1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************// |
2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********// |
3 | #pragma once |
4 | |
5 | #include <cfloat> |
6 | |
7 | #include "BsCorePrerequisites.h" |
8 | #include "Physics/BsPhysicsCommon.h" |
9 | #include "Physics/BsFJoint.h" |
10 | |
11 | namespace bs |
12 | { |
13 | /** @addtogroup Physics |
14 | * @{ |
15 | */ |
16 | |
17 | struct JOINT_DESC; |
18 | |
19 | /** |
20 | * Base class for all Joint types. Joints constrain how two rigidbodies move relative to one another (for example a door |
21 | * hinge). One of the bodies in the joint must always be movable (non-kinematic). |
22 | */ |
23 | class BS_CORE_EXPORT Joint |
24 | { |
25 | public: |
26 | Joint() = default; |
27 | virtual ~Joint() = default; |
28 | |
29 | /** @copydoc FJoint::getBody */ |
30 | Rigidbody* getBody(JointBody body) const; |
31 | |
32 | /** @copydoc FJoint::setBody */ |
33 | void setBody(JointBody body, Rigidbody* value); |
34 | |
35 | /** @copydoc FJoint::getPosition */ |
36 | Vector3 getPosition(JointBody body) const; |
37 | |
38 | /** @copydoc FJoint::getRotation */ |
39 | Quaternion getRotation(JointBody body) const; |
40 | |
41 | /** @copydoc FJoint::setTransform */ |
42 | void setTransform(JointBody body, const Vector3& position, const Quaternion& rotation); |
43 | |
44 | /** @copydoc FJoint::getBreakForce */ |
45 | float getBreakForce() const; |
46 | |
47 | /** @copydoc FJoint::setBreakForce */ |
48 | void setBreakForce(float force); |
49 | |
50 | /** @copydoc FJoint::getBreakTorque */ |
51 | float getBreakTorque() const; |
52 | |
53 | /** @copydoc FJoint::setBreakTorque */ |
54 | void setBreakTorque(float torque); |
55 | |
56 | /** @copydoc FJoint::getEnableCollision */ |
57 | bool getEnableCollision() const; |
58 | |
59 | /** @copydoc FJoint::setEnableCollision */ |
60 | void setEnableCollision(bool value); |
61 | |
62 | /** Triggered when the joint's break force or torque is exceeded. */ |
63 | Event<void()> onJointBreak; |
64 | |
65 | /** @name Internal |
66 | * @{ |
67 | */ |
68 | |
69 | /** |
70 | * Sets the object that owns this physics object, if any. Used for high level systems so they can easily map their |
71 | * high level physics objects from the low level ones returned by various queries and events. |
72 | */ |
73 | void _setOwner(PhysicsOwnerType type, void* owner) { mOwner.type = type; mOwner.ownerData = owner; } |
74 | |
75 | /** |
76 | * Gets the object that owns this physics object, if any. Used for high level systems so they can easily map their |
77 | * high level physics objects from the low level ones returned by various queries and events. |
78 | */ |
79 | void* _getOwner(PhysicsOwnerType type) const { return mOwner.type == type ? mOwner.ownerData : nullptr; } |
80 | |
81 | /** @} */ |
82 | |
83 | protected: |
84 | PhysicsObjectOwner mOwner; |
85 | FJoint* mInternal = nullptr; |
86 | }; |
87 | |
88 | /** Structure used for initializing a new Joint. */ |
89 | struct JOINT_DESC |
90 | { |
91 | struct BodyInfo |
92 | { |
93 | Rigidbody* body = nullptr; |
94 | Vector3 position = Vector3::ZERO; |
95 | Quaternion rotation = Quaternion::IDENTITY; |
96 | }; |
97 | |
98 | BodyInfo bodies[2]; |
99 | float breakForce = FLT_MAX; |
100 | float breakTorque = FLT_MAX; |
101 | bool enableCollision = false; |
102 | }; |
103 | |
104 | /** |
105 | * Controls spring parameters for a physics joint limits. If a limit is soft (body bounces back due to restition when |
106 | * the limit is reached) the spring will pull the body back towards the limit using the specified parameters. |
107 | */ |
108 | struct BS_SCRIPT_EXPORT(m:Physics,pl:true) Spring |
109 | { |
110 | /** Constructs a spring with no force. */ |
111 | Spring() { } |
112 | |
113 | /** |
114 | * Constructs a spring. |
115 | * |
