| 1 | // Licensed to the .NET Foundation under one or more agreements. |
| 2 | // The .NET Foundation licenses this file to you under the MIT license. |
| 3 | // See the LICENSE file in the project root for more information. |
| 4 | |
| 5 | /*XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 6 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 7 | XX XX |
| 8 | XX Amd64/x86 Code Generator XX |
| 9 | XX XX |
| 10 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 11 | XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX |
| 12 | */ |
| 13 | #include "jitpch.h" |
| 14 | #ifdef _MSC_VER |
| 15 | #pragma hdrstop |
| 16 | #endif |
| 17 | |
| 18 | #ifdef _TARGET_XARCH_ |
| 19 | #include "emit.h" |
| 20 | #include "codegen.h" |
| 21 | #include "lower.h" |
| 22 | #include "gcinfo.h" |
| 23 | #include "gcinfoencoder.h" |
| 24 | |
| 25 | /***************************************************************************** |
| 26 | * |
| 27 | * Generate code that will set the given register to the integer constant. |
| 28 | */ |
| 29 | |
| 30 | void CodeGen::genSetRegToIcon(regNumber reg, ssize_t val, var_types type, insFlags flags) |
| 31 | { |
| 32 | // Reg cannot be a FP reg |
| 33 | assert(!genIsValidFloatReg(reg)); |
| 34 | |
| 35 | // The only TYP_REF constant that can come this path is a managed 'null' since it is not |
| 36 | // relocatable. Other ref type constants (e.g. string objects) go through a different |
| 37 | // code path. |
| 38 | noway_assert(type != TYP_REF || val == 0); |
| 39 | |
| 40 | if (val == 0) |
| 41 | { |
| 42 | instGen_Set_Reg_To_Zero(emitActualTypeSize(type), reg, flags); |
| 43 | } |
| 44 | else |
| 45 | { |
| 46 | // TODO-XArch-CQ: needs all the optimized cases |
| 47 | getEmitter()->emitIns_R_I(INS_mov, emitActualTypeSize(type), reg, val); |
| 48 | } |
| 49 | } |
| 50 | |
| 51 | /***************************************************************************** |
| 52 | * |
| 53 | * Generate code to check that the GS cookie wasn't thrashed by a buffer |
| 54 | * overrun. If pushReg is true, preserve all registers around code sequence. |
| 55 | * Otherwise ECX could be modified. |
| 56 | * |
| 57 | * Implementation Note: pushReg = true, in case of tail calls. |
| 58 | */ |
| 59 | void CodeGen::genEmitGSCookieCheck(bool pushReg) |
| 60 | { |
| 61 | noway_assert(compiler->gsGlobalSecurityCookieAddr || compiler->gsGlobalSecurityCookieVal); |
| 62 | |
| 63 | // Make sure that EAX is reported as live GC-ref so that any GC that kicks in while |
| 64 | // executing GS cookie check will not collect the object pointed to by EAX. |
| 65 | // |
| 66 | // For Amd64 System V, a two-register-returned struct could be returned in RAX and RDX |
| 67 | // In such case make sure that the correct GC-ness of RDX is reported as well, so |
| 68 | // a GC object pointed by RDX will not be collected. |
| 69 | if (!pushReg) |
| 70 | { |
| 71 | // Handle multi-reg return type values |
| 72 | if (compiler->compMethodReturnsMultiRegRetType()) |
| 73 | { |
| 74 | ReturnTypeDesc retTypeDesc; |
| 75 | if (varTypeIsLong(compiler->info.compRetNativeType)) |
| 76 | { |
| 77 | retTypeDesc.InitializeLongReturnType(compiler); |
| 78 | } |
| 79 | else // we must have a struct return type |
| 80 | { |
| 81 | retTypeDesc.InitializeStructReturnType(compiler, compiler->info.compMethodInfo->args.retTypeClass); |
| 82 | } |
| 83 | |
| 84 | unsigned regCount = retTypeDesc.GetReturnRegCount(); |
| 85 | |
| 86 | // Only x86 and x64 Unix ABI allows multi-reg return and |
| 87 | // number of result regs should be equal to MAX_RET_REG_COUNT. |
| 88 | assert(regCount == MAX_RET_REG_COUNT); |
| 89 | |
| 90 | for (unsigned i = 0; i < regCount; ++i) |
| 91 | { |
| 92 | gcInfo.gcMarkRegPtrVal(retTypeDesc.GetABIReturnReg(i), retTypeDesc.GetReturnRegType(i)); |
| 93 | } |
| 94 | } |
| 95 | else if (compiler->compMethodReturnsRetBufAddr()) |
| 96 | { |
| 97 | // This is for returning in an implicit RetBuf. |
| 98 | // If the address of the buffer is returned in REG_INTRET, mark the content of INTRET as ByRef. |
| 99 | |
| 100 | // In case the return is in an implicit RetBuf, the native return type should be a struct |
| 101 | assert(varTypeIsStruct(compiler->info.compRetNativeType)); |
| 102 | |
| 103 | gcInfo.gcMarkRegPtrVal(REG_INTRET, TYP_BYREF); |
| 104 | } |
| 105 | // ... all other cases. |
| 106 | else |
| 107 | { |
| 108 | #ifdef _TARGET_AMD64_ |
| 109 | // For x64, structs that are not returned in registers are always |
| 110 | // returned in implicit RetBuf. If we reached here, we should not have |
| 111 | // a RetBuf and the return type should not be a struct. |
| 112 | assert(compiler->info.compRetBuffArg == BAD_VAR_NUM); |
| 113 | assert(!varTypeIsStruct(compiler->info.compRetNativeType)); |
| 114 | #endif // _TARGET_AMD64_ |
| 115 | |
| 116 | // For x86 Windows we can't make such assertions since we generate code for returning of |
| 117 | // the RetBuf in REG_INTRET only when the ProfilerHook is enabled. Otherwise |
| 118 | // compRetNativeType could be TYP_STRUCT. |
| 119 | gcInfo.gcMarkRegPtrVal(REG_INTRET, compiler->info.compRetNativeType); |
| 120 | } |
| 121 | } |
| 122 | |
| 123 | regNumber regGSCheck; |
| 124 | regMaskTP regMaskGSCheck = RBM_NONE; |
| 125 | |
| 126 | if (!pushReg) |
| 127 | { |
| 128 | // Non-tail call: we can use any callee trash register that is not |
| 129 | // a return register or contain 'this' pointer (keep alive this), since |
| 130 | // we are generating GS cookie check after a GT_RETURN block. |
| 131 | // Note: On Amd64 System V RDX is an arg register - REG_ARG_2 - as well |
| 132 | // as return register for two-register-returned structs. |
| 133 | if (compiler->lvaKeepAliveAndReportThis() && compiler->lvaTable[compiler->info.compThisArg].lvRegister && |
| 134 | (compiler->lvaTable[compiler->info.compThisArg].lvRegNum == REG_ARG_0)) |
| 135 | { |
| 136 | regGSCheck = REG_ARG_1; |
| 137 | } |
| 138 | else |
| 139 | { |
| 140 | regGSCheck = REG_ARG_0; |
| 141 | } |
| 142 | } |
| 143 | else |
| 144 | { |
| 145 | #ifdef _TARGET_X86_ |
| 146 | // It doesn't matter which register we pick, since we're going to save and restore it |
| 147 | // around the check. |
| 148 | // TODO-CQ: Can we optimize the choice of register to avoid doing the push/pop sometimes? |
| 149 | regGSCheck = REG_EAX; |
| 150 | regMaskGSCheck = RBM_EAX; |
| 151 | #else // !_TARGET_X86_ |
| 152 | // Tail calls from methods that need GS check: We need to preserve registers while |
| 153 | // emitting GS cookie check for a tail prefixed call or a jmp. To emit GS cookie |
| 154 | // check, we might need a register. This won't be an issue for jmp calls for the |
| 155 | // reason mentioned below (see comment starting with "Jmp Calls:"). |
| 156 | // |
| 157 | // The following are the possible solutions in case of tail prefixed calls: |
| 158 | // 1) Use R11 - ignore tail prefix on calls that need to pass a param in R11 when |
| 159 | // present in methods that require GS cookie check. Rest of the tail calls that |
| 160 | // do not require R11 will be honored. |
| 161 | // 2) Internal register - GT_CALL node reserves an internal register and emits GS |
| 162 | // cookie check as part of tail call codegen. GenExitCode() needs to special case |
| 163 | // fast tail calls implemented as epilog+jmp or such tail calls should always get |
| 164 | // dispatched via helper. |
| 165 | // 3) Materialize GS cookie check as a separate node hanging off GT_CALL node in |
| 166 | // right execution order during rationalization. |
| 167 | // |
| 168 | // There are two calls that use R11: VSD and calli pinvokes with cookie param. Tail |
| 169 | // prefix on pinvokes is ignored. That is, options 2 and 3 will allow tail prefixed |
| 170 | // VSD calls from methods that need GS check. |
| 171 | // |
| 172 | // Tail prefixed calls: Right now for Jit64 compat, method requiring GS cookie check |
| 173 | // ignores tail prefix. In future, if we intend to support tail calls from such a method, |
| 174 | // consider one of the options mentioned above. For now adding an assert that we don't |
| 175 | // expect to see a tail call in a method that requires GS check. |
| 176 | noway_assert(!compiler->compTailCallUsed); |
| 177 | |
| 178 | // Jmp calls: specify method handle using which JIT queries VM for its entry point |
| 179 | // address and hence it can neither be a VSD call nor PInvoke calli with cookie |
| 180 | // parameter. Therefore, in case of jmp calls it is safe to use R11. |
| 181 | regGSCheck = REG_R11; |
| 182 | #endif // !_TARGET_X86_ |
| 183 | } |
| 184 | |
| 185 | regMaskTP byrefPushedRegs = RBM_NONE; |
| 186 | regMaskTP norefPushedRegs = RBM_NONE; |
| 187 | regMaskTP pushedRegs = RBM_NONE; |
| 188 | |
| 189 | if (compiler->gsGlobalSecurityCookieAddr == nullptr) |
| 190 | { |
| 191 | #if defined(_TARGET_AMD64_) |
| 192 | // If GS cookie value fits within 32-bits we can use 'cmp mem64, imm32'. |
| 193 | // Otherwise, load the value into a reg and use 'cmp mem64, reg64'. |
| 194 | if ((int)compiler->gsGlobalSecurityCookieVal != (ssize_t)compiler->gsGlobalSecurityCookieVal) |
| 195 | { |
| 196 | genSetRegToIcon(regGSCheck, compiler->gsGlobalSecurityCookieVal, TYP_I_IMPL); |
| 197 | getEmitter()->emitIns_S_R(INS_cmp, EA_PTRSIZE, regGSCheck, compiler->lvaGSSecurityCookie, 0); |
| 198 | } |
| 199 | else |
| 200 | #endif // defined(_TARGET_AMD64_) |
| 201 | { |
| 202 | assert((int)compiler->gsGlobalSecurityCookieVal == (ssize_t)compiler->gsGlobalSecurityCookieVal); |
| 203 | getEmitter()->emitIns_S_I(INS_cmp, EA_PTRSIZE, compiler->lvaGSSecurityCookie, 0, |
| 204 | (int)compiler->gsGlobalSecurityCookieVal); |
| 205 | } |
| 206 | } |
| 207 | else |
| 208 | { |
| 209 | // Ngen case - GS cookie value needs to be accessed through an indirection. |
| 210 | |
| 211 | pushedRegs = genPushRegs(regMaskGSCheck, &byrefPushedRegs, &norefPushedRegs); |
| 212 | |
| 213 | instGen_Set_Reg_To_Imm(EA_HANDLE_CNS_RELOC, regGSCheck, (ssize_t)compiler->gsGlobalSecurityCookieAddr); |
| 214 | getEmitter()->emitIns_R_AR(ins_Load(TYP_I_IMPL), EA_PTRSIZE, regGSCheck, regGSCheck, 0); |
| 215 | getEmitter()->emitIns_S_R(INS_cmp, EA_PTRSIZE, regGSCheck, compiler->lvaGSSecurityCookie, 0); |
| 216 | } |
| 217 | |
| 218 | BasicBlock* gsCheckBlk = genCreateTempLabel(); |
| 219 | emitJumpKind jmpEqual = genJumpKindForOper(GT_EQ, CK_SIGNED); |
| 220 | inst_JMP(jmpEqual, gsCheckBlk); |
| 221 | genEmitHelperCall(CORINFO_HELP_FAIL_FAST, 0, EA_UNKNOWN); |
| 222 | genDefineTempLabel(gsCheckBlk); |
| 223 | |
| 224 | genPopRegs(pushedRegs, byrefPushedRegs, norefPushedRegs); |
| 225 | } |
| 226 | |
| 227 | BasicBlock* CodeGen::genCallFinally(BasicBlock* block) |
| 228 | { |
| 229 | #if FEATURE_EH_FUNCLETS |
| 230 | // Generate a call to the finally, like this: |
| 231 | // mov rcx,qword ptr [rbp + 20H] // Load rcx with PSPSym |
| 232 | // call finally-funclet |
| 233 | // jmp finally-return // Only for non-retless finally calls |
