| 1 | /* |
| 2 | * Copyright (c) 2015-2017, Intel Corporation |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions are met: |
| 6 | * |
| 7 | * * Redistributions of source code must retain the above copyright notice, |
| 8 | * this list of conditions and the following disclaimer. |
| 9 | * * Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * * Neither the name of Intel Corporation nor the names of its contributors |
| 13 | * may be used to endorse or promote products derived from this software |
| 14 | * without specific prior written permission. |
| 15 | * |
| 16 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| 17 | * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 18 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| 19 | * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE |
| 20 | * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| 21 | * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| 22 | * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| 23 | * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| 24 | * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 25 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE |
| 26 | * POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | #include "rose_build_role_aliasing.h" |
| 30 | |
| 31 | #include "ue2common.h" |
| 32 | #include "rose_build_impl.h" |
| 33 | #include "rose_build_merge.h" |
| 34 | #include "rose_build_util.h" |
| 35 | #include "grey.h" |
| 36 | #include "nfa/castlecompile.h" |
| 37 | #include "nfa/goughcompile.h" |
| 38 | #include "nfa/mcclellancompile_util.h" |
| 39 | #include "nfagraph/ng_holder.h" |
| 40 | #include "nfagraph/ng_is_equal.h" |
| 41 | #include "nfagraph/ng_limex.h" |
| 42 | #include "nfagraph/ng_prune.h" |
| 43 | #include "nfagraph/ng_uncalc_components.h" |
| 44 | #include "nfagraph/ng_util.h" |
| 45 | #include "util/bitutils.h" |
| 46 | #include "util/compile_context.h" |
| 47 | #include "util/container.h" |
| 48 | #include "util/flat_containers.h" |
| 49 | #include "util/graph.h" |
| 50 | #include "util/graph_range.h" |
| 51 | #include "util/hash.h" |
| 52 | #include "util/order_check.h" |
| 53 | |
| 54 | #include <algorithm> |
| 55 | #include <numeric> |
| 56 | #include <vector> |
| 57 | #include <boost/graph/adjacency_iterator.hpp> |
| 58 | #include <boost/range/adaptor/map.hpp> |
| 59 | |
| 60 | using namespace std; |
| 61 | using boost::adaptors::map_values; |
| 62 | |
| 63 | namespace ue2 { |
| 64 | |
| 65 | static constexpr size_t MERGE_GROUP_SIZE_MAX = 200; |
| 66 | |
| 67 | namespace { |
| 68 | // Used for checking edge sets (both in- and out-) against each other. |
| 69 | struct EdgeAndVertex { |
| 70 | EdgeAndVertex(const RoseEdge &e, const RoseVertex v_, |
| 71 | const RoseGraph &g) : v(v_), eprops(g[e]) {} |
| 72 | virtual ~EdgeAndVertex() {} |
| 73 | |
| 74 | virtual bool operator<(const EdgeAndVertex &a) const { |
| 75 | if (v != a.v) { |
| 76 | return v < a.v; |
| 77 | } |
| 78 | if (eprops.minBound != a.eprops.minBound) { |
| 79 | return eprops.minBound < a.eprops.minBound; |
| 80 | } |
| 81 | if (eprops.maxBound != a.eprops.maxBound) { |
| 82 | return eprops.maxBound < a.eprops.maxBound; |
| 83 | } |
| 84 | if (eprops.rose_top != a.eprops.rose_top) { |
| 85 | return eprops.rose_top < a.eprops.rose_top; |
| 86 | |
| 87 | } |
| 88 | return eprops.history < a.eprops.history; |
| 89 | } |
| 90 | |
| 91 | virtual bool operator==(const EdgeAndVertex &a) const { |
| 92 | return v == a.v && |
| 93 | eprops.minBound == a.eprops.minBound && |
| 94 | eprops.maxBound == a.eprops.maxBound && |
| 95 | eprops.rose_top == a.eprops.rose_top && |
| 96 | eprops.history == a.eprops.history; |
| 97 | } |
| 98 | |
| 99 | private: |
| 100 | RoseVertex v; |
| 101 | const RoseEdgeProps &eprops; |
| 102 | }; |
| 103 | |
| 104 | struct AliasOutEdge : EdgeAndVertex { |
| 105 | AliasOutEdge(const RoseEdge &e, const RoseGraph &g) : |
| 106 | EdgeAndVertex(e, target(e, g), g) {} |
| 107 | }; |
| 108 | |
| 109 | struct AliasInEdge : EdgeAndVertex { |
| 110 | AliasInEdge(const RoseEdge &e, const RoseGraph &g) : |
| 111 | EdgeAndVertex(e, source(e, g), g) {} |
| 112 | }; |
| 113 | |
| 114 | class CandidateSet { |
| 115 | public: |
| 116 | using key_type = RoseVertex; |
| 117 | using iterator = set<RoseVertex>::iterator; |
| 118 | using const_iterator = set<RoseVertex>::const_iterator; |
| 119 | |
| 120 | iterator begin() { return main_cont.begin(); } |
| 121 | iterator end() { return main_cont.end(); } |
| 122 | const_iterator begin() const { return main_cont.begin(); } |
| 123 | const_iterator end() const { return main_cont.end(); } |
| 124 | |
| 125 | bool contains(RoseVertex a) const { |
| 126 | return hash_cont.find(a) != hash_cont.end(); |
| 127 | } |
| 128 | |
| 129 | void insert(RoseVertex a) { |
| 130 | main_cont.insert(a); |
| 131 | hash_cont.insert(a); |
| 132 | } |
| 133 | |
| 134 | void erase(iterator aa) { |
| 135 | RoseVertex a = *aa; |
| 136 | main_cont.erase(aa); |
| 137 | hash_cont.erase(a); |
| 138 | } |
| 139 | |
| 140 | void erase(RoseVertex a) { |
| 141 | main_cont.erase(a); |
| 142 | hash_cont.erase(a); |
| 143 | } |
| 144 | |
| 145 | size_t size() const { |
| 146 | assert(hash_cont.size() == main_cont.size()); |
| 147 | return main_cont.size(); |
| 148 | } |
| 149 | |
| 150 | bool empty() const { |
| 151 | assert(hash_cont.size() == main_cont.size()); |
| 152 | return main_cont.empty(); |
| 153 | } |
| 154 | |
| 155 | private: |
| 156 | /* if a vertex is worth storing, it is worth storing twice */ |
| 157 | set<RoseVertex> main_cont; /* deterministic iterator */ |
| 158 | unordered_set<RoseVertex> hash_cont; /* member checks */ |
| 159 | }; |
| 160 | |
| 161 | struct RoseAliasingInfo { |
| 162 | RoseAliasingInfo(const RoseBuildImpl &build) { |
| 163 | const auto &g = build.g; |
| 164 | |
| 165 | // Populate reverse leftfix map. |
| 166 | for (auto v : vertices_range(g)) { |
| 167 | if (g[v].left) { |
| 168 | rev_leftfix[g[v].left].insert(v); |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | // Populate reverse ghost vertex map. |
| 173 | for (const auto &m : build.ghost) { |
| 174 | rev_ghost[m.second].insert(m.first); |
| 175 | } |
| 176 | } |
| 177 | |
| 178 | /** \brief Mapping from leftfix to vertices. */ |
| 179 | unordered_map<left_id, set<RoseVertex>> rev_leftfix; |
| 180 | |
| 181 | /** \brief Mapping from undelayed ghost to delayed vertices. */ |
| 182 | unordered_map<RoseVertex, set<RoseVertex>> rev_ghost; |
| 183 | }; |
| 184 | |
| 185 | } // namespace |
| 186 | |
| 187 | // Check successor set: must lead to the same vertices via edges with the |
| 188 | // same properties. |
| 189 | static |
| 190 | bool sameSuccessors(RoseVertex a, RoseVertex b, const RoseGraph &g) { |
| 191 | if (out_degree(a, g) != out_degree(b, g)) { |
| 192 | return false; |
| 193 | } |
| 194 | |
| 195 | set<AliasOutEdge> succs_a, succs_b; |
| 196 | |
| 197 | for (const auto &e : out_edges_range(a, g)) { |
| 198 | succs_a.insert(AliasOutEdge(e, g)); |
| 199 | } |
| 200 | |
| 201 | for (const auto &e : out_edges_range(b, g)) { |
| 202 | succs_b.insert(AliasOutEdge(e, g)); |
| 203 | } |
| 204 | |
| 205 | return (succs_a == succs_b); |
| 206 | } |
| 207 | |
| 208 | /* unlike LeftEngInfo::==, this does a deep check to see if the leftfixes are |
| 209 | * equivalent rather than checking for pointer equality. */ |
| 210 | static |
| 211 | bool hasEqualLeftfixes(RoseVertex a, RoseVertex b, const RoseGraph &g) { |
| 212 | assert(g[a].left || g[b].left); |
| 213 | if (!g[a].left || !g[b].left) { |
| 214 | return false; |
| 215 | } |
| 216 | const LeftEngInfo &a_left = g[a].left; |
| 217 | const LeftEngInfo &b_left = g[b].left; |
| 218 | |
| 219 | if (a_left.castle && b_left.castle) { |
| 220 | return is_equal(*a_left.castle, a_left.leftfix_report, |
| 221 | *b_left.castle, b_left.leftfix_report); |
| 222 | } |
| 223 | |
| 224 | if (a_left.graph && b_left.graph) { |
| 225 | /* non-castle engines have graphs */ |
| 226 | return is_equal(*a_left.graph, a_left.leftfix_report, *b_left.graph, |
| 227 | b_left.leftfix_report); |
| 228 | } |
| 229 | |
| 230 | /* graph <-> castle cases are not equal */ |
| 231 | return false; |
| 232 | } |
| 233 | |
| 234 | // Check predecessor set: must come from the same vertices via edges with |
| 235 | // the same properties. |
| 236 | static |
| 237 | bool samePredecessors(RoseVertex a, RoseVertex b, const RoseGraph &g) { |
| 238 | if (in_degree(a, g) != in_degree(b, g)) { |
| 239 | return false; |
| 240 | } |
| 241 | |
| 242 | set<AliasInEdge> preds_a, preds_b; |
| 243 | |
| 244 | for (const auto &e : in_edges_range(a, g)) { |
| 245 | preds_a.insert(AliasInEdge(e, g)); |
| 246 | } |
| 247 | |
| 248 | for (const auto &e : in_edges_range(b, g)) { |
| 249 | preds_b.insert(AliasInEdge(e, g)); |
| 250 | } |
| 251 | |
| 252 | if (preds_a != preds_b) { |
| 253 | return false; |
| 254 | } |
| 255 | |
| 256 | if (g[a].left || g[b].left) { |
| 257 | if (!hasEqualLeftfixes(a, b, g)) { |
| 258 | return false; |
| 259 | } |
| 260 | |
| 261 | for (const auto &e_a : in_edges_range(a, g)) { |
| 262 | RoseEdge e = edge(source(e_a, g), b, g); |
| 263 | if (!e || g[e].rose_top != g[e_a].rose_top) { |
| 264 | DEBUG_PRINTF("bad tops\n" ); |
| 265 | return false; |
| 266 | } |
| 267 | } |
| 268 | } |
| 269 | |
| 270 | return true; |
| 271 | } |
| 272 | |
| 273 | static |
| 274 | bool hasCommonSuccWithBadBounds(RoseVertex a, RoseVertex b, |
| 275 | const RoseGraph &g) { |
| 276 | for (const auto &e_a : out_edges_range(a, g)) { |
| 277 | if (RoseEdge e = edge(b, target(e_a, g), g)) { |
| 278 | if (g[e_a].maxBound < g[e].minBound |
| 279 | || g[e].maxBound < g[e_a].minBound) { |
| 280 | return true; |
| 281 | } |
| 282 | if (g[e_a].rose_top != g[e].rose_top) { |
| 283 | // Can't trigger two tops on the same leftfix, we can't merge |
| 284 | // this. |
| 285 | return true; |
| 286 | } |
| 287 | } |
| 288 | } |
| 289 | return false; |
| 290 | } |
| 291 | |
| 292 | static |
| 293 | bool hasCommonPredWithBadBounds(RoseVertex a, RoseVertex b, |
| 294 | const RoseGraph &g) { |
| 295 | for (const auto &e_a : in_edges_range(a, g)) { |
| 296 | if (RoseEdge e = edge(source(e_a, g), b, g)) { |
| 297 | if (g[e_a].maxBound < g[e].minBound |
| 298 | || g[e].maxBound < g[e_a].minBound) { |
| 299 | return true; |
| 300 | } |
| 301 | |
| 302 | // XXX: if we're merging two vertices with different roses, we |
| 303 | // cannot allow them to share a pred, as we would be unable to |
| 304 | // merge the (necessarily different) tops on the in-edges. This |
| 305 | // could be relaxed if we made the tops mergeable (by making |
| 306 | // edge_top a bitfield, for example). |
| 307 | if (g[a].left != g[b].left) { |
| 308 | return true; |
| 309 | } |
| 310 | |
| 311 | } |
| 312 | } |
| 313 | return false; |
| 314 | } |
| 315 | |
| 316 | static |
