = lhs.value[i]; |
| 58 | } |
| 59 | } |
| 60 | |
| 61 | void setStepCoefficients(const TKeyframe<Quaternion>& lhs, const TKeyframe<Quaternion>& rhs, Quaternion(&coefficients)[4]) |
| 62 | { |
| 63 | for (UINT32 i = 0; i < 4; i++) |
| 64 | { |
| 65 | if (lhs.outTangent[i] != std::numeric_limits<float>::infinity() && |
| 66 | rhs.inTangent[i] != std::numeric_limits<float>::infinity()) |
| 67 | continue; |
| 68 | |
| 69 | coefficients[0][i] = 0.0f; |
| 70 | coefficients[1][i] = 0.0f; |
| 71 | coefficients[2][i] = 0.0f; |
| 72 | coefficients[3][i] = lhs.value[i]; |
| 73 | } |
| 74 | } |
| 75 | |
| 76 | /** Checks if any components of the keyframes are constant (step) functions and updates the key value. */ |
| 77 | void setStepValue(const TKeyframe<float>& lhs, const TKeyframe<float>& rhs, float& value) |
| 78 | { |
| 79 | if (lhs.outTangent != std::numeric_limits<float>::infinity() && |
| 80 | rhs.inTangent != std::numeric_limits<float>::infinity()) |
| 81 | return; |
| 82 | |
| 83 | value = lhs.value; |
| 84 | } |
| 85 | |
| 86 | void setStepValue(const TKeyframe<Vector3>& lhs, const TKeyframe<Vector3>& rhs, Vector3& value) |
| 87 | { |
| 88 | for (UINT32 i = 0; i < 3; i++) |
| 89 | { |
| 90 | if (lhs.outTangent[i] != std::numeric_limits<float>::infinity() && |
| 91 | rhs.inTangent[i] != std::numeric_limits<float>::infinity()) |
| 92 | continue; |
| 93 | |
| 94 | value[i] = lhs.value[i]; |
| 95 | } |
| 96 | } |
| 97 | |
| 98 | void setStepValue(const TKeyframe<Vector2>& lhs, const TKeyframe<Vector2>& rhs, Vector2& value) |
| 99 | { |
| 100 | for (UINT32 i = 0; i < 2; i++) |
| 101 | { |
| 102 | if (lhs.outTangent[i] != std::numeric_limits<float>::infinity() && |
| 103 | rhs.inTangent[i] != std::numeric_limits<float>::infinity()) |
| 104 | continue; |
| 105 | |
| 106 | value[i] = lhs.value[i]; |
| 107 | } |
| 108 | } |
| 109 | |
| 110 | void setStepValue(const TKeyframe<Quaternion>& lhs, const TKeyframe<Quaternion>& rhs, Quaternion& value) |
| 111 | { |
| 112 | for (UINT32 i = 0; i < 4; i++) |
| 113 | { |
| 114 | if (lhs.outTangent[i] != std::numeric_limits<float>::infinity() && |
| 115 | rhs.inTangent[i] != std::numeric_limits<float>::infinity()) |
| 116 | continue; |
| 117 | |
| 118 | value[i] = lhs.value[i]; |
| 119 | } |
| 120 | } |
| 121 | |
| 122 | /** Checks if any components of the keyframes are constant (step) functions and updates the key tangent. */ |
| 123 | void setStepTangent(const TKeyframe<float>& lhs, const TKeyframe<float>& rhs, float& tangent) |
| 124 | { |
| 125 | if (lhs.outTangent != std::numeric_limits<float>::infinity() && |
| 126 | rhs.inTangent != std::numeric_limits<float>::infinity()) |
| 127 | return; |
| 128 | |
| 129 | tangent = std::numeric_limits<float>::infinity(); |
| 130 | } |
| 131 | |
| 132 | void setStepTangent(const TKeyframe<Vector3>& lhs, const TKeyframe<Vector3>& rhs, Vector3& tangent) |
| 133 | { |
| 134 | for (UINT32 i = 0; i < 3; i++) |
| 135 | { |
| 136 | if (lhs.outTangent[i] != std::numeric_limits<float>::infinity() && |
| 137 | rhs.inTangent[i] != std::numeric_limits<float>::infinity()) |
| 138 | continue; |
| 139 | |
| 140 | tangent[i] = std::numeric_limits<float>::infinity(); |
| 141 | } |
| 142 | } |
| 143 | |
| 144 | void setStepTangent(const TKeyframe<Vector2>& lhs, const TKeyframe<Vector2>& rhs, Vector2& tangent) |
| 145 | { |
| 146 | for (UINT32 i = 0; i < 2; i++) |
| 147 | { |
| 148 | if (lhs.outTangent[i] != std::numeric_limits<float>::infinity() && |
| 149 | rhs.inTangent[i] != std::numeric_limits<float>::infinity()) |
| 150 | continue; |
| 151 | |
| 152 | tangent[i] = std::numeric_limits<float>::infinity(); |
| 153 | } |
| 154 | } |
| 155 | |
| 156 | void setStepTangent(const TKeyframe<Quaternion>& lhs, const TKeyframe<Quaternion>& rhs, Quaternion& tangent) |
| 157 | { |
| 158 | for (UINT32 i = 0; i < 4; i++) |
| 159 | { |
| 160 | if (lhs.outTangent[i] != std::numeric_limits<float>::infinity() && |
| 161 | rhs.inTangent[i] != std::numeric_limits<float>::infinity()) |
| 162 | continue; |
| 163 | |
| 164 | tangent[i] = std::numeric_limits<float>::infinity(); |
| 165 | } |
| 166 | } |
| 167 | |
| 168 | /** Calculates the difference between two values. */ |
| 169 | float getDiff(float lhs, float rhs) |
| 170 | { |
| 171 | return lhs - rhs; |
| 172 | } |
| 173 | |
| 174 | Vector3 getDiff(const Vector3& lhs, const Vector3& rhs) |
| 175 | { |
| 176 | return lhs - rhs; |
| 177 | } |
| 178 | |
| 179 | Vector2 getDiff(const Vector2& lhs, const Vector2& rhs) |
| 180 | { |
| 181 | return lhs - rhs; |
| 182 | } |
| 183 | |
| 184 | Quaternion getDiff(const Quaternion& lhs, const Quaternion& rhs) |
| 185 | { |
| 186 | return rhs.inverse() * lhs; |
| 187 | } |
| 188 | |
| 189 | INT32 getDiff(INT32 lhs, INT32 rhs) |
| 190 | { |
| 191 | return lhs - rhs; |
