| 1 | /* |
| 2 | * Copyright (c) 2015-2016, Intel Corporation |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions are met: |
| 6 | * |
| 7 | * * Redistributions of source code must retain the above copyright notice, |
| 8 | * this list of conditions and the following disclaimer. |
| 9 | * * Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * * Neither the name of Intel Corporation nor the names of its contributors |
| 13 | * may be used to endorse or promote products derived from this software |
| 14 | * without specific prior written permission. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 17 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 20 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 26 | * POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | /** \file |
| 30 | * \brief Bounded repeat compile-time code. |
| 31 | */ |
| 32 | #include "repeatcompile.h" |
| 33 | #include "util/bitutils.h" |
| 34 | #include "util/charreach.h" |
| 35 | #include "util/depth.h" |
| 36 | #include "util/dump_charclass.h" |
| 37 | #include "util/multibit_build.h" |
| 38 | #include "util/verify_types.h" |
| 39 | |
| 40 | #include <algorithm> |
| 41 | #include <cstring> // memset |
| 42 | #include <utility> |
| 43 | |
| 44 | using namespace std; |
| 45 | |
| 46 | namespace ue2 { |
| 47 | |
| 48 | /** \brief Calculate the number of slots required to store the given repeat in |
| 49 | * a RANGE model. */ |
| 50 | static |
| 51 | u32 numRangeSlots(u32 repeatMin, u32 repeatMax) { |
| 52 | assert(repeatMax > repeatMin); |
| 53 | |
| 54 | u32 d = repeatMax - repeatMin; |
| 55 | u32 slots = 2 * ((repeatMax / d) + 1); |
| 56 | return slots; |
| 57 | } |
| 58 | |
| 59 | static |
| 60 | u32 calcPackedBits(u64a val) { |
| 61 | assert(val); |
| 62 | if (val <= 1) { |
| 63 | return 1; |
| 64 | } |
| 65 | u32 bits = lg2_64(val - 1) + 1U; /* lg2 rounds down */ |
| 66 | DEBUG_PRINTF("packing %llu into %u bits\n" , val, bits); |
| 67 | return bits; |
| 68 | } |
| 69 | |
| 70 | /* returns the min number of bytes required to represent val options */ |
| 71 | u32 calcPackedBytes(u64a val) { |
| 72 | u32 rv = (calcPackedBits(val) + 7U) / 8U; |
| 73 | DEBUG_PRINTF("packing %llu into %u bytes\n" , val, rv); |
| 74 | return rv; |
| 75 | } |
| 76 | |
| 77 | static |
| 78 | u32 repeatRecurTable(struct RepeatStateInfo *info, const depth &repeatMax, |
| 79 | const u32 minPeriod) { |
| 80 | u32 repeatTmp = info->patchCount > 2 ? 64 : (u32)repeatMax; |
| 81 | u32 repeat_index = repeatTmp < minPeriod ? repeatTmp : minPeriod; |
| 82 | for (u32 i = 0; i <= repeat_index; i++) { |
| 83 | info->table.push_back(i + 1); |
| 84 | } |
| 85 | for (u32 i = minPeriod + 1; i <= repeatTmp; i++) { |
| 86 | info->table.push_back(info->table[i - 1] + info->table[i - minPeriod]); |
| 87 | if (info->table[i] < info->table[i - 1]) { |
| 88 | return i - 1; |
| 89 | } |
| 90 | } |
| 91 | return 0; |
| 92 | } |
| 93 | |
| 94 | static |
| 95 | u32 findOptimalPatchSize(struct RepeatStateInfo *info, const depth &repeatMax, |
| 96 | const u32 minPeriod, u32 rv) { |
| 97 | u32 cnt = 0; |
| 98 | u32 patch_bits = 0; |
| 99 | u32 total_size = 0; |
| 100 | u32 min = ~0U; |
| 101 | u32 patch_len = 0; |
| 102 | |
| 103 | if (!rv) { |
| 104 | rv = repeatMax; |
| 105 | } |
| 106 | |
| 107 | for (u32 i = minPeriod; i <= rv; i++) { |
