| 1 | //************************************ bs::framework - Copyright 2018 Marko Pintera **************************************// |
| 2 | //*********** Licensed under the MIT license. See LICENSE.md for full terms. This notice is not to be removed. ***********// |
| 3 | #pragma once |
| 4 | |
| 5 | #include <cfloat> |
| 6 | |
| 7 | #include "BsCorePrerequisites.h" |
| 8 | #include "Physics/BsPhysicsCommon.h" |
| 9 | #include "Physics/BsFJoint.h" |
| 10 | |
| 11 | namespace bs |
| 12 | { |
| 13 | /** @addtogroup Physics |
| 14 | * @{ |
| 15 | */ |
| 16 | |
| 17 | struct JOINT_DESC; |
| 18 | |
| 19 | /** |
| 20 | * Base class for all Joint types. Joints constrain how two rigidbodies move relative to one another (for example a door |
| 21 | * hinge). One of the bodies in the joint must always be movable (non-kinematic). |
| 22 | */ |
| 23 | class BS_CORE_EXPORT Joint |
| 24 | { |
| 25 | public: |
| 26 | Joint() = default; |
| 27 | virtual ~Joint() = default; |
| 28 | |
| 29 | /** @copydoc FJoint::getBody */ |
| 30 | Rigidbody* getBody(JointBody body) const; |
| 31 | |
| 32 | /** @copydoc FJoint::setBody */ |
| 33 | void setBody(JointBody body, Rigidbody* value); |
| 34 | |
| 35 | /** @copydoc FJoint::getPosition */ |
| 36 | Vector3 getPosition(JointBody body) const; |
| 37 | |
| 38 | /** @copydoc FJoint::getRotation */ |
| 39 | Quaternion getRotation(JointBody body) const; |
| 40 | |
| 41 | /** @copydoc FJoint::setTransform */ |
| 42 | void setTransform(JointBody body, const Vector3& position, const Quaternion& rotation); |
| 43 | |
| 44 | /** @copydoc FJoint::getBreakForce */ |
| 45 | float getBreakForce() const; |
| 46 | |
| 47 | /** @copydoc FJoint::setBreakForce */ |
| 48 | void setBreakForce(float force); |
| 49 | |
| 50 | /** @copydoc FJoint::getBreakTorque */ |
| 51 | float getBreakTorque() const; |
| 52 | |
| 53 | /** @copydoc FJoint::setBreakTorque */ |
| 54 | void setBreakTorque(float torque); |
| 55 | |
| 56 | /** @copydoc FJoint::getEnableCollision */ |
| 57 | bool getEnableCollision() const; |
| 58 | |
| 59 | /** @copydoc FJoint::setEnableCollision */ |
| 60 | void setEnableCollision(bool value); |
| 61 | |
| 62 | /** Triggered when the joint's break force or torque is exceeded. */ |
| 63 | Event<void()> onJointBreak; |
| 64 | |
| 65 | /** @name Internal |
| 66 | * @{ |
| 67 | */ |
| 68 | |
| 69 | /** |
| 70 | * Sets the object that owns this physics object, if any. Used for high level systems so they can easily map their |
| 71 | * high level physics objects from the low level ones returned by various queries and events. |
| 72 | */ |
| 73 | void _setOwner(PhysicsOwnerType type, void* owner) { mOwner.type = type; mOwner.ownerData = owner; } |
| 74 | |
| 75 | /** |
| 76 | * Gets the object that owns this physics object, if any. Used for high level systems so they can easily map their |
| 77 | * high level physics objects from the low level ones returned by various queries and events. |
| 78 | */ |
| 79 | void* _getOwner(PhysicsOwnerType type) const { return mOwner.type == type ? mOwner.ownerData : nullptr; } |
| 80 | |
| 81 | /** @} */ |
| 82 | |
| 83 | protected: |
| 84 | PhysicsObjectOwner mOwner; |
| 85 | FJoint* mInternal = nullptr; |
| 86 | }; |
| 87 | |
| 88 | /** Structure used for initializing a new Joint. */ |
| 89 | struct JOINT_DESC |
| 90 | { |
| 91 | struct BodyInfo |
| 92 | { |
| 93 | Rigidbody* body = nullptr; |
| 94 | Vector3 position = Vector3::ZERO; |
| 95 | Quaternion rotation = Quaternion::IDENTITY; |
| 96 | }; |
| 97 | |
| 98 | BodyInfo bodies[2]; |
| 99 | float breakForce = FLT_MAX; |
| 100 | float breakTorque = FLT_MAX; |
| 101 | bool enableCollision = false; |
| 102 | }; |
| 103 | |
| 104 | /** |
| 105 | * Controls spring parameters for a physics joint limits. If a limit is soft (body bounces back due to restition when |
| 106 | * the limit is reached) the spring will pull the body back towards the limit using the specified parameters. |
| 107 | */ |
| 108 | struct BS_SCRIPT_EXPORT(m:Physics,pl:true) Spring |
| 109 | { |