| 192 | } |
| 193 | |
| 194 | template <class T> |
| 195 | T getZero() { return 0.0f; } |
| 196 | |
| 197 | template<> |
| 198 | float getZero<float>() { return 0.0f; } |
| 199 | |
| 200 | template<> |
| 201 | Vector3 getZero<Vector3>() { return Vector3(BsZero); } |
| 202 | |
| 203 | template<> |
| 204 | Vector2 getZero<Vector2>() { return Vector2(BsZero); } |
| 205 | |
| 206 | template<> |
| 207 | Quaternion getZero<Quaternion>() { return Quaternion(BsZero); } |
| 208 | |
| 209 | template<> |
| 210 | INT32 getZero<INT32>() { return 0; } |
| 211 | |
| 212 | template <class T> |
| 213 | constexpr UINT32 getNumComponents() { return 1; } |
| 214 | |
| 215 | template<> |
| 216 | constexpr UINT32 getNumComponents<Vector3>() { return 3; } |
| 217 | |
| 218 | template<> |
| 219 | constexpr UINT32 getNumComponents<Vector2>() { return 2; } |
| 220 | |
| 221 | template<> |
| 222 | constexpr UINT32 getNumComponents<Quaternion>() { return 4; } |
| 223 | |
| 224 | template <class T> |
| 225 | float& getComponent(T& val, UINT32 idx) { return val; } |
| 226 | |
| 227 | template<> |
| 228 | float& getComponent(Vector3& val, UINT32 idx) { return val[idx]; } |
| 229 | |
| 230 | template<> |
| 231 | float& getComponent(Vector2& val, UINT32 idx) { return val[idx]; } |
| 232 | |
| 233 | template<> |
| 234 | float& getComponent(Quaternion& val, UINT32 idx) { return val[idx]; } |
| 235 | |
| 236 | template <class T> |
| 237 | float getComponent(const T& val, UINT32 idx) { return val; } |
| 238 | |
| 239 | template<> |
| 240 | float getComponent(const Vector3& val, UINT32 idx) { return val[idx]; } |
| 241 | |
| 242 | template<> |
| 243 | float getComponent(const Vector2& val, UINT32 idx) { return val[idx]; } |
| 244 | |
| 245 | template<> |
| 246 | float getComponent(const Quaternion& val, UINT32 idx) { return val[idx]; } |
| 247 | |
| 248 | template <class T> |
| 249 | void getMinMax(std::pair<T, T>& minmax, const T& value) |
| 250 | { |
| 251 | minmax.first = std::min(minmax.first, value); |
| 252 | minmax.second = std::max(minmax.second, value); |
| 253 | } |
| 254 | |
| 255 | template <> |
| 256 | void getMinMax(std::pair<Vector3, Vector3>& minmax, const Vector3& value) |
| 257 | { |
| 258 | minmax.first = Vector3::min(minmax.first, value); |
| 259 | minmax.second = Vector3::max(minmax.second, value); |
| 260 | } |
| 261 | |
| 262 | template <> |
| 263 | void getMinMax(std::pair<Vector2, Vector2>& minmax, const Vector2& value) |
| 264 | { |
| 265 | minmax.first = Vector2::min(minmax.first, value); |
| 266 | minmax.second = Vector2::max(minmax.second, value); |
| 267 | } |
| 268 | |
| 269 | template <> |
| 270 | void getMinMax(std::pair<Quaternion, Quaternion>& minmax, const Quaternion& value) |
| 271 | { |
| 272 | minmax.first = Quaternion::min(minmax.first, value); |
| 273 | minmax.second = Quaternion::max(minmax.second, value); |
| 274 | } |
| 275 | |
| 276 | template<class T> |
| 277 | TKeyframe<T> evaluateKey(const TKeyframe<T>& lhs, const TKeyframe<T>& rhs, float time) |
| 278 | { |
| 279 | float length = rhs.time - lhs.time; |
| 280 | |
| 281 | if (Math::approxEquals(length, 0.0f)) |
| 282 | return lhs; |
| 283 | |
| 284 | // Resize tangents since we're not evaluating the curve over unit range |
| 285 | float invLength = 1.0f / length; |
| 286 | float t = (time - lhs.time) * invLength; |
| 287 | T leftTangent = lhs.outTangent * length; |
| 288 | T rightTangent = rhs.inTangent * length; |
| 289 | |
| 290 | TKeyframe<T> output; |
| 291 | output.time = time; |
| 292 | output.value = Math::cubicHermite(t, lhs.value, rhs.value, leftTangent, rightTangent); |
| 293 | output.inTangent = Math::cubicHermiteD1(t, lhs.value, rhs.value, leftTangent, rightTangent) * invLength; |
| 294 | |
| 295 | setStepValue(lhs, rhs, output.value); |
| 296 | setStepTangent(lhs, rhs, output.inTangent); |
| 297 | |
| 298 | output.outTangent = output.inTangent; |
| 299 | |
| 300 | return output; |
| 301 | } |
| 302 | |
| 303 | template<> |
| 304 | TKeyframe<INT32> evaluateKey(const TKeyframe<INT32>& lhs, const TKeyframe<INT32>& rhs, float time) |
| 305 | { |
| 306 | TKeyframe<INT32> output; |
| 307 | output.time = time; |
| 308 | output.value = time >= rhs.time ? rhs.value : lhs.value; |
| 309 | |
| 310 | return output; |
| 311 | } |
| 312 | |
| 313 | template <class T> |
| 314 | T evaluateCubic(float time, float start, float end, T (&coeffs)[4]) |
| 315 | { |
| 316 | float t = time - start; |
| 317 | return t * (t * (t * coeffs[0] + coeffs[1]) + coeffs[2]) + coeffs[3]; |
| 318 | } |
| 319 | |
| 320 | template <> |
| 321 | INT32 evaluateCubic(float time, float start, float end, INT32 (&coeffs)[4]) |
| 322 | { |
| 323 | return time >= end ? coeffs[1] : coeffs[0]; |
| 324 | } |
| 325 | |
| 326 | template<class T> |
