1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************// |
2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********// |
3 | #include "Animation/BsAnimationUtility.h" |
4 | #include "Math/BsVector3.h" |
5 | #include "Math/BsQuaternion.h" |
6 | |
7 | namespace bs |
8 | { |
9 | void setStepTangent(const TKeyframe<Vector3>& lhsIn, const TKeyframe<Vector3>& rhsIn, |
10 | TKeyframe<Quaternion>& lhsOut, TKeyframe<Quaternion>& rhsOut) |
11 | { |
12 | for (UINT32 i = 0; i < 3; i++) |
13 | { |
14 | if (lhsIn.outTangent[i] != std::numeric_limits<float>::infinity() && |
15 | rhsIn.inTangent[i] != std::numeric_limits<float>::infinity()) |
16 | continue; |
17 | |
18 | lhsOut.outTangent[i] = std::numeric_limits<float>::infinity(); |
19 | rhsOut.inTangent[i] = std::numeric_limits<float>::infinity(); |
20 | } |
21 | } |
22 | |
23 | void setStepTangent(const TKeyframe<Quaternion>& lhsIn, const TKeyframe<Quaternion>& rhsIn, |
24 | TKeyframe<Vector3>& lhsOut, TKeyframe<Vector3>& rhsOut) |
25 | { |
26 | for (UINT32 i = 0; i < 4; i++) |
27 | { |
28 | if (lhsIn.outTangent[i] != std::numeric_limits<float>::infinity() && |
29 | rhsIn.inTangent[i] != std::numeric_limits<float>::infinity()) |
30 | continue; |
31 | |
32 | if (i < 3) |
33 | { |
34 | lhsOut.outTangent[i] = std::numeric_limits<float>::infinity(); |
35 | rhsOut.inTangent[i] = std::numeric_limits<float>::infinity(); |
36 | } |
37 | } |
38 | } |
39 | |
40 | void AnimationUtility::wrapTime(float& time, float start, float end, bool loop) |
41 | { |
42 | float length = end - start; |
43 | |
44 | if(Math::approxEquals(length, 0.0f)) |
45 | { |
46 | time = 0.0f; |
47 | return; |
48 | } |
49 | |
50 | // Clamp to start or loop |
51 | if (time < start) |
52 | { |
53 | if (loop) |
54 | time = time + (std::floor(end - time) / length) * length; |
55 | else // Clamping |
56 | time = start; |
57 | } |
58 | |
59 | // Clamp to end or loop |
60 | if (time > end) |
61 | { |
62 | if (loop) |
63 | time = time - std::floor((time - start) / length) * length; |
64 | else // Clamping |
65 | time = end; |
66 | } |
67 | } |
68 | |
69 | SPtr<TAnimationCurve<Quaternion>> AnimationUtility::eulerToQuaternionCurve( |
70 | const SPtr<TAnimationCurve<Vector3>>& eulerCurve, EulerAngleOrder order) |
71 | { |
72 | // TODO: We calculate tangents by sampling which can introduce error in the tangents. The error can be exacerbated |
73 | // by the fact we constantly switch between the two representations, possibly losing precision every time. Instead |
74 | // there must be an analytical way to calculate tangents when converting a curve, or a better way of dealing with |
75 | // tangents. |
76 | // Consider: |
77 | // - Sampling multiple points to calculate tangents to improve precision |
78 | // - Store the original quaternion curve with the euler curve |
79 | // - This way conversion from euler to quaternion can be done while individual keyframes are being modified |
80 | // ensuring the conversion results are immediately visible, and that no accumulation error happens are curves |
81 | // are converted between two formats back and forth. |
82 | // - Don't store rotation tangents directly, instead store tangent parameters (TCB) which can be shared between |
83 | // both curves, and used for tangent calculation. |
84 | // |