| 108 | cnt = ((u32)repeatMax + (i - 1)) / i + 1; |
| 109 | |
| 110 | // no bit packing version |
| 111 | patch_bits = calcPackedBits(info->table[i]); |
| 112 | total_size = (patch_bits + 7U) / 8U * cnt; |
| 113 | |
| 114 | if (total_size < min) { |
| 115 | patch_len = i; |
| 116 | min = total_size; |
| 117 | info->patchCount = cnt; |
| 118 | } |
| 119 | } |
| 120 | return patch_len; |
| 121 | } |
| 122 | |
| 123 | RepeatStateInfo::RepeatStateInfo(enum RepeatType type, const depth &repeatMin, |
| 124 | const depth &repeatMax, u32 minPeriod) |
| 125 | : stateSize(0), packedCtrlSize(0), horizon(0), patchCount(0), |
| 126 | patchSize(0), encodingSize(0), patchesOffset(0) { |
| 127 | assert(repeatMin <= repeatMax); |
| 128 | assert(repeatMax.is_reachable()); |
| 129 | assert(minPeriod || type != REPEAT_SPARSE_OPTIMAL_P); |
| 130 | |
| 131 | switch (type) { |
| 132 | case REPEAT_FIRST: |
| 133 | assert(repeatMin.is_finite()); |
| 134 | stateSize = 0; // everything is in the control block. |
| 135 | horizon = repeatMin; |
| 136 | packedCtrlSize = calcPackedBytes(horizon + 1); |
| 137 | break; |
| 138 | case REPEAT_LAST: |
| 139 | assert(repeatMax.is_finite()); |
| 140 | stateSize = 0; // everything is in the control block. |
| 141 | horizon = repeatMax + 1; |
| 142 | packedCtrlSize = calcPackedBytes(horizon + 1); |
| 143 | break; |
| 144 | case REPEAT_RING: |
| 145 | assert(repeatMax.is_finite()); |
| 146 | stateSize = mmbit_size(repeatMax + 1); |
| 147 | horizon = repeatMax * 2 + 1; /* TODO: investigate tightening */ |
| 148 | // Packed offset member, plus two bytes for each ring index, reduced to |
| 149 | // one byte each if they'll fit in eight bits. |
| 150 | { |
| 151 | u32 offset_len = calcPackedBytes(horizon + 1); |
| 152 | u32 ring_indices_len = repeatMax < depth(254) ? 2 : 4; |
| 153 | packedCtrlSize = offset_len + ring_indices_len; |
| 154 | } |
| 155 | break; |
| 156 | case REPEAT_RANGE: |
| 157 | assert(repeatMax.is_finite()); |
| 158 | assert(repeatMin < repeatMax); |
| 159 | stateSize = numRangeSlots(repeatMin, repeatMax) * sizeof(u16); |
| 160 | horizon = repeatMax * 2 + 1; |
| 161 | // Packed offset member, plus one byte for the number of range |
| 162 | // elements. |
| 163 | packedCtrlSize = calcPackedBytes(horizon + 1) + 1; |
| 164 | break; |
| 165 | case REPEAT_BITMAP: |
| 166 | stateSize = 0; // everything is in the control block. |
| 167 | horizon = 0; // unused |
| 168 | packedCtrlSize = ROUNDUP_N(repeatMax + 1, 8) / 8; |
| 169 | break; |
| 170 | case REPEAT_SPARSE_OPTIMAL_P: |
| 171 | assert(minPeriod); |
| 172 | assert(repeatMax.is_finite()); |
| 173 | { |
| 174 | u32 rv = repeatRecurTable(this, repeatMax, minPeriod); |
| 175 | u32 repeatTmp = 0; |
| 176 | if ((u32)repeatMax < minPeriod) { |
| 177 | repeatTmp = repeatMax; |
| 178 | patchCount = 1; |
| 179 | } else { |
| 180 | // find optimal patch size |
| 181 | repeatTmp = |
| 182 | findOptimalPatchSize(this, repeatMax, minPeriod, rv); |
| 183 | assert(patchCount < 65536); |
| 184 | } |
| 185 | DEBUG_PRINTF("repeat[%u %u], period=%u\n" , (u32)repeatMin, |
| 186 | (u32)repeatMax, minPeriod); |
| 187 | u64a maxVal = table[repeatTmp]; |
| 188 | encodingSize = calcPackedBytes(maxVal); |
| 189 | patchSize = repeatTmp; |
| 190 | assert(encodingSize <= 64); |
| 191 | |
| 192 | patchesOffset = mmbit_size(patchCount); |