| 234 | // The jmp can be a NOP if we're going to the next block. |
| 235 | // If we're generating code for the main function (not a funclet), and there is no localloc, |
| 236 | // then RSP at this point is the same value as that stored in the PSPSym. So just copy RSP |
| 237 | // instead of loading the PSPSym in this case, or if PSPSym is not used (CoreRT ABI). |
| 238 | |
| 239 | if ((compiler->lvaPSPSym == BAD_VAR_NUM) || |
| 240 | (!compiler->compLocallocUsed && (compiler->funCurrentFunc()->funKind == FUNC_ROOT))) |
| 241 | { |
| 242 | #ifndef UNIX_X86_ABI |
| 243 | inst_RV_RV(INS_mov, REG_ARG_0, REG_SPBASE, TYP_I_IMPL); |
| 244 | #endif // !UNIX_X86_ABI |
| 245 | } |
| 246 | else |
| 247 | { |
| 248 | getEmitter()->emitIns_R_S(ins_Load(TYP_I_IMPL), EA_PTRSIZE, REG_ARG_0, compiler->lvaPSPSym, 0); |
| 249 | } |
| 250 | getEmitter()->emitIns_J(INS_call, block->bbJumpDest); |
| 251 | |
| 252 | if (block->bbFlags & BBF_RETLESS_CALL) |
| 253 | { |
| 254 | // We have a retless call, and the last instruction generated was a call. |
| 255 | // If the next block is in a different EH region (or is the end of the code |
| 256 | // block), then we need to generate a breakpoint here (since it will never |
| 257 | // get executed) to get proper unwind behavior. |
| 258 | |
| 259 | if ((block->bbNext == nullptr) || !BasicBlock::sameEHRegion(block, block->bbNext)) |
| 260 | { |
| 261 | instGen(INS_BREAKPOINT); // This should never get executed |
| 262 | } |
| 263 | } |
| 264 | else |
| 265 | { |
| 266 | // TODO-Linux-x86: Do we need to handle the GC information for this NOP or JMP specially, as is done for other |
| 267 | // architectures? |
| 268 | #ifndef JIT32_GCENCODER |
| 269 | // Because of the way the flowgraph is connected, the liveness info for this one instruction |
| 270 | // after the call is not (can not be) correct in cases where a variable has a last use in the |
| 271 | // handler. So turn off GC reporting for this single instruction. |
| 272 | getEmitter()->emitDisableGC(); |
| 273 | #endif // JIT32_GCENCODER |
| 274 | |
| 275 | // Now go to where the finally funclet needs to return to. |
| 276 | if (block->bbNext->bbJumpDest == block->bbNext->bbNext) |
| 277 | { |
| 278 | // Fall-through. |
| 279 | // TODO-XArch-CQ: Can we get rid of this instruction, and just have the call return directly |
| 280 | // to the next instruction? This would depend on stack walking from within the finally |
| 281 | // handler working without this instruction being in this special EH region. |
| 282 | instGen(INS_nop); |
| 283 | } |
| 284 | else |
| 285 | { |
| 286 | inst_JMP(EJ_jmp, block->bbNext->bbJumpDest); |
| 287 | } |
| 288 | |
| 289 | #ifndef JIT32_GCENCODER |
| 290 | getEmitter()->emitEnableGC(); |
| 291 | #endif // JIT32_GCENCODER |
| 292 | } |
| 293 | |
| 294 | #else // !FEATURE_EH_FUNCLETS |
| 295 | |
| 296 | // If we are about to invoke a finally locally from a try block, we have to set the ShadowSP slot |
| 297 | // corresponding to the finally's nesting level. When invoked in response to an exception, the |
| 298 | // EE does this. |
| 299 | // |
| 300 | // We have a BBJ_CALLFINALLY followed by a BBJ_ALWAYS. |
| 301 | // |
| 302 | // We will emit : |
| 303 | // mov [ebp - (n + 1)], 0 |
| 304 | // mov [ebp - n ], 0xFC |
| 305 | // push &step |
| 306 | // jmp finallyBlock |
| 307 | // ... |
| 308 | // step: |
| 309 | // mov [ebp - n ], 0 |
| 310 | // jmp leaveTarget |
| 311 | // ... |
| 312 | // leaveTarget: |
| 313 | |
| 314 | noway_assert(isFramePointerUsed()); |
| 315 | |
| 316 | // Get the nesting level which contains the finally |
| 317 | unsigned finallyNesting = 0; |
| 318 | compiler->fgGetNestingLevel(block, &finallyNesting); |
| 319 | |
| 320 | // The last slot is reserved for ICodeManager::FixContext(ppEndRegion) |
| 321 | unsigned filterEndOffsetSlotOffs; |
| 322 | filterEndOffsetSlotOffs = (unsigned)(compiler->lvaLclSize(compiler->lvaShadowSPslotsVar) - TARGET_POINTER_SIZE); |
| 323 | |
| 324 | unsigned curNestingSlotOffs; |
| 325 | curNestingSlotOffs = (unsigned)(filterEndOffsetSlotOffs - ((finallyNesting + 1) * TARGET_POINTER_SIZE)); |
| 326 | |
| 327 | // Zero out the slot for the next nesting level |
| 328 | instGen_Store_Imm_Into_Lcl(TYP_I_IMPL, EA_PTRSIZE, 0, compiler->lvaShadowSPslotsVar, |
| 329 | curNestingSlotOffs - TARGET_POINTER_SIZE); |
| 330 | instGen_Store_Imm_Into_Lcl(TYP_I_IMPL, EA_PTRSIZE, LCL_FINALLY_MARK, compiler->lvaShadowSPslotsVar, |
| 331 | curNestingSlotOffs); |
| 332 | |
| 333 | // Now push the address where the finally funclet should return to directly. |
| 334 | if (!(block->bbFlags & BBF_RETLESS_CALL)) |
| 335 | { |
| 336 | assert(block->isBBCallAlwaysPair()); |
| 337 | getEmitter()->emitIns_J(INS_push_hide, block->bbNext->bbJumpDest); |
| 338 | } |
| 339 | else |
| 340 | { |
| 341 | // EE expects a DWORD, so we give him 0 |
| 342 | inst_IV(INS_push_hide, 0); |
| 343 | } |
| 344 | |
| 345 | // Jump to the finally BB |
| 346 | inst_JMP(EJ_jmp, block->bbJumpDest); |
| 347 | |
| 348 | #endif // !FEATURE_EH_FUNCLETS |
| 349 | |
| 350 | // The BBJ_ALWAYS is used because the BBJ_CALLFINALLY can't point to the |
| 351 | // jump target using bbJumpDest - that is already used to point |
| 352 | // to the finally block. So just skip past the BBJ_ALWAYS unless the |
| 353 | // block is RETLESS. |
| 354 | if (!(block->bbFlags & BBF_RETLESS_CALL)) |
| 355 | { |
| 356 | assert(block->isBBCallAlwaysPair()); |
| 357 | block = block->bbNext; |
| 358 | } |
| 359 | return block; |
| 360 | } |
| 361 | |
| 362 | #if FEATURE_EH_FUNCLETS |
| 363 | void CodeGen::genEHCatchRet(BasicBlock* block) |
| 364 | { |
| 365 | // Set RAX to the address the VM should return to after the catch. |
| 366 | // Generate a RIP-relative |
| 367 | // lea reg, [rip + disp32] ; the RIP is implicit |
| 368 | // which will be position-independent. |
| 369 | getEmitter()->emitIns_R_L(INS_lea, EA_PTR_DSP_RELOC, block->bbJumpDest, REG_INTRET); |
| 370 | } |
| 371 | |
| 372 | #else // !FEATURE_EH_FUNCLETS |
| 373 | |
| 374 | void CodeGen::genEHFinallyOrFilterRet(BasicBlock* block) |
| 375 | { |
| 376 | // The last statement of the block must be a GT_RETFILT, which has already been generated. |
| 377 | assert(block->lastNode() != nullptr); |
| 378 | assert(block->lastNode()->OperGet() == GT_RETFILT); |
| 379 | |
| 380 | if (block->bbJumpKind == BBJ_EHFINALLYRET) |
| 381 | { |
| 382 | assert(block->lastNode()->gtOp.gtOp1 == nullptr); // op1 == nullptr means endfinally |
| 383 | |
| 384 | // Return using a pop-jmp sequence. As the "try" block calls |
| 385 | // the finally with a jmp, this leaves the x86 call-ret stack |
| 386 | // balanced in the normal flow of path. |
| 387 | |
| 388 | noway_assert(isFramePointerRequired()); |
| 389 | inst_RV(INS_pop_hide, REG_EAX, TYP_I_IMPL); |
| 390 | inst_RV(INS_i_jmp, REG_EAX, TYP_I_IMPL); |
| 391 | } |
| 392 | else |
| 393 | { |
| 394 | assert(block->bbJumpKind == BBJ_EHFILTERRET); |
| 395 | |
| 396 | // The return value has already been computed. |
| 397 | instGen_Return(0); |
| 398 | } |
| 399 | } |
| 400 | |
| 401 | #endif // !FEATURE_EH_FUNCLETS |
| 402 | |
| 403 | // Move an immediate value into an integer register |
| 404 | |
| 405 | void CodeGen::instGen_Set_Reg_To_Imm(emitAttr size, regNumber reg, ssize_t imm, insFlags flags) |
| 406 | { |
| 407 | // reg cannot be a FP register |
| 408 | assert(!genIsValidFloatReg(reg)); |
| 409 | |
| 410 | if (!compiler->opts.compReloc) |
| 411 | { |
| 412 | size = EA_SIZE(size); // Strip any Reloc flags from size if we aren't doing relocs |
| 413 | } |
| 414 | |
| 415 | if ((imm == 0) && !EA_IS_RELOC(size)) |
| 416 | { |
| 417 | instGen_Set_Reg_To_Zero(size, reg, flags); |
| 418 | } |
| 419 | else |
| 420 | { |
| 421 | if (genDataIndirAddrCanBeEncodedAsPCRelOffset(imm)) |
| 422 | { |
| 423 | emitAttr newSize = EA_PTR_DSP_RELOC; |
| 424 | if (EA_IS_BYREF(size)) |
| 425 | { |
| 426 | newSize = EA_SET_FLG(newSize, EA_BYREF_FLG); |
| 427 | } |
| 428 | |
| 429 | getEmitter()->emitIns_R_AI(INS_lea, newSize, reg, imm); |
| 430 | } |
| 431 | else |
| 432 | { |
| 433 | getEmitter()->emitIns_R_I(INS_mov, size, reg, imm); |
| 434 | } |
| 435 | } |
| 436 | regSet.verifyRegUsed(reg); |
| 437 | } |
| 438 | |
| 439 | /*********************************************************************************** |
| 440 | * |
| 441 | * Generate code to set a register 'targetReg' of type 'targetType' to the constant |
| 442 | * specified by the constant (GT_CNS_INT or GT_CNS_DBL) in 'tree'. This does not call |
| 443 | * genProduceReg() on the target register. |
| 444 | */ |
| 445 | void CodeGen::genSetRegToConst(regNumber targetReg, var_types targetType, GenTree* tree) |
| 446 | { |
| 447 | switch (tree->gtOper) |
| 448 | { |
| 449 | case GT_CNS_INT: |
| 450 | { |
| 451 | // relocatable values tend to come down as a CNS_INT of native int type |
| 452 | // so the line between these two opcodes is kind of blurry |
| 453 | GenTreeIntConCommon* con = tree->AsIntConCommon(); |
| 454 | ssize_t cnsVal = con->IconValue(); |
| 455 | |
| 456 | if (con->ImmedValNeedsReloc(compiler)) |
| 457 | { |
| 458 | emitAttr size = EA_HANDLE_CNS_RELOC; |
| 459 | |
| 460 | if (targetType == TYP_BYREF) |
| 461 | { |
| 462 | size = EA_SET_FLG(size, EA_BYREF_FLG); |
| 463 | } |
| 464 | |
| 465 | instGen_Set_Reg_To_Imm(size, targetReg, cnsVal); |
| 466 | regSet.verifyRegUsed(targetReg); |
| 467 | } |
| 468 | else |
| 469 | { |
| 470 | genSetRegToIcon(targetReg, cnsVal, targetType); |
| 471 | } |
| 472 | } |
| 473 | break; |
| 474 | |
| 475 | case GT_CNS_DBL: |
| 476 | { |
| 477 | emitter* emit = getEmitter(); |
| 478 | emitAttr size = emitTypeSize(targetType); |
| 479 | double constValue = tree->gtDblCon.gtDconVal; |
| 480 | |
| 481 | // Make sure we use "xorps reg, reg" only for +ve zero constant (0.0) and not for -ve zero (-0.0) |
| 482 | if (*(__int64*)&constValue == 0) |
| 483 | { |
| 484 | // A faster/smaller way to generate 0 |
| 485 | emit->emitIns_R_R(INS_xorps, size, targetReg, targetReg); |
| 486 | } |
| 487 | else |
| 488 | { |
| 489 | CORINFO_FIELD_HANDLE hnd = emit->emitFltOrDblConst(constValue, size); |
| 490 | emit->emitIns_R_C(ins_Load(targetType), size, targetReg, hnd, 0); |
| 491 | } |
| 492 | } |
| 493 | break; |
| 494 | |
| 495 | default: |
| 496 | unreached(); |
| 497 | } |
| 498 | } |
| 499 | |
| 500 | //------------------------------------------------------------------------ |
| 501 | // genCodeForNegNot: Produce code for a GT_NEG/GT_NOT node. |
| 502 | // |
| 503 | // Arguments: |
| 504 | // tree - the node |
| 505 | // |
| 506 | void CodeGen::genCodeForNegNot(GenTree* tree) |
| 507 | { |
| 508 | assert(tree->OperIs(GT_NEG, GT_NOT)); |
| 509 | |
| 510 | regNumber targetReg = tree->gtRegNum; |
| 511 | var_types targetType = tree->TypeGet(); |
| 512 | |
| 513 | if (varTypeIsFloating(targetType)) |
| 514 | { |
| 515 | assert(tree->gtOper == GT_NEG); |