85 | // If we decide to keep tangents in the current form, then we should also enforce that all euler curve tangents are |
86 | // the same. |
87 | const float FIT_TIME = 0.001f; |
88 | |
89 | auto eulerToQuaternion = [&](INT32 keyIdx, Vector3& angles, const Quaternion& lastQuat) |
90 | { |
91 | Quaternion quat( |
92 | Degree(angles.x), |
93 | Degree(angles.y), |
94 | Degree(angles.z), order); |
95 | |
96 | // Flip quaternion in case rotation is over 180 degrees (use shortest path) |
97 | if (keyIdx > 0) |
98 | { |
99 | float dot = quat.dot(lastQuat); |
100 | if (dot < 0.0f) |
101 | quat = -quat; |
102 | } |
103 | |
104 | return quat; |
105 | }; |
106 | |
107 | INT32 numKeys = (INT32)eulerCurve->getNumKeyFrames(); |
108 | Vector<TKeyframe<Quaternion>> quatKeyframes(numKeys); |
109 | |
110 | // Calculate key values |
111 | Quaternion lastQuat(BsZero); |
112 | for (INT32 i = 0; i < numKeys; i++) |
113 | { |
114 | float time = eulerCurve->getKeyFrame(i).time; |
115 | Vector3 angles = eulerCurve->getKeyFrame(i).value; |
116 | Quaternion quat = eulerToQuaternion(i, angles, lastQuat); |
117 | |
118 | quatKeyframes[i].time = time; |
119 | quatKeyframes[i].value = quat; |
120 | quatKeyframes[i].inTangent = Quaternion::ZERO; |
121 | quatKeyframes[i].outTangent = Quaternion::ZERO; |
122 | |
123 | lastQuat = quat; |
124 | } |
125 | |
126 | // Calculate extra values between keys so we can approximate tangents. If we're sampling very close to the key |
127 | // the values should pretty much exactly match the tangent (assuming the curves are cubic hermite) |
128 | for (INT32 i = 0; i < numKeys - 1; i++) |
129 | { |
130 | TKeyframe<Quaternion>& currentKey = quatKeyframes[i]; |
131 | TKeyframe<Quaternion>& nextKey = quatKeyframes[i + 1]; |
132 | |
133 | const TKeyframe<Vector3>& currentEulerKey = eulerCurve->getKeyFrame(i); |
134 | const TKeyframe<Vector3>& nextEulerKey = eulerCurve->getKeyFrame(i + 1); |
135 | |
136 | float dt = nextKey.time - currentKey.time; |
137 | float startFitTime = currentKey.time + dt * FIT_TIME; |
138 | float endFitTime = currentKey.time + dt * (1.0f - FIT_TIME); |
139 | |
140 | Vector3 anglesStart = eulerCurve->evaluate(startFitTime, false); |
141 | Vector3 anglesEnd = eulerCurve->evaluate(endFitTime, false); |
142 | Quaternion startFitValue = eulerToQuaternion(i, anglesStart, currentKey.value); |
143 | Quaternion endFitValue = eulerToQuaternion(i, anglesEnd, startFitValue); |
144 | |
145 | float invFitTime = 1.0f / (dt * FIT_TIME); |
146 | currentKey.outTangent = (startFitValue - currentKey.value) * invFitTime; |
147 | nextKey.inTangent = (nextKey.value - endFitValue) * invFitTime; |
148 | |
149 | setStepTangent(currentEulerKey, nextEulerKey, currentKey, nextKey); |
150 | } |
151 | |
152 | return bs_shared_ptr_new<TAnimationCurve<Quaternion>>(quatKeyframes); |
153 | } |
154 | |
155 | SPtr<TAnimationCurve<Vector3>> AnimationUtility::quaternionToEulerCurve(const SPtr<TAnimationCurve<Quaternion>>& quatCurve) |
156 | { |
157 | // TODO: We calculate tangents by sampling. There must be an analytical way to calculate tangents when converting |
158 | // a curve. |
159 | const float FIT_TIME = 0.001f; |
160 | |
161 | auto quaternionToEuler = [&](const Quaternion& quat) |
162 | { |
163 | Radian x, y, z; |
164 | quat.toEulerAngles(x, y, z); |
165 | |
166 | Vector3 euler( |