| 317 | bool canMergeLiterals(RoseVertex a, RoseVertex b, const RoseBuildImpl &build) { |
| 318 | const auto &lits_a = build.g[a].literals; |
| 319 | const auto &lits_b = build.g[b].literals; |
| 320 | assert(!lits_a.empty() && !lits_b.empty()); |
| 321 | |
| 322 | // If both vertices have only pseudo-dotstar in-edges, we can merge |
| 323 | // literals of different lengths and can avoid the check below. |
| 324 | if (build.hasOnlyPseudoStarInEdges(a) && |
| 325 | build.hasOnlyPseudoStarInEdges(b)) { |
| 326 | DEBUG_PRINTF("both have pseudo-dotstar in-edges\n" ); |
| 327 | return true; |
| 328 | } |
| 329 | |
| 330 | // Otherwise, all the literals involved must have the same length. |
| 331 | for (u32 a_id : lits_a) { |
| 332 | const rose_literal_id &la = build.literals.at(a_id); |
| 333 | for (u32 b_id : lits_b) { |
| 334 | const rose_literal_id &lb = build.literals.at(b_id); |
| 335 | |
| 336 | if (la.elength() != lb.elength()) { |
| 337 | DEBUG_PRINTF("bad merge %zu!=%zu '%s', '%s'\n" , la.elength(), |
| 338 | lb.elength(), la.s.c_str(), lb.s.c_str()); |
| 339 | return false; |
| 340 | } |
| 341 | } |
| 342 | } |
| 343 | |
| 344 | return true; |
| 345 | } |
| 346 | |
| 347 | static |
| 348 | bool isAliasingCandidate(RoseVertex v, const RoseBuildImpl &build) { |
| 349 | const RoseVertexProps &props = build.g[v]; |
| 350 | |
| 351 | // Must have literals. |
| 352 | if (props.literals.empty()) { |
| 353 | return false; |
| 354 | } |
| 355 | |
| 356 | assert(*props.literals.begin() != MO_INVALID_IDX); |
| 357 | return true; |
| 358 | } |
| 359 | |
| 360 | static |
| 361 | bool sameGhostProperties(const RoseBuildImpl &build, |
| 362 | const RoseAliasingInfo &rai, RoseVertex a, |
| 363 | RoseVertex b) { |
| 364 | // If these are ghost mapping keys, then they must map to the same vertex. |
| 365 | if (contains(build.ghost, a) || contains(build.ghost, b)) { |
| 366 | DEBUG_PRINTF("checking ghost key compat\n" ); |
| 367 | if (!contains(build.ghost, a) || !contains(build.ghost, b)) { |
| 368 | DEBUG_PRINTF("missing ghost mapping\n" ); |
| 369 | return false; |
| 370 | } |
| 371 | if (build.ghost.at(a) != build.ghost.at(b)) { |
| 372 | DEBUG_PRINTF("diff ghost mapping\n" ); |
| 373 | return false; |
| 374 | } |
| 375 | DEBUG_PRINTF("ghost mappings ok\n" ); |
| 376 | return true; |
| 377 | } |
| 378 | |
| 379 | // If they are ghost vertices, then they must have the same literals. |
| 380 | if (contains(rai.rev_ghost, a) || contains(rai.rev_ghost, b)) { |
| 381 | if (!contains(rai.rev_ghost, a) || !contains(rai.rev_ghost, b)) { |
| 382 | DEBUG_PRINTF("missing ghost reverse mapping\n" ); |
| 383 | return false; |
| 384 | } |
| 385 | return build.g[a].literals == build.g[b].literals; |
| 386 | } |
| 387 | |
| 388 | return true; |
| 389 | } |
| 390 | |
| 391 | static |
| 392 | bool sameRoleProperties(const RoseBuildImpl &build, const RoseAliasingInfo &rai, |
| 393 | RoseVertex a, RoseVertex b) { |
| 394 | const RoseGraph &g = build.g; |
| 395 | const RoseVertexProps &aprops = g[a], &bprops = g[b]; |
| 396 | |
| 397 | if (aprops.eod_accept != bprops.eod_accept) { |
| 398 | return false; |
| 399 | } |
| 400 | |
| 401 | // We don't want to merge a role with LAST_BYTE history with one without, |
| 402 | // as a role that can only be triggered at EOD cannot safely precede |
| 403 | // "ordinary" roles. |
| 404 | if (hasLastByteHistorySucc(g, a) != hasLastByteHistorySucc(g, b)) { |
| 405 | return false; |
| 406 | } |
| 407 | |
| 408 | // We certainly don't want to merge root roles with non-root roles. |
| 409 | /* TODO: explain */ |
| 410 | if (build.isRootSuccessor(a) != build.isRootSuccessor(b)) { |
| 411 | return false; |
| 412 | } |
| 413 | |
| 414 | if (aprops.som_adjust != bprops.som_adjust) { |
| 415 | return false; |
| 416 | } |
| 417 | |
| 418 | if (!sameGhostProperties(build, rai, a, b)) { |
| 419 | return false; |
| 420 | } |
| 421 | |
| 422 | /* "roses are mergeable" check are handled elsewhere */ |
| 423 | |
| 424 | return true; |
| 425 | } |
| 426 | |
| 427 | /* Checks compatibility of role properties if we require that two roles are |
| 428 | * right equiv. */ |
| 429 | static |
| 430 | bool sameRightRoleProperties(const RoseBuildImpl &build, RoseVertex a, |
| 431 | RoseVertex b) { |
| 432 | const RoseGraph &g = build.g; |
| 433 | const RoseVertexProps &aprops = g[a], &bprops = g[b]; |
| 434 | |
| 435 | if (aprops.reports != bprops.reports) { |
| 436 | return false; |
| 437 | } |
| 438 | |
| 439 | if (hasAnchHistorySucc(g, a) != hasAnchHistorySucc(g, b)) { |
| 440 | return false; |
| 441 | } |
| 442 | |
| 443 | // If the history type is ANCH, then we need to be careful that we only |
| 444 | // merge literals that occur at the same offsets. |
| 445 | if (hasAnchHistorySucc(g, a) || hasAnchHistorySucc(g, b)) { |
| 446 | if (aprops.min_offset != bprops.min_offset |
| 447 | || aprops.max_offset != bprops.max_offset) { |
| 448 | return false; |
| 449 | } |
| 450 | } |
| 451 | |
| 452 | if (aprops.suffix != bprops.suffix) { |
| 453 | return false; |
| 454 | } |
| 455 | |
| 456 | return true; |
| 457 | } |
| 458 | |
| 459 | static |
| 460 | void mergeEdgeAdd(RoseVertex u, RoseVertex v, const RoseEdge &from_edge, |
| 461 | const RoseEdge *to_edge, RoseGraph &g) { |
| 462 | const RoseEdgeProps &from_props = g[from_edge]; |
| 463 | |
| 464 | if (!to_edge) { |
| 465 | DEBUG_PRINTF("adding edge [%zu,%zu]\n" , g[u].index, g[v].index); |
| 466 | add_edge(u, v, from_props, g); |
| 467 | } else { |
| 468 | // union of the two edges. |
| 469 | DEBUG_PRINTF("updating edge [%zu,%zu]\n" , g[u].index, g[v].index); |
| 470 | RoseEdgeProps &to_props = g[*to_edge]; |
| 471 | to_props.minBound = min(to_props.minBound, from_props.minBound); |
| 472 | to_props.maxBound = max(to_props.maxBound, from_props.maxBound); |
| 473 | assert(to_props.rose_top == from_props.rose_top); |
| 474 | } |
| 475 | } |
| 476 | |
| 477 | /* clone a's edges onto b */ |
| 478 | static |
| 479 | void mergeEdges(RoseVertex a, RoseVertex b, RoseGraph &g) { |
| 480 | // All the edges to or from b for quick lookup. |
| 481 | typedef map<RoseVertex, RoseEdge> EdgeCache; |
| 482 | EdgeCache b_edges; |
| 483 | |
| 484 | // Cache b's in-edges so we can look them up by source quickly. |
| 485 | for (const auto &e : in_edges_range(b, g)) { |
| 486 | RoseVertex u = source(e, g); |
| 487 | b_edges.emplace(u, e); |
| 488 | } |
| 489 | |
| 490 | // Add a's in-edges to b, merging them in where b already has the new edge. |
| 491 | // Once handled, the in-edges to a are removed. |
| 492 | RoseGraph::in_edge_iterator ei, ee; |
| 493 | tie(ei, ee) = in_edges(a, g); |
| 494 | while (ei != ee) { |
| 495 | RoseVertex u = source(*ei, g); |
| 496 | EdgeCache::const_iterator it = b_edges.find(u); |
| 497 | const RoseEdge *to_edge = (it == b_edges.end() ? nullptr : &it->second); |
| 498 | mergeEdgeAdd(u, b, *ei, to_edge, g); |
| 499 | remove_edge(*ei++, g); |
| 500 | } |
| 501 | |
| 502 | // Cache b's out-edges so we can look them up by target quickly. |
| 503 | b_edges.clear(); |
| 504 | for (const auto &e : out_edges_range(b, g)) { |
| 505 | RoseVertex v = target(e, g); |
| 506 | b_edges.emplace(v, e); |
| 507 | } |
| 508 | |
| 509 | // Add a's out-edges to b, merging them in where b already has the new edge. |
| 510 | // Once handled, the out-edges to a are removed. |
| 511 | RoseGraph::out_edge_iterator oi, oe; |
| 512 | tie(oi, oe) = out_edges(a, g); |
| 513 | while (oi != oe) { |
| 514 | RoseVertex v = target(*oi, g); |
| 515 | EdgeCache::const_iterator it = b_edges.find(v); |
| 516 | const RoseEdge *to_edge = (it == b_edges.end() ? nullptr : &it->second); |
| 517 | mergeEdgeAdd(b, v, *oi, to_edge, g); |
| 518 | remove_edge(*oi++, g); |
| 519 | } |
| 520 | |
| 521 | // Vertex a should no longer have any in- or out-edges. |
| 522 | assert(degree(a, g) == 0); |
| 523 | } |
| 524 | |
| 525 | static |
| 526 | void mergeLiteralSets(RoseVertex a, RoseVertex b, RoseBuildImpl &build) { |
| 527 | RoseGraph &g = build.g; |
| 528 | const auto &a_literals = g[a].literals; |
| 529 | for (u32 lit_id : a_literals) { |
| 530 | auto &lit_vertices = build.literal_info[lit_id].vertices; |
| 531 | lit_vertices.erase(a); |
| 532 | lit_vertices.insert(b); |
| 533 | } |
| 534 | |
| 535 | insert(&g[b].literals, a_literals); |
| 536 | } |
| 537 | |
| 538 | static |
| 539 | void updateAliasingInfo(RoseBuildImpl &build, RoseAliasingInfo &rai, |
| 540 | RoseVertex a, RoseVertex b) { |
| 541 | if (build.g[a].left) { |
| 542 | const left_id left(build.g[a].left); |
| 543 | assert(contains(rai.rev_leftfix[left], a)); |
| 544 | rai.rev_leftfix[left].erase(a); |
| 545 | } |
| 546 | if (contains(build.ghost, a)) { |
| 547 | auto ghost = build.ghost.at(a); |
| 548 | assert(contains(build.ghost, b) && ghost == build.ghost.at(b)); |
| 549 | build.ghost.erase(a); |
| 550 | rai.rev_ghost[ghost].erase(a); |
| 551 | } |
| 552 | |
| 553 | if (contains(rai.rev_ghost, a)) { |
| 554 | for (const auto &v : rai.rev_ghost[a]) { |
| 555 | build.ghost[v] = b; |
| 556 | rai.rev_ghost[b].insert(v); |
| 557 | } |
| 558 | rai.rev_ghost.erase(a); |
| 559 | } |
| 560 | } |
| 561 | |
| 562 | /** \brief Common role merge code used by variants below. */ |
| 563 | static |
| 564 | void mergeCommon(RoseBuildImpl &build, RoseAliasingInfo &rai, RoseVertex a, |
| 565 | RoseVertex b) { |
| 566 | RoseGraph &g = build.g; |
| 567 | |
| 568 | assert(g[a].eod_accept == g[b].eod_accept); |
| 569 | assert(g[a].left == g[b].left); |
| 570 | assert(!g[a].suffix || g[a].suffix == g[b].suffix); |
| 571 | |
| 572 | // In some situations (ghost roles etc), we can have different groups. |
| 573 | assert(!g[a].groups && !g[b].groups); /* current structure means groups |
| 574 | * haven't been assigned yet */ |
| 575 | g[b].groups |= g[a].groups; |
| 576 | |
| 577 | mergeLiteralSets(a, b, build); |
| 578 | updateAliasingInfo(build, rai, a, b); |
| 579 | |
| 580 | // Our min and max_offsets should be sane. |
| 581 | assert(g[b].min_offset <= g[b].max_offset); |
| 582 | |
| 583 | // Safety check: we should not have created through a merge a vertex that |
| 584 | // has an out-edge with ANCH history but is not fixed-offset. |
| 585 | assert(!hasAnchHistorySucc(g, b) || g[b].fixedOffset()); |
| 586 | } |
| 587 | |
| 588 | /** \brief Merge role 'a' into 'b', left merge path. */ |
| 589 | static |
| 590 | void mergeVerticesLeft(RoseVertex a, RoseVertex b, RoseBuildImpl &build, |
| 591 | RoseAliasingInfo &rai) { |
| 592 | RoseGraph &g = build.g; |
| 593 | DEBUG_PRINTF("merging vertex %zu into %zu\n" , g[a].index, g[b].index); |
| 594 | |
| 595 | insert(&g[b].reports, g[a].reports); |
| 596 | |
| 597 | // Since it is a left merge (identical LHS) we should pick the tighter |
| 598 | // bound. |
| 599 | g[b].min_offset = max(g[a].min_offset, g[b].min_offset); |
| 600 | g[b].max_offset = min(g[a].max_offset, g[b].max_offset); |
| 601 | |
| 602 | if (!g[b].suffix) { |