| 516 | genSSE2BitwiseOp(tree); |
| 517 | } |
| 518 | else |
| 519 | { |
| 520 | GenTree* operand = tree->gtGetOp1(); |
| 521 | assert(operand->isUsedFromReg()); |
| 522 | regNumber operandReg = genConsumeReg(operand); |
| 523 | |
| 524 | if (operandReg != targetReg) |
| 525 | { |
| 526 | inst_RV_RV(INS_mov, targetReg, operandReg, targetType); |
| 527 | } |
| 528 | |
| 529 | instruction ins = genGetInsForOper(tree->OperGet(), targetType); |
| 530 | inst_RV(ins, targetReg, targetType); |
| 531 | } |
| 532 | |
| 533 | genProduceReg(tree); |
| 534 | } |
| 535 | |
| 536 | //------------------------------------------------------------------------ |
| 537 | // genCodeForBswap: Produce code for a GT_BSWAP / GT_BSWAP16 node. |
| 538 | // |
| 539 | // Arguments: |
| 540 | // tree - the node |
| 541 | // |
| 542 | void CodeGen::genCodeForBswap(GenTree* tree) |
| 543 | { |
| 544 | // TODO: If we're swapping immediately after a read from memory or immediately before |
| 545 | // a write to memory, use the MOVBE instruction instead of the BSWAP instruction if |
| 546 | // the platform supports it. |
| 547 | |
| 548 | assert(tree->OperIs(GT_BSWAP, GT_BSWAP16)); |
| 549 | |
| 550 | regNumber targetReg = tree->gtRegNum; |
| 551 | var_types targetType = tree->TypeGet(); |
| 552 | |
| 553 | GenTree* operand = tree->gtGetOp1(); |
| 554 | assert(operand->isUsedFromReg()); |
| 555 | regNumber operandReg = genConsumeReg(operand); |
| 556 | |
| 557 | if (operandReg != targetReg) |
| 558 | { |
| 559 | inst_RV_RV(INS_mov, targetReg, operandReg, targetType); |
| 560 | } |
| 561 | |
| 562 | if (tree->OperIs(GT_BSWAP)) |
| 563 | { |
| 564 | // 32-bit and 64-bit byte swaps use "bswap reg" |
| 565 | inst_RV(INS_bswap, targetReg, targetType); |
| 566 | } |
| 567 | else |
| 568 | { |
| 569 | // 16-bit byte swaps use "ror reg.16, 8" |
| 570 | inst_RV_IV(INS_ror_N, targetReg, 8 /* val */, emitAttr::EA_2BYTE); |
| 571 | } |
| 572 | |
| 573 | genProduceReg(tree); |
| 574 | } |
| 575 | |
| 576 | // Generate code to get the high N bits of a N*N=2N bit multiplication result |
| 577 | void CodeGen::genCodeForMulHi(GenTreeOp* treeNode) |
| 578 | { |
| 579 | assert(!treeNode->gtOverflowEx()); |
| 580 | |
| 581 | regNumber targetReg = treeNode->gtRegNum; |
| 582 | var_types targetType = treeNode->TypeGet(); |
| 583 | emitter* emit = getEmitter(); |
| 584 | emitAttr size = emitTypeSize(treeNode); |
| 585 | GenTree* op1 = treeNode->gtOp.gtOp1; |
| 586 | GenTree* op2 = treeNode->gtOp.gtOp2; |
| 587 | |
| 588 | // to get the high bits of the multiply, we are constrained to using the |
| 589 | // 1-op form: RDX:RAX = RAX * rm |
| 590 | // The 3-op form (Rx=Ry*Rz) does not support it. |
| 591 | |
| 592 | genConsumeOperands(treeNode->AsOp()); |
| 593 | |
| 594 | GenTree* regOp = op1; |
| 595 | GenTree* rmOp = op2; |
| 596 | |
| 597 | // Set rmOp to the memory operand (if any) |
| 598 | if (op1->isUsedFromMemory() || (op2->isUsedFromReg() && (op2->gtRegNum == REG_RAX))) |
| 599 | { |
| 600 | regOp = op2; |
| 601 | rmOp = op1; |
| 602 | } |
| 603 | assert(regOp->isUsedFromReg()); |
| 604 | |
| 605 | // Setup targetReg when neither of the source operands was a matching register |
| 606 | if (regOp->gtRegNum != REG_RAX) |
| 607 | { |
| 608 | inst_RV_RV(ins_Copy(targetType), REG_RAX, regOp->gtRegNum, targetType); |
| 609 | } |
| 610 | |
| 611 | instruction ins; |
| 612 | if ((treeNode->gtFlags & GTF_UNSIGNED) == 0) |
| 613 | { |
| 614 | ins = INS_imulEAX; |
| 615 | } |
| 616 | else |
| 617 | { |
| 618 | ins = INS_mulEAX; |
| 619 | } |
| 620 | emit->emitInsBinary(ins, size, treeNode, rmOp); |
| 621 | |
| 622 | // Move the result to the desired register, if necessary |
| 623 | if (treeNode->OperGet() == GT_MULHI && targetReg != REG_RDX) |
| 624 | { |
| 625 | inst_RV_RV(INS_mov, targetReg, REG_RDX, targetType); |
| 626 | } |
| 627 | |
| 628 | genProduceReg(treeNode); |
| 629 | } |
| 630 | |
| 631 | #ifdef _TARGET_X86_ |
| 632 | //------------------------------------------------------------------------ |
| 633 | // genCodeForLongUMod: Generate code for a tree of the form |
| 634 | // `(umod (gt_long x y) (const int))` |
| 635 | // |
| 636 | // Arguments: |
| 637 | // node - the node for which to generate code |
| 638 | // |
| 639 | void CodeGen::genCodeForLongUMod(GenTreeOp* node) |
| 640 | { |
| 641 | assert(node != nullptr); |
| 642 | assert(node->OperGet() == GT_UMOD); |
| 643 | assert(node->TypeGet() == TYP_INT); |
| 644 | |
| 645 | GenTreeOp* const dividend = node->gtOp1->AsOp(); |
| 646 | assert(dividend->OperGet() == GT_LONG); |
| 647 | assert(varTypeIsLong(dividend)); |
| 648 | |
| 649 | genConsumeOperands(node); |
| 650 | |
| 651 | GenTree* const dividendLo = dividend->gtOp1; |
| 652 | GenTree* const dividendHi = dividend->gtOp2; |
| 653 | assert(dividendLo->isUsedFromReg()); |
| 654 | assert(dividendHi->isUsedFromReg()); |
| 655 | |
| 656 | GenTree* const divisor = node->gtOp2; |
| 657 | assert(divisor->gtSkipReloadOrCopy()->OperGet() == GT_CNS_INT); |
| 658 | assert(divisor->gtSkipReloadOrCopy()->isUsedFromReg()); |
| 659 | assert(divisor->gtSkipReloadOrCopy()->AsIntCon()->gtIconVal >= 2); |
| 660 | assert(divisor->gtSkipReloadOrCopy()->AsIntCon()->gtIconVal <= 0x3fffffff); |
| 661 | |
| 662 | // dividendLo must be in RAX; dividendHi must be in RDX |
| 663 | genCopyRegIfNeeded(dividendLo, REG_EAX); |
| 664 | genCopyRegIfNeeded(dividendHi, REG_EDX); |
| 665 | |
| 666 | // At this point, EAX:EDX contains the 64bit dividend and op2->gtRegNum |
| 667 | // contains the 32bit divisor. We want to generate the following code: |
| 668 | // |
| 669 | // cmp edx, divisor->gtRegNum |
| 670 | // jb noOverflow |
| 671 | // |
| 672 | // mov temp, eax |
| 673 | // mov eax, edx |
| 674 | // xor edx, edx |
| 675 | // div divisor->gtRegNum |
| 676 | // mov eax, temp |
| 677 | // |
| 678 | // noOverflow: |
| 679 | // div divisor->gtRegNum |
| 680 | // |
| 681 | // This works because (a * 2^32 + b) % c = ((a % c) * 2^32 + b) % c. |
| 682 | |
| 683 | BasicBlock* const noOverflow = genCreateTempLabel(); |
| 684 | |
| 685 | // cmp edx, divisor->gtRegNum |
| 686 | // jb noOverflow |
| 687 | inst_RV_RV(INS_cmp, REG_EDX, divisor->gtRegNum); |
| 688 | inst_JMP(EJ_jb, noOverflow); |
| 689 | |
| 690 | // mov temp, eax |
| 691 | // mov eax, edx |
| 692 | // xor edx, edx |
| 693 | // div divisor->gtRegNum |
| 694 | // mov eax, temp |
| 695 | const regNumber tempReg = node->GetSingleTempReg(); |
| 696 | inst_RV_RV(INS_mov, tempReg, REG_EAX, TYP_INT); |
| 697 | inst_RV_RV(INS_mov, REG_EAX, REG_EDX, TYP_INT); |
| 698 | instGen_Set_Reg_To_Zero(EA_PTRSIZE, REG_EDX); |
| 699 | inst_RV(INS_div, divisor->gtRegNum, TYP_INT); |
| 700 | inst_RV_RV(INS_mov, REG_EAX, tempReg, TYP_INT); |
| 701 | |
| 702 | // noOverflow: |
| 703 | // div divisor->gtRegNum |
| 704 | genDefineTempLabel(noOverflow); |
| 705 | inst_RV(INS_div, divisor->gtRegNum, TYP_INT); |
| 706 | |
| 707 | const regNumber targetReg = node->gtRegNum; |
| 708 | if (targetReg != REG_EDX) |
| 709 | { |
| 710 | inst_RV_RV(INS_mov, targetReg, REG_RDX, TYP_INT); |
| 711 | } |
| 712 | genProduceReg(node); |
| 713 | } |
| 714 | #endif // _TARGET_X86_ |
| 715 | |
| 716 | //------------------------------------------------------------------------ |
| 717 | // genCodeForDivMod: Generate code for a DIV or MOD operation. |
| 718 | // |
| 719 | // Arguments: |
| 720 | // treeNode - the node to generate the code for |
| 721 | // |
| 722 | void CodeGen::genCodeForDivMod(GenTreeOp* treeNode) |
| 723 | { |
| 724 | assert(treeNode->OperIs(GT_DIV, GT_UDIV, GT_MOD, GT_UMOD)); |
| 725 | |
| 726 | GenTree* dividend = treeNode->gtOp1; |
| 727 | |
| 728 | #ifdef _TARGET_X86_ |
| 729 | if (varTypeIsLong(dividend->TypeGet())) |
| 730 | { |
| 731 | genCodeForLongUMod(treeNode); |
| 732 | return; |
| 733 | } |
| 734 | #endif // _TARGET_X86_ |
| 735 | |
| 736 | GenTree* divisor = treeNode->gtOp2; |
| 737 | genTreeOps oper = treeNode->OperGet(); |
| 738 | emitAttr size = emitTypeSize(treeNode); |
| 739 | regNumber targetReg = treeNode->gtRegNum; |
| 740 | var_types targetType = treeNode->TypeGet(); |
| 741 | emitter* emit = getEmitter(); |
| 742 | |
| 743 | // Node's type must be int/native int, small integer types are not |
| 744 | // supported and floating point types are handled by genCodeForBinary. |
| 745 | assert(varTypeIsIntOrI(targetType)); |
| 746 | // dividend is in a register. |
| 747 | assert(dividend->isUsedFromReg()); |
| 748 | |
| 749 | genConsumeOperands(treeNode->AsOp()); |
| 750 | // dividend must be in RAX |
| 751 | genCopyRegIfNeeded(dividend, REG_RAX); |
| 752 | |
| 753 | // zero or sign extend rax to rdx |
| 754 | if (oper == GT_UMOD || oper == GT_UDIV) |
| 755 | { |
| 756 | instGen_Set_Reg_To_Zero(EA_PTRSIZE, REG_EDX); |
| 757 | } |
| 758 | else |
| 759 | { |
| 760 | emit->emitIns(INS_cdq, size); |
| 761 | // the cdq instruction writes RDX, So clear the gcInfo for RDX |
| 762 | gcInfo.gcMarkRegSetNpt(RBM_RDX); |
| 763 | } |
| 764 | |
| 765 | // Perform the 'targetType' (64-bit or 32-bit) divide instruction |
| 766 | instruction ins; |
| 767 | if (oper == GT_UMOD || oper == GT_UDIV) |
| 768 | { |
| 769 | ins = INS_div; |
| 770 | } |
| 771 | else |
| 772 | { |
| 773 | ins = INS_idiv; |
| 774 | } |
| 775 | |
| 776 | emit->emitInsBinary(ins, size, treeNode, divisor); |
| 777 | |
| 778 | // DIV/IDIV instructions always store the quotient in RAX and the remainder in RDX. |
| 779 | // Move the result to the desired register, if necessary |
| 780 | if (oper == GT_DIV || oper == GT_UDIV) |
| 781 | { |
| 782 | if (targetReg != REG_RAX) |
| 783 | { |
| 784 | inst_RV_RV(INS_mov, targetReg, REG_RAX, targetType); |
| 785 | } |
| 786 | } |
| 787 | else |
| 788 | { |
| 789 | assert((oper == GT_MOD) || (oper == GT_UMOD)); |
| 790 | if (targetReg != REG_RDX) |
| 791 | { |
| 792 | inst_RV_RV(INS_mov, targetReg, REG_RDX, targetType); |
| 793 | } |
| 794 | } |
| 795 | genProduceReg(treeNode); |
| 796 | } |
| 797 | |
| 798 | //------------------------------------------------------------------------ |
| 799 | // genCodeForBinary: Generate code for many binary arithmetic operators |
| 800 | // |
| 801 | // Arguments: |
| 802 | // treeNode - The binary operation for which we are generating code. |
| 803 | // |
| 804 | // Return Value: |
| 805 | // None. |
| 806 | // |
| 807 | // Notes: |
| 808 | // Integer MUL and DIV variants have special constraints on x64 so are not handled here. |
| 809 | // See the assert below for the operators that are handled. |
| 810 | |
| 811 | void CodeGen::genCodeForBinary(GenTreeOp* treeNode) |
| 812 | { |
| 813 | #ifdef DEBUG |
| 814 | bool isValidOper = treeNode->OperIs(GT_ADD, GT_SUB); |
| 815 | if (varTypeIsFloating(treeNode->TypeGet())) |
| 816 | { |
| 817 | isValidOper |= treeNode->OperIs(GT_MUL, GT_DIV); |
| 818 | } |
| 819 | else |
| 820 | { |
| 821 | isValidOper |= treeNode->OperIs(GT_AND, GT_OR, GT_XOR); |
| 822 | #ifndef _TARGET_64BIT_ |