167 | x.valueDegrees(), |
168 | y.valueDegrees(), |
169 | z.valueDegrees() |
170 | ); |
171 | |
172 | return euler; |
173 | }; |
174 | |
175 | INT32 numKeys = (INT32)quatCurve->getNumKeyFrames(); |
176 | Vector<TKeyframe<Vector3>> eulerKeyframes(numKeys); |
177 | |
178 | // Calculate key values |
179 | for (INT32 i = 0; i < numKeys; i++) |
180 | { |
181 | float time = quatCurve->getKeyFrame(i).time; |
182 | Quaternion quat = quatCurve->getKeyFrame(i).value; |
183 | Vector3 euler = quaternionToEuler(quat); |
184 | |
185 | eulerKeyframes[i].time = time; |
186 | eulerKeyframes[i].value = euler; |
187 | eulerKeyframes[i].inTangent = Vector3::ZERO; |
188 | eulerKeyframes[i].outTangent = Vector3::ZERO; |
189 | } |
190 | |
191 | // Calculate extra values between keys so we can approximate tangents. If we're sampling very close to the key |
192 | // the values should pretty much exactly match the tangent (assuming the curves are cubic hermite) |
193 | for (INT32 i = 0; i < numKeys - 1; i++) |
194 | { |
195 | TKeyframe<Vector3>& currentKey = eulerKeyframes[i]; |
196 | TKeyframe<Vector3>& nextKey = eulerKeyframes[i + 1]; |
197 | |
198 | const TKeyframe<Quaternion>& currentQuatKey = quatCurve->getKeyFrame(i); |
199 | const TKeyframe<Quaternion>& nextQuatKey = quatCurve->getKeyFrame(i + 1); |
200 | |
201 | float dt = nextKey.time - currentKey.time; |
202 | float startFitTime = currentKey.time + dt * FIT_TIME; |
203 | float endFitTime = currentKey.time + dt * (1.0f - FIT_TIME); |
204 | |
205 | Quaternion startQuat = Quaternion::normalize(quatCurve->evaluate(startFitTime, false)); |
206 | Quaternion endQuat = Quaternion::normalize(quatCurve->evaluate(endFitTime, false)); |
207 | Vector3 startFitValue = quaternionToEuler(startQuat); |
208 | Vector3 endFitValue = quaternionToEuler(endQuat); |
209 | |
210 | // If fit values rotate for more than 180 degrees, wrap them so they use the shortest path |
211 | for(int j = 0; j < 3; j++) |
212 | { |
213 | startFitValue[j] = fmod(startFitValue[j] - currentKey.value[j] + 180.0f, 360.0f) + currentKey.value[j] - 180.0f; |
214 | endFitValue[j] = nextKey.value[j] + fmod(nextKey.value[j] - endFitValue[j] + 180.0f, 360.0f) - 180.0f; |
215 | } |
216 | |
217 | float invFitTime = 1.0f / (dt * FIT_TIME); |
218 | currentKey.outTangent = (startFitValue - currentKey.value) * invFitTime; |
219 | nextKey.inTangent = (nextKey.value - endFitValue) * invFitTime; |
220 | |
221 | setStepTangent(currentQuatKey, nextQuatKey, currentKey, nextKey); |
222 | } |
223 | |
224 | return bs_shared_ptr_new<TAnimationCurve<Vector3>>(eulerKeyframes); |
225 | } |
226 | |
227 | template <class T> |
228 | void splitCurve( |
229 | const TAnimationCurve<T>& compoundCurve, |
230 | Vector<TKeyframe<float>> (&keyFrames)[TCurveProperties<T>::NumComponents]) |
231 | { |
232 | constexpr UINT32 NUM_COMPONENTS = TCurveProperties<T>::NumComponents; |
233 | |
234 | const UINT32 numKeyFrames = compoundCurve.getNumKeyFrames(); |
235 | for (UINT32 i = 0; i < numKeyFrames; i++) |
236 | { |
237 | const TKeyframe<T>& key = compoundCurve.getKeyFrame(i); |
238 | |
239 | TKeyframe<float> newKey; |
240 | newKey.time = key.time; |
241 | |
242 | for (UINT32 j = 0; j < NUM_COMPONENTS; j++) |
243 | { |
244 | bool addNew = true; |
245 | if (i > 0) |
246 | { |