| 603 | g[b].suffix = g[a].suffix; |
| 604 | } |
| 605 | |
| 606 | mergeEdges(a, b, g); |
| 607 | mergeCommon(build, rai, a, b); |
| 608 | } |
| 609 | |
| 610 | /** \brief Merge role 'a' into 'b', right merge path. */ |
| 611 | static |
| 612 | void mergeVerticesRight(RoseVertex a, RoseVertex b, RoseBuildImpl &build, |
| 613 | RoseAliasingInfo &rai) { |
| 614 | RoseGraph &g = build.g; |
| 615 | DEBUG_PRINTF("merging vertex %zu into %zu\n" , g[a].index, g[b].index); |
| 616 | |
| 617 | insert(&g[b].reports, g[a].reports); |
| 618 | g[b].min_offset = min(g[a].min_offset, g[b].min_offset); |
| 619 | g[b].max_offset = max(g[a].max_offset, g[b].max_offset); |
| 620 | |
| 621 | mergeEdges(a, b, g); |
| 622 | mergeCommon(build, rai, a, b); |
| 623 | } |
| 624 | |
| 625 | /** |
| 626 | * Faster version of \ref mergeVertices for diamond merges, for which we know |
| 627 | * that the in- and out-edge sets, reports and suffixes are identical. |
| 628 | */ |
| 629 | static |
| 630 | void mergeVerticesDiamond(RoseVertex a, RoseVertex b, RoseBuildImpl &build, |
| 631 | RoseAliasingInfo &rai) { |
| 632 | RoseGraph &g = build.g; |
| 633 | DEBUG_PRINTF("merging vertex %zu into %zu\n" , g[a].index, g[b].index); |
| 634 | |
| 635 | // For a diamond merge, most properties are already the same (with the |
| 636 | // notable exception of the literal set). |
| 637 | assert(g[a].reports == g[b].reports); |
| 638 | assert(g[a].suffix == g[b].suffix); |
| 639 | |
| 640 | g[b].min_offset = min(g[a].min_offset, g[b].min_offset); |
| 641 | g[b].max_offset = max(g[a].max_offset, g[b].max_offset); |
| 642 | |
| 643 | mergeCommon(build, rai, a, b); |
| 644 | } |
| 645 | |
| 646 | static never_inline |
| 647 | void findCandidates(const RoseBuildImpl &build, CandidateSet *candidates) { |
| 648 | for (auto v : vertices_range(build.g)) { |
| 649 | if (isAliasingCandidate(v, build)) { |
| 650 | DEBUG_PRINTF("candidate %zu\n" , build.g[v].index); |
| 651 | DEBUG_PRINTF("lits: %u\n" , *build.g[v].literals.begin()); |
| 652 | candidates->insert(v); |
| 653 | } |
| 654 | } |
| 655 | |
| 656 | assert(candidates->size() <= num_vertices(build.g)); |
| 657 | DEBUG_PRINTF("found %zu/%zu candidates\n" , candidates->size(), |
| 658 | num_vertices(build.g)); |
| 659 | } |
| 660 | |
| 661 | static |
| 662 | RoseVertex pickPred(const RoseVertex v, const RoseGraph &g, |
| 663 | const RoseBuildImpl &build) { |
| 664 | RoseGraph::in_edge_iterator ei, ee; |
| 665 | tie(ei, ee) = in_edges(v, g); |
| 666 | if (ei == ee) { |
| 667 | assert(0); // every candidate should have in-degree! |
| 668 | return RoseGraph::null_vertex(); |
| 669 | } |
| 670 | |
| 671 | // Avoid roots if we have other options, since it doesn't matter to the |
| 672 | // merge pass which predecessor we pick. |
| 673 | RoseVertex u = source(*ei, g); |
| 674 | while (build.isAnyStart(u) && ++ei != ee) { |
| 675 | u = source(*ei, g); |
| 676 | } |
| 677 | return u; |
| 678 | } |
| 679 | |
| 680 | template<> |
| 681 | bool contains<>(const CandidateSet &container, const RoseVertex &key) { |
| 682 | return container.contains(key); |
| 683 | } |
| 684 | |
| 685 | // Simplified version of hasCommonPredWithBadBounds for diamond merges. |
| 686 | static |
| 687 | bool hasCommonPredWithDiffRoses(RoseVertex a, RoseVertex b, |
| 688 | const RoseGraph &g) { |
| 689 | if (!g[a].left || !g[b].left) { |
| 690 | DEBUG_PRINTF("one of (a, b) doesn't have a prefix\n" ); |
| 691 | return true; |
| 692 | } |
| 693 | |
| 694 | // XXX: if we're merging two vertices with different leftfixes, we |
| 695 | // cannot allow them to share a pred, as we would be unable to |
| 696 | // merge the (necessarily different) tops on the in-edges. This |
| 697 | // could be relaxed if we made the tops mergeable (by making |
| 698 | // edge_top a bitfield, for example). |
| 699 | |
| 700 | const bool equal_roses = hasEqualLeftfixes(a, b, g); |
| 701 | |
| 702 | for (const auto &e_a : in_edges_range(a, g)) { |
| 703 | if (RoseEdge e = edge(source(e_a, g), b, g)) { |
| 704 | DEBUG_PRINTF("common pred, e_r=%d r_t %u,%u\n" , |
| 705 | (int)equal_roses, g[e].rose_top, g[e_a].rose_top); |
| 706 | if (!equal_roses) { |
| 707 | DEBUG_PRINTF("different roses\n" ); |
| 708 | return true; |
| 709 | } |
| 710 | if (g[e].rose_top != g[e_a].rose_top) { |
| 711 | DEBUG_PRINTF("bad tops\n" ); |
| 712 | return true; |
| 713 | } |
| 714 | } |
| 715 | } |
| 716 | DEBUG_PRINTF("ok\n" ); |
| 717 | return false; |
| 718 | } |
| 719 | |
| 720 | static |
| 721 | void pruneReportIfUnused(const RoseBuildImpl &build, shared_ptr<NGHolder> h, |
| 722 | const set<RoseVertex> &verts, ReportID report) { |
| 723 | DEBUG_PRINTF("trying to prune %u from %p (v %zu)\n" , report, h.get(), |
| 724 | verts.size()); |
| 725 | for (RoseVertex v : verts) { |
| 726 | if (build.g[v].left.graph == h && |
| 727 | build.g[v].left.leftfix_report == report) { |
| 728 | DEBUG_PRINTF("report %u still in use\n" , report); |
| 729 | return; |
| 730 | } |
| 731 | } |
| 732 | |
| 733 | if (!verts.empty()) { |
| 734 | // Report no longer in use, but graph h is still alive: we should prune |
| 735 | // the report if we can do so without rendering the graph |
| 736 | // unimplementable. |
| 737 | |
| 738 | DEBUG_PRINTF("report %u has been merged away, pruning\n" , report); |
| 739 | assert(h->kind == (build.isRootSuccessor(*verts.begin()) ? NFA_PREFIX |
| 740 | : NFA_INFIX)); |
| 741 | unique_ptr<NGHolder> h_new = cloneHolder(*h); |
| 742 | pruneReport(*h_new, report); |
| 743 | |
| 744 | if (isImplementableNFA(*h_new, nullptr, build.cc)) { |
| 745 | clear_graph(*h); |
| 746 | cloneHolder(*h, *h_new); |
| 747 | } else { |
| 748 | DEBUG_PRINTF("prune produced unimplementable graph, " |
| 749 | "leaving as-is\n" ); |
| 750 | } |
| 751 | } |
| 752 | } |
| 753 | |
| 754 | /** \brief Remove any tops that don't lead to the given report from this |
| 755 | * Castle. */ |
| 756 | static |
| 757 | void pruneCastle(CastleProto &castle, ReportID report) { |
| 758 | unordered_set<u32> dead; // tops to remove. |
| 759 | for (const auto &m : castle.repeats) { |
| 760 | if (!contains(m.second.reports, report)) { |
| 761 | dead.insert(m.first); |
| 762 | } |
| 763 | } |
| 764 | |
| 765 | for (const auto &top : dead) { |
| 766 | castle.erase(top); |
| 767 | } |
| 768 | |
| 769 | assert(!castle.repeats.empty()); |
| 770 | } |
| 771 | |
| 772 | /** \brief Set all reports to the given one. */ |
| 773 | static |
| 774 | void setReports(CastleProto &castle, ReportID report) { |
| 775 | castle.report_map.clear(); |
| 776 | for (auto &e : castle.repeats) { |
| 777 | u32 top = e.first; |
| 778 | auto &repeat = e.second; |
| 779 | repeat.reports.clear(); |
| 780 | repeat.reports.insert(report); |
| 781 | castle.report_map[report].insert(top); |
| 782 | } |
| 783 | } |
| 784 | |
| 785 | static |
| 786 | void updateEdgeTops(RoseGraph &g, RoseVertex v, const map<u32, u32> &top_map) { |
| 787 | for (const auto &e : in_edges_range(v, g)) { |
| 788 | g[e].rose_top = top_map.at(g[e].rose_top); |
| 789 | } |
| 790 | } |
| 791 | |
| 792 | static |
| 793 | void pruneUnusedTops(CastleProto &castle, const RoseGraph &g, |
| 794 | const set<RoseVertex> &verts) { |
| 795 | unordered_set<u32> used_tops; |
| 796 | for (auto v : verts) { |
| 797 | assert(g[v].left.castle.get() == &castle); |
| 798 | |
| 799 | for (const auto &e : in_edges_range(v, g)) { |
| 800 | u32 top = g[e].rose_top; |
| 801 | assert(contains(castle.repeats, top)); |
| 802 | used_tops.insert(top); |
| 803 | } |
| 804 | } |
| 805 | |
| 806 | DEBUG_PRINTF("castle has %zu tops, graph has %zu tops\n" , |
| 807 | castle.repeats.size(), used_tops.size()); |
| 808 | |
| 809 | for (u32 top : assoc_keys(castle.repeats)) { |
| 810 | if (!contains(used_tops, top)) { |
| 811 | DEBUG_PRINTF("removing unused top %u\n" , top); |
| 812 | castle.erase(top); |
| 813 | } |
| 814 | } |
| 815 | } |
| 816 | |
| 817 | static |
| 818 | void pruneUnusedTops(NGHolder &h, const RoseGraph &g, |
| 819 | const set<RoseVertex> &verts) { |
| 820 | if (!is_triggered(h)) { |
| 821 | DEBUG_PRINTF("not triggered, no tops\n" ); |
| 822 | return; |
| 823 | } |
| 824 | assert(isCorrectlyTopped(h)); |
| 825 | DEBUG_PRINTF("pruning unused tops\n" ); |
| 826 | flat_set<u32> used_tops; |
| 827 | for (auto v : verts) { |
| 828 | assert(g[v].left.graph.get() == &h); |
| 829 | |
| 830 | for (const auto &e : in_edges_range(v, g)) { |
| 831 | u32 top = g[e].rose_top; |
| 832 | used_tops.insert(top); |
| 833 | } |
| 834 | } |
| 835 | |
| 836 | vector<NFAEdge> dead; |
| 837 | for (const auto &e : out_edges_range(h.start, h)) { |
| 838 | NFAVertex v = target(e, h); |
| 839 | if (v == h.startDs) { |
| 840 | continue; // stylised edge, leave it alone. |
| 841 | } |
| 842 | flat_set<u32> pruned_tops; |
| 843 | auto pt_inserter = inserter(pruned_tops, pruned_tops.end()); |
| 844 | set_intersection(h[e].tops.begin(), h[e].tops.end(), |
| 845 | used_tops.begin(), used_tops.end(), pt_inserter); |
| 846 | h[e].tops = std::move(pruned_tops); |
| 847 | if (h[e].tops.empty()) { |
| 848 | DEBUG_PRINTF("edge (start,%zu) has only unused tops\n" , h[v].index); |
| 849 | dead.push_back(e); |
| 850 | } |
| 851 | } |
| 852 | |
| 853 | if (dead.empty()) { |
| 854 | return; |
| 855 | } |
| 856 | |
| 857 | remove_edges(dead, h); |
| 858 | pruneUseless(h); |
| 859 | clearReports(h); // As we may have removed vacuous edges. |
| 860 | } |
| 861 | |
| 862 | static |
| 863 | bool mergeSameCastle(RoseBuildImpl &build, RoseVertex a, RoseVertex b, |
| 864 | RoseAliasingInfo &rai) { |
| 865 | RoseGraph &g = build.g; |
| 866 | LeftEngInfo &a_left = g[a].left; |
| 867 | LeftEngInfo &b_left = g[b].left; |
| 868 | CastleProto &castle = *a_left.castle; |
| 869 | |
| 870 | DEBUG_PRINTF("a report=%u, b report=%u\n" , a_left.leftfix_report, |
| 871 | b_left.leftfix_report); |
| 872 | |
| 873 | u32 merge_count = 0; |
| 874 | for (const auto &c : castle.repeats) { |
| 875 | DEBUG_PRINTF("top %u -> %s report %u\n" , c.first, |
| 876 | c.second.bounds.str().c_str(), *c.second.reports.begin()); |
| 877 | if (contains(c.second.reports, a_left.leftfix_report) || |
| 878 | contains(c.second.reports, b_left.leftfix_report)) { |
| 879 | merge_count++; |
| 880 | } |
| 881 | } |
| 882 | |
| 883 | if (castle.repeats.size() + merge_count > castle.max_occupancy) { |
| 884 | DEBUG_PRINTF("too big to merge\n" ); |
| 885 | return false; |
| 886 | } |
| 887 | |
| 888 | const ReportID new_report = build.getNewNfaReport(); |
| 889 | map<u32, u32> a_top_map, b_top_map; |
| 890 | |
| 891 | for (const auto &c : castle.repeats) { |
| 892 | u32 old_top = c.first; |
| 893 | if (contains(c.second.reports, a_left.leftfix_report)) { |
| 894 | PureRepeat pr = c.second; |
| 895 | pr.reports.clear(); |
| 896 | pr.reports.insert(new_report); |
| 897 | u32 new_top = castle.merge(pr); |
| 898 | assert(new_top < castle.max_occupancy); |