116 | * @param stiffness Spring strength. Force proportional to the position error. |
117 | * @param damping Damping strength. Force propertional to the velocity error. |
118 | */ |
119 | Spring(float stiffness, float damping) |
120 | :stiffness(stiffness), damping(damping) |
121 | { } |
122 | |
123 | bool operator==(const Spring& other) const |
124 | { |
125 | return stiffness == other.stiffness && damping == other.damping; |
126 | } |
127 | |
128 | /** Spring strength. Force proportional to the position error. */ |
129 | float stiffness = 0.0f; |
130 | |
131 | /** Damping strength. Force propertional to the velocity error. */ |
132 | float damping = 0.0f; |
133 | }; |
134 | |
135 | /** Contains common values used by all Joint limit types. */ |
136 | struct BS_SCRIPT_EXPORT(m:Physics,pl:true) LimitCommon |
137 | { |
138 | LimitCommon(float contactDist = -1.0f) |
139 | :contactDist(contactDist) |
140 | { } |
141 | |
142 | LimitCommon(const Spring& spring, float restitution = 0.0f) |
143 | : restitution(restitution), spring(spring) |
144 | { } |
145 | |
146 | /** |
147 | * Distance from the limit at which it becomes active. Allows the solver to activate earlier than the limit is |
148 | * reached to avoid breaking the limit. |
149 | */ |
150 | float contactDist = -1.0f; |
151 | |
152 | /** |
153 | * Controls how do objects react when the limit is reached, values closer to zero specify non-ellastic collision, |
154 | * while those closer to one specify more ellastic (i.e bouncy) collision. Must be in [0, 1] range. |
155 | */ |
156 | float restitution = 0.0f; |
157 | |
158 | /** Spring that controls how are the bodies pulled back towards the limit when they breach it. */ |
159 | Spring spring; |
160 | }; |
161 | |
162 | /** Represents a joint limit between two distance values. Lower value must be less than the upper value. */ |
163 | struct BS_SCRIPT_EXPORT(m:Physics,pl:true) LimitLinearRange : LimitCommon |
164 | { |
165 | /** Constructs an empty limit. */ |
166 | LimitLinearRange() |
167 | { } |
168 | |
169 | /** |
170 | * Constructs a hard limit. Once the limit is reached the movement of the attached bodies will come to a stop. |
171 | * |
172 | * @param lower Lower distance of the limit. Must be less than @p upper. |
173 | * @param upper Upper distance of the limit. Must be more than @p lower. |
174 | * @param contactDist Distance from the limit at which it becomes active. Allows the solver to activate earlier |
175 | * than the limit is reached to avoid breaking the limit. Specify -1 for the default. |
176 | */ |
177 | LimitLinearRange(float lower, float upper, float contactDist = -1.0f) |
178 | :LimitCommon(contactDist), lower(lower), upper(upper) |
179 | { } |
180 | |
181 | /** |
182 | * Constructs a soft limit. Once the limit is reached the bodies will bounce back according to the resitution |
183 | * parameter and will be pulled back towards the limit by the provided spring. |
184 | * |
185 | * @param lower Lower distance of the limit. Must be less than @p upper. |
186 | * @param upper Upper distance of the limit. Must be more than @p lower. |
187 | * @param spring Spring that controls how are the bodies pulled back towards the limit when they breach it. |
188 | * @param restitution Controls how do objects react when the limit is reached, values closer to zero specify |
189 | * non-ellastic collision, while those closer to one specify more ellastic (i.e bouncy) |
190 | * collision. Must be in [0, 1] range. |
191 | */ |
192 | LimitLinearRange(float lower, float upper, const Spring& spring, float restitution = 0.0f) |
193 | :LimitCommon(spring, restitution), lower(lower), upper(upper) |
194 | { } |
195 | |
196 | bool operator==(const LimitLinearRange& other) const |
197 | { |
198 | return lower == other.lower && upper == other.upper && contactDist == other.contactDist && |