247 | const TKeyframe<float>& prevKey = keyFrames[j].back(); |
248 | |
249 | bool isEqual = Math::approxEquals(prevKey.value, TCurveProperties<T>::getComponent(key.value, j)) && |
250 | Math::approxEquals(prevKey.outTangent, TCurveProperties<T>::getComponent(key.inTangent, j)); |
251 | |
252 | addNew = !isEqual; |
253 | } |
254 | |
255 | if (addNew) |
256 | { |
257 | newKey.value = TCurveProperties<T>::getComponent(key.value, j); |
258 | newKey.inTangent = TCurveProperties<T>::getComponent(key.inTangent, j); |
259 | newKey.outTangent = TCurveProperties<T>::getComponent(key.outTangent, j); |
260 | |
261 | keyFrames[j].push_back(newKey); |
262 | } |
263 | } |
264 | } |
265 | } |
266 | |
267 | template <class T> |
268 | void combineCurve( |
269 | const TAnimationCurve<float>* (& curveComponents)[TCurveProperties<T>::NumComponents], |
270 | Vector<TKeyframe<T>>& output) |
271 | { |
272 | constexpr UINT32 NUM_COMPONENTS = TCurveProperties<T>::NumComponents; |
273 | |
274 | // Find unique keyframe times |
275 | Map<float, TKeyframe<T>> keyFrames; |
276 | for(UINT32 i = 0; i < NUM_COMPONENTS; i++) |
277 | { |
278 | UINT32 numKeyFrames = curveComponents[i]->getNumKeyFrames(); |
279 | for (UINT32 j = 0; j < numKeyFrames; j++) |
280 | { |
281 | const TKeyframe<float>& keyFrame = curveComponents[i]->getKeyFrame(j); |
282 | |
283 | auto iterFind = keyFrames.find(keyFrame.time); |
284 | if (iterFind == keyFrames.end()) |
285 | { |
286 | TKeyframe<T> newKeyFrame; |
287 | newKeyFrame.time = keyFrame.time; |
288 | |
289 | keyFrames.insert(std::make_pair(keyFrame.time, newKeyFrame)); |
290 | } |
291 | } |
292 | } |
293 | |
294 | // Populate keyframe values |
295 | output.resize(keyFrames.size()); |
296 | UINT32 idx = 0; |
297 | for(auto& entry : keyFrames) |
298 | { |
299 | TKeyframe<T>& keyFrame = entry.second; |
300 | |
301 | for(UINT32 j = 0; j < NUM_COMPONENTS; j++) |
302 | { |
303 | TKeyframe<float> currentKey = curveComponents[j]->evaluateKey(keyFrame.time, false); |
304 | TCurveProperties<T>::setComponent(keyFrame.value, j, currentKey.value); |
305 | TCurveProperties<T>::setComponent(keyFrame.inTangent, j, currentKey.inTangent); |
306 | TCurveProperties<T>::setComponent(keyFrame.outTangent, j, currentKey.outTangent); |
307 | } |
308 | |
309 | output[idx] = keyFrame; |
310 | idx++; |
311 | } |
312 | } |
313 | |
314 | Vector<SPtr<TAnimationCurve<float>>> AnimationUtility::splitCurve3D(const SPtr<TAnimationCurve<Vector3>>& compoundCurve) |
315 | { |
316 | Vector<TKeyframe<float>> keyFrames[3]; |
317 | |
318 | if(compoundCurve) |
319 | bs::splitCurve(*compoundCurve, keyFrames); |
320 | |
321 | Vector<SPtr<TAnimationCurve<float>>> output(3); |
322 | for (UINT32 i = 0; i < 3; i++) |
323 | output[i] = bs_shared_ptr_new<TAnimationCurve<float>>(keyFrames[i]); |
324 | |
325 | return output; |
326 | } |
327 | |
328 | SPtr<TAnimationCurve<Vector3>> AnimationUtility::combineCurve3D(const Vector<SPtr<TAnimationCurve<float>>>& curveComponents) |
329 | { |
330 | Vector<TKeyframe<Vector3>> keyFrames; |
331 | if(curveComponents.size() >= 3) |
332 | { |
333 | const TAnimationCurve<float>* curves[] = |
334 | { curveComponents[0].get(), curveComponents[1].get(), curveComponents[2].get() }; |
335 | |
336 | bs::combineCurve(curves, keyFrames); |
337 | } |
338 | |
339 | return bs_shared_ptr_new<TAnimationCurve<Vector3>>(keyFrames); |