| 899 | a_top_map[old_top] = new_top; |
| 900 | } else if (contains(c.second.reports, b_left.leftfix_report)) { |
| 901 | PureRepeat pr = c.second; |
| 902 | pr.reports.clear(); |
| 903 | pr.reports.insert(new_report); |
| 904 | u32 new_top = castle.merge(pr); |
| 905 | assert(new_top < castle.max_occupancy); |
| 906 | b_top_map[old_top] = new_top; |
| 907 | } |
| 908 | } |
| 909 | |
| 910 | assert(contains(rai.rev_leftfix[b_left], b)); |
| 911 | rai.rev_leftfix[b_left].erase(b); |
| 912 | rai.rev_leftfix[a_left].insert(b); |
| 913 | |
| 914 | a_left.leftfix_report = new_report; |
| 915 | b_left.leftfix_report = new_report; |
| 916 | assert(a_left == b_left); |
| 917 | |
| 918 | updateEdgeTops(g, a, a_top_map); |
| 919 | updateEdgeTops(g, b, b_top_map); |
| 920 | |
| 921 | pruneUnusedTops(castle, g, rai.rev_leftfix[a_left]); |
| 922 | return true; |
| 923 | } |
| 924 | |
| 925 | static |
| 926 | bool attemptRoseCastleMerge(RoseBuildImpl &build, bool preds_same, RoseVertex a, |
| 927 | RoseVertex b, bool trivialCasesOnly, |
| 928 | RoseAliasingInfo &rai) { |
| 929 | RoseGraph &g = build.g; |
| 930 | LeftEngInfo &a_left = g[a].left; |
| 931 | LeftEngInfo &b_left = g[b].left; |
| 932 | left_id a_left_id(a_left); |
| 933 | left_id b_left_id(b_left); |
| 934 | CastleProto &a_castle = *a_left_id.castle(); |
| 935 | CastleProto &b_castle = *b_left_id.castle(); |
| 936 | |
| 937 | if (a_castle.reach() != b_castle.reach()) { |
| 938 | DEBUG_PRINTF("different reach\n" ); |
| 939 | return false; |
| 940 | } |
| 941 | |
| 942 | DEBUG_PRINTF("a castle=%p, report=%u\n" , &a_castle, a_left.leftfix_report); |
| 943 | DEBUG_PRINTF("b castle=%p, report=%u\n" , &b_castle, b_left.leftfix_report); |
| 944 | |
| 945 | if (&a_castle == &b_castle) { |
| 946 | DEBUG_PRINTF("castles are the same\n" ); |
| 947 | return mergeSameCastle(build, a, b, rai); |
| 948 | } |
| 949 | |
| 950 | if (is_equal(a_castle, a_left.leftfix_report, b_castle, |
| 951 | b_left.leftfix_report)) { |
| 952 | DEBUG_PRINTF("castles are equiv with respect to reports\n" ); |
| 953 | if (rai.rev_leftfix[a_left_id].size() == 1) { |
| 954 | /* nobody else is using a_castle */ |
| 955 | rai.rev_leftfix[b_left_id].erase(b); |
| 956 | rai.rev_leftfix[a_left_id].insert(b); |
| 957 | pruneUnusedTops(b_castle, g, rai.rev_leftfix[b_left_id]); |
| 958 | b_left.castle = a_left.castle; |
| 959 | b_left.leftfix_report = a_left.leftfix_report; |
| 960 | DEBUG_PRINTF("OK -> only user of a_castle\n" ); |
| 961 | return true; |
| 962 | } |
| 963 | |
| 964 | if (rai.rev_leftfix[b_left_id].size() == 1) { |
| 965 | /* nobody else is using b_castle */ |
| 966 | rai.rev_leftfix[a_left_id].erase(a); |
| 967 | rai.rev_leftfix[b_left_id].insert(a); |
| 968 | pruneUnusedTops(a_castle, g, rai.rev_leftfix[a_left_id]); |
| 969 | a_left.castle = b_left.castle; |
| 970 | a_left.leftfix_report = b_left.leftfix_report; |
| 971 | DEBUG_PRINTF("OK -> only user of b_castle\n" ); |
| 972 | return true; |
| 973 | } |
| 974 | |
| 975 | if (preds_same) { |
| 976 | /* preds are the same anyway in diamond/left merges just need to |
| 977 | * check that all the literals in rev_leftfix[b_h] can handle a_h */ |
| 978 | for (auto v : rai.rev_leftfix[b_left_id]) { |
| 979 | if (!mergeableRoseVertices(build, a, v)) { |
| 980 | goto literal_mismatch_1; |
| 981 | } |
| 982 | } |
| 983 | |
| 984 | rai.rev_leftfix[a_left_id].erase(a); |
| 985 | rai.rev_leftfix[b_left_id].insert(a); |
| 986 | pruneUnusedTops(a_castle, g, rai.rev_leftfix[a_left_id]); |
| 987 | a_left.castle = b_left.castle; |
| 988 | a_left.leftfix_report = b_left.leftfix_report; |
| 989 | DEBUG_PRINTF("OK -> same preds ???\n" ); |
| 990 | return true; |
| 991 | literal_mismatch_1: |
| 992 | /* preds are the same anyway in diamond/left merges just need to |
| 993 | * check that all the literals in rev_leftfix[a_h] can handle b_h */ |
| 994 | for (auto v : rai.rev_leftfix[a_left_id]) { |
| 995 | if (!mergeableRoseVertices(build, v, b)) { |
| 996 | goto literal_mismatch_2; |
| 997 | } |
| 998 | } |
| 999 | |
| 1000 | rai.rev_leftfix[b_left_id].erase(b); |
| 1001 | rai.rev_leftfix[a_left_id].insert(b); |
| 1002 | pruneUnusedTops(b_castle, g, rai.rev_leftfix[b_left_id]); |
| 1003 | b_left.castle = a_left.castle; |
| 1004 | b_left.leftfix_report = a_left.leftfix_report; |
| 1005 | DEBUG_PRINTF("OK -> same preds ???\n" ); |
| 1006 | return true; |
| 1007 | literal_mismatch_2:; |
| 1008 | } |
| 1009 | DEBUG_PRINTF("OK -> create new\n" ); |
| 1010 | /* we need to create a new graph as there may be other people |
| 1011 | * using b_left and it would be bad if a's preds started triggering it |
| 1012 | */ |
| 1013 | ReportID new_report = build.getNewNfaReport(); |
| 1014 | shared_ptr<CastleProto> new_castle = make_shared<CastleProto>(a_castle); |
| 1015 | pruneCastle(*new_castle, a_left.leftfix_report); |
| 1016 | setReports(*new_castle, new_report); |
| 1017 | |
| 1018 | rai.rev_leftfix[a_left_id].erase(a); |
| 1019 | rai.rev_leftfix[b_left_id].erase(b); |
| 1020 | pruneUnusedTops(*a_left.castle, g, rai.rev_leftfix[a_left_id]); |
| 1021 | pruneUnusedTops(*b_left.castle, g, rai.rev_leftfix[b_left_id]); |
| 1022 | |
| 1023 | a_left.leftfix_report = new_report; |
| 1024 | b_left.leftfix_report = new_report; |
| 1025 | a_left.castle = new_castle; |
| 1026 | b_left.castle = new_castle; |
| 1027 | |
| 1028 | assert(a_left == b_left); |
| 1029 | rai.rev_leftfix[a_left].insert(a); |
| 1030 | rai.rev_leftfix[a_left].insert(b); |
| 1031 | pruneUnusedTops(*new_castle, g, rai.rev_leftfix[a_left]); |
| 1032 | return true; |
| 1033 | } |
| 1034 | |
| 1035 | // Everything after this point requires more work, so we guard it with the |
| 1036 | // trivial cases argument.. |
| 1037 | if (trivialCasesOnly) { |
| 1038 | return false; |
| 1039 | } |
| 1040 | |
| 1041 | // Only infixes. Prefixes require special care when doing non-trivial |
| 1042 | // merges. |
| 1043 | if (!build.isNonRootSuccessor(a) || !build.isNonRootSuccessor(b)) { |
| 1044 | return false; |
| 1045 | } |
| 1046 | |
| 1047 | set<RoseVertex> &b_verts = rai.rev_leftfix[b_left_id]; |
| 1048 | set<RoseVertex> aa; |
| 1049 | aa.insert(a); |
| 1050 | |
| 1051 | if (!mergeableRoseVertices(build, aa, b_verts)) { |
| 1052 | DEBUG_PRINTF("vertices not mergeable\n" ); |
| 1053 | return false; |
| 1054 | } |
| 1055 | |
| 1056 | if (!build.cc.grey.roseMultiTopRoses || !build.cc.grey.allowCastle) { |
| 1057 | return false; |
| 1058 | } |
| 1059 | |
| 1060 | DEBUG_PRINTF("merging into new castle\n" ); |
| 1061 | |
| 1062 | // Clone new castle with a's repeats in it, set to a new report. |
| 1063 | ReportID new_report = build.getNewNfaReport(); |
| 1064 | shared_ptr<CastleProto> m_castle = make_shared<CastleProto>(a_castle); |
| 1065 | pruneCastle(*m_castle, a_left.leftfix_report); |
| 1066 | setReports(*m_castle, new_report); |
| 1067 | |
| 1068 | // Merge in the relevant repeats from b with the new report. Note that |
| 1069 | // we'll have to remap tops appropriately. |
| 1070 | map<u32, u32> b_top_map; |
| 1071 | for (const auto &e : in_edges_range(b, g)) { |
| 1072 | u32 top = g[e].rose_top; |
| 1073 | assert(contains(b_castle.repeats, top)); |
| 1074 | |
| 1075 | PureRepeat pr = b_castle.repeats[top]; // mutable copy |
| 1076 | pr.reports.clear(); |
| 1077 | pr.reports.insert(new_report); |
| 1078 | |
| 1079 | // We should be protected from merging common preds with tops leading |
| 1080 | // to completely different repeats by earlier checks, but just in |
| 1081 | // case... |
| 1082 | if (RoseEdge a_edge = edge(source(e, g), a, g)) { |
| 1083 | u32 a_top = g[a_edge].rose_top; |
| 1084 | const PureRepeat &a_pr = m_castle->repeats[a_top]; // new report |
| 1085 | if (pr != a_pr) { |
| 1086 | DEBUG_PRINTF("merge failed, common pred with diff repeat\n" ); |
| 1087 | return false; |
| 1088 | } |
| 1089 | } |
| 1090 | |
| 1091 | u32 new_top = m_castle->merge(pr); |
| 1092 | if (new_top == CastleProto::max_occupancy) { |
| 1093 | DEBUG_PRINTF("merge failed\n" ); |
| 1094 | return false; |
| 1095 | } |
| 1096 | b_top_map[top] = new_top; |
| 1097 | } |
| 1098 | |
| 1099 | updateEdgeTops(g, b, b_top_map); |
| 1100 | |
| 1101 | DEBUG_PRINTF("merged into castle containing %zu repeats\n" , |
| 1102 | m_castle->repeats.size()); |
| 1103 | |
| 1104 | rai.rev_leftfix[a_left_id].erase(a); |
| 1105 | rai.rev_leftfix[b_left_id].erase(b); |
| 1106 | pruneUnusedTops(*a_left.castle, g, rai.rev_leftfix[a_left_id]); |
| 1107 | pruneUnusedTops(*b_left.castle, g, rai.rev_leftfix[b_left_id]); |
| 1108 | |
| 1109 | a_left.castle = m_castle; |
| 1110 | a_left.leftfix_report = new_report; |
| 1111 | b_left.castle = m_castle; |
| 1112 | b_left.leftfix_report = new_report; |
| 1113 | |
| 1114 | assert(a_left == b_left); |
| 1115 | rai.rev_leftfix[a_left].insert(a); |
| 1116 | rai.rev_leftfix[a_left].insert(b); |
| 1117 | pruneUnusedTops(*m_castle, g, rai.rev_leftfix[a_left]); |
| 1118 | return true; |
| 1119 | } |
| 1120 | |
| 1121 | static |
| 1122 | bool attemptRoseGraphMerge(RoseBuildImpl &build, bool preds_same, RoseVertex a, |
| 1123 | RoseVertex b, bool trivialCasesOnly, |
| 1124 | RoseAliasingInfo &rai) { |
| 1125 | RoseGraph &g = build.g; |
| 1126 | LeftEngInfo &a_left = g[a].left; |
| 1127 | LeftEngInfo &b_left = g[b].left; |
| 1128 | left_id a_left_id(a_left); |
| 1129 | left_id b_left_id(b_left); |
| 1130 | shared_ptr<NGHolder> a_h = a_left.graph; |
| 1131 | shared_ptr<NGHolder> b_h = b_left.graph; |
| 1132 | assert(a_h && b_h); |
| 1133 | assert(isImplementableNFA(*a_h, nullptr, build.cc)); |
| 1134 | assert(isImplementableNFA(*b_h, nullptr, build.cc)); |
| 1135 | |
| 1136 | // If we only differ in reports, this is a very easy merge. Just use b's |
| 1137 | // report for both. |
| 1138 | /* Actually not so easy, there may be other poor suckers using a and/or b's |
| 1139 | * reports who will be surprised by this change */ |
| 1140 | if (a_h == b_h) { |
| 1141 | DEBUG_PRINTF("OK -> same actual holder\n" ); |
| 1142 | ReportID a_oldreport = a_left.leftfix_report; |
| 1143 | ReportID b_oldreport = b_left.leftfix_report; |
| 1144 | ReportID new_report = build.getNewNfaReport(); |
| 1145 | duplicateReport(*a_h, a_left.leftfix_report, new_report); |
| 1146 | duplicateReport(*b_h, b_left.leftfix_report, new_report); |
| 1147 | a_left.leftfix_report = new_report; |
| 1148 | b_left.leftfix_report = new_report; |
| 1149 | pruneReportIfUnused(build, b_h, rai.rev_leftfix[b_left_id], |
| 1150 | a_oldreport); |
| 1151 | pruneReportIfUnused(build, b_h, rai.rev_leftfix[b_left_id], |
| 1152 | b_oldreport); |
| 1153 | pruneUnusedTops(*b_h, g, rai.rev_leftfix[b_left_id]); |
| 1154 | assert(a_left == b_left); |
| 1155 | return true; |
| 1156 | } |
| 1157 | |
| 1158 | /* if it is the same graph, it is also fairly easy */ |
| 1159 | if (is_equal(*a_h, a_left.leftfix_report, *b_h, b_left.leftfix_report)) { |