| 327 | void calculateCoeffs(const TKeyframe<T>& lhs, const TKeyframe<T>& rhs, float time, T (&coeffs)[4]) |
| 328 | { |
| 329 | float length = rhs.time - lhs.time; |
| 330 | |
| 331 | // Handle the case where both keys are identical, or close enough to cause precision issues |
| 332 | if (length < 0.000001f) |
| 333 | { |
| 334 | coeffs[0] = impl::getZero<T>(); |
| 335 | coeffs[1] = impl::getZero<T>(); |
| 336 | coeffs[2] = impl::getZero<T>(); |
| 337 | coeffs[3] = lhs.value; |
| 338 | } |
| 339 | else |
| 340 | Math::cubicHermiteCoefficients(lhs.value, rhs.value, lhs.outTangent, rhs.inTangent, length, coeffs); |
| 341 | |
| 342 | setStepCoefficients(lhs, rhs, coeffs); |
| 343 | } |
| 344 | |
| 345 | template<> |
| 346 | void calculateCoeffs(const TKeyframe<INT32>& lhs, const TKeyframe<INT32>& rhs, float time, INT32 (&coeffs)[4]) |
| 347 | { |
| 348 | coeffs[0] = lhs.value; |
| 349 | coeffs[1] = rhs.value; |
| 350 | } |
| 351 | |
| 352 | template<class T> |
| 353 | T evaluateAndUpdateCache(const TKeyframe<T>& lhs, const TKeyframe<T>& rhs, float time, T (&coeffs)[4]) |
| 354 | { |
| 355 | calculateCoeffs(lhs, rhs, time, coeffs); |
| 356 | |
| 357 | return impl::evaluateCubic(time, lhs.time, rhs.time, coeffs); |
| 358 | } |
| 359 | |
| 360 | template<> |
| 361 | INT32 evaluateAndUpdateCache(const TKeyframe<INT32>& lhs, const TKeyframe<INT32>& rhs, float time, |
| 362 | INT32 (&coeffs)[4]) |
| 363 | { |
| 364 | coeffs[0] = lhs.value; |
| 365 | coeffs[1] = rhs.value; |
| 366 | |
| 367 | return time >= rhs.time ? rhs.value : lhs.value; |
| 368 | } |
| 369 | |
| 370 | template<class T> |
| 371 | T evaluate(const TKeyframe<T>& lhs, const TKeyframe<T>& rhs, float time) |
| 372 | { |
| 373 | float length = rhs.time - lhs.time; |
| 374 | assert(length > 0.0f); |
| 375 | |
| 376 | float t; |
| 377 | T leftTangent; |
| 378 | T rightTangent; |
| 379 | |
| 380 | if (Math::approxEquals(length, 0.0f)) |
| 381 | { |
| 382 | t = 0.0f; |
| 383 | leftTangent = impl::getZero<T>(); |
| 384 | rightTangent = impl::getZero<T>(); |
| 385 | } |
| 386 | else |
| 387 | { |
| 388 | // Scale from arbitrary range to [0, 1] |
| 389 | t = (time - lhs.time) / length; |
| 390 | leftTangent = lhs.outTangent * length; |
| 391 | rightTangent = rhs.inTangent * length; |
| 392 | } |
| 393 | |
| 394 | T output = Math::cubicHermite(t, lhs.value, rhs.value, leftTangent, rightTangent); |
| 395 | setStepValue(lhs, rhs, output); |
| 396 | |
| 397 | return output; |
| 398 | } |
| 399 | |
| 400 | template<> |
| 401 | INT32 evaluate(const TKeyframe<INT32>& lhs, const TKeyframe<INT32>& rhs, float time) |
| 402 | { |
| 403 | return time >= rhs.time ? rhs.value : lhs.value; |
| 404 | } |
| 405 | |
| 406 | template <class T> |
| 407 | void integrate(T (&coeffs)[4]) |
| 408 | { |
| 409 | coeffs[0] = (T)(coeffs[0] / 4.0f); |
| 410 | coeffs[1] = (T)(coeffs[1] / 3.0f); |
| 411 | coeffs[2] = (T)(coeffs[2] / 2.0f); |
| 412 | } |
| 413 | |
| 414 | template <class T> |
| 415 | void calcMinMax(std::pair<T, T>& minmax, float start, float end, T(&coeffs)[4]) |
| 416 | { |
| 417 | // Differentiate |
| 418 | T a = (T)(3.0f * coeffs[0]); |
| 419 | T b = (T)(2.0f * coeffs[1]); |
| 420 | T c = (T)(1.0f * coeffs[2]); |
| 421 | |
| 422 | const UINT32 numComponents = getNumComponents<T>(); |
| 423 | |
| 424 | for (UINT32 i = 0; i < numComponents; i++) |
| 425 | { |
| 426 | float roots[2]; |
| 427 | const UINT32 numRoots = Math::solveQuadratic( |
| 428 | getComponent(a, i), |
| 429 | getComponent(b, i), |
| 430 | getComponent(c, i), |
| 431 | roots); |
| 432 | |
| 433 | for (UINT32 j = 0; j < numRoots; j++) |
| 434 | { |
| 435 | if ((roots[j] >= 0.0f) && ((start + roots[j]) < end)) |
| 436 | { |
| 437 | float fltCoeffs[4] = |
| 438 | { |
| 439 | getComponent(coeffs[0], i), |
| 440 | getComponent(coeffs[1], i), |
| 441 | getComponent(coeffs[2], i), |
| 442 | getComponent(coeffs[3], i) |
| 443 | }; |
| 444 | |
| 445 | float value = evaluateCubic(roots[j], 0.0f, 0.0f, fltCoeffs); |
| 446 | |
| 447 | getComponent(minmax.first, i) = std::min(getComponent(minmax.first, i), value); |
| 448 | getComponent(minmax.second, i) = std::max(getComponent(minmax.second, i), value); |
| 449 | } |
| 450 | } |
| 451 | } |
| 452 | } |
| 453 | |
| 454 | template <> |
| 455 | void calcMinMax(std::pair<INT32, INT32>& minmax, float start, float end, INT32(&coeffs)[4]) |
| 456 | { |
| 457 | getMinMax(minmax, coeffs[0]); |
| 458 | getMinMax(minmax, coeffs[1]); |
| 459 | } |
| 460 | |
| 461 | template <class T> |
| 462 | void calcMinMaxIntegrated(std::pair<T, T>& minmax, float start, float end, const T& sum, T(&coeffs)[4]) |
| 463 | { |
| 464 | // Differentiate |
| 465 | T a = 4.0f * coeffs[0]; |
| 466 | T b = 3.0f * coeffs[1]; |
| 467 | T c = 2.0f * coeffs[2]; |
| 468 | T d = 1.0f * coeffs[3]; |
| 469 | |