340 | } |
341 | |
342 | Vector<SPtr<TAnimationCurve<float>>> AnimationUtility::splitCurve2D(const SPtr<TAnimationCurve<Vector2>>& compoundCurve) |
343 | { |
344 | Vector<TKeyframe<float>> keyFrames[2]; |
345 | |
346 | if(compoundCurve) |
347 | bs::splitCurve(*compoundCurve, keyFrames); |
348 | |
349 | Vector<SPtr<TAnimationCurve<float>>> output(2); |
350 | for (UINT32 i = 0; i < 2; i++) |
351 | output[i] = bs_shared_ptr_new<TAnimationCurve<float>>(keyFrames[i]); |
352 | |
353 | return output; |
354 | } |
355 | |
356 | SPtr<TAnimationCurve<Vector2>> AnimationUtility::combineCurve2D(const Vector<SPtr<TAnimationCurve<float>>>& curveComponents) |
357 | { |
358 | Vector<TKeyframe<Vector2>> keyFrames; |
359 | if(curveComponents.size() >= 2) |
360 | { |
361 | const TAnimationCurve<float>* curves[] = |
362 | { curveComponents[0].get(), curveComponents[1].get() }; |
363 | |
364 | bs::combineCurve(curves, keyFrames); |
365 | } |
366 | |
367 | return bs_shared_ptr_new<TAnimationCurve<Vector2>>(keyFrames); |
368 | } |
369 | |
370 | template <class T> |
371 | void AnimationUtility::splitCurve(const TAnimationCurve<T>& compoundCurve, |
372 | TAnimationCurve<float> (& output)[TCurveProperties<T>::NumComponents]) |
373 | { |
374 | constexpr UINT32 NUM_COMPONENTS = TCurveProperties<T>::NumComponents; |
375 | |
376 | Vector<TKeyframe<float>> keyFrames[NUM_COMPONENTS]; |
377 | bs::splitCurve(compoundCurve, keyFrames); |
378 | |
379 | for (UINT32 i = 0; i < NUM_COMPONENTS; i++) |
380 | output[i] = TAnimationCurve<float>(keyFrames[i]); |
381 | } |
382 | |
383 | template <class T> |
384 | void AnimationUtility::combineCurve( |
385 | const TAnimationCurve<float> (& curveComponents)[TCurveProperties<T>::NumComponents], |
386 | TAnimationCurve<T>& output) |
387 | { |
388 | constexpr UINT32 NUM_COMPONENTS = TCurveProperties<T>::NumComponents; |
389 | |
390 | const TAnimationCurve<float>* curves[NUM_COMPONENTS]; |
391 | for(UINT32 i = 0; i < NUM_COMPONENTS; i++) |
392 | curves[i] = &curveComponents[i]; |
393 | |
394 | Vector<TKeyframe<T>> keyFrames; |
395 | bs::combineCurve(curves, keyFrames); |
396 | |
397 | output = TAnimationCurve<T>(keyFrames); |
398 | } |
399 | |
400 | void AnimationUtility::calculateRange(const Vector<TAnimationCurve<float>>& curves, float& xMin, float& xMax, |
401 | float& yMin, float& yMax) |
402 | { |
403 | xMin = std::numeric_limits<float>::infinity(); |
404 | xMax = -std::numeric_limits<float>::infinity(); |
405 | yMin = std::numeric_limits<float>::infinity(); |
406 | yMax = -std::numeric_limits<float>::infinity(); |
407 | |
408 | for(auto& entry : curves) |
409 | { |
410 | const auto timeRange = entry.getTimeRange(); |
411 | const auto valueRange = entry.calculateRange(); |
412 | |
413 | xMin = std::min(xMin, timeRange.first); |
414 | xMax = std::max(xMax, timeRange.second); |
415 | yMin = std::min(yMin, valueRange.first); |
416 | yMax = std::max(yMax, valueRange.second); |
417 | } |
418 | |
419 | if (xMin == std::numeric_limits<float>::infinity()) |
420 | xMin = 0.0f; |
421 | |
422 | if (xMax == -std::numeric_limits<float>::infinity()) |
423 | xMax = 0.0f; |
424 | |
425 | if (yMin == std::numeric_limits<float>::infinity()) |
426 | yMin = 0.0f; |
427 | |
428 | if (yMax == -std::numeric_limits<float>::infinity()) |