| 1160 | if (rai.rev_leftfix[a_left_id].size() == 1) { |
| 1161 | /* nobody else is using a_h */ |
| 1162 | rai.rev_leftfix[b_left_id].erase(b); |
| 1163 | rai.rev_leftfix[a_left_id].insert(b); |
| 1164 | b_left.graph = a_h; |
| 1165 | b_left.leftfix_report = a_left.leftfix_report; |
| 1166 | pruneUnusedTops(*b_h, g, rai.rev_leftfix[b_left_id]); |
| 1167 | DEBUG_PRINTF("OK -> only user of a_h\n" ); |
| 1168 | return true; |
| 1169 | } |
| 1170 | |
| 1171 | if (rai.rev_leftfix[b_left_id].size() == 1) { |
| 1172 | /* nobody else is using b_h */ |
| 1173 | rai.rev_leftfix[a_left_id].erase(a); |
| 1174 | rai.rev_leftfix[b_left_id].insert(a); |
| 1175 | a_left.graph = b_h; |
| 1176 | a_left.leftfix_report = b_left.leftfix_report; |
| 1177 | pruneUnusedTops(*a_h, g, rai.rev_leftfix[a_left_id]); |
| 1178 | DEBUG_PRINTF("OK -> only user of b_h\n" ); |
| 1179 | return true; |
| 1180 | } |
| 1181 | |
| 1182 | if (preds_same) { |
| 1183 | /* preds are the same anyway in diamond/left merges just need to |
| 1184 | * check that all the literals in rev_leftfix[b_h] can handle a_h */ |
| 1185 | for (auto v : rai.rev_leftfix[b_left_id]) { |
| 1186 | if (!mergeableRoseVertices(build, a, v)) { |
| 1187 | goto literal_mismatch_1; |
| 1188 | } |
| 1189 | } |
| 1190 | |
| 1191 | rai.rev_leftfix[a_left_id].erase(a); |
| 1192 | rai.rev_leftfix[b_left_id].insert(a); |
| 1193 | a_left.graph = b_h; |
| 1194 | a_left.leftfix_report = b_left.leftfix_report; |
| 1195 | pruneUnusedTops(*a_h, g, rai.rev_leftfix[a_left_id]); |
| 1196 | DEBUG_PRINTF("OK -> same preds ???\n" ); |
| 1197 | return true; |
| 1198 | literal_mismatch_1: |
| 1199 | /* preds are the same anyway in diamond/left merges just need to |
| 1200 | * check that all the literals in rev_leftfix[a_h] can handle b_h */ |
| 1201 | for (auto v : rai.rev_leftfix[a_left_id]) { |
| 1202 | if (!mergeableRoseVertices(build, v, b)) { |
| 1203 | goto literal_mismatch_2; |
| 1204 | } |
| 1205 | } |
| 1206 | |
| 1207 | rai.rev_leftfix[b_left_id].erase(b); |
| 1208 | rai.rev_leftfix[a_left_id].insert(b); |
| 1209 | b_left.graph = a_h; |
| 1210 | b_left.leftfix_report = a_left.leftfix_report; |
| 1211 | pruneUnusedTops(*b_h, g, rai.rev_leftfix[b_left_id]); |
| 1212 | DEBUG_PRINTF("OK -> same preds ???\n" ); |
| 1213 | return true; |
| 1214 | literal_mismatch_2:; |
| 1215 | } |
| 1216 | DEBUG_PRINTF("OK -> create new\n" ); |
| 1217 | /* we need to create a new graph as there may be other people |
| 1218 | * using b_left and it would be bad if a's preds started triggering it |
| 1219 | */ |
| 1220 | ReportID new_report = build.getNewNfaReport(); |
| 1221 | shared_ptr<NGHolder> new_graph = cloneHolder(*b_h); |
| 1222 | duplicateReport(*new_graph, b_left.leftfix_report, new_report); |
| 1223 | pruneAllOtherReports(*new_graph, new_report); |
| 1224 | |
| 1225 | if (!isImplementableNFA(*new_graph, nullptr, build.cc)) { |
| 1226 | DEBUG_PRINTF("new graph not implementable\n" ); |
| 1227 | return false; |
| 1228 | } |
| 1229 | |
| 1230 | rai.rev_leftfix[a_left_id].erase(a); |
| 1231 | rai.rev_leftfix[b_left_id].erase(b); |
| 1232 | pruneUnusedTops(*a_h, g, rai.rev_leftfix[a_left_id]); |
| 1233 | pruneUnusedTops(*b_h, g, rai.rev_leftfix[b_left_id]); |
| 1234 | |
| 1235 | a_left.leftfix_report = new_report; |
| 1236 | b_left.leftfix_report = new_report; |
| 1237 | a_left.graph = new_graph; |
| 1238 | b_left.graph = new_graph; |
| 1239 | |
| 1240 | rai.rev_leftfix[a_left].insert(a); |
| 1241 | rai.rev_leftfix[a_left].insert(b); |
| 1242 | pruneUnusedTops(*new_graph, g, rai.rev_leftfix[a_left]); |
| 1243 | return true; |
| 1244 | } |
| 1245 | |
| 1246 | // Everything after this point requires merging via the uncalc code, so we |
| 1247 | // guard it with the trivial cases arg. |
| 1248 | if (trivialCasesOnly) { |
| 1249 | return false; |
| 1250 | } |
| 1251 | |
| 1252 | // Only infixes. Prefixes require special care when doing non-trivial |
| 1253 | // merges. |
| 1254 | if (!build.isNonRootSuccessor(a) || !build.isNonRootSuccessor(b)) { |
| 1255 | return false; |
| 1256 | } |
| 1257 | |
| 1258 | DEBUG_PRINTF("attempting merge of roses on vertices %zu and %zu\n" , |
| 1259 | g[a].index, g[b].index); |
| 1260 | |
| 1261 | set<RoseVertex> &b_verts = rai.rev_leftfix[b_left]; |
| 1262 | set<RoseVertex> aa; |
| 1263 | aa.insert(a); |
| 1264 | |
| 1265 | if (!mergeableRoseVertices(build, aa, b_verts)) { |
| 1266 | DEBUG_PRINTF("vertices not mergeable\n" ); |
| 1267 | return false; |
| 1268 | } |
| 1269 | |
| 1270 | if (!build.cc.grey.roseMultiTopRoses) { |
| 1271 | return false; |
| 1272 | } |
| 1273 | |
| 1274 | // Clone a copy of a's NFA to operate on, and store a copy of its in-edge |
| 1275 | // properties. |
| 1276 | |
| 1277 | /* We need to allocate a new report id because */ |
| 1278 | ReportID a_oldreport = a_left.leftfix_report; |
| 1279 | ReportID b_oldreport = b_left.leftfix_report; |
| 1280 | ReportID new_report = build.getNewNfaReport(); |
| 1281 | duplicateReport(*b_h, b_left.leftfix_report, new_report); |
| 1282 | b_left.leftfix_report = new_report; |
| 1283 | pruneReportIfUnused(build, b_h, rai.rev_leftfix[b_left_id], b_oldreport); |
| 1284 | |
| 1285 | NGHolder victim; |
| 1286 | cloneHolder(victim, *a_h); |
| 1287 | duplicateReport(victim, a_left.leftfix_report, new_report); |
| 1288 | pruneAllOtherReports(victim, new_report); |
| 1289 | |
| 1290 | map<RoseVertex, RoseEdgeProps> a_props; |
| 1291 | for (const auto &e : in_edges_range(a, g)) { |
| 1292 | a_props[source(e, g)] = g[e]; |
| 1293 | } |
| 1294 | |
| 1295 | DEBUG_PRINTF("victim %zu states\n" , num_vertices(*a_h)); |
| 1296 | DEBUG_PRINTF("winner %zu states\n" , num_vertices(*b_h)); |
| 1297 | |
| 1298 | if (!setDistinctRoseTops(g, victim, *b_h, deque<RoseVertex>(1, a))) { |
| 1299 | assert(roseHasTops(build, a)); |
| 1300 | assert(roseHasTops(build, b)); |
| 1301 | return false; |
| 1302 | } |
| 1303 | |
| 1304 | assert(victim.kind == b_h->kind); |
| 1305 | assert(!generates_callbacks(*b_h)); |
| 1306 | |
| 1307 | if (!mergeNfaPair(victim, *b_h, nullptr, build.cc)) { |
| 1308 | DEBUG_PRINTF("merge failed\n" ); |
| 1309 | // Restore in-edge properties. |
| 1310 | for (const auto &e : in_edges_range(a, g)) { |
| 1311 | g[e] = a_props[source(e, g)]; |
| 1312 | } |
| 1313 | assert(roseHasTops(build, a)); |
| 1314 | assert(roseHasTops(build, b)); |
| 1315 | return false; |
| 1316 | } |
| 1317 | |
| 1318 | DEBUG_PRINTF("merge succeeded -> %zu vertices\n" , num_vertices(*b_h)); |
| 1319 | |
| 1320 | // update A's rose data to point to the merged graph. |
| 1321 | a_left.graph = b_h; |
| 1322 | a_left.leftfix_report = new_report; |
| 1323 | |
| 1324 | assert(contains(rai.rev_leftfix[a_left_id], a)); |
| 1325 | assert(contains(rai.rev_leftfix[b_left_id], b)); |
| 1326 | rai.rev_leftfix[a_left_id].erase(a); |
| 1327 | rai.rev_leftfix[b_left_id].insert(a); |
| 1328 | |
| 1329 | pruneUnusedTops(*a_h, g, rai.rev_leftfix[a_left_id]); |
| 1330 | pruneUnusedTops(*b_h, g, rai.rev_leftfix[b_left_id]); |
| 1331 | |
| 1332 | // Prune A's report from its old prefix if it was only used by A. |
| 1333 | pruneReportIfUnused(build, a_h, rai.rev_leftfix[a_left_id], a_oldreport); |
| 1334 | |
| 1335 | reduceImplementableGraph(*b_h, SOM_NONE, nullptr, build.cc); |
| 1336 | |
| 1337 | assert(roseHasTops(build, a)); |
| 1338 | assert(roseHasTops(build, b)); |
| 1339 | assert(isImplementableNFA(*b_h, nullptr, build.cc)); |
| 1340 | return true; |
| 1341 | } |
| 1342 | |
| 1343 | // Called by the role aliasing pass: Attempt to merge rose a into b, updating |
| 1344 | // the two LeftEngInfo structures to be the same. Returns false if the merge |
| 1345 | // is not possible. |
| 1346 | static |
| 1347 | bool attemptRoseMerge(RoseBuildImpl &build, bool preds_same, RoseVertex a, |
| 1348 | RoseVertex b, bool trivialCasesOnly, |
| 1349 | RoseAliasingInfo &rai) { |
| 1350 | DEBUG_PRINTF("attempting rose merge, vertices a=%zu, b=%zu\n" , |
| 1351 | build.g[a].index, build.g[b].index); |
| 1352 | assert(a != b); |
| 1353 | |
| 1354 | RoseGraph &g = build.g; |
| 1355 | LeftEngInfo &a_left = g[a].left; |
| 1356 | LeftEngInfo &b_left = g[b].left; |
| 1357 | |
| 1358 | // Trivial case. |
| 1359 | if (a_left == b_left) { |
| 1360 | DEBUG_PRINTF("roses are identical, no leftfix or already merged\n" ); |
| 1361 | return true; |
| 1362 | } |
| 1363 | |
| 1364 | const left_id a_left_id(a_left); |
| 1365 | const left_id b_left_id(b_left); |
| 1366 | |
| 1367 | /* Haig merges not supported at the moment */ |
| 1368 | if (a_left.haig || b_left.haig) { |
| 1369 | return false; |
| 1370 | } |
| 1371 | |
| 1372 | /* dfa merges not supported at the moment (no multitop) */ |
| 1373 | if (a_left.dfa || b_left.dfa) { |
| 1374 | return false; |
| 1375 | } |
| 1376 | |
| 1377 | // Only non-transients for the moment. |
| 1378 | if (contains(build.transient, a_left_id) || |
| 1379 | contains(build.transient, b_left_id)) { |
| 1380 | return false; |
| 1381 | } |
| 1382 | |
| 1383 | /* It is not possible to merge roles with different lags as we can only |
| 1384 | * test the leftfix at one location relative to the literal match */ |
| 1385 | if (a_left.lag != b_left.lag) { |
| 1386 | return false; |
| 1387 | } |
| 1388 | |
| 1389 | assert(roseHasTops(build, a)); |
| 1390 | assert(roseHasTops(build, b)); |
| 1391 | |
| 1392 | if (a_left_id.graph() && b_left_id.graph()) { |
| 1393 | return attemptRoseGraphMerge(build, preds_same, a, b, trivialCasesOnly, |
| 1394 | rai); |
| 1395 | } |
| 1396 | |
| 1397 | if (a_left_id.castle() && b_left_id.castle()) { |
| 1398 | return attemptRoseCastleMerge(build, preds_same, a, b, trivialCasesOnly, |
| 1399 | rai); |
| 1400 | } |
| 1401 | |
| 1402 | return false; |
| 1403 | } |
| 1404 | |
| 1405 | /** |
| 1406 | * \brief Buckets that only contain one vertex are never going to lead to a |
| 1407 | * merge. |
| 1408 | */ |
| 1409 | static |
| 1410 | void removeSingletonBuckets(vector<vector<RoseVertex>> &buckets) { |
| 1411 | auto it = remove_if( |
| 1412 | begin(buckets), end(buckets), |
| 1413 | [](const vector<RoseVertex> &bucket) { return bucket.size() < 2; }); |
| 1414 | if (it != end(buckets)) { |
| 1415 | DEBUG_PRINTF("deleting %zu singleton buckets\n" , |
| 1416 | distance(it, end(buckets))); |
| 1417 | buckets.erase(it, end(buckets)); |
| 1418 | } |
| 1419 | } |
| 1420 | |
| 1421 | static |
| 1422 | void buildInvBucketMap(const vector<vector<RoseVertex>> &buckets, |
| 1423 | unordered_map<RoseVertex, size_t> &inv) { |
| 1424 | inv.clear(); |
| 1425 | for (size_t i = 0; i < buckets.size(); i++) { |
| 1426 | for (auto v : buckets[i]) { |
| 1427 | assert(!contains(inv, v)); |
| 1428 | inv.emplace(v, i); |
| 1429 | } |
| 1430 | } |
| 1431 | } |
| 1432 | |
| 1433 | /** |
| 1434 | * \brief Generic splitter that will use the given split function to partition |
| 1435 | * the vector of buckets, then remove buckets with <= 1 entry. |