| 193 | stateSize = patchesOffset + encodingSize * patchCount; |
| 194 | horizon = (repeatTmp * patchCount) * 2 + 1; |
| 195 | u32 ring_indices_len = patchCount < depth(254) ? 2 : 4; |
| 196 | packedCtrlSize = calcPackedBytes(horizon + 1) + ring_indices_len; |
| 197 | } |
| 198 | break; |
| 199 | case REPEAT_TRAILER: |
| 200 | assert(repeatMax.is_finite()); |
| 201 | assert(repeatMin <= depth(64)); |
| 202 | stateSize = 0; // everything is in the control block. |
| 203 | horizon = repeatMax + 1; |
| 204 | packedFieldSizes.resize(2); |
| 205 | packedFieldSizes[0] = calcPackedBits(horizon + 1); |
| 206 | packedFieldSizes[1] = repeatMin; |
| 207 | packedCtrlSize = (packedFieldSizes[0] + packedFieldSizes[1] + 7U) / 8U; |
| 208 | break; |
| 209 | case REPEAT_ALWAYS: |
| 210 | assert(repeatMin == 0ULL); |
| 211 | assert(repeatMax.is_infinite()); |
| 212 | stateSize = 0; // everything is in the control block. |
| 213 | horizon = 0; |
| 214 | packedCtrlSize = 0; |
| 215 | break; |
| 216 | } |
| 217 | DEBUG_PRINTF("stateSize=%u, packedCtrlSize=%u, horizon=%u\n" , stateSize, |
| 218 | packedCtrlSize, horizon); |
| 219 | |
| 220 | assert(packedCtrlSize <= sizeof(RepeatControl)); |
| 221 | } |
| 222 | |
| 223 | /** \brief Returns the packed control block size in bytes for a given bounded |
| 224 | * repeat. */ |
| 225 | static |
| 226 | u32 packedSize(enum RepeatType type, const depth &repeatMin, |
| 227 | const depth &repeatMax, u32 minPeriod) { |
| 228 | RepeatStateInfo rsi(type, repeatMin, repeatMax, minPeriod); |
| 229 | return rsi.packedCtrlSize; |
| 230 | } |
| 231 | |
| 232 | /** \brief Returns the stream state size in bytes for a given bounded |
| 233 | * repeat. */ |
| 234 | static |
| 235 | u32 streamStateSize(enum RepeatType type, const depth &repeatMin, |
| 236 | const depth &repeatMax, u32 minPeriod) { |
| 237 | RepeatStateInfo rsi(type, repeatMin, repeatMax, minPeriod); |
| 238 | return rsi.stateSize; |
| 239 | } |
| 240 | |
| 241 | enum RepeatType chooseRepeatType(const depth &repeatMin, const depth &repeatMax, |
| 242 | u32 minPeriod, bool is_reset, |
| 243 | bool has_external_guard) { |
| 244 | if (repeatMax.is_infinite()) { |
| 245 | if (has_external_guard && !repeatMin) { |
| 246 | return REPEAT_ALWAYS; |
| 247 | } else { |
| 248 | return REPEAT_FIRST; |
| 249 | } |
| 250 | } |
| 251 | |
| 252 | if (repeatMin == depth(0) || is_reset) { |
| 253 | return REPEAT_LAST; |
| 254 | } |
| 255 | |
| 256 | // Cases with max < 64 can be handled with either bitmap or trailer. We use |
| 257 | // whichever has smaller packed state. |
| 258 | |
| 259 | if (repeatMax < depth(64)) { |
| 260 | u32 bitmap_len = |
| 261 | packedSize(REPEAT_BITMAP, repeatMin, repeatMax, minPeriod); |
| 262 | u32 trailer_len = |
| 263 | packedSize(REPEAT_TRAILER, repeatMin, repeatMax, minPeriod); |
| 264 | return bitmap_len <= trailer_len ? REPEAT_BITMAP : REPEAT_TRAILER; |
| 265 | } |
| 266 | |
| 267 | if (repeatMin <= depth(64)) { |
| 268 | return REPEAT_TRAILER; |
| 269 | } |
| 270 | |
| 271 | u32 range_len = ~0U; |
| 272 | if (repeatMax > repeatMin && |
| 273 | numRangeSlots(repeatMin, repeatMax) <= REPEAT_RANGE_MAX_SLOTS) { |
| 274 | assert(numRangeSlots(repeatMin, repeatMax) < 256); // stored in u8 |
| 275 | range_len = |
| 276 | streamStateSize(REPEAT_RANGE, repeatMin, repeatMax, minPeriod); |
| 277 | } |
| 278 | |
| 279 | assert(repeatMax.is_finite()); |