| 823 | isValidOper |= treeNode->OperIs(GT_ADD_LO, GT_ADD_HI, GT_SUB_LO, GT_SUB_HI); |
| 824 | #endif |
| 825 | } |
| 826 | assert(isValidOper); |
| 827 | #endif |
| 828 | |
| 829 | genConsumeOperands(treeNode); |
| 830 | |
| 831 | const genTreeOps oper = treeNode->OperGet(); |
| 832 | regNumber targetReg = treeNode->gtRegNum; |
| 833 | var_types targetType = treeNode->TypeGet(); |
| 834 | emitter* emit = getEmitter(); |
| 835 | |
| 836 | GenTree* op1 = treeNode->gtGetOp1(); |
| 837 | GenTree* op2 = treeNode->gtGetOp2(); |
| 838 | |
| 839 | // Commutative operations can mark op1 as contained or reg-optional to generate "op reg, memop/immed" |
| 840 | if (!op1->isUsedFromReg()) |
| 841 | { |
| 842 | assert(treeNode->OperIsCommutative()); |
| 843 | assert(op1->isMemoryOp() || op1->IsLocal() || op1->IsCnsNonZeroFltOrDbl() || op1->IsIntCnsFitsInI32() || |
| 844 | op1->IsRegOptional()); |
| 845 | |
| 846 | op1 = treeNode->gtGetOp2(); |
| 847 | op2 = treeNode->gtGetOp1(); |
| 848 | } |
| 849 | |
| 850 | instruction ins = genGetInsForOper(treeNode->OperGet(), targetType); |
| 851 | |
| 852 | // The arithmetic node must be sitting in a register (since it's not contained) |
| 853 | noway_assert(targetReg != REG_NA); |
| 854 | |
| 855 | regNumber op1reg = op1->isUsedFromReg() ? op1->gtRegNum : REG_NA; |
| 856 | regNumber op2reg = op2->isUsedFromReg() ? op2->gtRegNum : REG_NA; |
| 857 | |
| 858 | GenTree* dst; |
| 859 | GenTree* src; |
| 860 | |
| 861 | // This is the case of reg1 = reg1 op reg2 |
| 862 | // We're ready to emit the instruction without any moves |
| 863 | if (op1reg == targetReg) |
| 864 | { |
| 865 | dst = op1; |
| 866 | src = op2; |
| 867 | } |
| 868 | // We have reg1 = reg2 op reg1 |
| 869 | // In order for this operation to be correct |
| 870 | // we need that op is a commutative operation so |
| 871 | // we can convert it into reg1 = reg1 op reg2 and emit |
| 872 | // the same code as above |
| 873 | else if (op2reg == targetReg) |
| 874 | { |
| 875 | noway_assert(GenTree::OperIsCommutative(oper)); |
| 876 | dst = op2; |
| 877 | src = op1; |
| 878 | } |
| 879 | // now we know there are 3 different operands so attempt to use LEA |
| 880 | else if (oper == GT_ADD && !varTypeIsFloating(treeNode) && !treeNode->gtOverflowEx() // LEA does not set flags |
| 881 | && (op2->isContainedIntOrIImmed() || op2->isUsedFromReg()) && !treeNode->gtSetFlags()) |
| 882 | { |
| 883 | if (op2->isContainedIntOrIImmed()) |
| 884 | { |
| 885 | emit->emitIns_R_AR(INS_lea, emitTypeSize(treeNode), targetReg, op1reg, |
| 886 | (int)op2->AsIntConCommon()->IconValue()); |
| 887 | } |
| 888 | else |
| 889 | { |
| 890 | assert(op2reg != REG_NA); |
| 891 | emit->emitIns_R_ARX(INS_lea, emitTypeSize(treeNode), targetReg, op1reg, op2reg, 1, 0); |
| 892 | } |
| 893 | genProduceReg(treeNode); |
| 894 | return; |
| 895 | } |
| 896 | // dest, op1 and op2 registers are different: |
| 897 | // reg3 = reg1 op reg2 |
| 898 | // We can implement this by issuing a mov: |
| 899 | // reg3 = reg1 |
| 900 | // reg3 = reg3 op reg2 |
| 901 | else |
| 902 | { |
| 903 | inst_RV_RV(ins_Copy(targetType), targetReg, op1reg, targetType); |
| 904 | regSet.verifyRegUsed(targetReg); |
| 905 | gcInfo.gcMarkRegPtrVal(targetReg, targetType); |
| 906 | dst = treeNode; |
| 907 | src = op2; |
| 908 | } |
| 909 | |
| 910 | // try to use an inc or dec |
| 911 | if (oper == GT_ADD && !varTypeIsFloating(treeNode) && src->isContainedIntOrIImmed() && !treeNode->gtOverflowEx()) |
| 912 | { |
| 913 | if (src->IsIntegralConst(1)) |
| 914 | { |
| 915 | emit->emitIns_R(INS_inc, emitTypeSize(treeNode), targetReg); |
| 916 | genProduceReg(treeNode); |
| 917 | return; |
| 918 | } |
| 919 | else if (src->IsIntegralConst(-1)) |
| 920 | { |
| 921 | emit->emitIns_R(INS_dec, emitTypeSize(treeNode), targetReg); |
| 922 | genProduceReg(treeNode); |
| 923 | return; |
| 924 | } |
| 925 | } |
| 926 | regNumber r = emit->emitInsBinary(ins, emitTypeSize(treeNode), dst, src); |
| 927 | noway_assert(r == targetReg); |
| 928 | |
| 929 | if (treeNode->gtOverflowEx()) |
| 930 | { |
| 931 | #if !defined(_TARGET_64BIT_) |
| 932 | assert(oper == GT_ADD || oper == GT_SUB || oper == GT_ADD_HI || oper == GT_SUB_HI); |
| 933 | #else |
| 934 | assert(oper == GT_ADD || oper == GT_SUB); |
| 935 | #endif |
| 936 | genCheckOverflow(treeNode); |
| 937 | } |
| 938 | genProduceReg(treeNode); |
| 939 | } |
| 940 | |
| 941 | //------------------------------------------------------------------------ |
| 942 | // genCodeForMul: Generate code for a MUL operation. |
| 943 | // |
| 944 | // Arguments: |
| 945 | // treeNode - the node to generate the code for |
| 946 | // |
| 947 | void CodeGen::genCodeForMul(GenTreeOp* treeNode) |
| 948 | { |
| 949 | assert(treeNode->OperIs(GT_MUL)); |
| 950 | |
| 951 | regNumber targetReg = treeNode->gtRegNum; |
| 952 | var_types targetType = treeNode->TypeGet(); |
| 953 | emitter* emit = getEmitter(); |
| 954 | |
| 955 | // Node's type must be int or long (only on x64), small integer types are not |
| 956 | // supported and floating point types are handled by genCodeForBinary. |
| 957 | assert(varTypeIsIntOrI(targetType)); |
| 958 | |
| 959 | instruction ins; |
| 960 | emitAttr size = emitTypeSize(treeNode); |
| 961 | bool isUnsignedMultiply = ((treeNode->gtFlags & GTF_UNSIGNED) != 0); |
| 962 | bool requiresOverflowCheck = treeNode->gtOverflowEx(); |
| 963 | |
| 964 | GenTree* op1 = treeNode->gtGetOp1(); |
| 965 | GenTree* op2 = treeNode->gtGetOp2(); |
| 966 | |
| 967 | // there are 3 forms of x64 multiply: |
| 968 | // 1-op form with 128 result: RDX:RAX = RAX * rm |
| 969 | // 2-op form: reg *= rm |
| 970 | // 3-op form: reg = rm * imm |
| 971 | |
| 972 | genConsumeOperands(treeNode); |
| 973 | |
| 974 | // This matches the 'mul' lowering in Lowering::SetMulOpCounts() |
| 975 | // |
| 976 | // immOp :: Only one operand can be an immediate |
| 977 | // rmOp :: Only one operand can be a memory op. |
| 978 | // regOp :: A register op (especially the operand that matches 'targetReg') |
| 979 | // (can be nullptr when we have both a memory op and an immediate op) |
| 980 | |
| 981 | GenTree* immOp = nullptr; |
| 982 | GenTree* rmOp = op1; |
| 983 | GenTree* regOp; |
| 984 | |
| 985 | if (op2->isContainedIntOrIImmed()) |
| 986 | { |
| 987 | immOp = op2; |
| 988 | } |
| 989 | else if (op1->isContainedIntOrIImmed()) |
| 990 | { |
| 991 | immOp = op1; |
| 992 | rmOp = op2; |
| 993 | } |
| 994 | |
| 995 | if (immOp != nullptr) |
| 996 | { |
| 997 | // CQ: When possible use LEA for mul by imm 3, 5 or 9 |
| 998 | ssize_t imm = immOp->AsIntConCommon()->IconValue(); |
| 999 | |
| 1000 | if (!requiresOverflowCheck && rmOp->isUsedFromReg() && ((imm == 3) || (imm == 5) || (imm == 9))) |
| 1001 | { |
| 1002 | // We will use the LEA instruction to perform this multiply |
| 1003 | // Note that an LEA with base=x, index=x and scale=(imm-1) computes x*imm when imm=3,5 or 9. |
| 1004 | unsigned int scale = (unsigned int)(imm - 1); |
| 1005 | getEmitter()->emitIns_R_ARX(INS_lea, size, targetReg, rmOp->gtRegNum, rmOp->gtRegNum, scale, 0); |
| 1006 | } |
| 1007 | else if (!requiresOverflowCheck && rmOp->isUsedFromReg() && (imm == genFindLowestBit(imm)) && (imm != 0)) |
| 1008 | { |
| 1009 | // Use shift for constant multiply when legal |
| 1010 | uint64_t zextImm = static_cast<uint64_t>(static_cast<size_t>(imm)); |
| 1011 | unsigned int shiftAmount = genLog2(zextImm); |
| 1012 | |
| 1013 | if (targetReg != rmOp->gtRegNum) |
| 1014 | { |
| 1015 | // Copy reg src to dest register |
| 1016 | inst_RV_RV(INS_mov, targetReg, rmOp->gtRegNum, targetType); |
| 1017 | } |
| 1018 | inst_RV_SH(INS_shl, size, targetReg, shiftAmount); |
| 1019 | } |
| 1020 | else |
| 1021 | { |
| 1022 | // use the 3-op form with immediate |
| 1023 | ins = getEmitter()->inst3opImulForReg(targetReg); |
| 1024 | emit->emitInsBinary(ins, size, rmOp, immOp); |
| 1025 | } |
| 1026 | } |
| 1027 | else // we have no contained immediate operand |
| 1028 | { |
| 1029 | regOp = op1; |
| 1030 | rmOp = op2; |
| 1031 | |
| 1032 | regNumber mulTargetReg = targetReg; |
| 1033 | if (isUnsignedMultiply && requiresOverflowCheck) |
| 1034 | { |
| 1035 | ins = INS_mulEAX; |
| 1036 | mulTargetReg = REG_RAX; |
| 1037 | } |
| 1038 | else |
| 1039 | { |
| 1040 | ins = INS_imul; |
| 1041 | } |
| 1042 | |
| 1043 | // Set rmOp to the memory operand (if any) |
| 1044 | // or set regOp to the op2 when it has the matching target register for our multiply op |
| 1045 | // |
| 1046 | if (op1->isUsedFromMemory() || (op2->isUsedFromReg() && (op2->gtRegNum == mulTargetReg))) |
| 1047 | { |
| 1048 | regOp = op2; |
| 1049 | rmOp = op1; |
| 1050 | } |
| 1051 | assert(regOp->isUsedFromReg()); |
| 1052 | |
| 1053 | // Setup targetReg when neither of the source operands was a matching register |
| 1054 | if (regOp->gtRegNum != mulTargetReg) |
| 1055 | { |
| 1056 | inst_RV_RV(INS_mov, mulTargetReg, regOp->gtRegNum, targetType); |
| 1057 | } |
| 1058 | |
| 1059 | emit->emitInsBinary(ins, size, treeNode, rmOp); |
| 1060 | |
| 1061 | // Move the result to the desired register, if necessary |
| 1062 | if ((ins == INS_mulEAX) && (targetReg != REG_RAX)) |
| 1063 | { |
| 1064 | inst_RV_RV(INS_mov, targetReg, REG_RAX, targetType); |
| 1065 | } |
| 1066 | } |
| 1067 | |
| 1068 | if (requiresOverflowCheck) |
| 1069 | { |
| 1070 | // Overflow checking is only used for non-floating point types |
| 1071 | noway_assert(!varTypeIsFloating(treeNode)); |
| 1072 | |
| 1073 | genCheckOverflow(treeNode); |
| 1074 | } |
| 1075 | |
| 1076 | genProduceReg(treeNode); |
| 1077 | } |
| 1078 | |
| 1079 | //------------------------------------------------------------------------ |
| 1080 | // isStructReturn: Returns whether the 'treeNode' is returning a struct. |
| 1081 | // |
| 1082 | // Arguments: |
| 1083 | // treeNode - The tree node to evaluate whether is a struct return. |
| 1084 | // |
| 1085 | // Return Value: |
| 1086 | // For AMD64 *nix: returns true if the 'treeNode" is a GT_RETURN node, of type struct. |
| 1087 | // Otherwise returns false. |
| 1088 | // For other platforms always returns false. |
| 1089 | // |
| 1090 | bool CodeGen::isStructReturn(GenTree* treeNode) |
| 1091 | { |
| 1092 | // This method could be called for 'treeNode' of GT_RET_FILT or GT_RETURN. |
| 1093 | // For the GT_RET_FILT, the return is always |
| 1094 | // a bool or a void, for the end of a finally block. |
| 1095 | noway_assert(treeNode->OperGet() == GT_RETURN || treeNode->OperGet() == GT_RETFILT); |
| 1096 | if (treeNode->OperGet() != GT_RETURN) |
| 1097 | { |
| 1098 | return false; |
| 1099 | } |
| 1100 | |
| 1101 | #ifdef UNIX_AMD64_ABI |
| 1102 | return varTypeIsStruct(treeNode); |
| 1103 | #else // !UNIX_AMD64_ABI |
| 1104 | assert(!varTypeIsStruct(treeNode)); |
| 1105 | return false; |
| 1106 | #endif // UNIX_AMD64_ABI |
| 1107 | } |
| 1108 | |
| 1109 | //------------------------------------------------------------------------ |