| 1436 | */ |
| 1437 | template <class SplitFunction> |
| 1438 | void splitAndFilterBuckets(vector<vector<RoseVertex>> &buckets, |
| 1439 | const SplitFunction &make_split_key) { |
| 1440 | if (buckets.empty()) { |
| 1441 | return; |
| 1442 | } |
| 1443 | |
| 1444 | vector<vector<RoseVertex>> out; |
| 1445 | |
| 1446 | // Mapping from split key value to new bucket index. |
| 1447 | using key_type = decltype(make_split_key(RoseGraph::null_vertex())); |
| 1448 | unordered_map<key_type, size_t> dest_map; |
| 1449 | dest_map.reserve(buckets.front().size()); |
| 1450 | |
| 1451 | for (const auto &bucket : buckets) { |
| 1452 | assert(!bucket.empty()); |
| 1453 | dest_map.clear(); |
| 1454 | for (RoseVertex v : bucket) { |
| 1455 | auto p = dest_map.emplace(make_split_key(v), out.size()); |
| 1456 | if (p.second) { // New key, add a bucket. |
| 1457 | out.emplace_back(); |
| 1458 | } |
| 1459 | auto out_bucket = p.first->second; |
| 1460 | out[out_bucket].push_back(v); |
| 1461 | } |
| 1462 | } |
| 1463 | |
| 1464 | if (out.size() == buckets.size()) { |
| 1465 | return; // No new buckets created. |
| 1466 | } |
| 1467 | |
| 1468 | buckets = std::move(out); |
| 1469 | removeSingletonBuckets(buckets); |
| 1470 | } |
| 1471 | |
| 1472 | static |
| 1473 | void splitByReportSuffixBehaviour(const RoseGraph &g, |
| 1474 | vector<vector<RoseVertex>> &buckets) { |
| 1475 | // Split by report set and suffix info. |
| 1476 | auto make_split_key = [&g](RoseVertex v) { |
| 1477 | return hash_all(g[v].reports, g[v].suffix); |
| 1478 | }; |
| 1479 | splitAndFilterBuckets(buckets, make_split_key); |
| 1480 | } |
| 1481 | |
| 1482 | static |
| 1483 | void splitByLiteralTable(const RoseBuildImpl &build, |
| 1484 | vector<vector<RoseVertex>> &buckets) { |
| 1485 | const RoseGraph &g = build.g; |
| 1486 | |
| 1487 | // Split by literal table. |
| 1488 | auto make_split_key = [&](RoseVertex v) { |
| 1489 | const auto &lits = g[v].literals; |
| 1490 | assert(!lits.empty()); |
| 1491 | auto table = build.literals.at(*lits.begin()).table; |
| 1492 | return std::underlying_type<decltype(table)>::type(table); |
| 1493 | }; |
| 1494 | splitAndFilterBuckets(buckets, make_split_key); |
| 1495 | } |
| 1496 | |
| 1497 | static |
| 1498 | void splitByNeighbour(const RoseGraph &g, vector<vector<RoseVertex>> &buckets, |
| 1499 | unordered_map<RoseVertex, size_t> &inv, bool succ) { |
| 1500 | vector<vector<RoseVertex>> ; |
| 1501 | map<size_t, vector<RoseVertex>> neighbours_by_bucket; |
| 1502 | set<RoseVertex> picked; |
| 1503 | vector<RoseVertex> leftovers; |
| 1504 | |
| 1505 | for (RoseVertex u : vertices_range(g)) { |
| 1506 | /* once split by v, stays split. also keeps iterator in buckets valid */ |
| 1507 | extras.clear(); |
| 1508 | neighbours_by_bucket.clear(); |
| 1509 | if (succ) { |
| 1510 | /* forward pass */ |
| 1511 | for (RoseVertex v : adjacent_vertices_range(u, g)) { |
| 1512 | auto it = inv.find(v); |
| 1513 | if (it != end(inv)) { |
| 1514 | neighbours_by_bucket[it->second].push_back(v); |
| 1515 | } |
| 1516 | } |
| 1517 | } else { |
| 1518 | /* backward pass */ |
| 1519 | for (RoseVertex v : inv_adjacent_vertices_range(u, g)) { |
| 1520 | auto it = inv.find(v); |
| 1521 | if (it != end(inv)) { |
| 1522 | neighbours_by_bucket[it->second].push_back(v); |
| 1523 | } |
| 1524 | } |
| 1525 | } |
| 1526 | for (const auto &e : neighbours_by_bucket) { |
| 1527 | size_t old_key = e.first; |
| 1528 | if (buckets[old_key].size() == e.second.size()) { |
| 1529 | /* did not split */ |
| 1530 | continue; |
| 1531 | } |
| 1532 | assert(!e.second.empty()); |
| 1533 | |
| 1534 | picked.clear(); |
| 1535 | picked.insert(begin(e.second), end(e.second)); |
| 1536 | |
| 1537 | size_t new_key = buckets.size() + extras.size(); |
| 1538 | leftovers.clear(); |
| 1539 | for (RoseVertex v : buckets[old_key]) { |
| 1540 | if (contains(picked, v)) { |
| 1541 | inv[v] = new_key; |
| 1542 | } else { |
| 1543 | leftovers.push_back(v); |
| 1544 | } |
| 1545 | } |
| 1546 | |
| 1547 | assert(!leftovers.empty()); |
| 1548 | assert(e.second.size() + leftovers.size() |
| 1549 | == buckets[old_key].size()); |
| 1550 | extras.push_back(e.second); |
| 1551 | buckets[old_key].swap(leftovers); |
| 1552 | } |
| 1553 | insert(&buckets, buckets.end(), extras); |
| 1554 | } |
| 1555 | |
| 1556 | removeSingletonBuckets(buckets); |
| 1557 | buildInvBucketMap(buckets, inv); |
| 1558 | } |
| 1559 | |
| 1560 | static |
| 1561 | vector<vector<RoseVertex>> |
| 1562 | splitDiamondMergeBuckets(CandidateSet &candidates, const RoseBuildImpl &build) { |
| 1563 | const RoseGraph &g = build.g; |
| 1564 | |
| 1565 | vector<vector<RoseVertex>> buckets(1); |
| 1566 | buckets[0].reserve(candidates.size()); |
| 1567 | insert(&buckets[0], buckets[0].end(), candidates); |
| 1568 | |
| 1569 | DEBUG_PRINTF("at start, %zu candidates in 1 bucket\n" , candidates.size()); |
| 1570 | |
| 1571 | splitByReportSuffixBehaviour(g, buckets); |
| 1572 | DEBUG_PRINTF("split by report/suffix, %zu buckets\n" , buckets.size()); |
| 1573 | if (buckets.empty()) { |
| 1574 | return buckets; |
| 1575 | } |
| 1576 | |
| 1577 | splitByLiteralTable(build, buckets); |
| 1578 | DEBUG_PRINTF("split by lit table, %zu buckets\n" , buckets.size()); |
| 1579 | if (buckets.empty()) { |
| 1580 | return buckets; |
| 1581 | } |
| 1582 | |
| 1583 | // Neighbour splits require inverse map. |
| 1584 | unordered_map<RoseVertex, size_t> inv; |
| 1585 | buildInvBucketMap(buckets, inv); |
| 1586 | |
| 1587 | splitByNeighbour(g, buckets, inv, true); |
| 1588 | DEBUG_PRINTF("split by successor, %zu buckets\n" , buckets.size()); |
| 1589 | if (buckets.empty()) { |
| 1590 | return buckets; |
| 1591 | } |
| 1592 | |
| 1593 | splitByNeighbour(g, buckets, inv, false); |
| 1594 | DEBUG_PRINTF("split by predecessor, %zu buckets\n" , buckets.size()); |
| 1595 | |
| 1596 | return buckets; |
| 1597 | } |
| 1598 | |
| 1599 | static never_inline |
| 1600 | void diamondMergePass(CandidateSet &candidates, RoseBuildImpl &build, |
| 1601 | vector<RoseVertex> *dead, bool mergeRoses, |
| 1602 | RoseAliasingInfo &rai) { |
| 1603 | DEBUG_PRINTF("begin\n" ); |
| 1604 | RoseGraph &g = build.g; |
| 1605 | |
| 1606 | if (candidates.empty()) { |
| 1607 | return; |
| 1608 | } |
| 1609 | |
| 1610 | /* Vertices may only be diamond merged with others in the same bucket */ |
| 1611 | auto cand_buckets = splitDiamondMergeBuckets(candidates, build); |
| 1612 | |
| 1613 | for (const vector<RoseVertex> &siblings : cand_buckets) { |
| 1614 | for (auto it = siblings.begin(); it != siblings.end();) { |
| 1615 | RoseVertex a = *it; |
| 1616 | ++it; |
| 1617 | |
| 1618 | assert(contains(candidates, a)); |
| 1619 | |
| 1620 | DEBUG_PRINTF("trying to merge %zu into somebody\n" , g[a].index); |
| 1621 | for (auto jt = it; jt != siblings.end(); ++jt) { |
| 1622 | RoseVertex b = *jt; |
| 1623 | assert(contains(candidates, b)); |
| 1624 | |
| 1625 | if (!sameRoleProperties(build, rai, a, b)) { |
| 1626 | DEBUG_PRINTF("diff role prop\n" ); |
| 1627 | continue; |
| 1628 | } |
| 1629 | |
| 1630 | // Check "diamond" requirements: must have same right side |
| 1631 | // (successors, reports) and left side (predecessors). |
| 1632 | /* Note: bucketing does not check edge properties (bounds, tops) |
| 1633 | * so we still have to checks successors and predecessors. */ |
| 1634 | |
| 1635 | if (!sameSuccessors(a, b, g) |
| 1636 | || !sameRightRoleProperties(build, a, b) |
| 1637 | || !samePredecessors(a, b, g)) { |
| 1638 | DEBUG_PRINTF("not diamond\n" ); |
| 1639 | continue; |
| 1640 | } |
| 1641 | |
| 1642 | if (!canMergeLiterals(a, b, build)) { |
| 1643 | DEBUG_PRINTF("incompatible lits\n" ); |
| 1644 | continue; |
| 1645 | } |
| 1646 | |
| 1647 | if (!attemptRoseMerge(build, true, a, b, !mergeRoses, rai)) { |
| 1648 | DEBUG_PRINTF("rose fail\n" ); |
| 1649 | continue; |
| 1650 | } |
| 1651 | |
| 1652 | mergeVerticesDiamond(a, b, build, rai); |
| 1653 | dead->push_back(a); |
| 1654 | candidates.erase(a); |
| 1655 | break; // next a |
| 1656 | } |
| 1657 | } |
| 1658 | } |
| 1659 | |
| 1660 | DEBUG_PRINTF("%zu candidates remaining\n" , candidates.size()); |
| 1661 | } |
| 1662 | |
| 1663 | static |
| 1664 | vector<RoseVertex>::iterator findLeftMergeSibling( |
| 1665 | vector<RoseVertex>::iterator it, |
| 1666 | const vector<RoseVertex>::iterator &end, |
| 1667 | const RoseVertex a, const RoseBuildImpl &build, |
| 1668 | const RoseAliasingInfo &rai, |
| 1669 | const CandidateSet &candidates) { |
| 1670 | const RoseGraph &g = build.g; |
| 1671 | |
| 1672 | for (; it != end; ++it) { |
| 1673 | RoseVertex b = *it; |
| 1674 | if (a == b) { |
| 1675 | continue; |
| 1676 | } |
| 1677 | |
| 1678 | if (!contains(candidates, b)) { |
| 1679 | continue; |
| 1680 | } |
| 1681 | |
| 1682 | if (!sameRoleProperties(build, rai, a, b)) { |
| 1683 | continue; |
| 1684 | } |
| 1685 | |
| 1686 | // Check left-equivalence: must have same predecessors and same |
| 1687 | // literals. |
| 1688 | |
| 1689 | if (g[a].literals != g[b].literals) { |
| 1690 | continue; |
| 1691 | } |
| 1692 | |
| 1693 | if (!samePredecessors(a, b, g)) { |
| 1694 | continue; |
| 1695 | } |
| 1696 | |
| 1697 | if (hasCommonSuccWithBadBounds(a, b, g)) { |
| 1698 | continue; |
| 1699 | } |
| 1700 | |
| 1701 | if (g[a].suffix && g[b].suffix && g[a].suffix != g[b].suffix) { |
| 1702 | continue; /* we can only trigger one suffix */ |
| 1703 | } |
| 1704 | |
| 1705 | return it; |
| 1706 | } |
| 1707 | |
| 1708 | return end; |
| 1709 | } |
| 1710 | |
| 1711 | static |
| 1712 | void getLeftMergeSiblings(const RoseBuildImpl &build, RoseVertex a, |
| 1713 | vector<RoseVertex> &siblings) { |
| 1714 | // We have to find a sibling to merge `a' with, and we select between |
| 1715 | // two approaches to minimize the number of vertices we have to |
| 1716 | // examine; which we use depends on the shape of the graph. |
| 1717 | |
| 1718 | const RoseGraph &g = build.g; |
| 1719 | assert(!g[a].literals.empty()); |
| 1720 | u32 lit_id = *g[a].literals.begin(); |
| 1721 | const auto &verts = build.literal_info.at(lit_id).vertices; |
| 1722 | RoseVertex pred = pickPred(a, g, build); |
| 1723 | |
| 1724 | siblings.clear(); |
| 1725 | |
| 1726 | if (pred == RoseGraph::null_vertex() || build.isAnyStart(pred) || |
| 1727 | out_degree(pred, g) > verts.size()) { |
| 1728 | // Select sibling from amongst the vertices that share a literal. |
| 1729 | insert(&siblings, siblings.end(), verts); |
| 1730 | } else { |
| 1731 | // Select sibling from amongst the vertices that share a |
| 1732 | // predecessor. |
| 1733 | insert(&siblings, siblings.end(), adjacent_vertices(pred, g)); |
| 1734 | } |
| 1735 | } |
| 1736 | |
| 1737 | static never_inline |
| 1738 | void leftMergePass(CandidateSet &candidates, RoseBuildImpl &build, |
| 1739 | vector<RoseVertex> *dead, RoseAliasingInfo &rai) { |