| 280 | |
| 281 | u32 sparse_len = ~0U; |
| 282 | if (minPeriod > 6) { |
| 283 | sparse_len = |
| 284 | streamStateSize(REPEAT_SPARSE_OPTIMAL_P, repeatMin, repeatMax, minPeriod); |
| 285 | } |
| 286 | |
| 287 | if (range_len != ~0U || sparse_len != ~0U) { |
| 288 | return range_len < sparse_len ? REPEAT_RANGE : REPEAT_SPARSE_OPTIMAL_P; |
| 289 | } |
| 290 | |
| 291 | return REPEAT_RING; |
| 292 | } |
| 293 | |
| 294 | bool matches(vector<CharReach>::const_iterator a_it, |
| 295 | vector<CharReach>::const_iterator a_ite, |
| 296 | vector<CharReach>::const_iterator b_it, |
| 297 | UNUSED vector<CharReach>::const_iterator b_ite) { |
| 298 | for (; a_it != a_ite; ++a_it, ++b_it) { |
| 299 | assert(b_it != b_ite); |
| 300 | if ((*a_it & *b_it).none()) { |
| 301 | return false; |
| 302 | } |
| 303 | } |
| 304 | assert(b_it == b_ite); |
| 305 | return true; |
| 306 | } |
| 307 | |
| 308 | static |
| 309 | u32 minDistAfterA(const vector<CharReach> &a, const vector<CharReach> &b) { |
| 310 | /* we do not count the case where b can end at the same position as a */ |
| 311 | |
| 312 | for (u32 i = 1; i < b.size(); i++) { |
| 313 | u32 overlap_len = b.size() - i; |
| 314 | if (overlap_len <= a.size()) { |
| 315 | if (matches(a.end() - overlap_len, a.end(), |
| 316 | b.begin(), b.end() - i)) { |
| 317 | return i; |
| 318 | } |
| 319 | } else { |
| 320 | assert(overlap_len > a.size()); |
| 321 | if (matches(a.begin(), a.end(), |
| 322 | b.end() - i - a.size(), b.end() - i)) { |
| 323 | return i; |
| 324 | } |
| 325 | } |
| 326 | } |
| 327 | |
| 328 | return b.size(); |
| 329 | } |
| 330 | |
| 331 | vector<size_t> minResetDistToEnd(const vector<vector<CharReach>> &triggers, |
| 332 | const CharReach &cr) { |
| 333 | /* if a trigger does not reset the repeat, it gets a distance of trigger |
| 334 | length */ |
| 335 | vector<size_t> out; |
| 336 | for (const auto &trig : triggers) { |
| 337 | size_t size = trig.size(); |
| 338 | size_t i = 0; |
| 339 | for (; i < size; i++) { |
| 340 | if ((trig[size - i - 1] & cr).none()) { |
| 341 | break; |
| 342 | } |
| 343 | } |
| 344 | out.push_back(i); |
| 345 | } |
| 346 | |
| 347 | return out; |
| 348 | } |
| 349 | |
| 350 | #if defined(DEBUG) || defined(DUMP_SUPPORT) |
| 351 | |
| 352 | static UNUSED |
| 353 | string dumpTrigger(const vector<CharReach> &trigger) { |
| 354 | string s; |
| 355 | for (const auto &cr : trigger) { |
| 356 | s += describeClass(cr); |
| 357 | } |
| 358 | return s; |
| 359 | } |
| 360 | |
| 361 | #endif |
| 362 | |
| 363 | u32 minPeriod(const vector<vector<CharReach>> &triggers, const CharReach &cr, |
| 364 | bool *can_reset) { |
| 365 | assert(!triggers.empty()); |
| 366 | |
| 367 | u32 rv = ~0U; |
| 368 | *can_reset = true; |
| 369 | vector<size_t> min_reset_dist = minResetDistToEnd(triggers, cr); |
| 370 | |
| 371 | for (const auto &trigger : triggers) { |
| 372 | DEBUG_PRINTF("trigger: %s\n" , dumpTrigger(trigger).c_str()); |
| 373 | for (size_t j = 0; j < triggers.size(); j++) { |
| 374 | u32 min_ext = minDistAfterA(trigger, triggers[j]); |
| 375 | rv = min(rv, min_ext); |
| 376 | if (min_ext <= min_reset_dist[j]) { |
| 377 | *can_reset = false; |
| 378 | } |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | DEBUG_PRINTF("min period %u\n" , rv); |
| 383 | return rv; |
| 384 | } |
| 385 | |
| 386 | } // namespace ue2 |
| 387 | |