| 110 | /** Constructs a spring with no force. */ |
| 111 | Spring() { } |
| 112 | |
| 113 | /** |
| 114 | * Constructs a spring. |
| 115 | * |
| 116 | * @param stiffness Spring strength. Force proportional to the position error. |
| 117 | * @param damping Damping strength. Force propertional to the velocity error. |
| 118 | */ |
| 119 | Spring(float stiffness, float damping) |
| 120 | :stiffness(stiffness), damping(damping) |
| 121 | { } |
| 122 | |
| 123 | bool operator==(const Spring& other) const |
| 124 | { |
| 125 | return stiffness == other.stiffness && damping == other.damping; |
| 126 | } |
| 127 | |
| 128 | /** Spring strength. Force proportional to the position error. */ |
| 129 | float stiffness = 0.0f; |
| 130 | |
| 131 | /** Damping strength. Force propertional to the velocity error. */ |
| 132 | float damping = 0.0f; |
| 133 | }; |
| 134 | |
| 135 | /** Contains common values used by all Joint limit types. */ |
| 136 | struct BS_SCRIPT_EXPORT(m:Physics,pl:true) LimitCommon |
| 137 | { |
| 138 | LimitCommon(float contactDist = -1.0f) |
| 139 | :contactDist(contactDist) |
| 140 | { } |
| 141 | |
| 142 | LimitCommon(const Spring& spring, float restitution = 0.0f) |
| 143 | : restitution(restitution), spring(spring) |
| 144 | { } |
| 145 | |
| 146 | /** |
| 147 | * Distance from the limit at which it becomes active. Allows the solver to activate earlier than the limit is |
| 148 | * reached to avoid breaking the limit. |
| 149 | */ |
| 150 | float contactDist = -1.0f; |
| 151 | |
| 152 | /** |
| 153 | * Controls how do objects react when the limit is reached, values closer to zero specify non-ellastic collision, |
| 154 | * while those closer to one specify more ellastic (i.e bouncy) collision. Must be in [0, 1] range. |
| 155 | */ |
| 156 | float restitution = 0.0f; |
| 157 | |
| 158 | /** Spring that controls how are the bodies pulled back towards the limit when they breach it. */ |
| 159 | Spring spring; |
| 160 | }; |
| 161 | |
| 162 | /** Represents a joint limit between two distance values. Lower value must be less than the upper value. */ |
| 163 | struct BS_SCRIPT_EXPORT(m:Physics,pl:true) LimitLinearRange : LimitCommon |
| 164 | { |
| 165 | /** Constructs an empty limit. */ |
| 166 | LimitLinearRange() |
| 167 | { } |
| 168 | |
| 169 | /** |
| 170 | * Constructs a hard limit. Once the limit is reached the movement of the attached bodies will come to a stop. |
| 171 | * |
| 172 | * @param lower Lower distance of the limit. Must be less than @p upper. |
| 173 | * @param upper Upper distance of the limit. Must be more than @p lower. |
| 174 | * @param contactDist Distance from the limit at which it becomes active. Allows the solver to activate earlier |
| 175 | * than the limit is reached to avoid breaking the limit. Specify -1 for the default. |
| 176 | */ |
| 177 | LimitLinearRange(float lower, float upper, float contactDist = -1.0f) |
| 178 | :LimitCommon(contactDist), lower(lower), upper(upper) |
| 179 | { } |
| 180 | |
| 181 | /** |
| 182 | * Constructs a soft limit. Once the limit is reached the bodies will bounce back according to the resitution |
| 183 | * parameter and will be pulled back towards the limit by the provided spring. |
| 184 | * |
| 185 | * @param lower Lower distance of the limit. Must be less than @p upper. |
| 186 | * @param upper Upper distance of the limit. Must be more than @p lower. |
| 187 | * @param spring Spring that controls how are the bodies pulled back towards the limit when they breach it. |
| 188 | * @param restitution Controls how do objects react when the limit is reached, values closer to zero specify |
| 189 | * non-ellastic collision, while those closer to one specify more ellastic (i.e bouncy) |
| 190 | * collision. Must be in [0, 1] range. |
| 191 | */ |
| 192 | LimitLinearRange(float lower, float upper, const Spring& spring, float restitution = 0.0f) |
| 193 | :LimitCommon(spring, restitution), lower(lower), upper(upper) |
| 194 | { } |
| 195 | |
| 196 | bool operator==(const LimitLinearRange& other) const |