| 1110 | // genStructReturn: Generates code for returning a struct. |
| 1111 | // |
| 1112 | // Arguments: |
| 1113 | // treeNode - The GT_RETURN tree node. |
| 1114 | // |
| 1115 | // Return Value: |
| 1116 | // None |
| 1117 | // |
| 1118 | // Assumption: |
| 1119 | // op1 of GT_RETURN node is either GT_LCL_VAR or multi-reg GT_CALL |
| 1120 | void CodeGen::genStructReturn(GenTree* treeNode) |
| 1121 | { |
| 1122 | assert(treeNode->OperGet() == GT_RETURN); |
| 1123 | GenTree* op1 = treeNode->gtGetOp1(); |
| 1124 | |
| 1125 | #ifdef UNIX_AMD64_ABI |
| 1126 | if (op1->OperGet() == GT_LCL_VAR) |
| 1127 | { |
| 1128 | GenTreeLclVarCommon* lclVar = op1->AsLclVarCommon(); |
| 1129 | LclVarDsc* varDsc = &(compiler->lvaTable[lclVar->gtLclNum]); |
| 1130 | assert(varDsc->lvIsMultiRegRet); |
| 1131 | |
| 1132 | ReturnTypeDesc retTypeDesc; |
| 1133 | retTypeDesc.InitializeStructReturnType(compiler, varDsc->lvVerTypeInfo.GetClassHandle()); |
| 1134 | unsigned regCount = retTypeDesc.GetReturnRegCount(); |
| 1135 | assert(regCount == MAX_RET_REG_COUNT); |
| 1136 | |
| 1137 | if (varTypeIsEnregisterableStruct(op1)) |
| 1138 | { |
| 1139 | // Right now the only enregistrable structs supported are SIMD vector types. |
| 1140 | assert(varTypeIsSIMD(op1)); |
| 1141 | assert(op1->isUsedFromReg()); |
| 1142 | |
| 1143 | // This is a case of operand is in a single reg and needs to be |
| 1144 | // returned in multiple ABI return registers. |
| 1145 | regNumber opReg = genConsumeReg(op1); |
| 1146 | regNumber reg0 = retTypeDesc.GetABIReturnReg(0); |
| 1147 | regNumber reg1 = retTypeDesc.GetABIReturnReg(1); |
| 1148 | |
| 1149 | if (opReg != reg0 && opReg != reg1) |
| 1150 | { |
| 1151 | // Operand reg is different from return regs. |
| 1152 | // Copy opReg to reg0 and let it to be handled by one of the |
| 1153 | // two cases below. |
| 1154 | inst_RV_RV(ins_Copy(TYP_DOUBLE), reg0, opReg, TYP_DOUBLE); |
| 1155 | opReg = reg0; |
| 1156 | } |
| 1157 | |
| 1158 | if (opReg == reg0) |
| 1159 | { |
| 1160 | assert(opReg != reg1); |
| 1161 | |
| 1162 | // reg0 - already has required 8-byte in bit position [63:0]. |
| 1163 | // reg1 = opReg. |
| 1164 | // swap upper and lower 8-bytes of reg1 so that desired 8-byte is in bit position [63:0]. |
| 1165 | inst_RV_RV(ins_Copy(TYP_DOUBLE), reg1, opReg, TYP_DOUBLE); |
| 1166 | } |
| 1167 | else |
| 1168 | { |
| 1169 | assert(opReg == reg1); |
| 1170 | |
| 1171 | // reg0 = opReg. |
| 1172 | // swap upper and lower 8-bytes of reg1 so that desired 8-byte is in bit position [63:0]. |
| 1173 | inst_RV_RV(ins_Copy(TYP_DOUBLE), reg0, opReg, TYP_DOUBLE); |
| 1174 | } |
| 1175 | inst_RV_RV_IV(INS_shufpd, EA_16BYTE, reg1, reg1, 0x01); |
| 1176 | } |
| 1177 | else |
| 1178 | { |
| 1179 | assert(op1->isUsedFromMemory()); |
| 1180 | |
| 1181 | // Copy var on stack into ABI return registers |
| 1182 | int offset = 0; |
| 1183 | for (unsigned i = 0; i < regCount; ++i) |
| 1184 | { |
| 1185 | var_types type = retTypeDesc.GetReturnRegType(i); |
| 1186 | regNumber reg = retTypeDesc.GetABIReturnReg(i); |
| 1187 | getEmitter()->emitIns_R_S(ins_Load(type), emitTypeSize(type), reg, lclVar->gtLclNum, offset); |
| 1188 | offset += genTypeSize(type); |
| 1189 | } |
| 1190 | } |
| 1191 | } |
| 1192 | else |
| 1193 | { |
| 1194 | assert(op1->IsMultiRegCall() || op1->IsCopyOrReloadOfMultiRegCall()); |
| 1195 | |
| 1196 | genConsumeRegs(op1); |
| 1197 | |
| 1198 | GenTree* actualOp1 = op1->gtSkipReloadOrCopy(); |
| 1199 | GenTreeCall* call = actualOp1->AsCall(); |
| 1200 | ReturnTypeDesc* retTypeDesc = call->GetReturnTypeDesc(); |
| 1201 | unsigned regCount = retTypeDesc->GetReturnRegCount(); |
| 1202 | assert(regCount == MAX_RET_REG_COUNT); |
| 1203 | |
| 1204 | // Handle circular dependency between call allocated regs and ABI return regs. |
| 1205 | // |
| 1206 | // It is possible under LSRA stress that originally allocated regs of call node, |
| 1207 | // say rax and rdx, are spilled and reloaded to rdx and rax respectively. But |
| 1208 | // GT_RETURN needs to move values as follows: rdx->rax, rax->rdx. Similar kind |
| 1209 | // kind of circular dependency could arise between xmm0 and xmm1 return regs. |
| 1210 | // Codegen is expected to handle such circular dependency. |
| 1211 | // |
| 1212 | var_types regType0 = retTypeDesc->GetReturnRegType(0); |
| 1213 | regNumber returnReg0 = retTypeDesc->GetABIReturnReg(0); |
| 1214 | regNumber allocatedReg0 = call->GetRegNumByIdx(0); |
| 1215 | |
| 1216 | var_types regType1 = retTypeDesc->GetReturnRegType(1); |
| 1217 | regNumber returnReg1 = retTypeDesc->GetABIReturnReg(1); |
| 1218 | regNumber allocatedReg1 = call->GetRegNumByIdx(1); |
| 1219 | |
| 1220 | if (op1->IsCopyOrReload()) |
| 1221 | { |
| 1222 | // GT_COPY/GT_RELOAD will have valid reg for those positions |
| 1223 | // that need to be copied or reloaded. |
| 1224 | regNumber reloadReg = op1->AsCopyOrReload()->GetRegNumByIdx(0); |
| 1225 | if (reloadReg != REG_NA) |
| 1226 | { |
| 1227 | allocatedReg0 = reloadReg; |
| 1228 | } |
| 1229 | |
| 1230 | reloadReg = op1->AsCopyOrReload()->GetRegNumByIdx(1); |
| 1231 | if (reloadReg != REG_NA) |
| 1232 | { |
| 1233 | allocatedReg1 = reloadReg; |
| 1234 | } |
| 1235 | } |
| 1236 | |
| 1237 | if (allocatedReg0 == returnReg1 && allocatedReg1 == returnReg0) |
| 1238 | { |
| 1239 | // Circular dependency - swap allocatedReg0 and allocatedReg1 |
| 1240 | if (varTypeIsFloating(regType0)) |
| 1241 | { |
| 1242 | assert(varTypeIsFloating(regType1)); |
| 1243 | |
| 1244 | // The fastest way to swap two XMM regs is using PXOR |
| 1245 | inst_RV_RV(INS_pxor, allocatedReg0, allocatedReg1, TYP_DOUBLE); |
| 1246 | inst_RV_RV(INS_pxor, allocatedReg1, allocatedReg0, TYP_DOUBLE); |
| 1247 | inst_RV_RV(INS_pxor, allocatedReg0, allocatedReg1, TYP_DOUBLE); |
| 1248 | } |
| 1249 | else |
| 1250 | { |
| 1251 | assert(varTypeIsIntegral(regType0)); |
| 1252 | assert(varTypeIsIntegral(regType1)); |
| 1253 | inst_RV_RV(INS_xchg, allocatedReg1, allocatedReg0, TYP_I_IMPL); |
| 1254 | } |
| 1255 | } |
| 1256 | else if (allocatedReg1 == returnReg0) |
| 1257 | { |
| 1258 | // Change the order of moves to correctly handle dependency. |
| 1259 | if (allocatedReg1 != returnReg1) |
| 1260 | { |
| 1261 | inst_RV_RV(ins_Copy(regType1), returnReg1, allocatedReg1, regType1); |
| 1262 | } |
| 1263 | |
| 1264 | if (allocatedReg0 != returnReg0) |
| 1265 | { |
| 1266 | inst_RV_RV(ins_Copy(regType0), returnReg0, allocatedReg0, regType0); |
| 1267 | } |
| 1268 | } |
| 1269 | else |
| 1270 | { |
| 1271 | // No circular dependency case. |
| 1272 | if (allocatedReg0 != returnReg0) |
| 1273 | { |
| 1274 | inst_RV_RV(ins_Copy(regType0), returnReg0, allocatedReg0, regType0); |
| 1275 | } |
| 1276 | |
| 1277 | if (allocatedReg1 != returnReg1) |
| 1278 | { |
| 1279 | inst_RV_RV(ins_Copy(regType1), returnReg1, allocatedReg1, regType1); |
| 1280 | } |
| 1281 | } |
| 1282 | } |
| 1283 | #else |
| 1284 | unreached(); |
| 1285 | #endif |
| 1286 | } |
| 1287 | |
| 1288 | #if defined(_TARGET_X86_) |
| 1289 | |
| 1290 | //------------------------------------------------------------------------ |
| 1291 | // genFloatReturn: Generates code for float return statement for x86. |
| 1292 | // |
| 1293 | // Note: treeNode's and op1's registers are already consumed. |
| 1294 | // |
| 1295 | // Arguments: |
| 1296 | // treeNode - The GT_RETURN or GT_RETFILT tree node with float type. |
| 1297 | // |
| 1298 | // Return Value: |
| 1299 | // None |
| 1300 | // |
| 1301 | void CodeGen::genFloatReturn(GenTree* treeNode) |
| 1302 | { |
| 1303 | assert(treeNode->OperGet() == GT_RETURN || treeNode->OperGet() == GT_RETFILT); |
| 1304 | assert(varTypeIsFloating(treeNode)); |
| 1305 | |
| 1306 | GenTree* op1 = treeNode->gtGetOp1(); |
| 1307 | // Spill the return value register from an XMM register to the stack, then load it on the x87 stack. |
| 1308 | // If it already has a home location, use that. Otherwise, we need a temp. |
| 1309 | if (genIsRegCandidateLocal(op1) && compiler->lvaTable[op1->gtLclVarCommon.gtLclNum].lvOnFrame) |
| 1310 | { |
| 1311 | if (compiler->lvaTable[op1->gtLclVarCommon.gtLclNum].lvRegNum != REG_STK) |
| 1312 | { |
| 1313 | op1->gtFlags |= GTF_SPILL; |
| 1314 | inst_TT_RV(ins_Store(op1->gtType, compiler->isSIMDTypeLocalAligned(op1->gtLclVarCommon.gtLclNum)), op1, |
| 1315 | op1->gtRegNum); |
| 1316 | } |
| 1317 | // Now, load it to the fp stack. |
| 1318 | getEmitter()->emitIns_S(INS_fld, emitTypeSize(op1), op1->AsLclVarCommon()->gtLclNum, 0); |
| 1319 | } |
| 1320 | else |
| 1321 | { |
| 1322 | // Spill the value, which should be in a register, then load it to the fp stack. |
| 1323 | // TODO-X86-CQ: Deal with things that are already in memory (don't call genConsumeReg yet). |
| 1324 | op1->gtFlags |= GTF_SPILL; |
| 1325 | regSet.rsSpillTree(op1->gtRegNum, op1); |
| 1326 | op1->gtFlags |= GTF_SPILLED; |
| 1327 | op1->gtFlags &= ~GTF_SPILL; |
| 1328 | |
| 1329 | TempDsc* t = regSet.rsUnspillInPlace(op1, op1->gtRegNum); |
| 1330 | inst_FS_ST(INS_fld, emitActualTypeSize(op1->gtType), t, 0); |
| 1331 | op1->gtFlags &= ~GTF_SPILLED; |
| 1332 | regSet.tmpRlsTemp(t); |
| 1333 | } |
| 1334 | } |
| 1335 | #endif // _TARGET_X86_ |
| 1336 | |
| 1337 | //------------------------------------------------------------------------ |
| 1338 | // genCodeForCompare: Produce code for a GT_EQ/GT_NE/GT_LT/GT_LE/GT_GE/GT_GT/GT_TEST_EQ/GT_TEST_NE/GT_CMP node. |
| 1339 | // |
| 1340 | // Arguments: |
| 1341 | // tree - the node |
| 1342 | // |
| 1343 | void CodeGen::genCodeForCompare(GenTreeOp* tree) |
| 1344 | { |
| 1345 | assert(tree->OperIs(GT_EQ, GT_NE, GT_LT, GT_LE, GT_GE, GT_GT, GT_TEST_EQ, GT_TEST_NE, GT_CMP)); |
| 1346 | |
| 1347 | // TODO-XArch-CQ: Check if we can use the currently set flags. |
| 1348 | // TODO-XArch-CQ: Check for the case where we can simply transfer the carry bit to a register |
| 1349 | // (signed < or >= where targetReg != REG_NA) |
| 1350 | |
| 1351 | GenTree* op1 = tree->gtOp1; |
| 1352 | var_types op1Type = op1->TypeGet(); |
| 1353 | |
| 1354 | if (varTypeIsFloating(op1Type)) |
| 1355 | { |
| 1356 | genCompareFloat(tree); |
| 1357 | } |
| 1358 | else |
| 1359 | { |
| 1360 | genCompareInt(tree); |
| 1361 | } |
| 1362 | } |
| 1363 | |
| 1364 | //------------------------------------------------------------------------ |
| 1365 | // genCodeForBT: Generates code for a GT_BT node. |
| 1366 | // |
| 1367 | // Arguments: |
| 1368 | // tree - The node. |
| 1369 | // |
| 1370 | void CodeGen::genCodeForBT(GenTreeOp* bt) |
| 1371 | { |
| 1372 | assert(bt->OperIs(GT_BT)); |
| 1373 | |
| 1374 | GenTree* op1 = bt->gtGetOp1(); |
| 1375 | GenTree* op2 = bt->gtGetOp2(); |
| 1376 | var_types type = genActualType(op1->TypeGet()); |
| 1377 | |
| 1378 | assert(op1->isUsedFromReg() && op2->isUsedFromReg()); |
| 1379 | assert((genTypeSize(type) >= genTypeSize(TYP_INT)) && (genTypeSize(type) <= genTypeSize(TYP_I_IMPL))); |
| 1380 | |
| 1381 | genConsumeOperands(bt); |