429 | yMax = 0.0f; |
430 | } |
431 | |
432 | void AnimationUtility::calculateRange(const Vector<SPtr<TAnimationCurve<float>>>& curves, float& xMin, float& xMax, |
433 | float& yMin, float& yMax) |
434 | { |
435 | xMin = std::numeric_limits<float>::infinity(); |
436 | xMax = -std::numeric_limits<float>::infinity(); |
437 | yMin = std::numeric_limits<float>::infinity(); |
438 | yMax = -std::numeric_limits<float>::infinity(); |
439 | |
440 | for(auto& entry : curves) |
441 | { |
442 | const auto timeRange = entry->getTimeRange(); |
443 | const auto valueRange = entry->calculateRange(); |
444 | |
445 | xMin = std::min(xMin, timeRange.first); |
446 | xMax = std::max(xMax, timeRange.second); |
447 | yMin = std::min(yMin, valueRange.first); |
448 | yMax = std::max(yMax, valueRange.second); |
449 | } |
450 | |
451 | if (xMin == std::numeric_limits<float>::infinity()) |
452 | xMin = 0.0f; |
453 | |
454 | if (xMax == -std::numeric_limits<float>::infinity()) |
455 | xMax = 0.0f; |
456 | |
457 | if (yMin == std::numeric_limits<float>::infinity()) |
458 | yMin = 0.0f; |
459 | |
460 | if (yMax == -std::numeric_limits<float>::infinity()) |
461 | yMax = 0.0f; |
462 | } |
463 | |
464 | template<class T> |
465 | TAnimationCurve<T> AnimationUtility::scaleCurve(const TAnimationCurve<T>& curve, float factor) |
466 | { |
467 | INT32 numKeys = (INT32)curve.getNumKeyFrames(); |
468 | |
469 | Vector<TKeyframe<T>> newKeyframes(numKeys); |
470 | for (INT32 i = 0; i < numKeys; i++) |
471 | { |
472 | const TKeyframe<T>& key = curve.getKeyFrame(i); |
473 | newKeyframes[i].time = key.time; |
474 | newKeyframes[i].value = key.value * factor; |
475 | newKeyframes[i].inTangent = key.inTangent * factor; |
476 | newKeyframes[i].outTangent = key.outTangent * factor; |
477 | } |
478 | |
479 | return TAnimationCurve<T>(newKeyframes); |
480 | } |
481 | |
482 | template<class T> |
483 | TAnimationCurve<T> AnimationUtility::offsetCurve(const TAnimationCurve<T>& curve, float offset) |
484 | { |
485 | INT32 numKeys = (INT32)curve.getNumKeyFrames(); |
486 | |
487 | Vector<TKeyframe<T>> newKeyframes(numKeys); |
488 | for (INT32 i = 0; i < numKeys; i++) |
489 | { |
490 | const TKeyframe<T>& key = curve.getKeyFrame(i); |
491 | newKeyframes[i].time = key.time + offset; |
492 | newKeyframes[i].value = key.value; |
493 | newKeyframes[i].inTangent = key.inTangent; |
494 | newKeyframes[i].outTangent = key.outTangent; |
495 | } |
496 | |
497 | return TAnimationCurve<T>(newKeyframes); |
498 | } |
499 | |
500 | template <class T> |
501 | void AnimationUtility::calculateTangents(Vector<TKeyframe<T>>& keyframes) |
502 | { |
503 | using Keyframe = TKeyframe<T>; |
504 | if (keyframes.empty()) |
505 | return; |
506 | |
507 | if (keyframes.size() == 1) |
508 | { |
509 | keyframes[0].inTangent = TCurveProperties<T>::getZero(); |
510 | keyframes[0].outTangent = TCurveProperties<T>::getZero(); |
511 | |
512 | return; |
513 | } |
514 | |
515 | auto calcTangent = [](const Keyframe& left, const Keyframe& right) |
516 | { |
517 | float diff = right.time - left.time; |
518 | |
519 | if (!Math::approxEquals(diff, 0.0f)) |
520 | return (right.value - left.value) / diff; |
521 | |
522 | return std::numeric_limits<T>::infinity(); |
523 | }; |
524 | |
525 | // First keyframe |
526 | { |
527 | Keyframe& keyThis = keyframes[0]; |