| 470 | const UINT32 numComponents = getNumComponents<T>(); |
| 471 | |
| 472 | for (UINT32 i = 0; i < numComponents; i++) |
| 473 | { |
| 474 | float roots[3]; |
| 475 | const UINT32 numRoots = Math::solveCubic( |
| 476 | getComponent(a, i), |
| 477 | getComponent(b, i), |
| 478 | getComponent(c, i), |
| 479 | getComponent(d, i), |
| 480 | roots); |
| 481 | |
| 482 | for (UINT32 j = 0; j < numRoots; j++) |
| 483 | { |
| 484 | if ((roots[j] >= 0.0f) && ((start + roots[j]) < end)) |
| 485 | { |
| 486 | float fltCoeffs[4] = |
| 487 | { |
| 488 | getComponent(coeffs[0], i), |
| 489 | getComponent(coeffs[1], i), |
| 490 | getComponent(coeffs[2], i), |
| 491 | getComponent(coeffs[3], i) |
| 492 | }; |
| 493 | |
| 494 | float value = getComponent(sum, i) + evaluateCubic(roots[j], 0.0f, 0.0f, fltCoeffs) * roots[j]; |
| 495 | |
| 496 | getComponent(minmax.first, i) = std::min(getComponent(minmax.first, i), value); |
| 497 | getComponent(minmax.second, i) = std::max(getComponent(minmax.second, i), value); |
| 498 | } |
| 499 | } |
| 500 | } |
| 501 | } |
| 502 | |
| 503 | template <> |
| 504 | void calcMinMaxIntegrated(std::pair<INT32, INT32>& minmax, float start, float end, const INT32& sum, |
| 505 | INT32(&coeffs)[4]) |
| 506 | { |
| 507 | assert(false && "Not implemented" ); |
| 508 | } |
| 509 | |
| 510 | template <class T> |
| 511 | void calcMinMaxIntegratedDouble(std::pair<T, T>& minmax, float start, float end, const T& doubleSum, |
| 512 | const T& sum, T(&coeffs)[4]) |
| 513 | { |
| 514 | // Differentiate |
| 515 | T a = 5.0f * coeffs[0]; |
| 516 | T b = 4.0f * coeffs[1]; |
| 517 | T c = 3.0f * coeffs[2]; |
| 518 | T d = 2.0f * coeffs[3]; |
| 519 | |
| 520 | const UINT32 numComponents = getNumComponents<T>(); |
| 521 | |
| 522 | for (UINT32 i = 0; i < numComponents; i++) |
| 523 | { |
| 524 | float roots[4]; |
| 525 | const UINT32 numRoots = Math::solveQuartic( |
| 526 | getComponent(a, i), |
| 527 | getComponent(b, i), |
| 528 | getComponent(c, i), |
| 529 | getComponent(d, i), |
| 530 | 0.0f, |
| 531 | roots); |
| 532 | |
| 533 | for (UINT32 j = 0; j < numRoots; j++) |
| 534 | { |
| 535 | if ((roots[j] >= 0.0f) && ((start + roots[j]) < end)) |
| 536 | { |
| 537 | float fltCoeffs[4] = |
| 538 | { |
| 539 | getComponent(coeffs[0], i), |
| 540 | getComponent(coeffs[1], i), |
| 541 | getComponent(coeffs[2], i), |
| 542 | getComponent(coeffs[3], i) |
| 543 | }; |
| 544 | |
| 545 | float root = roots[j]; |
| 546 | float value = getComponent(doubleSum, i) + getComponent(sum, i) * root + |
| 547 | evaluateCubic(root, 0.0f, 0.0f, fltCoeffs) * root * root; |
| 548 | |
| 549 | getComponent(minmax.first, i) = std::min(getComponent(minmax.first, i), value); |
| 550 | getComponent(minmax.second, i) = std::max(getComponent(minmax.second, i), value); |
| 551 | } |
| 552 | } |
| 553 | } |
| 554 | } |
| 555 | |
| 556 | template <> |
| 557 | void calcMinMaxIntegratedDouble(std::pair<INT32, INT32>& minmax, float start, float end, |
| 558 | const INT32& doubleSum, const INT32& sum, INT32(&coeffs)[4]) |
| 559 | { |
| 560 | assert(false && "Not implemented" ); |
| 561 | } |
| 562 | } |
| 563 | |
| 564 | template <class T> |
| 565 | const UINT32 TAnimationCurve<T>::CACHE_LOOKAHEAD = 3; |
| 566 | |
| 567 | template <class T> |
| 568 | TAnimationCurve<T>::TAnimationCurve(const Vector<KeyFrame>& keyframes) |
| 569 | :mKeyframes(keyframes) |
| 570 | { |
| 571 | #if BS_DEBUG_MODE |
| 572 | // Ensure keyframes are sorted |
| 573 | if(!keyframes.empty()) |
| 574 | { |
| 575 | float time = keyframes[0].time; |
| 576 | for (UINT32 i = 1; i < (UINT32)keyframes.size(); i++) |
| 577 | { |
| 578 | assert(keyframes[i].time >= time); |
| 579 | time = keyframes[i].time; |
| 580 | } |
| 581 | } |
| 582 | #endif |
| 583 | |
| 584 | if (!keyframes.empty()) |
| 585 | mEnd = keyframes.back().time; |
| 586 | else |
| 587 | mEnd = 0.0f; |
| 588 | |
| 589 | mStart = 0.0f; |
| 590 | mLength = mEnd; |
| 591 | } |
| 592 | |
| 593 | template <class T> |
| 594 | T TAnimationCurve<T>::evaluate(float time, const TCurveCache<T>& cache, bool loop) const |
| 595 | { |
| 596 | if (mKeyframes.empty()) |
| 597 | return impl::getZero<T>(); |
| 598 | |
| 599 | if (Math::approxEquals(mLength, 0.0f)) |
| 600 | time = 0.0f; |
| 601 | |
| 602 | // Wrap time if looping |
| 603 | if(loop && mLength > 0.0f) |
| 604 | { |
| 605 | if (time < mStart) |
| 606 | time = time + (std::floor(mEnd - time) / mLength) * mLength; |
| 607 | else if (time > mEnd) |
| 608 | time = time - std::floor((time - mStart) / mLength) * mLength; |
| 609 | } |
| 610 | |
| 611 | // If time is within cache, evaluate it directly |
| 612 | if (time >= cache.cachedCurveStart && time < cache.cachedCurveEnd) |
| 613 | return impl::evaluateCubic(time, cache.cachedCurveStart, cache.cachedCurveEnd, cache.cachedCubicCoefficients); |