| 1382 | // Note that the emitter doesn't fully support INS_bt, it only supports the reg,reg |
| 1383 | // form and encodes the registers in reverse order. To get the correct order we need |
| 1384 | // to reverse the operands when calling emitIns_R_R. |
| 1385 | getEmitter()->emitIns_R_R(INS_bt, emitTypeSize(type), op2->gtRegNum, op1->gtRegNum); |
| 1386 | } |
| 1387 | |
| 1388 | //------------------------------------------------------------------------ |
| 1389 | // genCodeForJumpTrue: Generates code for jmpTrue statement. |
| 1390 | // |
| 1391 | // Arguments: |
| 1392 | // tree - The GT_JTRUE tree node. |
| 1393 | // |
| 1394 | // Return Value: |
| 1395 | // None |
| 1396 | // |
| 1397 | void CodeGen::genCodeForJumpTrue(GenTree* tree) |
| 1398 | { |
| 1399 | GenTree* cmp = tree->gtOp.gtOp1; |
| 1400 | |
| 1401 | assert(cmp->OperIsCompare()); |
| 1402 | assert(compiler->compCurBB->bbJumpKind == BBJ_COND); |
| 1403 | |
| 1404 | #if !defined(_TARGET_64BIT_) |
| 1405 | // Long-typed compares should have been handled by Lowering::LowerCompare. |
| 1406 | assert(!varTypeIsLong(cmp->gtGetOp1())); |
| 1407 | #endif |
| 1408 | |
| 1409 | // Get the "kind" and type of the comparison. Note that whether it is an unsigned cmp |
| 1410 | // is governed by a flag NOT by the inherent type of the node |
| 1411 | // TODO-XArch-CQ: Check if we can use the currently set flags. |
| 1412 | emitJumpKind jumpKind[2]; |
| 1413 | bool branchToTrueLabel[2]; |
| 1414 | genJumpKindsForTree(cmp, jumpKind, branchToTrueLabel); |
| 1415 | |
| 1416 | BasicBlock* skipLabel = nullptr; |
| 1417 | if (jumpKind[0] != EJ_NONE) |
| 1418 | { |
| 1419 | BasicBlock* jmpTarget; |
| 1420 | if (branchToTrueLabel[0]) |
| 1421 | { |
| 1422 | jmpTarget = compiler->compCurBB->bbJumpDest; |
| 1423 | } |
| 1424 | else |
| 1425 | { |
| 1426 | // This case arises only for ordered GT_EQ right now |
| 1427 | assert((cmp->gtOper == GT_EQ) && ((cmp->gtFlags & GTF_RELOP_NAN_UN) == 0)); |
| 1428 | skipLabel = genCreateTempLabel(); |
| 1429 | jmpTarget = skipLabel; |
| 1430 | } |
| 1431 | |
| 1432 | inst_JMP(jumpKind[0], jmpTarget); |
| 1433 | } |
| 1434 | |
| 1435 | if (jumpKind[1] != EJ_NONE) |
| 1436 | { |
| 1437 | // the second conditional branch always has to be to the true label |
| 1438 | assert(branchToTrueLabel[1]); |
| 1439 | inst_JMP(jumpKind[1], compiler->compCurBB->bbJumpDest); |
| 1440 | } |
| 1441 | |
| 1442 | if (skipLabel != nullptr) |
| 1443 | { |
| 1444 | genDefineTempLabel(skipLabel); |
| 1445 | } |
| 1446 | } |
| 1447 | |
| 1448 | //------------------------------------------------------------------------ |
| 1449 | // genCodeForJcc: Produce code for a GT_JCC node. |
| 1450 | // |
| 1451 | // Arguments: |
| 1452 | // tree - the node |
| 1453 | // |
| 1454 | void CodeGen::genCodeForJcc(GenTreeCC* tree) |
| 1455 | { |
| 1456 | assert(compiler->compCurBB->bbJumpKind == BBJ_COND); |
| 1457 | |
| 1458 | CompareKind compareKind = ((tree->gtFlags & GTF_UNSIGNED) != 0) ? CK_UNSIGNED : CK_SIGNED; |
| 1459 | emitJumpKind jumpKind = genJumpKindForOper(tree->gtCondition, compareKind); |
| 1460 | |
| 1461 | inst_JMP(jumpKind, compiler->compCurBB->bbJumpDest); |
| 1462 | } |
| 1463 | |
| 1464 | //------------------------------------------------------------------------ |
| 1465 | // genCodeForSetcc: Generates a setcc instruction for a GT_SETCC node. |
| 1466 | // |
| 1467 | // Arguments: |
| 1468 | // tree - the GT_SETCC node |
| 1469 | // |
| 1470 | // Assumptions: |
| 1471 | // The condition represents an integer comparison. This code doesn't |
| 1472 | // have the necessary logic to deal with floating point comparisons, |
| 1473 | // in fact it doesn't even know if the comparison is integer or floating |
| 1474 | // point because SETCC nodes do not have any operands. |
| 1475 | // |
| 1476 | |
| 1477 | void CodeGen::genCodeForSetcc(GenTreeCC* setcc) |
| 1478 | { |
| 1479 | regNumber dstReg = setcc->gtRegNum; |
| 1480 | CompareKind compareKind = setcc->IsUnsigned() ? CK_UNSIGNED : CK_SIGNED; |
| 1481 | emitJumpKind jumpKind = genJumpKindForOper(setcc->gtCondition, compareKind); |
| 1482 | |
| 1483 | assert(genIsValidIntReg(dstReg) && isByteReg(dstReg)); |
| 1484 | // Make sure nobody is setting GTF_RELOP_NAN_UN on this node as it is ignored. |
| 1485 | assert((setcc->gtFlags & GTF_RELOP_NAN_UN) == 0); |
| 1486 | |
| 1487 | inst_SET(jumpKind, dstReg); |
| 1488 | inst_RV_RV(ins_Move_Extend(TYP_UBYTE, true), dstReg, dstReg, TYP_UBYTE, emitTypeSize(TYP_UBYTE)); |
| 1489 | genProduceReg(setcc); |
| 1490 | } |
| 1491 | |
| 1492 | //------------------------------------------------------------------------ |
| 1493 | // genCodeForReturnTrap: Produce code for a GT_RETURNTRAP node. |
| 1494 | // |
| 1495 | // Arguments: |
| 1496 | // tree - the GT_RETURNTRAP node |
| 1497 | // |
| 1498 | void CodeGen::genCodeForReturnTrap(GenTreeOp* tree) |
| 1499 | { |
| 1500 | assert(tree->OperGet() == GT_RETURNTRAP); |
| 1501 | |
| 1502 | // this is nothing but a conditional call to CORINFO_HELP_STOP_FOR_GC |
| 1503 | // based on the contents of 'data' |
| 1504 | |
| 1505 | GenTree* data = tree->gtOp1; |
| 1506 | genConsumeRegs(data); |
| 1507 | GenTreeIntCon cns = intForm(TYP_INT, 0); |
| 1508 | cns.SetContained(); |
| 1509 | getEmitter()->emitInsBinary(INS_cmp, emitTypeSize(TYP_INT), data, &cns); |
| 1510 | |
| 1511 | BasicBlock* skipLabel = genCreateTempLabel(); |
| 1512 | |
| 1513 | emitJumpKind jmpEqual = genJumpKindForOper(GT_EQ, CK_SIGNED); |
| 1514 | inst_JMP(jmpEqual, skipLabel); |
| 1515 | |
| 1516 | // emit the call to the EE-helper that stops for GC (or other reasons) |
| 1517 | regNumber tmpReg = tree->GetSingleTempReg(RBM_ALLINT); |
| 1518 | assert(genIsValidIntReg(tmpReg)); |
| 1519 | |
| 1520 | genEmitHelperCall(CORINFO_HELP_STOP_FOR_GC, 0, EA_UNKNOWN, tmpReg); |
| 1521 | genDefineTempLabel(skipLabel); |
| 1522 | } |
| 1523 | |
| 1524 | /***************************************************************************** |
| 1525 | * |
| 1526 | * Generate code for a single node in the tree. |
| 1527 | * Preconditions: All operands have been evaluated |
| 1528 | * |
| 1529 | */ |
| 1530 | void CodeGen::genCodeForTreeNode(GenTree* treeNode) |
| 1531 | { |
| 1532 | regNumber targetReg; |
| 1533 | #if !defined(_TARGET_64BIT_) |
| 1534 | if (treeNode->TypeGet() == TYP_LONG) |
| 1535 | { |
| 1536 | // All long enregistered nodes will have been decomposed into their |
| 1537 | // constituent lo and hi nodes. |
| 1538 | targetReg = REG_NA; |
| 1539 | } |
| 1540 | else |
| 1541 | #endif // !defined(_TARGET_64BIT_) |
| 1542 | { |
| 1543 | targetReg = treeNode->gtRegNum; |
| 1544 | } |
| 1545 | var_types targetType = treeNode->TypeGet(); |
| 1546 | emitter* emit = getEmitter(); |
| 1547 | |
| 1548 | #ifdef DEBUG |
| 1549 | // Validate that all the operands for the current node are consumed in order. |
| 1550 | // This is important because LSRA ensures that any necessary copies will be |
| 1551 | // handled correctly. |
| 1552 | lastConsumedNode = nullptr; |
| 1553 | if (compiler->verbose) |
| 1554 | { |
| 1555 | unsigned seqNum = treeNode->gtSeqNum; // Useful for setting a conditional break in Visual Studio |
| 1556 | compiler->gtDispLIRNode(treeNode, "Generating: " ); |
| 1557 | } |
| 1558 | #endif // DEBUG |
| 1559 | |
| 1560 | // Is this a node whose value is already in a register? LSRA denotes this by |
| 1561 | // setting the GTF_REUSE_REG_VAL flag. |
| 1562 | if (treeNode->IsReuseRegVal()) |
| 1563 | { |
| 1564 | // For now, this is only used for constant nodes. |
| 1565 | assert((treeNode->OperIsConst())); |
| 1566 | JITDUMP(" TreeNode is marked ReuseReg\n" ); |
| 1567 | return; |
| 1568 | } |
| 1569 | |
| 1570 | // contained nodes are part of their parents for codegen purposes |
| 1571 | // ex : immediates, most LEAs |
| 1572 | if (treeNode->isContained()) |
| 1573 | { |
| 1574 | return; |
| 1575 | } |
| 1576 | |
| 1577 | switch (treeNode->gtOper) |
| 1578 | { |
| 1579 | #ifndef JIT32_GCENCODER |
| 1580 | case GT_START_NONGC: |
| 1581 | getEmitter()->emitDisableGC(); |
| 1582 | break; |
| 1583 | #endif // !defined(JIT32_GCENCODER) |
| 1584 | |
| 1585 | case GT_PROF_HOOK: |
| 1586 | #ifdef PROFILING_SUPPORTED |
| 1587 | // We should be seeing this only if profiler hook is needed |
| 1588 | noway_assert(compiler->compIsProfilerHookNeeded()); |
| 1589 | |
| 1590 | // Right now this node is used only for tail calls. In future if |
| 1591 | // we intend to use it for Enter or Leave hooks, add a data member |
| 1592 | // to this node indicating the kind of profiler hook. For example, |
| 1593 | // helper number can be used. |
| 1594 | genProfilingLeaveCallback(CORINFO_HELP_PROF_FCN_TAILCALL); |
| 1595 | #endif // PROFILING_SUPPORTED |
| 1596 | break; |
| 1597 | |
| 1598 | case GT_LCLHEAP: |
| 1599 | genLclHeap(treeNode); |
| 1600 | break; |
| 1601 | |
| 1602 | case GT_CNS_INT: |
| 1603 | #ifdef _TARGET_X86_ |
| 1604 | assert(!treeNode->IsIconHandle(GTF_ICON_TLS_HDL)); |
| 1605 | #endif // _TARGET_X86_ |
| 1606 | __fallthrough; |
| 1607 | |
| 1608 | case GT_CNS_DBL: |
| 1609 | genSetRegToConst(targetReg, targetType, treeNode); |
| 1610 | genProduceReg(treeNode); |
| 1611 | break; |
| 1612 | |
| 1613 | case GT_NOT: |
| 1614 | case GT_NEG: |
| 1615 | genCodeForNegNot(treeNode); |
| 1616 | break; |
| 1617 | |
| 1618 | case GT_BSWAP: |
| 1619 | case GT_BSWAP16: |
| 1620 | genCodeForBswap(treeNode); |
| 1621 | break; |
| 1622 | |
| 1623 | case GT_DIV: |
| 1624 | if (varTypeIsFloating(treeNode->TypeGet())) |
| 1625 | { |
| 1626 | genCodeForBinary(treeNode->AsOp()); |
| 1627 | break; |
| 1628 | } |
| 1629 | __fallthrough; |
| 1630 | case GT_MOD: |
| 1631 | case GT_UMOD: |
| 1632 | case GT_UDIV: |
| 1633 | genCodeForDivMod(treeNode->AsOp()); |
| 1634 | break; |
| 1635 | |
| 1636 | case GT_OR: |
| 1637 | case GT_XOR: |
| 1638 | case GT_AND: |
| 1639 | assert(varTypeIsIntegralOrI(treeNode)); |
| 1640 | |
| 1641 | __fallthrough; |
| 1642 | |
| 1643 | #if !defined(_TARGET_64BIT_) |
| 1644 | case GT_ADD_LO: |
| 1645 | case GT_ADD_HI: |
| 1646 | case GT_SUB_LO: |
| 1647 | case GT_SUB_HI: |
| 1648 | #endif // !defined(_TARGET_64BIT_) |
| 1649 | |
| 1650 | case GT_ADD: |
| 1651 | case GT_SUB: |
| 1652 | genCodeForBinary(treeNode->AsOp()); |
| 1653 | break; |
| 1654 | |
| 1655 | case GT_MUL: |
| 1656 | if (varTypeIsFloating(treeNode->TypeGet())) |
| 1657 | { |
| 1658 | genCodeForBinary(treeNode->AsOp()); |
| 1659 | break; |
| 1660 | } |
| 1661 | genCodeForMul(treeNode->AsOp()); |
| 1662 | break; |
| 1663 | |
| 1664 | case GT_LSH: |
| 1665 | case GT_RSH: |
| 1666 | case GT_RSZ: |
| 1667 | case GT_ROL: |
| 1668 | case GT_ROR: |
| 1669 | genCodeForShift(treeNode); |
| 1670 | break; |
| 1671 | |
| 1672 | #if !defined(_TARGET_64BIT_) |
| 1673 | |
| 1674 | case GT_LSH_HI: |
| 1675 | case GT_RSH_LO: |
| 1676 | genCodeForShiftLong(treeNode); |
| 1677 | break; |
| 1678 | |
| 1679 | #endif // !defined(_TARGET_64BIT_) |