528 | const Keyframe& keyNext = keyframes[1]; |
529 | |
530 | keyThis.inTangent = TCurveProperties<T>::getZero(); |
531 | keyThis.outTangent = calcTangent(keyThis, keyNext); |
532 | } |
533 | |
534 | // Inner keyframes |
535 | for (UINT32 i = 1; i < (UINT32)keyframes.size() - 1; i++) |
536 | { |
537 | const Keyframe& keyPrev = keyframes[i - 1]; |
538 | Keyframe& keyThis = keyframes[i]; |
539 | const Keyframe& keyNext = keyframes[i + 1]; |
540 | |
541 | keyThis.outTangent = calcTangent(keyPrev, keyNext); |
542 | keyThis.inTangent = keyThis.outTangent; |
543 | } |
544 | |
545 | // Last keyframe |
546 | { |
547 | Keyframe& keyThis = keyframes[keyframes.size() - 1]; |
548 | const Keyframe& keyPrev = keyframes[keyframes.size() - 2]; |
549 | |
550 | keyThis.outTangent = TCurveProperties<T>::getZero(); |
551 | keyThis.inTangent = calcTangent(keyPrev, keyThis); |
552 | } |
553 | } |
554 | |
555 | template BS_CORE_EXPORT TAnimationCurve<Vector3> AnimationUtility::scaleCurve(const TAnimationCurve<Vector3>& curve, float factor); |
556 | template BS_CORE_EXPORT TAnimationCurve<Vector2> AnimationUtility::scaleCurve(const TAnimationCurve<Vector2>& curve, float factor); |
557 | template BS_CORE_EXPORT TAnimationCurve<Quaternion> AnimationUtility::scaleCurve(const TAnimationCurve<Quaternion>& curve, float factor); |
558 | template BS_CORE_EXPORT TAnimationCurve<float> AnimationUtility::scaleCurve(const TAnimationCurve<float>& curve, float factor); |
559 | |
560 | template BS_CORE_EXPORT TAnimationCurve<Vector3> AnimationUtility::offsetCurve(const TAnimationCurve<Vector3>& curve, float offset); |
561 | template BS_CORE_EXPORT TAnimationCurve<Vector2> AnimationUtility::offsetCurve(const TAnimationCurve<Vector2>& curve, float offset); |
562 | template BS_CORE_EXPORT TAnimationCurve<Quaternion> AnimationUtility::offsetCurve(const TAnimationCurve<Quaternion>& curve, float offset); |
563 | template BS_CORE_EXPORT TAnimationCurve<float> AnimationUtility::offsetCurve(const TAnimationCurve<float>& curve, float offset); |
564 | |
565 | template BS_CORE_EXPORT void AnimationUtility::calculateTangents(Vector<TKeyframe<Vector3>>& keyframes); |
566 | template BS_CORE_EXPORT void AnimationUtility::calculateTangents(Vector<TKeyframe<Vector2>>& keyframes); |
567 | template BS_CORE_EXPORT void AnimationUtility::calculateTangents(Vector<TKeyframe<Quaternion>>& keyframes); |
568 | template BS_CORE_EXPORT void AnimationUtility::calculateTangents(Vector<TKeyframe<float>>& keyframes); |
569 | |
570 | template BS_CORE_EXPORT void AnimationUtility::splitCurve(const TAnimationCurve<float>&, TAnimationCurve<float> (&)[1]); |
571 | template BS_CORE_EXPORT void AnimationUtility::splitCurve(const TAnimationCurve<Vector2>&, TAnimationCurve<float> (&)[2]); |
572 | template BS_CORE_EXPORT void AnimationUtility::splitCurve(const TAnimationCurve<Vector3>&, TAnimationCurve<float> (&)[3]); |
573 | |
574 | template BS_CORE_EXPORT void AnimationUtility::combineCurve(const TAnimationCurve<float> (&)[1], TAnimationCurve<float>&); |
575 | template BS_CORE_EXPORT void AnimationUtility::combineCurve(const TAnimationCurve<float> (&)[2], TAnimationCurve<Vector2>&); |
576 | template BS_CORE_EXPORT void AnimationUtility::combineCurve(const TAnimationCurve<float> (&)[3], TAnimationCurve<Vector3>&); |
577 | } |
578 | |