| 614 | |
| 615 | // Clamp to start, cache constant of the first key and return |
| 616 | if(time < mStart) |
| 617 | { |
| 618 | cache.cachedCurveStart = -std::numeric_limits<float>::infinity(); |
| 619 | cache.cachedCurveEnd = mStart; |
| 620 | cache.cachedKey = 0; |
| 621 | cache.cachedCubicCoefficients[0] = impl::getZero<T>(); |
| 622 | cache.cachedCubicCoefficients[1] = impl::getZero<T>(); |
| 623 | cache.cachedCubicCoefficients[2] = impl::getZero<T>(); |
| 624 | cache.cachedCubicCoefficients[3] = mKeyframes[0].value; |
| 625 | |
| 626 | return mKeyframes[0].value; |
| 627 | } |
| 628 | |
| 629 | if(time >= mEnd) // Clamp to end, cache constant of the final key and return |
| 630 | { |
| 631 | UINT32 lastKey = (UINT32)mKeyframes.size() - 1; |
| 632 | |
| 633 | cache.cachedCurveStart = mEnd; |
| 634 | cache.cachedCurveEnd = std::numeric_limits<float>::infinity(); |
| 635 | cache.cachedKey = lastKey; |
| 636 | cache.cachedCubicCoefficients[0] = impl::getZero<T>(); |
| 637 | cache.cachedCubicCoefficients[1] = impl::getZero<T>(); |
| 638 | cache.cachedCubicCoefficients[2] = impl::getZero<T>(); |
| 639 | cache.cachedCubicCoefficients[3] = mKeyframes[lastKey].value; |
| 640 | |
| 641 | return mKeyframes[lastKey].value; |
| 642 | } |
| 643 | |
| 644 | // Since our value is not in cache, search for the valid pair of keys of interpolate |
| 645 | UINT32 leftKeyIdx; |
| 646 | UINT32 rightKeyIdx; |
| 647 | |
| 648 | findKeys(time, cache, leftKeyIdx, rightKeyIdx); |
| 649 | |
| 650 | // Calculate cubic hermite curve coefficients so we can store them in cache |
| 651 | const KeyFrame& leftKey = mKeyframes[leftKeyIdx]; |
| 652 | const KeyFrame& rightKey = mKeyframes[rightKeyIdx]; |
| 653 | |
| 654 | cache.cachedCurveStart = leftKey.time; |
| 655 | cache.cachedCurveEnd = rightKey.time; |
| 656 | |
| 657 | return impl::evaluateAndUpdateCache(leftKey, rightKey, time, cache.cachedCubicCoefficients); |
| 658 | } |
| 659 | |
| 660 | template <class T> |
| 661 | T TAnimationCurve<T>::evaluate(float time, bool loop) const |
| 662 | { |
| 663 | if (mKeyframes.empty()) |
| 664 | return impl::getZero<T>(); |
| 665 | |
| 666 | AnimationUtility::wrapTime(time, mStart, mEnd, loop); |
| 667 | |
| 668 | UINT32 leftKeyIdx; |
| 669 | UINT32 rightKeyIdx; |
| 670 | |
| 671 | findKeys(time, leftKeyIdx, rightKeyIdx); |
| 672 | |
| 673 | // Evaluate curve as hermite cubic spline |
| 674 | const KeyFrame& leftKey = mKeyframes[leftKeyIdx]; |
| 675 | const KeyFrame& rightKey = mKeyframes[rightKeyIdx]; |
| 676 | |
| 677 | if (leftKeyIdx == rightKeyIdx) |
| 678 | return leftKey.value; |
| 679 | |
| 680 | return impl::evaluate(leftKey, rightKey, time); |
| 681 | } |
| 682 | |
| 683 | template <class T> |
| 684 | T TAnimationCurve<T>::evaluateIntegrated(float time, const TCurveIntegrationCache<T>& integrationCache) const |
| 685 | { |
| 686 | const auto numKeyframes = (UINT32)mKeyframes.size(); |
| 687 | if (numKeyframes == 0) |
| 688 | return impl::getZero<T>(); |
| 689 | |
| 690 | if(time < mStart) |
| 691 | time = mStart; |
| 692 | |
| 693 | // Generate integration cache if required |
| 694 | if(!integrationCache.segmentSums) |
| 695 | buildIntegrationCache(integrationCache); |
| 696 | |
| 697 | if(numKeyframes == 1) |
| 698 | return (T)(mKeyframes[0].value * (time - mKeyframes[0].time)); |
| 699 | |
| 700 | UINT32 leftKeyIdx; |
| 701 | UINT32 rightKeyIdx; |
| 702 | |
| 703 | findKeys(time, leftKeyIdx, rightKeyIdx); |
| 704 | |
| 705 | if(leftKeyIdx == rightKeyIdx) |
| 706 | return integrationCache.segmentSums[leftKeyIdx]; |
| 707 | |
| 708 | const KeyFrame& lhs = mKeyframes[leftKeyIdx]; |
| 709 | T(&coeffs)[4] = integrationCache.coeffs[leftKeyIdx]; |
| 710 | |
| 711 | const float t = time - lhs.time; |
| 712 | return integrationCache.segmentSums[leftKeyIdx] + (T)(impl::evaluateCubic(t, 0.0f, 0.0f, coeffs) * t); |
| 713 | } |
| 714 | |
| 715 | template <class T> |
| 716 | T TAnimationCurve<T>::evaluateIntegratedDouble(float time, const TCurveIntegrationCache<T>& integrationCache) const |
| 717 | { |
| 718 | const auto numKeyframes = (UINT32)mKeyframes.size(); |
| 719 | if (numKeyframes == 0) |
| 720 | return impl::getZero<T>(); |
| 721 | |
| 722 | if(time < mStart) |
| 723 | time = mStart; |
| 724 | |
| 725 | // Generate integration cache if required |
| 726 | if(!integrationCache.segmentSums) |
| 727 | buildDoubleIntegrationCache(integrationCache); |
| 728 | |
| 729 | if(numKeyframes == 1) |
| 730 | { |
| 731 | float t = time - mKeyframes[0].time; |
| 732 | return (T)(mKeyframes[0].value * t * t * 0.5f); |
| 733 | } |
| 734 | |
| 735 | UINT32 leftKeyIdx; |
| 736 | UINT32 rightKeyIdx; |
| 737 | |
| 738 | findKeys(time, leftKeyIdx, rightKeyIdx); |
| 739 | |
| 740 | const KeyFrame& lhs = mKeyframes[leftKeyIdx]; |