| 1680 | |
| 1681 | case GT_CAST: |
| 1682 | genCodeForCast(treeNode->AsOp()); |
| 1683 | break; |
| 1684 | |
| 1685 | case GT_BITCAST: |
| 1686 | { |
| 1687 | GenTree* const op1 = treeNode->AsOp()->gtOp1; |
| 1688 | genConsumeReg(op1); |
| 1689 | |
| 1690 | const bool srcFltReg = varTypeIsFloating(op1) || varTypeIsSIMD(op1); |
| 1691 | const bool dstFltReg = varTypeIsFloating(treeNode) || varTypeIsSIMD(treeNode); |
| 1692 | if (srcFltReg != dstFltReg) |
| 1693 | { |
| 1694 | instruction ins; |
| 1695 | regNumber fltReg; |
| 1696 | regNumber intReg; |
| 1697 | if (dstFltReg) |
| 1698 | { |
| 1699 | ins = ins_CopyIntToFloat(op1->TypeGet(), treeNode->TypeGet()); |
| 1700 | fltReg = treeNode->gtRegNum; |
| 1701 | intReg = op1->gtRegNum; |
| 1702 | } |
| 1703 | else |
| 1704 | { |
| 1705 | ins = ins_CopyFloatToInt(op1->TypeGet(), treeNode->TypeGet()); |
| 1706 | intReg = treeNode->gtRegNum; |
| 1707 | fltReg = op1->gtRegNum; |
| 1708 | } |
| 1709 | inst_RV_RV(ins, fltReg, intReg, treeNode->TypeGet()); |
| 1710 | } |
| 1711 | else if (treeNode->gtRegNum != op1->gtRegNum) |
| 1712 | { |
| 1713 | inst_RV_RV(ins_Copy(treeNode->TypeGet()), treeNode->gtRegNum, op1->gtRegNum, treeNode->TypeGet()); |
| 1714 | } |
| 1715 | |
| 1716 | genProduceReg(treeNode); |
| 1717 | break; |
| 1718 | } |
| 1719 | |
| 1720 | case GT_LCL_FLD_ADDR: |
| 1721 | case GT_LCL_VAR_ADDR: |
| 1722 | genCodeForLclAddr(treeNode); |
| 1723 | break; |
| 1724 | |
| 1725 | case GT_LCL_FLD: |
| 1726 | genCodeForLclFld(treeNode->AsLclFld()); |
| 1727 | break; |
| 1728 | |
| 1729 | case GT_LCL_VAR: |
| 1730 | genCodeForLclVar(treeNode->AsLclVar()); |
| 1731 | break; |
| 1732 | |
| 1733 | case GT_STORE_LCL_FLD: |
| 1734 | genCodeForStoreLclFld(treeNode->AsLclFld()); |
| 1735 | break; |
| 1736 | |
| 1737 | case GT_STORE_LCL_VAR: |
| 1738 | genCodeForStoreLclVar(treeNode->AsLclVar()); |
| 1739 | break; |
| 1740 | |
| 1741 | case GT_RETFILT: |
| 1742 | case GT_RETURN: |
| 1743 | genReturn(treeNode); |
| 1744 | break; |
| 1745 | |
| 1746 | case GT_LEA: |
| 1747 | // If we are here, it is the case where there is an LEA that cannot be folded into a parent instruction. |
| 1748 | genLeaInstruction(treeNode->AsAddrMode()); |
| 1749 | break; |
| 1750 | |
| 1751 | case GT_INDEX_ADDR: |
| 1752 | genCodeForIndexAddr(treeNode->AsIndexAddr()); |
| 1753 | break; |
| 1754 | |
| 1755 | case GT_IND: |
| 1756 | genCodeForIndir(treeNode->AsIndir()); |
| 1757 | break; |
| 1758 | |
| 1759 | case GT_MULHI: |
| 1760 | #ifdef _TARGET_X86_ |
| 1761 | case GT_MUL_LONG: |
| 1762 | #endif |
| 1763 | genCodeForMulHi(treeNode->AsOp()); |
| 1764 | break; |
| 1765 | |
| 1766 | case GT_INTRINSIC: |
| 1767 | genIntrinsic(treeNode); |
| 1768 | break; |
| 1769 | |
| 1770 | #ifdef FEATURE_SIMD |
| 1771 | case GT_SIMD: |
| 1772 | genSIMDIntrinsic(treeNode->AsSIMD()); |
| 1773 | break; |
| 1774 | #endif // FEATURE_SIMD |
| 1775 | |
| 1776 | #ifdef FEATURE_HW_INTRINSICS |
| 1777 | case GT_HWIntrinsic: |
| 1778 | genHWIntrinsic(treeNode->AsHWIntrinsic()); |
| 1779 | break; |
| 1780 | #endif // FEATURE_HW_INTRINSICS |
| 1781 | |
| 1782 | case GT_CKFINITE: |
| 1783 | genCkfinite(treeNode); |
| 1784 | break; |
| 1785 | |
| 1786 | case GT_EQ: |
| 1787 | case GT_NE: |
| 1788 | case GT_LT: |
| 1789 | case GT_LE: |
| 1790 | case GT_GE: |
| 1791 | case GT_GT: |
| 1792 | case GT_TEST_EQ: |
| 1793 | case GT_TEST_NE: |
| 1794 | case GT_CMP: |
| 1795 | genCodeForCompare(treeNode->AsOp()); |
| 1796 | break; |
| 1797 | |
| 1798 | case GT_JTRUE: |
| 1799 | genCodeForJumpTrue(treeNode); |
| 1800 | break; |
| 1801 | |
| 1802 | case GT_JCC: |
| 1803 | genCodeForJcc(treeNode->AsCC()); |
| 1804 | break; |
| 1805 | |
| 1806 | case GT_SETCC: |
| 1807 | genCodeForSetcc(treeNode->AsCC()); |
| 1808 | break; |
| 1809 | |
| 1810 | case GT_BT: |
| 1811 | genCodeForBT(treeNode->AsOp()); |
| 1812 | break; |
| 1813 | |
| 1814 | case GT_RETURNTRAP: |
| 1815 | genCodeForReturnTrap(treeNode->AsOp()); |
| 1816 | break; |
| 1817 | |
| 1818 | case GT_STOREIND: |
| 1819 | genCodeForStoreInd(treeNode->AsStoreInd()); |
| 1820 | break; |
| 1821 | |
| 1822 | case GT_COPY: |
| 1823 | // This is handled at the time we call genConsumeReg() on the GT_COPY |
| 1824 | break; |
| 1825 | |
| 1826 | case GT_LIST: |
| 1827 | case GT_FIELD_LIST: |
| 1828 | // Should always be marked contained. |
| 1829 | assert(!"LIST, FIELD_LIST nodes should always be marked contained." ); |
| 1830 | break; |
| 1831 | |
| 1832 | case GT_SWAP: |
| 1833 | genCodeForSwap(treeNode->AsOp()); |
| 1834 | break; |
| 1835 | |
| 1836 | case GT_PUTARG_STK: |
| 1837 | genPutArgStk(treeNode->AsPutArgStk()); |
| 1838 | break; |
| 1839 | |
| 1840 | case GT_PUTARG_REG: |
| 1841 | genPutArgReg(treeNode->AsOp()); |
| 1842 | break; |
| 1843 | |
| 1844 | case GT_CALL: |
| 1845 | genCallInstruction(treeNode->AsCall()); |
| 1846 | break; |
| 1847 | |
| 1848 | case GT_JMP: |
| 1849 | genJmpMethod(treeNode); |
| 1850 | break; |
| 1851 | |
| 1852 | case GT_LOCKADD: |
| 1853 | genCodeForLockAdd(treeNode->AsOp()); |
| 1854 | break; |
| 1855 | |
| 1856 | case GT_XCHG: |
| 1857 | case GT_XADD: |
| 1858 | genLockedInstructions(treeNode->AsOp()); |
| 1859 | break; |
| 1860 | |
| 1861 | case GT_MEMORYBARRIER: |
| 1862 | instGen_MemoryBarrier(); |
| 1863 | break; |
| 1864 | |
| 1865 | case GT_CMPXCHG: |
| 1866 | genCodeForCmpXchg(treeNode->AsCmpXchg()); |
| 1867 | break; |
| 1868 | |
| 1869 | case GT_RELOAD: |
| 1870 | // do nothing - reload is just a marker. |
| 1871 | // The parent node will call genConsumeReg on this which will trigger the unspill of this node's child |
| 1872 | // into the register specified in this node. |
| 1873 | break; |
| 1874 | |
| 1875 | case GT_NOP: |
| 1876 | break; |
| 1877 | |
| 1878 | case GT_NO_OP: |
| 1879 | getEmitter()->emitIns_Nop(1); |
| 1880 | break; |
| 1881 | |
| 1882 | case GT_ARR_BOUNDS_CHECK: |
| 1883 | #ifdef FEATURE_SIMD |
| 1884 | case GT_SIMD_CHK: |
| 1885 | #endif // FEATURE_SIMD |
| 1886 | #ifdef FEATURE_HW_INTRINSICS |
| 1887 | case GT_HW_INTRINSIC_CHK: |
| 1888 | #endif // FEATURE_HW_INTRINSICS |
| 1889 | genRangeCheck(treeNode); |
| 1890 | break; |
| 1891 | |
| 1892 | case GT_PHYSREG: |
| 1893 | genCodeForPhysReg(treeNode->AsPhysReg()); |
| 1894 | break; |
| 1895 | |
| 1896 | case GT_NULLCHECK: |
| 1897 | genCodeForNullCheck(treeNode->AsOp()); |
| 1898 | break; |
| 1899 | |
| 1900 | case GT_CATCH_ARG: |
| 1901 | |
| 1902 | noway_assert(handlerGetsXcptnObj(compiler->compCurBB->bbCatchTyp)); |
| 1903 | |
| 1904 | /* Catch arguments get passed in a register. genCodeForBBlist() |
| 1905 | would have marked it as holding a GC object, but not used. */ |
| 1906 | |
| 1907 | noway_assert(gcInfo.gcRegGCrefSetCur & RBM_EXCEPTION_OBJECT); |
| 1908 | genConsumeReg(treeNode); |
| 1909 | break; |
| 1910 | |
| 1911 | #if !FEATURE_EH_FUNCLETS |
| 1912 | case GT_END_LFIN: |
| 1913 | |
| 1914 | // Have to clear the ShadowSP of the nesting level which encloses the finally. Generates: |
| 1915 | // mov dword ptr [ebp-0xC], 0 // for some slot of the ShadowSP local var |
| 1916 | |
| 1917 | unsigned finallyNesting; |
| 1918 | finallyNesting = treeNode->gtVal.gtVal1; |
| 1919 | noway_assert(treeNode->gtVal.gtVal1 < compiler->compHndBBtabCount); |
| 1920 | noway_assert(finallyNesting < compiler->compHndBBtabCount); |
| 1921 | |
| 1922 | // The last slot is reserved for ICodeManager::FixContext(ppEndRegion) |
| 1923 | unsigned filterEndOffsetSlotOffs; |
| 1924 | PREFIX_ASSUME(compiler->lvaLclSize(compiler->lvaShadowSPslotsVar) > |
| 1925 | TARGET_POINTER_SIZE); // below doesn't underflow. |
| 1926 | filterEndOffsetSlotOffs = |
| 1927 | (unsigned)(compiler->lvaLclSize(compiler->lvaShadowSPslotsVar) - TARGET_POINTER_SIZE); |
| 1928 | |
| 1929 | unsigned curNestingSlotOffs; |
| 1930 | curNestingSlotOffs = filterEndOffsetSlotOffs - ((finallyNesting + 1) * TARGET_POINTER_SIZE); |
| 1931 | instGen_Store_Imm_Into_Lcl(TYP_I_IMPL, EA_PTRSIZE, 0, compiler->lvaShadowSPslotsVar, curNestingSlotOffs); |
| 1932 | break; |
| 1933 | #endif // !FEATURE_EH_FUNCLETS |
| 1934 | |
| 1935 | case GT_PINVOKE_PROLOG: |
| 1936 | noway_assert(((gcInfo.gcRegGCrefSetCur | gcInfo.gcRegByrefSetCur) & ~fullIntArgRegMask()) == 0); |
| 1937 | |
| 1938 | // the runtime side requires the codegen here to be consistent |
| 1939 | emit->emitDisableRandomNops(); |
| 1940 | break; |
| 1941 | |
| 1942 | case GT_LABEL: |
| 1943 | genPendingCallLabel = genCreateTempLabel(); |
| 1944 | treeNode->gtLabel.gtLabBB = genPendingCallLabel; |
| 1945 | emit->emitIns_R_L(INS_lea, EA_PTR_DSP_RELOC, genPendingCallLabel, treeNode->gtRegNum); |
| 1946 | break; |
| 1947 | |
| 1948 | case GT_STORE_OBJ: |
| 1949 | case GT_STORE_DYN_BLK: |
| 1950 | case GT_STORE_BLK: |
| 1951 | genCodeForStoreBlk(treeNode->AsBlk()); |
| 1952 | break; |
| 1953 | |
| 1954 | case GT_JMPTABLE: |
| 1955 | genJumpTable(treeNode); |
| 1956 | break; |
| 1957 | |
| 1958 | case GT_SWITCH_TABLE: |
| 1959 | genTableBasedSwitch(treeNode); |
| 1960 | break; |
| 1961 | |
| 1962 | case GT_ARR_INDEX: |
| 1963 | genCodeForArrIndex(treeNode->AsArrIndex()); |
| 1964 | break; |
| 1965 | |
| 1966 | case GT_ARR_OFFSET: |
| 1967 | genCodeForArrOffset(treeNode->AsArrOffs()); |
| 1968 | break; |
| 1969 | |
| 1970 | case GT_CLS_VAR_ADDR: |
| 1971 | emit->emitIns_R_C(INS_lea, EA_PTRSIZE, targetReg, treeNode->gtClsVar.gtClsVarHnd, 0); |
| 1972 | genProduceReg(treeNode); |
| 1973 | break; |
| 1974 | |
| 1975 | #if !defined(_TARGET_64BIT_) |
| 1976 | case GT_LONG: |
| 1977 | assert(treeNode->isUsedFromReg()); |
| 1978 | genConsumeRegs(treeNode); |
| 1979 | break; |
| 1980 | #endif |
| 1981 | |
| 1982 | case GT_IL_OFFSET: |
| 1983 | // Do nothing; these nodes are simply markers for debug info. |
| 1984 | break; |
| 1985 | |
| 1986 | default: |
| 1987 | { |
| 1988 | #ifdef DEBUG |
| 1989 | char message[256]; |
| 1990 | _snprintf_s(message, _countof(message), _TRUNCATE, "NYI: Unimplemented node type %s\n" , |
| 1991 | GenTree::OpName(treeNode->OperGet())); |
| 1992 | NYIRAW(message); |
| 1993 | #endif |
| 1994 | assert(!"Unknown node in codegen" ); |
| 1995 | } |
| 1996 | break; |
| 1997 | } |
| 1998 | } |
| 1999 | |
| 2000 | //---------------------------------------------------------------------------------- |
| 2001 | // genMultiRegCallStoreToLocal: store multi-reg return value of a call node to a local |
| 2002 | // |
| 2003 | // Arguments: |
| 2004 | // treeNode - Gentree of GT_STORE_LCL_VAR |
| 2005 | // |
| 2006 | // Return Value: |
| 2007 | // None |
| 2008 | // |
| 2009 | // Assumption: |
| 2010 | // The child of store is a multi-reg call node. |
| 2011 | // genProduceReg() on treeNode is made by caller of this routine. |
| 2012 | // |
| 2013 | void CodeGen::genMultiRegCallStoreToLocal(GenTree* treeNode) |
| 2014 | { |
| 2015 | assert(treeNode->OperGet() == GT_STORE_LCL_VAR); |
| 2016 | |
| 2017 | #ifdef UNIX_AMD64_ABI |
| 2018 | // Structs of size >=9 and <=16 are returned in two return registers on x64 Unix. |