| 197 | { |
| 198 | return lower == other.lower && upper == other.upper && contactDist == other.contactDist && |
| 199 | restitution == other.restitution && spring == other.spring; |
| 200 | } |
| 201 | |
| 202 | /** Lower distance of the limit. Must be less than #upper. */ |
| 203 | float lower = 0.0f; |
| 204 | |
| 205 | /** Upper distance of the limit. Must be more than #lower. */ |
| 206 | float upper = 0.0f; |
| 207 | }; |
| 208 | |
| 209 | /** Represents a joint limit between zero a single distance value. */ |
| 210 | struct BS_SCRIPT_EXPORT(m:Physics,pl:true) LimitLinear : LimitCommon |
| 211 | { |
| 212 | /** Constructs an empty limit. */ |
| 213 | LimitLinear() |
| 214 | { } |
| 215 | |
| 216 | /** |
| 217 | * Constructs a hard limit. Once the limit is reached the movement of the attached bodies will come to a stop. |
| 218 | * |
| 219 | * @param extent Distance at which the limit becomes active. |
| 220 | * @param contactDist Distance from the limit at which it becomes active. Allows the solver to activate earlier |
| 221 | * than the limit is reached to avoid breaking the limit. Specify -1 for the default. |
| 222 | */ |
| 223 | LimitLinear(float extent, float contactDist = -1.0f) |
| 224 | :LimitCommon(contactDist), extent(extent) |
| 225 | { } |
| 226 | |
| 227 | /** |
| 228 | * Constructs a soft limit. Once the limit is reached the bodies will bounce back according to the resitution |
| 229 | * parameter and will be pulled back towards the limit by the provided spring. |
| 230 | * |
| 231 | * @param extent Distance at which the limit becomes active. |
| 232 | * @param spring Spring that controls how are the bodies pulled back towards the limit when they breach it. |
| 233 | * @param restitution Controls how do objects react when the limit is reached, values closer to zero specify |
| 234 | * non-ellastic collision, while those closer to one specify more ellastic (i.e bouncy) |
| 235 | * collision. Must be in [0, 1] range. |
| 236 | */ |
| 237 | LimitLinear(float extent, const Spring& spring, float restitution = 0.0f) |
| 238 | :LimitCommon(spring, restitution), extent(extent) |
| 239 | { } |
| 240 | |
| 241 | bool operator==(const LimitLinear& other) const |
| 242 | { |
| 243 | return extent == other.extent && contactDist == other.contactDist && restitution == other.restitution && |
| 244 | spring == other.spring; |
| 245 | } |
| 246 | |
| 247 | /** Distance at which the limit becomes active. */ |
| 248 | float extent = 0.0f; |
| 249 | }; |
| 250 | |
| 251 | /** Represents a joint limit between two angles. */ |
| 252 | struct BS_SCRIPT_EXPORT(m:Physics,pl:true) LimitAngularRange : LimitCommon |
| 253 | { |
| 254 | /** Constructs an empty limit. */ |
| 255 | LimitAngularRange() |
| 256 | { } |
| 257 | |
| 258 | /** |
| 259 | * Constructs a hard limit. Once the limit is reached the movement of the attached bodies will come to a stop. |
| 260 | * |
| 261 | * @param lower Lower angle of the limit. Must be less than @p upper. |
| 262 | * @param upper Upper angle of the limit. Must be more than @p lower. |
| 263 | * @param contactDist Distance from the limit at which it becomes active. Allows the solver to activate earlier |
| 264 | * than the limit is reached to avoid breaking the limit. Specify -1 for the default. |
| 265 | */ |
| 266 | LimitAngularRange(Radian lower, Radian upper, float contactDist = -1.0f) |
| 267 | :LimitCommon(contactDist), lower(lower), upper(upper) |
| 268 | { } |
| 269 | |
| 270 | /** |
| 271 | * Constructs a soft limit. Once the limit is reached the bodies will bounce back according to the resitution |
| 272 | * parameter and will be pulled back towards the limit by the provided spring. |
| 273 | * |
| 274 | * @param lower Lower angle of the limit. Must be less than @p upper. |
| 275 | * @param upper Upper angle of the limit. Must be more than @p lower. |
| 276 | * @param spring Spring that controls how are the bodies pulled back towards the limit when they breach it. |