| 1740 | DEBUG_PRINTF("begin (%zu)\n" , candidates.size()); |
| 1741 | vector<RoseVertex> siblings; |
| 1742 | |
| 1743 | auto it = candidates.begin(); |
| 1744 | while (it != candidates.end()) { |
| 1745 | RoseVertex a = *it; |
| 1746 | CandidateSet::iterator ait = it; |
| 1747 | ++it; |
| 1748 | |
| 1749 | getLeftMergeSiblings(build, a, siblings); |
| 1750 | |
| 1751 | auto jt = siblings.begin(); |
| 1752 | while (jt != siblings.end()) { |
| 1753 | jt = findLeftMergeSibling(jt, siblings.end(), a, build, rai, |
| 1754 | candidates); |
| 1755 | if (jt == siblings.end()) { |
| 1756 | break; |
| 1757 | } |
| 1758 | RoseVertex b = *jt; |
| 1759 | if (attemptRoseMerge(build, true, a, b, false, rai)) { |
| 1760 | mergeVerticesLeft(a, b, build, rai); |
| 1761 | dead->push_back(a); |
| 1762 | candidates.erase(ait); |
| 1763 | break; // consider next a |
| 1764 | } |
| 1765 | ++jt; |
| 1766 | } |
| 1767 | } |
| 1768 | |
| 1769 | DEBUG_PRINTF("%zu candidates remaining\n" , candidates.size()); |
| 1770 | assert(!hasOrphanedTops(build)); |
| 1771 | } |
| 1772 | |
| 1773 | // Can't merge vertices with different root predecessors. |
| 1774 | static |
| 1775 | bool safeRootPreds(RoseVertex a, RoseVertex b, const RoseGraph &g) { |
| 1776 | set<RoseVertex> a_roots, b_roots; |
| 1777 | |
| 1778 | for (auto u : inv_adjacent_vertices_range(a, g)) { |
| 1779 | if (!in_degree(u, g)) { |
| 1780 | a_roots.insert(u); |
| 1781 | } |
| 1782 | } |
| 1783 | for (auto u : inv_adjacent_vertices_range(b, g)) { |
| 1784 | if (!in_degree(u, g)) { |
| 1785 | b_roots.insert(u); |
| 1786 | } |
| 1787 | } |
| 1788 | |
| 1789 | assert(a_roots.size() <= 1); |
| 1790 | assert(b_roots.size() <= 1); |
| 1791 | |
| 1792 | return a_roots == b_roots; |
| 1793 | } |
| 1794 | |
| 1795 | static never_inline |
| 1796 | vector<RoseVertex>::const_iterator findRightMergeSibling( |
| 1797 | vector<RoseVertex>::const_iterator it, |
| 1798 | const vector<RoseVertex>::const_iterator &end, |
| 1799 | const RoseVertex a, const RoseBuildImpl &build, |
| 1800 | const RoseAliasingInfo &rai, |
| 1801 | const CandidateSet &candidates) { |
| 1802 | const RoseGraph &g = build.g; |
| 1803 | |
| 1804 | for (; it != end; ++it) { |
| 1805 | RoseVertex b = *it; |
| 1806 | if (a == b) { |
| 1807 | continue; |
| 1808 | } |
| 1809 | |
| 1810 | if (!contains(candidates, b)) { |
| 1811 | continue; |
| 1812 | } |
| 1813 | |
| 1814 | if (!sameRoleProperties(build, rai, a, b)) { |
| 1815 | continue; |
| 1816 | } |
| 1817 | |
| 1818 | // Check right-equivalence: must have same successors, reports and same |
| 1819 | // literals. |
| 1820 | |
| 1821 | if (g[a].literals != g[b].literals) { |
| 1822 | continue; |
| 1823 | } |
| 1824 | |
| 1825 | if (!sameSuccessors(a, b, g) |
| 1826 | || !sameRightRoleProperties(build, a, b)) { |
| 1827 | continue; |
| 1828 | } |
| 1829 | |
| 1830 | // An extra wrinkle: we cannot merge two vertices that are root |
| 1831 | // successors if their preds are different. (e.g. one is anchored and |
| 1832 | // one is not) |
| 1833 | if (!safeRootPreds(a, b, g)) { |
| 1834 | continue; |
| 1835 | } |
| 1836 | |
| 1837 | if (hasCommonPredWithBadBounds(a, b, g)) { |
| 1838 | continue; |
| 1839 | } |
| 1840 | |
| 1841 | if (hasCommonPredWithDiffRoses(a, b, g)) { |
| 1842 | continue; |
| 1843 | } |
| 1844 | |
| 1845 | return it; |
| 1846 | } |
| 1847 | |
| 1848 | return end; |
| 1849 | } |
| 1850 | |
| 1851 | static |
| 1852 | void splitByRightProps(const RoseGraph &g, |
| 1853 | vector<vector<RoseVertex>> &buckets) { |
| 1854 | // Successor vector used in make_split_key. We declare it here so we can |
| 1855 | // reuse storage. |
| 1856 | vector<RoseVertex> succ; |
| 1857 | |
| 1858 | // Split by {successors, literals, reports}. |
| 1859 | auto make_split_key = [&](RoseVertex v) { |
| 1860 | succ.clear(); |
| 1861 | insert(&succ, succ.end(), adjacent_vertices(v, g)); |
| 1862 | sort(succ.begin(), succ.end()); |
| 1863 | return hash_all(g[v].literals, g[v].reports, succ); |
| 1864 | }; |
| 1865 | splitAndFilterBuckets(buckets, make_split_key); |
| 1866 | } |
| 1867 | |
| 1868 | static never_inline |
| 1869 | vector<vector<RoseVertex>> |
| 1870 | splitRightMergeBuckets(const CandidateSet &candidates, |
| 1871 | const RoseBuildImpl &build) { |
| 1872 | const RoseGraph &g = build.g; |
| 1873 | |
| 1874 | vector<vector<RoseVertex>> buckets(1); |
| 1875 | buckets[0].reserve(candidates.size()); |
| 1876 | insert(&buckets[0], buckets[0].end(), candidates); |
| 1877 | |
| 1878 | DEBUG_PRINTF("at start, %zu candidates in 1 bucket\n" , candidates.size()); |
| 1879 | |
| 1880 | splitByReportSuffixBehaviour(g, buckets); |
| 1881 | DEBUG_PRINTF("split by report/suffix, %zu buckets\n" , buckets.size()); |
| 1882 | if (buckets.empty()) { |
| 1883 | return buckets; |
| 1884 | } |
| 1885 | |
| 1886 | splitByRightProps(g, buckets); |
| 1887 | DEBUG_PRINTF("split by right-merge properties, %zu buckets\n" , |
| 1888 | buckets.size()); |
| 1889 | if (buckets.empty()) { |
| 1890 | return buckets; |
| 1891 | } |
| 1892 | |
| 1893 | return buckets; |
| 1894 | } |
| 1895 | |
| 1896 | static never_inline |
| 1897 | void rightMergePass(CandidateSet &candidates, RoseBuildImpl &build, |
| 1898 | vector<RoseVertex> *dead, bool mergeRoses, |
| 1899 | RoseAliasingInfo &rai) { |
| 1900 | DEBUG_PRINTF("begin\n" ); |
| 1901 | |
| 1902 | if (candidates.empty()) { |
| 1903 | return; |
| 1904 | } |
| 1905 | |
| 1906 | auto buckets = splitRightMergeBuckets(candidates, build); |
| 1907 | |
| 1908 | for (const auto &bucket : buckets) { |
| 1909 | assert(!bucket.empty()); |
| 1910 | for (auto it = bucket.begin(); it != bucket.end(); it++) { |
| 1911 | RoseVertex a = *it; |
| 1912 | for (auto jt = bucket.begin(); jt != bucket.end(); jt++) { |
| 1913 | jt = findRightMergeSibling(jt, bucket.end(), a, build, rai, |
| 1914 | candidates); |
| 1915 | if (jt == bucket.end()) { |
| 1916 | break; |
| 1917 | } |
| 1918 | RoseVertex b = *jt; |
| 1919 | if (attemptRoseMerge(build, false, a, b, !mergeRoses, rai)) { |
| 1920 | mergeVerticesRight(a, b, build, rai); |
| 1921 | dead->push_back(a); |
| 1922 | candidates.erase(a); |
| 1923 | break; // consider next a |
| 1924 | } |
| 1925 | } |
| 1926 | } |
| 1927 | } |
| 1928 | |
| 1929 | DEBUG_PRINTF("%zu candidates remaining\n" , candidates.size()); |
| 1930 | assert(!hasOrphanedTops(build)); |
| 1931 | } |
| 1932 | |
| 1933 | /** |
| 1934 | * \brief True if the given vertex has no siblings for the purposes of a |
| 1935 | * diamond merge. |
| 1936 | * |
| 1937 | * This is the case if it has no successors with more than one predecessor |
| 1938 | * (itself), or no predecessors with more than one successor (itself). |
| 1939 | */ |
| 1940 | static |
| 1941 | bool hasNoDiamondSiblings(const RoseGraph &g, RoseVertex v) { |
| 1942 | if (has_successor(v, g)) { |
| 1943 | bool only_succ = true; |
| 1944 | for (const auto &w : adjacent_vertices_range(v, g)) { |
| 1945 | if (in_degree(w, g) > 1) { |
| 1946 | only_succ = false; |
| 1947 | break; |
| 1948 | } |
| 1949 | } |
| 1950 | if (only_succ) { |
| 1951 | return true; |
| 1952 | } |
| 1953 | } |
| 1954 | |
| 1955 | // Any candidate vertex will have a predecessor; the only vertices without |
| 1956 | // preds are the root vertices. |
| 1957 | assert(in_edges(v, g).first != in_edges(v, g).second); |
| 1958 | |
| 1959 | bool only_pred = true; |
| 1960 | for (const auto &u : inv_adjacent_vertices_range(v, g)) { |
| 1961 | if (out_degree(u, g) > 1) { |
| 1962 | only_pred = false; |
| 1963 | break; |
| 1964 | } |
| 1965 | } |
| 1966 | |
| 1967 | return only_pred; |
| 1968 | } |
| 1969 | |
| 1970 | /** |
| 1971 | * \brief Filter out some merge candidates that are not mergeable by a diamond |
| 1972 | * merge. |
| 1973 | */ |
| 1974 | static |
| 1975 | void filterDiamondCandidates(RoseGraph &g, CandidateSet &candidates) { |
| 1976 | DEBUG_PRINTF("%zu candidates enter\n" , candidates.size()); |
| 1977 | |
| 1978 | vector<RoseVertex> dead; |
| 1979 | for (const auto &v : candidates) { |
| 1980 | if (hasNoDiamondSiblings(g, v)) { |
| 1981 | dead.push_back(v); |
| 1982 | } |
| 1983 | } |
| 1984 | |
| 1985 | for (const auto &v : dead) { |
| 1986 | candidates.erase(v); |
| 1987 | } |
| 1988 | |
| 1989 | DEBUG_PRINTF("pruned %zu candidates, leaving %zu\n" , dead.size(), |
| 1990 | candidates.size()); |
| 1991 | } |
| 1992 | |
| 1993 | void aliasRoles(RoseBuildImpl &build, bool mergeRoses) { |
| 1994 | const CompileContext &cc = build.cc; |
| 1995 | RoseGraph &g = build.g; |
| 1996 | assert(!hasOrphanedTops(build)); |
| 1997 | assert(canImplementGraphs(build)); |
| 1998 | |
| 1999 | if (!cc.grey.roseRoleAliasing || !cc.grey.roseGraphReduction) { |
| 2000 | return; |
| 2001 | } |
| 2002 | |
| 2003 | DEBUG_PRINTF("doing role aliasing mr=%d\n" , (int)mergeRoses); |
| 2004 | |
| 2005 | RoseAliasingInfo rai(build); |
| 2006 | |
| 2007 | mergeRoses &= cc.grey.mergeRose & cc.grey.roseMergeRosesDuringAliasing; |
| 2008 | |
| 2009 | CandidateSet candidates; |
| 2010 | findCandidates(build, &candidates); |
| 2011 | |
| 2012 | DEBUG_PRINTF("candidates %zu\n" , candidates.size()); |
| 2013 | |
| 2014 | vector<RoseVertex> dead; |
| 2015 | size_t old_dead_size = 0; |
| 2016 | do { |
| 2017 | old_dead_size = dead.size(); |
| 2018 | leftMergePass(candidates, build, &dead, rai); |
| 2019 | rightMergePass(candidates, build, &dead, mergeRoses, rai); |
| 2020 | } while (old_dead_size != dead.size()); |
| 2021 | |
| 2022 | /* Diamond merge passes cannot create extra merges as they require the same |
| 2023 | * succ and preds before merging --> that if a succ/pred was ineligible due |
| 2024 | * to a merge to different pred/succ before a diamond merge, it will still |
| 2025 | * be afterwards. */ |
| 2026 | filterDiamondCandidates(g, candidates); |
| 2027 | diamondMergePass(candidates, build, &dead, mergeRoses, rai); |
| 2028 | |
| 2029 | DEBUG_PRINTF("killed %zu vertices\n" , dead.size()); |
| 2030 | build.removeVertices(dead); |
| 2031 | assert(!hasOrphanedTops(build)); |
| 2032 | assert(canImplementGraphs(build)); |
| 2033 | } |
| 2034 | |
| 2035 | namespace { |
| 2036 | struct DupeLeafKey { |
| 2037 | explicit DupeLeafKey(const RoseVertexProps &litv) |
| 2038 | : literals(litv.literals), reports(litv.reports), |
| 2039 | eod_accept(litv.eod_accept), suffix(litv.suffix), left(litv.left), |
| 2040 | som_adjust(litv.som_adjust) { |
| 2041 | DEBUG_PRINTF("eod_accept %d\n" , (int)eod_accept); |
| 2042 | DEBUG_PRINTF("report %u\n" , left.leftfix_report); |
| 2043 | DEBUG_PRINTF("lag %u\n" , left.lag); |
| 2044 | } |
| 2045 | |
| 2046 | bool operator<(const DupeLeafKey &b) const { |
| 2047 | const DupeLeafKey &a = *this; |
| 2048 | ORDER_CHECK(literals); |
| 2049 | ORDER_CHECK(eod_accept); |
| 2050 | ORDER_CHECK(suffix); |
| 2051 | ORDER_CHECK(reports); |
| 2052 | ORDER_CHECK(som_adjust); |
| 2053 | ORDER_CHECK(left.leftfix_report); |
| 2054 | ORDER_CHECK(left.lag); |