199 | restitution == other.restitution && spring == other.spring; |
200 | } |
201 | |
202 | /** Lower distance of the limit. Must be less than #upper. */ |
203 | float lower = 0.0f; |
204 | |
205 | /** Upper distance of the limit. Must be more than #lower. */ |
206 | float upper = 0.0f; |
207 | }; |
208 | |
209 | /** Represents a joint limit between zero a single distance value. */ |
210 | struct BS_SCRIPT_EXPORT(m:Physics,pl:true) LimitLinear : LimitCommon |
211 | { |
212 | /** Constructs an empty limit. */ |
213 | LimitLinear() |
214 | { } |
215 | |
216 | /** |
217 | * Constructs a hard limit. Once the limit is reached the movement of the attached bodies will come to a stop. |
218 | * |
219 | * @param extent Distance at which the limit becomes active. |
220 | * @param contactDist Distance from the limit at which it becomes active. Allows the solver to activate earlier |
221 | * than the limit is reached to avoid breaking the limit. Specify -1 for the default. |
222 | */ |
223 | LimitLinear(float extent, float contactDist = -1.0f) |
224 | :LimitCommon(contactDist), extent(extent) |
225 | { } |
226 | |
227 | /** |
228 | * Constructs a soft limit. Once the limit is reached the bodies will bounce back according to the resitution |
229 | * parameter and will be pulled back towards the limit by the provided spring. |
230 | * |
231 | * @param extent Distance at which the limit becomes active. |
232 | * @param spring Spring that controls how are the bodies pulled back towards the limit when they breach it. |
233 | * @param restitution Controls how do objects react when the limit is reached, values closer to zero specify |
234 | * non-ellastic collision, while those closer to one specify more ellastic (i.e bouncy) |
235 | * collision. Must be in [0, 1] range. |
236 | */ |
237 | LimitLinear(float extent, const Spring& spring, float restitution = 0.0f) |
238 | :LimitCommon(spring, restitution), extent(extent) |
239 | { } |
240 | |
241 | bool operator==(const LimitLinear& other) const |
242 | { |
243 | return extent == other.extent && contactDist == other.contactDist && restitution == other.restitution && |
244 | spring == other.spring; |
245 | } |
246 | |
247 | /** Distance at which the limit becomes active. */ |
248 | float extent = 0.0f; |
249 | }; |
250 | |
251 | /** Represents a joint limit between two angles. */ |
252 | struct BS_SCRIPT_EXPORT(m:Physics,pl:true) LimitAngularRange : LimitCommon |
253 | { |
254 | /** Constructs an empty limit. */ |
255 | LimitAngularRange() |
256 | { } |
257 | |
258 | /** |
259 | * Constructs a hard limit. Once the limit is reached the movement of the attached bodies will come to a stop. |
260 | * |
261 | * @param lower Lower angle of the limit. Must be less than @p upper. |
262 | * @param upper Upper angle of the limit. Must be more than @p lower. |
263 | * @param contactDist Distance from the limit at which it becomes active. Allows the solver to activate earlier |
264 | * than the limit is reached to avoid breaking the limit. Specify -1 for the default. |
265 | */ |
266 | LimitAngularRange(Radian lower, Radian upper, float contactDist = -1.0f) |
267 | :LimitCommon(contactDist), lower(lower), upper(upper) |
268 | { } |
269 | |
270 | /** |
271 | * Constructs a soft limit. Once the limit is reached the bodies will bounce back according to the resitution |
272 | * parameter and will be pulled back towards the limit by the provided spring. |
273 | * |
274 | * @param lower Lower angle of the limit. Must be less than @p upper. |
275 | * @param upper Upper angle of the limit. Must be more than @p lower. |
276 | * @param spring Spring that controls how are the bodies pulled back towards the limit when they breach it. |
277 | * @param restitution Controls how do objects react when the limit is reached, values closer to zero specify |