| 277 | * @param restitution Controls how do objects react when the limit is reached, values closer to zero specify |
| 278 | * non-ellastic collision, while those closer to one specify more ellastic (i.e bouncy) |
| 279 | * collision. Must be in [0, 1] range. |
| 280 | */ |
| 281 | LimitAngularRange(Radian lower, Radian upper, const Spring& spring, float restitution = 0.0f) |
| 282 | :LimitCommon(spring, restitution), lower(lower), upper(upper) |
| 283 | { } |
| 284 | |
| 285 | bool operator==(const LimitAngularRange& other) const |
| 286 | { |
| 287 | return lower == other.lower && upper == other.upper && contactDist == other.contactDist && |
| 288 | restitution == other.restitution && spring == other.spring; |
| 289 | } |
| 290 | |
| 291 | /** Lower angle of the limit. Must be less than #upper. */ |
| 292 | BS_SCRIPT_EXPORT(range:[0,359]) |
| 293 | Radian lower = Radian(0.0f); |
| 294 | |
| 295 | /** Upper angle of the limit. Must be less than #lower. */ |
| 296 | BS_SCRIPT_EXPORT(range:[0,359]) |
| 297 | Radian upper = Radian(0.0f); |
| 298 | }; |
| 299 | |
| 300 | /** Represents a joint limit that contraints movement to within an elliptical cone. */ |
| 301 | struct BS_SCRIPT_EXPORT(m:Physics,pl:true) LimitConeRange : LimitCommon |
| 302 | { |
| 303 | /** Constructs a limit with a 45 degree cone. */ |
| 304 | LimitConeRange() |
| 305 | { } |
| 306 | |
| 307 | /** |
| 308 | * Constructs a hard limit. Once the limit is reached the movement of the attached bodies will come to a stop. |
| 309 | * |
| 310 | * @param yLimitAngle Y angle of the cone. Movement is constrainted between 0 and this angle on the Y axis. |
| 311 | * @param zLimitAngle Z angle of the cone. Movement is constrainted between 0 and this angle on the Z axis. |
| 312 | * @param contactDist Distance from the limit at which it becomes active. Allows the solver to activate |
| 313 | * earlier than the limit is reached to avoid breaking the limit. Specify -1 for the |
| 314 | * default. |
| 315 | */ |
| 316 | LimitConeRange(Radian yLimitAngle, Radian zLimitAngle, float contactDist = -1.0f) |
| 317 | :LimitCommon(contactDist), yLimitAngle(yLimitAngle), zLimitAngle(zLimitAngle) |
| 318 | { } |
| 319 | |
| 320 | /** |
| 321 | * Constructs a soft limit. Once the limit is reached the bodies will bounce back according to the resitution |
| 322 | * parameter and will be pulled back towards the limit by the provided spring. |
| 323 | * |
| 324 | * @param yLimitAngle Y angle of the cone. Movement is constrainted between 0 and this angle on the Y axis. |
| 325 | * @param zLimitAngle Z angle of the cone. Movement is constrainted between 0 and this angle on the Z axis. |
| 326 | * @param spring Spring that controls how are the bodies pulled back towards the limit when they breach it. |
| 327 | * @param restitution Controls how do objects react when the limit is reached, values closer to zero specify |
| 328 | * non-ellastic collision, while those closer to one specify more ellastic (i.e bouncy) |
| 329 | * collision. Must be in [0, 1] range. |
| 330 | */ |
| 331 | LimitConeRange(Radian yLimitAngle, Radian zLimitAngle, const Spring& spring, float restitution = 0.0f) |
| 332 | :LimitCommon(spring, restitution), yLimitAngle(yLimitAngle), zLimitAngle(zLimitAngle) |
| 333 | { } |
| 334 | |
| 335 | bool operator==(const LimitConeRange& other) const |
| 336 | { |
| 337 | return yLimitAngle == other.yLimitAngle && zLimitAngle == other.zLimitAngle && |
| 338 | contactDist == other.contactDist && restitution == other.restitution && spring == other.spring; |
| 339 | } |
| 340 | |
| 341 | /** Y angle of the cone. Movement is constrainted between 0 and this angle on the Y axis. */ |
| 342 | BS_SCRIPT_EXPORT(range:[0,180]) |
| 343 | Radian yLimitAngle = Radian(Math::HALF_PI); |
| 344 | |
| 345 | /** Z angle of the cone. Movement is constrainted between 0 and this angle on the Z axis. */ |
| 346 | BS_SCRIPT_EXPORT(range:[0,180]) |
| 347 | Radian zLimitAngle = Radian(Math::HALF_PI); |
| 348 | }; |
| 349 | |
| 350 | /** @} */ |
| 351 | } |
| 352 | |