| 741 | const float t = time - lhs.time; |
| 742 | |
| 743 | const T sum = (T)(integrationCache.doubleSegmentSums[leftKeyIdx] + integrationCache.segmentSums[leftKeyIdx] * t); |
| 744 | if(leftKeyIdx == rightKeyIdx) |
| 745 | return sum; |
| 746 | |
| 747 | T(&coeffs)[4] = integrationCache.coeffs[leftKeyIdx]; |
| 748 | return sum + (T)(impl::evaluateCubic(t, 0.0f, 0.0f, coeffs) * t * t); |
| 749 | } |
| 750 | |
| 751 | template <class T> |
| 752 | TKeyframe<T> TAnimationCurve<T>::evaluateKey(float time, bool loop) const |
| 753 | { |
| 754 | if (mKeyframes.empty()) |
| 755 | return TKeyframe<T>(); |
| 756 | |
| 757 | AnimationUtility::wrapTime(time, mStart, mEnd, loop); |
| 758 | |
| 759 | UINT32 leftKeyIdx; |
| 760 | UINT32 rightKeyIdx; |
| 761 | |
| 762 | findKeys(time, leftKeyIdx, rightKeyIdx); |
| 763 | |
| 764 | const KeyFrame& leftKey = mKeyframes[leftKeyIdx]; |
| 765 | const KeyFrame& rightKey = mKeyframes[rightKeyIdx]; |
| 766 | |
| 767 | if (leftKeyIdx == rightKeyIdx) |
| 768 | return leftKey; |
| 769 | |
| 770 | return evaluateKey(leftKey, rightKey, time); |
| 771 | } |
| 772 | |
| 773 | template <class T> |
| 774 | void TAnimationCurve<T>::findKeys(float time, const TCurveCache<T>& animInstance, UINT32& leftKey, UINT32& rightKey) const |
| 775 | { |
| 776 | // Check nearby keys first if there is cached data |
| 777 | if (animInstance.cachedKey != (UINT32)-1) |
| 778 | { |
| 779 | const KeyFrame& curKey = mKeyframes[animInstance.cachedKey]; |
| 780 | if (time >= curKey.time) |
| 781 | { |
| 782 | const UINT32 end = std::min((UINT32)mKeyframes.size(), animInstance.cachedKey + CACHE_LOOKAHEAD + 1); |
| 783 | for (UINT32 i = animInstance.cachedKey + 1; i < end; i++) |
| 784 | { |
| 785 | const KeyFrame& nextKey = mKeyframes[i]; |
| 786 | |
| 787 | if (time < nextKey.time) |
| 788 | { |
| 789 | leftKey = i - 1; |
| 790 | rightKey = i; |
| 791 | |
| 792 | animInstance.cachedKey = leftKey; |
| 793 | return; |
| 794 | } |
| 795 | } |
| 796 | } |
| 797 | else |
| 798 | { |
| 799 | const UINT32 start = (UINT32)std::max(0, (INT32)animInstance.cachedKey - (INT32)CACHE_LOOKAHEAD); |
| 800 | for(UINT32 i = start; i < animInstance.cachedKey; i++) |
| 801 | { |
| 802 | const KeyFrame& prevKey = mKeyframes[i]; |
| 803 | |
| 804 | if (time >= prevKey.time) |
| 805 | { |
| 806 | leftKey = i; |
| 807 | rightKey = i + 1; |
| 808 | |
| 809 | animInstance.cachedKey = leftKey; |
| 810 | return; |
| 811 | } |
| 812 | } |
| 813 | } |
| 814 | } |
| 815 | |
| 816 | // Cannot find nearby ones, search all keys |
| 817 | findKeys(time, leftKey, rightKey); |
| 818 | animInstance.cachedKey = leftKey; |
| 819 | } |
| 820 | |
| 821 | template <class T> |
| 822 | void TAnimationCurve<T>::findKeys(float time, UINT32& leftKey, UINT32& rightKey) const |
| 823 | { |
| 824 | INT32 start = 0; |
| 825 | auto searchLength = (INT32)mKeyframes.size(); |
| 826 | |
| 827 | while(searchLength > 0) |
| 828 | { |
| 829 | INT32 half = searchLength >> 1; |
| 830 | INT32 mid = start + half; |
| 831 | |
| 832 | if(time < mKeyframes[mid].time) |
| 833 | { |
| 834 | searchLength = half; |
| 835 | } |
| 836 | else |
| 837 | { |
| 838 | start = mid + 1; |
| 839 | searchLength -= (half + 1); |
| 840 | } |
| 841 | } |
| 842 | |
| 843 | leftKey = std::max(0, start - 1); |
| 844 | rightKey = std::min(start, (INT32)mKeyframes.size() - 1); |
| 845 | } |
| 846 | |
| 847 | template <class T> |
| 848 | UINT32 TAnimationCurve<T>::findKey(float time) |
| 849 | { |
| 850 | UINT32 leftKeyIdx; |
| 851 | UINT32 rightKeyIdx; |
| 852 | |
| 853 | findKeys(time, leftKeyIdx, rightKeyIdx); |
| 854 | |
| 855 | const KeyFrame& leftKey = mKeyframes[leftKeyIdx]; |
| 856 | const KeyFrame& rightKey = mKeyframes[rightKeyIdx]; |
| 857 | |
| 858 | if (Math::abs(leftKey.time - time) <= Math::abs(rightKey.time - time)) |
| 859 | return leftKeyIdx; |
| 860 | |
| 861 | return rightKeyIdx; |
| 862 | } |
| 863 | |
| 864 | template <class T> |
| 865 | TKeyframe<T> TAnimationCurve<T>::evaluateKey(const KeyFrame& lhs, const KeyFrame& rhs, float time) const |
| 866 | { |
| 867 | return impl::evaluateKey(lhs, rhs, time); |
| 868 | } |
| 869 | |
| 870 | template <class T> |
| 871 | TAnimationCurve<T> TAnimationCurve<T>::split(float start, float end) |
| 872 | { |
| 873 | Vector<TKeyframe<T>> keyFrames; |
| 874 | |
| 875 | start = Math::clamp(start, mStart, mEnd); |
| 876 | end = Math::clamp(end, mStart, mEnd); |
| 877 | |
| 878 | UINT32 startKeyIdx = findKey(start); |
| 879 | UINT32 endKeyIdx = findKey(end); |
| 880 | |
| 881 | keyFrames.reserve(endKeyIdx - startKeyIdx + 2); |
| 882 | |
| 883 | const KeyFrame& startKey = mKeyframes[startKeyIdx]; |
| 884 | |
| 885 | if (!Math::approxEquals(startKey.time, start)) |
| 886 | { |
| 887 | if(start > startKey.time) |
| 888 | { |