278 | * non-ellastic collision, while those closer to one specify more ellastic (i.e bouncy) |
279 | * collision. Must be in [0, 1] range. |
280 | */ |
281 | LimitAngularRange(Radian lower, Radian upper, const Spring& spring, float restitution = 0.0f) |
282 | :LimitCommon(spring, restitution), lower(lower), upper(upper) |
283 | { } |
284 | |
285 | bool operator==(const LimitAngularRange& other) const |
286 | { |
287 | return lower == other.lower && upper == other.upper && contactDist == other.contactDist && |
288 | restitution == other.restitution && spring == other.spring; |
289 | } |
290 | |
291 | /** Lower angle of the limit. Must be less than #upper. */ |
292 | BS_SCRIPT_EXPORT(range:[0,359]) |
293 | Radian lower = Radian(0.0f); |
294 | |
295 | /** Upper angle of the limit. Must be less than #lower. */ |
296 | BS_SCRIPT_EXPORT(range:[0,359]) |
297 | Radian upper = Radian(0.0f); |
298 | }; |
299 | |
300 | /** Represents a joint limit that contraints movement to within an elliptical cone. */ |
301 | struct BS_SCRIPT_EXPORT(m:Physics,pl:true) LimitConeRange : LimitCommon |
302 | { |
303 | /** Constructs a limit with a 45 degree cone. */ |
304 | LimitConeRange() |
305 | { } |
306 | |
307 | /** |
308 | * Constructs a hard limit. Once the limit is reached the movement of the attached bodies will come to a stop. |
309 | * |
310 | * @param yLimitAngle Y angle of the cone. Movement is constrainted between 0 and this angle on the Y axis. |
311 | * @param zLimitAngle Z angle of the cone. Movement is constrainted between 0 and this angle on the Z axis. |
312 | * @param contactDist Distance from the limit at which it becomes active. Allows the solver to activate |
313 | * earlier than the limit is reached to avoid breaking the limit. Specify -1 for the |
314 | * default. |
315 | */ |
316 | LimitConeRange(Radian yLimitAngle, Radian zLimitAngle, float contactDist = -1.0f) |
317 | :LimitCommon(contactDist), yLimitAngle(yLimitAngle), zLimitAngle(zLimitAngle) |
318 | { } |
319 | |
320 | /** |
321 | * Constructs a soft limit. Once the limit is reached the bodies will bounce back according to the resitution |
322 | * parameter and will be pulled back towards the limit by the provided spring. |
323 | * |
324 | * @param yLimitAngle Y angle of the cone. Movement is constrainted between 0 and this angle on the Y axis. |
325 | * @param zLimitAngle Z angle of the cone. Movement is constrainted between 0 and this angle on the Z axis. |
326 | * @param spring Spring that controls how are the bodies pulled back towards the limit when they breach it. |
327 | * @param restitution Controls how do objects react when the limit is reached, values closer to zero specify |
328 | * non-ellastic collision, while those closer to one specify more ellastic (i.e bouncy) |
329 | * collision. Must be in [0, 1] range. |
330 | */ |
331 | LimitConeRange(Radian yLimitAngle, Radian zLimitAngle, const Spring& spring, float restitution = 0.0f) |
332 | :LimitCommon(spring, restitution), yLimitAngle(yLimitAngle), zLimitAngle(zLimitAngle) |
333 | { } |
334 | |
335 | bool operator==(const LimitConeRange& other) const |
336 | { |
337 | return yLimitAngle == other.yLimitAngle && zLimitAngle == other.zLimitAngle && |
338 | contactDist == other.contactDist && restitution == other.restitution && spring == other.spring; |
339 | } |
340 | |
341 | /** Y angle of the cone. Movement is constrainted between 0 and this angle on the Y axis. */ |
342 | BS_SCRIPT_EXPORT(range:[0,180]) |
343 | Radian yLimitAngle = Radian(Math::HALF_PI); |
344 | |
345 | /** Z angle of the cone. Movement is constrainted between 0 and this angle on the Z axis. */ |
346 | BS_SCRIPT_EXPORT(range:[0,180]) |
347 | Radian zLimitAngle = Radian(Math::HALF_PI); |
348 | }; |
349 | |
350 | /** @} */ |
351 | } |
352 | |