| 2055 | return false; |
| 2056 | } |
| 2057 | |
| 2058 | flat_set<u32> literals; |
| 2059 | flat_set<ReportID> reports; |
| 2060 | bool eod_accept; |
| 2061 | suffix_id suffix; |
| 2062 | LeftEngInfo left; |
| 2063 | u32 som_adjust; |
| 2064 | }; |
| 2065 | |
| 2066 | struct UncalcLeafKey { |
| 2067 | UncalcLeafKey(const RoseGraph &g, RoseVertex v) |
| 2068 | : literals(g[v].literals), rose(g[v].left) { |
| 2069 | for (const auto &e : in_edges_range(v, g)) { |
| 2070 | RoseVertex u = source(e, g); |
| 2071 | preds.insert(make_pair(u, g[e])); |
| 2072 | } |
| 2073 | } |
| 2074 | |
| 2075 | bool operator<(const UncalcLeafKey &b) const { |
| 2076 | const UncalcLeafKey &a = *this; |
| 2077 | ORDER_CHECK(literals); |
| 2078 | ORDER_CHECK(preds); |
| 2079 | ORDER_CHECK(rose); |
| 2080 | return false; |
| 2081 | } |
| 2082 | |
| 2083 | flat_set<u32> literals; |
| 2084 | flat_set<pair<RoseVertex, RoseEdgeProps>> preds; |
| 2085 | LeftEngInfo rose; |
| 2086 | }; |
| 2087 | } // namespace |
| 2088 | |
| 2089 | /** |
| 2090 | * This function merges leaf vertices with the same literals and report |
| 2091 | * id/suffix. The leaf vertices of the graph are inspected and a mapping of |
| 2092 | * leaf vertex properties to vertices is built. If the same set of leaf |
| 2093 | * properties has already been seen when we inspect a vertex, we attempt to |
| 2094 | * merge the vertex in with the previously seen vertex. This process can fail |
| 2095 | * if the vertices share a common predecessor vertex but have a differing, |
| 2096 | * incompatible relationship (different bounds or infix) with the predecessor. |
| 2097 | * |
| 2098 | * This takes place after \ref dedupeSuffixes to increase effectiveness as the |
| 2099 | * same suffix is required for a merge to occur. |
| 2100 | * |
| 2101 | * TODO: work if this is a subset of role aliasing (and if it can be eliminated) |
| 2102 | * or clearly document cases that would not be covered by role aliasing. |
| 2103 | */ |
| 2104 | void mergeDupeLeaves(RoseBuildImpl &build) { |
| 2105 | map<DupeLeafKey, RoseVertex> leaves; |
| 2106 | vector<RoseVertex> changed; |
| 2107 | |
| 2108 | RoseGraph &g = build.g; |
| 2109 | for (auto v : vertices_range(g)) { |
| 2110 | if (in_degree(v, g) == 0) { |
| 2111 | assert(build.isAnyStart(v)); |
| 2112 | continue; |
| 2113 | } |
| 2114 | |
| 2115 | DEBUG_PRINTF("inspecting vertex index=%zu in_degree %zu " |
| 2116 | "out_degree %zu\n" , g[v].index, in_degree(v, g), |
| 2117 | out_degree(v, g)); |
| 2118 | |
| 2119 | // Vertex must be a reporting leaf node |
| 2120 | if (g[v].reports.empty() || !isLeafNode(v, g)) { |
| 2121 | continue; |
| 2122 | } |
| 2123 | |
| 2124 | // At the moment, we ignore all successors of root or anchored_root, |
| 2125 | // since many parts of our runtime assume that these have in-degree 1. |
| 2126 | if (build.isRootSuccessor(v)) { |
| 2127 | continue; |
| 2128 | } |
| 2129 | |
| 2130 | DupeLeafKey dupe(g[v]); |
| 2131 | if (leaves.find(dupe) == leaves.end()) { |
| 2132 | leaves.insert(make_pair(dupe, v)); |
| 2133 | continue; |
| 2134 | } |
| 2135 | |
| 2136 | RoseVertex t = leaves.find(dupe)->second; |
| 2137 | DEBUG_PRINTF("found two leaf dupe roles, index=%zu,%zu\n" , g[v].index, |
| 2138 | g[t].index); |
| 2139 | |
| 2140 | vector<RoseEdge> deadEdges; |
| 2141 | for (const auto &e : in_edges_range(v, g)) { |
| 2142 | RoseVertex u = source(e, g); |
| 2143 | DEBUG_PRINTF("u index=%zu\n" , g[u].index); |
| 2144 | if (RoseEdge et = edge(u, t, g)) { |
| 2145 | if (g[et].minBound <= g[e].minBound |
| 2146 | && g[et].maxBound >= g[e].maxBound) { |
| 2147 | DEBUG_PRINTF("remove more constrained edge\n" ); |
| 2148 | deadEdges.push_back(e); |
| 2149 | } |
| 2150 | } else { |
| 2151 | DEBUG_PRINTF("rehome edge: add %zu->%zu\n" , g[u].index, |
| 2152 | g[t].index); |
| 2153 | add_edge(u, t, g[e], g); |
| 2154 | deadEdges.push_back(e); |
| 2155 | } |
| 2156 | } |
| 2157 | |
| 2158 | if (!deadEdges.empty()) { |
| 2159 | for (auto &e : deadEdges) { |
| 2160 | remove_edge(e, g); |
| 2161 | } |
| 2162 | changed.push_back(v); |
| 2163 | g[t].min_offset = min(g[t].min_offset, g[v].min_offset); |
| 2164 | g[t].max_offset = max(g[t].max_offset, g[v].max_offset); |
| 2165 | } |
| 2166 | } |
| 2167 | DEBUG_PRINTF("find loop done\n" ); |
| 2168 | |
| 2169 | // Remove any vertices that now have no in-edges. |
| 2170 | size_t countRemovals = 0; |
| 2171 | for (size_t i = 0; i < changed.size(); i++) { |
| 2172 | RoseVertex v = changed[i]; |
| 2173 | if (in_degree(v, g) == 0) { |
| 2174 | DEBUG_PRINTF("remove vertex\n" ); |
| 2175 | if (!build.isVirtualVertex(v)) { |
| 2176 | for (u32 lit_id : g[v].literals) { |
| 2177 | build.literal_info[lit_id].vertices.erase(v); |
| 2178 | } |
| 2179 | } |
| 2180 | remove_vertex(v, g); |
| 2181 | countRemovals++; |
| 2182 | } |
| 2183 | } |
| 2184 | |
| 2185 | // if we've removed anything, we need to renumber vertices |
| 2186 | if (countRemovals) { |
| 2187 | renumber_vertices(g); |
| 2188 | DEBUG_PRINTF("removed %zu vertices.\n" , countRemovals); |
| 2189 | } |
| 2190 | } |
| 2191 | |
| 2192 | /** Merges the suffixes on the (identical) vertices in \a vcluster, used by |
| 2193 | * \ref uncalcLeaves. */ |
| 2194 | static |
| 2195 | void mergeCluster(RoseGraph &g, const ReportManager &rm, |
| 2196 | const vector<RoseVertex> &vcluster, |
| 2197 | vector<RoseVertex> &dead, const CompileContext &cc) { |
| 2198 | if (vcluster.size() <= 1) { |
| 2199 | return; // No merge to perform. |
| 2200 | } |
| 2201 | |
| 2202 | // Note that we batch merges up fairly crudely for performance reasons. |
| 2203 | vector<RoseVertex>::const_iterator it = vcluster.begin(), it2; |
| 2204 | while (it != vcluster.end()) { |
| 2205 | vector<NGHolder *> cluster; |
| 2206 | map<NGHolder *, RoseVertex> rev; |
| 2207 | |
| 2208 | for (it2 = it; |
| 2209 | it2 != vcluster.end() && cluster.size() < MERGE_GROUP_SIZE_MAX; |
| 2210 | ++it2) { |
| 2211 | RoseVertex v = *it2; |
| 2212 | NGHolder *h = g[v].suffix.graph.get(); |
| 2213 | assert(!g[v].suffix.haig); /* should not be here if haig */ |
| 2214 | rev[h] = v; |
| 2215 | cluster.push_back(h); |
| 2216 | } |
| 2217 | it = it2; |
| 2218 | |
| 2219 | DEBUG_PRINTF("merging cluster %zu\n" , cluster.size()); |
| 2220 | auto merged = mergeNfaCluster(cluster, &rm, cc); |
| 2221 | DEBUG_PRINTF("done\n" ); |
| 2222 | |
| 2223 | for (const auto &m : merged) { |
| 2224 | NGHolder *h_victim = m.first; // mergee |
| 2225 | NGHolder *h_winner = m.second; |
| 2226 | RoseVertex victim = rev[h_victim]; |
| 2227 | RoseVertex winner = rev[h_winner]; |
| 2228 | |
| 2229 | LIMIT_TO_AT_MOST(&g[winner].min_offset, g[victim].min_offset); |
| 2230 | ENSURE_AT_LEAST(&g[winner].max_offset, g[victim].max_offset); |
| 2231 | insert(&g[winner].reports, g[victim].reports); |
| 2232 | |
| 2233 | dead.push_back(victim); |
| 2234 | } |
| 2235 | } |
| 2236 | } |
| 2237 | |
| 2238 | static |
| 2239 | void findUncalcLeavesCandidates(RoseBuildImpl &build, |
| 2240 | map<UncalcLeafKey, vector<RoseVertex> > &clusters, |
| 2241 | deque<UncalcLeafKey> &ordered) { |
| 2242 | const RoseGraph &g = build.g; |
| 2243 | |
| 2244 | vector<RoseVertex> suffix_vertices; // vertices with suffix graphs |
| 2245 | unordered_map<const NGHolder *, u32> fcount; // ref count per graph |
| 2246 | |
| 2247 | for (auto v : vertices_range(g)) { |
| 2248 | if (g[v].suffix) { |
| 2249 | if (!g[v].suffix.graph) { |
| 2250 | continue; /* cannot uncalc (haig/mcclellan); TODO */ |
| 2251 | } |
| 2252 | |
| 2253 | assert(g[v].suffix.graph->kind == NFA_SUFFIX); |
| 2254 | |
| 2255 | // Ref count all suffixes, as we don't want to merge a suffix |
| 2256 | // that happens to be shared with a non-leaf vertex somewhere. |
| 2257 | DEBUG_PRINTF("vertex %zu has suffix %p\n" , g[v].index, |
| 2258 | g[v].suffix.graph.get()); |
| 2259 | fcount[g[v].suffix.graph.get()]++; |
| 2260 | |
| 2261 | // Vertex must be a reporting pseudo accept |
| 2262 | if (!isLeafNode(v, g)) { |
| 2263 | continue; |
| 2264 | } |
| 2265 | |
| 2266 | suffix_vertices.push_back(v); |
| 2267 | } |
| 2268 | } |
| 2269 | |
| 2270 | for (auto v : suffix_vertices) { |
| 2271 | if (in_degree(v, g) == 0) { |
| 2272 | assert(build.isAnyStart(v)); |
| 2273 | continue; |
| 2274 | } |
| 2275 | |
| 2276 | const NGHolder *h = g[v].suffix.graph.get(); |
| 2277 | assert(h); |
| 2278 | DEBUG_PRINTF("suffix %p\n" , h); |
| 2279 | |
| 2280 | // We can't easily merge suffixes shared with other vertices, and |
| 2281 | // creating a unique copy to do so may just mean we end up tracking |
| 2282 | // more NFAs. Better to leave shared suffixes alone. |
| 2283 | if (fcount[h] != 1) { |
| 2284 | DEBUG_PRINTF("skipping shared suffix\n" ); |
| 2285 | continue; |
| 2286 | } |
| 2287 | |
| 2288 | UncalcLeafKey key(g, v); |
| 2289 | vector<RoseVertex> &vec = clusters[key]; |
| 2290 | if (vec.empty()) { |
| 2291 | |
| 2292 | ordered.push_back(key); |
| 2293 | } |
| 2294 | vec.push_back(v); |
| 2295 | } |
| 2296 | |
| 2297 | DEBUG_PRINTF("find loop done\n" ); |
| 2298 | } |
| 2299 | |
| 2300 | /** |
| 2301 | * This function attempts to combine identical roles (same literals, same |
| 2302 | * predecessors, etc) with different suffixes into a single role which |
| 2303 | * activates a larger suffix. The leaf vertices of the graph with a suffix are |
| 2304 | * grouped into clusters which have members triggered by identical roles. The |
| 2305 | * \ref mergeNfaCluster function (from ng_uncalc_components) is then utilised |
| 2306 | * to build a set of larger (and still implementable) suffixes. The graph is |
| 2307 | * then updated to point to the new suffixes and any unneeded roles are |
| 2308 | * removed. |
| 2309 | * |
| 2310 | * Note: suffixes which are shared amongst multiple roles are not considered |
| 2311 | * for this pass as the individual suffixes would have to continue to exist for |
| 2312 | * the other roles to trigger resulting in the transformation not producing any |
| 2313 | * savings. |
| 2314 | * |
| 2315 | * Note: as \ref mergeNfaCluster is slow when the cluster sizes are large, |
| 2316 | * clusters of more than \ref MERGE_GROUP_SIZE_MAX roles are split into smaller |
| 2317 | * chunks for processing. |
| 2318 | */ |
| 2319 | void uncalcLeaves(RoseBuildImpl &build) { |
| 2320 | DEBUG_PRINTF("uncalcing\n" ); |
| 2321 | |
| 2322 | map<UncalcLeafKey, vector<RoseVertex> > clusters; |
| 2323 | deque<UncalcLeafKey> ordered; |
| 2324 | findUncalcLeavesCandidates(build, clusters, ordered); |
| 2325 | |
| 2326 | vector<RoseVertex> dead; |
| 2327 | |
| 2328 | for (const auto &key : ordered) { |
| 2329 | DEBUG_PRINTF("cluster of size %zu\n" , clusters[key].size()); |
| 2330 | mergeCluster(build.g, build.rm, clusters[key], dead, build.cc); |
| 2331 | } |
| 2332 | build.removeVertices(dead); |
| 2333 | } |
| 2334 | |
| 2335 | } // namespace ue2 |
| 2336 | |