| 889 | if (mKeyframes.size() > (startKeyIdx + 1)) |
| 890 | keyFrames.push_back(evaluateKey(startKey, mKeyframes[startKeyIdx + 1], start)); |
| 891 | else |
| 892 | { |
| 893 | TKeyframe<T> keyCopy = startKey; |
| 894 | keyCopy.time = start; |
| 895 | |
| 896 | keyFrames.push_back(keyCopy); |
| 897 | } |
| 898 | |
| 899 | startKeyIdx++; |
| 900 | } |
| 901 | else |
| 902 | { |
| 903 | |
| 904 | if (startKeyIdx > 0) |
| 905 | keyFrames.push_back(evaluateKey(mKeyframes[startKeyIdx - 1], startKey , start)); |
| 906 | else |
| 907 | { |
| 908 | TKeyframe<T> keyCopy = startKey; |
| 909 | keyCopy.time = start; |
| 910 | |
| 911 | keyFrames.push_back(keyCopy); |
| 912 | } |
| 913 | } |
| 914 | } |
| 915 | else |
| 916 | { |
| 917 | keyFrames.push_back(startKey); |
| 918 | startKeyIdx++; |
| 919 | } |
| 920 | |
| 921 | if (!Math::approxEquals(end - start, 0.0f)) |
| 922 | { |
| 923 | const KeyFrame& endKey = mKeyframes[endKeyIdx]; |
| 924 | if(!Math::approxEquals(endKey.time, end)) |
| 925 | { |
| 926 | if(end > endKey.time) |
| 927 | { |
| 928 | if (mKeyframes.size() > (endKeyIdx + 1)) |
| 929 | keyFrames.push_back(evaluateKey(endKey, mKeyframes[endKeyIdx + 1], end)); |
| 930 | else |
| 931 | { |
| 932 | TKeyframe<T> keyCopy = endKey; |
| 933 | keyCopy.time = end; |
| 934 | |
| 935 | keyFrames.push_back(keyCopy); |
| 936 | } |
| 937 | } |
| 938 | else |
| 939 | { |
| 940 | if(endKeyIdx > 0) |
| 941 | { |
| 942 | keyFrames.push_back(evaluateKey(mKeyframes[endKeyIdx - 1], endKey, end)); |
| 943 | endKeyIdx--; |
| 944 | } |
| 945 | else |
| 946 | { |
| 947 | TKeyframe<T> keyCopy = endKey; |
| 948 | keyCopy.time = end; |
| 949 | |
| 950 | keyFrames.push_back(keyCopy); |
| 951 | } |
| 952 | } |
| 953 | } |
| 954 | |
| 955 | if (startKeyIdx < (UINT32)mKeyframes.size() && endKeyIdx > startKeyIdx) |
| 956 | keyFrames.insert(keyFrames.begin() + 1, mKeyframes.begin() + startKeyIdx, mKeyframes.begin() + endKeyIdx + 1); |
| 957 | } |
| 958 | |
| 959 | for (auto& entry : keyFrames) |
| 960 | entry.time -= start; |
| 961 | |
| 962 | return TAnimationCurve<T>(keyFrames); |
| 963 | } |
| 964 | |
| 965 | template <class T> |
| 966 | void TAnimationCurve<T>::makeAdditive() |
| 967 | { |
| 968 | if (mKeyframes.size() < 2) |
| 969 | return; |
| 970 | |
| 971 | const KeyFrame& refKey = mKeyframes[0]; |
| 972 | const auto numKeys = (UINT32)mKeyframes.size(); |
| 973 | |
| 974 | for(UINT32 i = 1; i < numKeys; i++) |
| 975 | mKeyframes[i].value = impl::getDiff(mKeyframes[i].value, refKey.value); |
| 976 | } |
| 977 | |
| 978 | template <class T> |
| 979 | std::pair<float, float> TAnimationCurve<T>::getTimeRange() const |
| 980 | { |
| 981 | if(mKeyframes.empty()) |
| 982 | return std::make_pair(0.0f, 0.0f); |
| 983 | |
| 984 | if(mKeyframes.size() == 1) |
| 985 | return std::make_pair(mKeyframes[0].time, mKeyframes[0].time); |
| 986 | |
| 987 | return std::make_pair(mKeyframes[0].time, mKeyframes[mKeyframes.size() - 1].time); |
| 988 | } |
| 989 | |
| 990 | template <class T> |
| 991 | std::pair<T, T> TAnimationCurve<T>::calculateRange() const |
| 992 | { |
| 993 | const auto numKeys = (UINT32)mKeyframes.size(); |
| 994 | if(numKeys == 0) |
| 995 | return std::make_pair(impl::getZero<T>(), impl::getZero<T>()); |
| 996 | |
| 997 | std::pair<T, T> output = { std::numeric_limits<T>::infinity(), -std::numeric_limits<T>::infinity() }; |
| 998 | impl::getMinMax(output, mKeyframes[0].value); |
| 999 | |
| 1000 | for(UINT32 i = 1; i < numKeys; i++) |
| 1001 | { |
| 1002 | const KeyFrame& lhs = mKeyframes[i - 1]; |
| 1003 | const KeyFrame& rhs = mKeyframes[i]; |
| 1004 | |
| 1005 | T coeffs[4]; |
| 1006 | impl::calculateCoeffs(lhs, rhs, lhs.time, coeffs); |
| 1007 | impl::calcMinMax(output, lhs.time, rhs.time, coeffs); |
| 1008 | |
| 1009 | T endVal = impl::evaluateCubic(rhs.time, lhs.time, 0.0f, coeffs); |
| 1010 | impl::getMinMax(output, endVal); |
| 1011 | } |
| 1012 | |
| 1013 | return output; |
| 1014 | } |
| 1015 | |
| 1016 | template <class T> |
| 1017 | std::pair<T, T> TAnimationCurve<T>::calculateRangeIntegrated(const TCurveIntegrationCache<T>& cache) const |
| 1018 | { |
| 1019 | std::pair<T, T> output = std::make_pair(impl::getZero<T>(), impl::getZero<T>()); |
| 1020 | |
| 1021 | const auto numKeys = (UINT32)mKeyframes.size(); |
| 1022 | if(numKeys == 0) |
| 1023 | return output; |
| 1024 | |
| 1025 | if(!cache.segmentSums) |
| 1026 | buildIntegrationCache(cache); |
| 1027 | |
| 1028 | for(UINT32 i = 1; i < numKeys; i++) |
| 1029 | { |
| 1030 | const KeyFrame& lhs = mKeyframes[i - 1]; |
| 1031 | const KeyFrame& rhs = mKeyframes[i]; |
| 1032 | |
| 1033 | T (&coeffs)[4] = cache.coeffs[i - 1]; |
| 1034 | impl::calcMinMaxIntegrated(output, lhs.time, rhs.time, cache.segmentSums[i - 1], coeffs); |
| 1035 | |
| 1036 | float t = rhs.time - lhs.time; |
| 1037 | T endVal = (T)(cache.segmentSums[i - 1] + impl::evaluateCubic(t, 0.0f, 0.0f, coeffs) * t); |
| 1038 | impl::getMinMax(output, endVal); |
| 1039 | } |
| 1040 | |
| 1041 | return output; |
| 1042 | } |
| 1043 | |
| 1044 | template <class T> |
| 1045 | std::pair<T, T> TAnimationCurve<T>::calculateRangeIntegratedDouble(const TCurveIntegrationCache<T>& cache) const |
| 1046 | { |
| 1047 | std::pair<T, T> output = std::make_pair(impl::getZero<T>(), impl::getZero<T>()); |
| 1048 | |
| 1049 | const auto numKeys = (UINT32)mKeyframes.size(); |
| 1050 | if(numKeys == 0) |
| 1051 | return output; |
| 1052 | |
| 1053 | if(!cache.segmentSums) |
| 1054 | buildDoubleIntegrationCache(cache); |
| 1055 | |
| 1056 | for(UINT32 i = 1; i < numKeys; i++) |
| 1057 | { |
| 1058 | const KeyFrame& lhs = mKeyframes[i - 1]; |
| 1059 | const KeyFrame& rhs = mKeyframes[i]; |
| 1060 | |
| 1061 | T (&coeffs)[4] = cache.coeffs[i - 1]; |
| 1062 | impl::calcMinMaxIntegratedDouble(output, lhs.time, rhs.time, cache.doubleSegmentSums[i - 1], |
| 1063 | cache.segmentSums[i - 1], coeffs); |
| 1064 | |
| 1065 | float t = rhs.time - lhs.time; |
| 1066 | T endVal = (T)(cache.doubleSegmentSums[i - 1] + cache.segmentSums[i - 1] * t + |
| 1067 | impl::evaluateCubic(t, 0.0f, 0.0f, coeffs) * t * t); |
| 1068 | impl::getMinMax(output, endVal); |
| 1069 | } |
| 1070 | |
| 1071 | return output; |
| 1072 | } |
| 1073 | |
| 1074 | template <class T> |
| 1075 | void TAnimationCurve<T>::buildIntegrationCache(const TCurveIntegrationCache<T>& cache) const |
| 1076 | { |
| 1077 | assert(!cache.segmentSums); |
| 1078 | |
| 1079 | const auto numKeyframes = (UINT32)mKeyframes.size(); |
| 1080 | if(numKeyframes <= 1) |
| 1081 | return; |
| 1082 | |
| 1083 | cache.init(numKeyframes); |
| 1084 | cache.segmentSums[0] = impl::getZero<T>(); |
| 1085 | |
| 1086 | for (UINT32 i = 1; i < numKeyframes; i++) |
| 1087 | { |
| 1088 | const TKeyframe<T>& lhs = mKeyframes[i - 1]; |
| 1089 | const TKeyframe<T>& rhs = mKeyframes[i]; |
| 1090 | |
| 1091 | T(&coeffs)[4] = cache.coeffs[i - 1]; |
| 1092 | impl::calculateCoeffs(lhs, rhs, lhs.time, coeffs); |
| 1093 | impl::integrate(coeffs); |
| 1094 | |
| 1095 | // Evaluate value at the end of the segment and add to the cache (this value is the total area under |
| 1096 | // the segment) |
| 1097 | const float t = rhs.time - lhs.time; |
| 1098 | const T value = (T)(impl::evaluateCubic(t, 0.0f, 0.0f, coeffs) * t); |
| 1099 | cache.segmentSums[i] = cache.segmentSums[i - 1] + value; |
| 1100 | } |
| 1101 | } |
| 1102 | |
| 1103 | template <class T> |
| 1104 | void TAnimationCurve<T>::buildDoubleIntegrationCache(const TCurveIntegrationCache<T>& cache) const |
| 1105 | { |
| 1106 | assert(!cache.segmentSums); |
| 1107 | |
| 1108 | const auto numKeyframes = (UINT32)mKeyframes.size(); |
| 1109 | if(numKeyframes <= 1) |
| 1110 | return; |
| 1111 | |
| 1112 | cache.initDouble(numKeyframes); |
| 1113 | cache.segmentSums[0] = impl::getZero<T>(); |
| 1114 | cache.doubleSegmentSums[0] = impl::getZero<T>(); |
| 1115 | |
| 1116 | for (UINT32 i = 1; i < numKeyframes; i++) |
| 1117 | { |
| 1118 | const TKeyframe<T>& lhs = mKeyframes[i - 1]; |
| 1119 | const TKeyframe<T>& rhs = mKeyframes[i]; |
| 1120 | |
| 1121 | T(&coeffs)[4] = cache.coeffs[i - 1]; |
| 1122 | impl::calculateCoeffs(lhs, rhs, lhs.time, coeffs); |
| 1123 | impl::integrate(coeffs); |
| 1124 | |
| 1125 | // Evaluate value at the end of the segment and add to the cache (this value is the total area under |
| 1126 | // the segment) |
| 1127 | const float t = rhs.time - lhs.time; |
| 1128 | T value = (T)(impl::evaluateCubic(t, 0.0f, 0.0f, coeffs) * t); |
| 1129 | cache.segmentSums[i] = cache.segmentSums[i - 1] + value; |
| 1130 | |
| 1131 | // Double integrate the already integrated coeffs |
| 1132 | coeffs[0] = (T)(coeffs[0] / 5.0f); |
| 1133 | coeffs[1] = (T)(coeffs[1] / 4.0f); |
| 1134 | coeffs[2] = (T)(coeffs[2] / 3.0f); |
| 1135 | coeffs[3] = (T)(coeffs[3] / 2.0f); |
| 1136 | |
| 1137 | value = (T)(impl::evaluateCubic(t, 0.0f, 0.0f, coeffs) * t * t + cache.segmentSums[i - 1] * t); |
| 1138 | cache.doubleSegmentSums[i] = cache.doubleSegmentSums[i - 1] + value; |
| 1139 | } |
| 1140 | } |
| 1141 | |
| 1142 | template <class T> |
| 1143 | bool TAnimationCurve<T>::operator==(const TAnimationCurve<T>& rhs) const |
| 1144 | { |
| 1145 | if(mLength != rhs.mLength || mStart != rhs.mStart || mEnd != rhs.mEnd) |
| 1146 | return false; |
| 1147 | |
| 1148 | return mKeyframes == rhs.mKeyframes; |
| 1149 | } |
| 1150 | |
| 1151 | template class TAnimationCurve<Vector3>; |
| 1152 | template class TAnimationCurve<Vector2>; |
| 1153 | template class TAnimationCurve<Quaternion>; |
| 1154 | template class TAnimationCurve<float>; |
| 1155 | template class TAnimationCurve<INT32>; |
| 1156 | } |