| 2019 | assert(varTypeIsStruct(treeNode)); |
| 2020 | |
| 2021 | // Assumption: current x64 Unix implementation requires that a multi-reg struct |
| 2022 | // var in 'var = call' is flagged as lvIsMultiRegRet to prevent it from |
| 2023 | // being struct promoted. |
| 2024 | unsigned lclNum = treeNode->AsLclVarCommon()->gtLclNum; |
| 2025 | LclVarDsc* varDsc = &(compiler->lvaTable[lclNum]); |
| 2026 | noway_assert(varDsc->lvIsMultiRegRet); |
| 2027 | |
| 2028 | GenTree* op1 = treeNode->gtGetOp1(); |
| 2029 | GenTree* actualOp1 = op1->gtSkipReloadOrCopy(); |
| 2030 | GenTreeCall* call = actualOp1->AsCall(); |
| 2031 | assert(call->HasMultiRegRetVal()); |
| 2032 | |
| 2033 | genConsumeRegs(op1); |
| 2034 | |
| 2035 | ReturnTypeDesc* retTypeDesc = call->GetReturnTypeDesc(); |
| 2036 | assert(retTypeDesc->GetReturnRegCount() == MAX_RET_REG_COUNT); |
| 2037 | unsigned regCount = retTypeDesc->GetReturnRegCount(); |
| 2038 | |
| 2039 | if (treeNode->gtRegNum != REG_NA) |
| 2040 | { |
| 2041 | // Right now the only enregistrable structs supported are SIMD types. |
| 2042 | assert(varTypeIsSIMD(treeNode)); |
| 2043 | assert(varTypeIsFloating(retTypeDesc->GetReturnRegType(0))); |
| 2044 | assert(varTypeIsFloating(retTypeDesc->GetReturnRegType(1))); |
| 2045 | |
| 2046 | // This is a case of two 8-bytes that comprise the operand is in |
| 2047 | // two different xmm registers and needs to assembled into a single |
| 2048 | // xmm register. |
| 2049 | regNumber targetReg = treeNode->gtRegNum; |
| 2050 | regNumber reg0 = call->GetRegNumByIdx(0); |
| 2051 | regNumber reg1 = call->GetRegNumByIdx(1); |
| 2052 | |
| 2053 | if (op1->IsCopyOrReload()) |
| 2054 | { |
| 2055 | // GT_COPY/GT_RELOAD will have valid reg for those positions |
| 2056 | // that need to be copied or reloaded. |
| 2057 | regNumber reloadReg = op1->AsCopyOrReload()->GetRegNumByIdx(0); |
| 2058 | if (reloadReg != REG_NA) |
| 2059 | { |
| 2060 | reg0 = reloadReg; |
| 2061 | } |
| 2062 | |
| 2063 | reloadReg = op1->AsCopyOrReload()->GetRegNumByIdx(1); |
| 2064 | if (reloadReg != REG_NA) |
| 2065 | { |
| 2066 | reg1 = reloadReg; |
| 2067 | } |
| 2068 | } |
| 2069 | |
| 2070 | if (targetReg != reg0 && targetReg != reg1) |
| 2071 | { |
| 2072 | // Copy reg0 into targetReg and let it to be handled by one |
| 2073 | // of the cases below. |
| 2074 | inst_RV_RV(ins_Copy(TYP_DOUBLE), targetReg, reg0, TYP_DOUBLE); |
| 2075 | targetReg = reg0; |
| 2076 | } |
| 2077 | |
| 2078 | if (targetReg == reg0) |
| 2079 | { |
| 2080 | // targeReg[63:0] = targetReg[63:0] |
| 2081 | // targetReg[127:64] = reg1[127:64] |
| 2082 | inst_RV_RV_IV(INS_shufpd, EA_16BYTE, targetReg, reg1, 0x00); |
| 2083 | } |
| 2084 | else |
| 2085 | { |
| 2086 | assert(targetReg == reg1); |
| 2087 | |
| 2088 | // We need two shuffles to achieve this |
| 2089 | // First: |
| 2090 | // targeReg[63:0] = targetReg[63:0] |
| 2091 | // targetReg[127:64] = reg0[63:0] |
| 2092 | // |
| 2093 | // Second: |
| 2094 | // targeReg[63:0] = targetReg[127:64] |
| 2095 | // targetReg[127:64] = targetReg[63:0] |
| 2096 | // |
| 2097 | // Essentially copy low 8-bytes from reg0 to high 8-bytes of targetReg |
| 2098 | // and next swap low and high 8-bytes of targetReg to have them |
| 2099 | // rearranged in the right order. |
| 2100 | inst_RV_RV_IV(INS_shufpd, EA_16BYTE, targetReg, reg0, 0x00); |
| 2101 | inst_RV_RV_IV(INS_shufpd, EA_16BYTE, targetReg, targetReg, 0x01); |
| 2102 | } |
| 2103 | } |
| 2104 | else |
| 2105 | { |
| 2106 | // Stack store |
| 2107 | int offset = 0; |
| 2108 | for (unsigned i = 0; i < regCount; ++i) |
| 2109 | { |
| 2110 | var_types type = retTypeDesc->GetReturnRegType(i); |
| 2111 | regNumber reg = call->GetRegNumByIdx(i); |
| 2112 | if (op1->IsCopyOrReload()) |
| 2113 | { |
| 2114 | // GT_COPY/GT_RELOAD will have valid reg for those positions |
| 2115 | // that need to be copied or reloaded. |
| 2116 | regNumber reloadReg = op1->AsCopyOrReload()->GetRegNumByIdx(i); |
| 2117 | if (reloadReg != REG_NA) |
| 2118 | { |
| 2119 | reg = reloadReg; |
| 2120 | } |
| 2121 | } |
| 2122 | |
| 2123 | assert(reg != REG_NA); |
| 2124 | getEmitter()->emitIns_S_R(ins_Store(type), emitTypeSize(type), reg, lclNum, offset); |
| 2125 | offset += genTypeSize(type); |
| 2126 | } |
| 2127 | |
| 2128 | varDsc->lvRegNum = REG_STK; |
| 2129 | } |
| 2130 | #elif defined(_TARGET_X86_) |
| 2131 | // Longs are returned in two return registers on x86. |
| 2132 | assert(varTypeIsLong(treeNode)); |
| 2133 | |
| 2134 | // Assumption: current x86 implementation requires that a multi-reg long |
| 2135 | // var in 'var = call' is flagged as lvIsMultiRegRet to prevent it from |
| 2136 | // being promoted. |
| 2137 | unsigned lclNum = treeNode->AsLclVarCommon()->gtLclNum; |
| 2138 | LclVarDsc* varDsc = &(compiler->lvaTable[lclNum]); |
| 2139 | noway_assert(varDsc->lvIsMultiRegRet); |
| 2140 | |
| 2141 | GenTree* op1 = treeNode->gtGetOp1(); |
| 2142 | GenTree* actualOp1 = op1->gtSkipReloadOrCopy(); |
| 2143 | GenTreeCall* call = actualOp1->AsCall(); |
| 2144 | assert(call->HasMultiRegRetVal()); |
| 2145 | |
| 2146 | genConsumeRegs(op1); |
| 2147 | |
| 2148 | ReturnTypeDesc* retTypeDesc = call->GetReturnTypeDesc(); |
| 2149 | unsigned regCount = retTypeDesc->GetReturnRegCount(); |
| 2150 | assert(regCount == MAX_RET_REG_COUNT); |
| 2151 | |
| 2152 | // Stack store |
| 2153 | int offset = 0; |
| 2154 | for (unsigned i = 0; i < regCount; ++i) |
| 2155 | { |
| 2156 | var_types type = retTypeDesc->GetReturnRegType(i); |
| 2157 | regNumber reg = call->GetRegNumByIdx(i); |
| 2158 | if (op1->IsCopyOrReload()) |
| 2159 | { |
| 2160 | // GT_COPY/GT_RELOAD will have valid reg for those positions |
| 2161 | // that need to be copied or reloaded. |
| 2162 | regNumber reloadReg = op1->AsCopyOrReload()->GetRegNumByIdx(i); |
| 2163 | if (reloadReg != REG_NA) |
| 2164 | { |
| 2165 | reg = reloadReg; |
| 2166 | } |
| 2167 | } |
| 2168 | |
| 2169 | assert(reg != REG_NA); |
| 2170 | getEmitter()->emitIns_S_R(ins_Store(type), emitTypeSize(type), reg, lclNum, offset); |
| 2171 | offset += genTypeSize(type); |
| 2172 | } |
| 2173 | |
| 2174 | varDsc->lvRegNum = REG_STK; |
| 2175 | #else // !UNIX_AMD64_ABI && !_TARGET_X86_ |
| 2176 | assert(!"Unreached" ); |
| 2177 | #endif // !UNIX_AMD64_ABI && !_TARGET_X86_ |
| 2178 | } |
| 2179 | |
| 2180 | //------------------------------------------------------------------------ |
| 2181 | // genAllocLclFrame: Probe the stack and allocate the local stack frame: subtract from SP. |
| 2182 | // |
| 2183 | void CodeGen::genAllocLclFrame(unsigned frameSize, regNumber initReg, bool* pInitRegZeroed, regMaskTP maskArgRegsLiveIn) |
| 2184 | { |
| 2185 | assert(compiler->compGeneratingProlog); |
| 2186 | |
| 2187 | if (frameSize == 0) |
| 2188 | { |
| 2189 | return; |
| 2190 | } |
| 2191 | |
| 2192 | const target_size_t pageSize = compiler->eeGetPageSize(); |
| 2193 | |
| 2194 | if (frameSize == REGSIZE_BYTES) |
| 2195 | { |
| 2196 | // Frame size is the same as register size. |
| 2197 | inst_RV(INS_push, REG_EAX, TYP_I_IMPL); |
| 2198 | } |
| 2199 | else if (frameSize < pageSize) |
| 2200 | { |
| 2201 | // Frame size is (0x0008..0x1000) |
| 2202 | inst_RV_IV(INS_sub, REG_SPBASE, frameSize, EA_PTRSIZE); |
| 2203 | } |
| 2204 | else if (frameSize < compiler->getVeryLargeFrameSize()) |
| 2205 | { |
| 2206 | // Frame size is (0x1000..0x3000) |
| 2207 | |
| 2208 | getEmitter()->emitIns_AR_R(INS_test, EA_PTRSIZE, REG_EAX, REG_SPBASE, -(int)pageSize); |
| 2209 | |
| 2210 | if (frameSize >= 0x2000) |
| 2211 | { |
| 2212 | getEmitter()->emitIns_AR_R(INS_test, EA_PTRSIZE, REG_EAX, REG_SPBASE, -2 * (int)pageSize); |
| 2213 | } |
| 2214 | |
| 2215 | inst_RV_IV(INS_sub, REG_SPBASE, frameSize, EA_PTRSIZE); |
| 2216 | } |
| 2217 | else |
| 2218 | { |
| 2219 | // Frame size >= 0x3000 |
| 2220 | assert(frameSize >= compiler->getVeryLargeFrameSize()); |
| 2221 | |
| 2222 | // Emit the following sequence to 'tickle' the pages. |
| 2223 | // Note it is important that stack pointer not change until this is |
| 2224 | // complete since the tickles could cause a stack overflow, and we |
| 2225 | // need to be able to crawl the stack afterward (which means the |
| 2226 | // stack pointer needs to be known). |
| 2227 | |
| 2228 | bool pushedStubParam = false; |
| 2229 | if (compiler->info.compPublishStubParam && (REG_SECRET_STUB_PARAM == initReg)) |
| 2230 | { |
| 2231 | // push register containing the StubParam |
| 2232 | inst_RV(INS_push, REG_SECRET_STUB_PARAM, TYP_I_IMPL); |
| 2233 | pushedStubParam = true; |
| 2234 | } |
| 2235 | |
| 2236 | #ifndef _TARGET_UNIX_ |
| 2237 | instGen_Set_Reg_To_Zero(EA_PTRSIZE, initReg); |
| 2238 | #endif |
| 2239 | |
| 2240 | // |
| 2241 | // Can't have a label inside the ReJIT padding area |
| 2242 | // |
| 2243 | genPrologPadForReJit(); |
| 2244 | |
| 2245 | #ifndef _TARGET_UNIX_ |
| 2246 | // Code size for each instruction. We need this because the |
| 2247 | // backward branch is hard-coded with the number of bytes to branch. |
| 2248 | // The encoding differs based on the architecture and what register is |
| 2249 | // used (namely, using RAX has a smaller encoding). |
| 2250 | // |
| 2251 | // loop: |
| 2252 | // For x86 |
| 2253 | // test [esp + eax], eax 3 |
| 2254 | // sub eax, 0x1000 5 |
| 2255 | // cmp EAX, -frameSize 5 |
| 2256 | // jge loop 2 |
| 2257 | // |
| 2258 | // For AMD64 using RAX |
| 2259 | // test [rsp + rax], rax 4 |
| 2260 | // sub rax, 0x1000 6 |
| 2261 | // cmp rax, -frameSize 6 |
| 2262 | // jge loop 2 |
| 2263 | // |
| 2264 | // For AMD64 using RBP |
| 2265 | // test [rsp + rbp], rbp 4 |
| 2266 | // sub rbp, 0x1000 7 |
| 2267 | // cmp rbp, -frameSize 7 |
| 2268 | // jge loop 2 |
| 2269 | |
| 2270 | getEmitter()->emitIns_R_ARR(INS_test, EA_PTRSIZE, initReg, REG_SPBASE, initReg, 0); |
| 2271 | inst_RV_IV(INS_sub, initReg, pageSize, EA_PTRSIZE); |
| 2272 | inst_RV_IV(INS_cmp, initReg, -((ssize_t)frameSize), EA_PTRSIZE); |
| 2273 | |
| 2274 | int bytesForBackwardJump; |
| 2275 | #ifdef _TARGET_AMD64_ |
| 2276 | assert((initReg == REG_EAX) || (initReg == REG_EBP)); // We use RBP as initReg for EH funclets. |
| 2277 | bytesForBackwardJump = ((initReg == REG_EAX) ? -18 : -20); |
| 2278 | #else // !_TARGET_AMD64_ |
| 2279 | assert(initReg == REG_EAX); |
| 2280 | bytesForBackwardJump = -15; |
| 2281 | #endif // !_TARGET_AMD64_ |
| 2282 | |
| 2283 | // Branch backwards to start of loop |
| 2284 | inst_IV(INS_jge, bytesForBackwardJump); |
| 2285 | #else // _TARGET_UNIX_ |
| 2286 | // Code size for each instruction. We need this because the |
| 2287 | // backward branch is hard-coded with the number of bytes to branch. |
| 2288 | // The encoding differs based on the architecture and what register is |
| 2289 | // used (namely, using RAX has a smaller encoding). |
| 2290 | // |
| 2291 | // For x86 |
| 2292 | // lea eax, [esp - frameSize] |
| 2293 | // loop: |
| 2294 | // lea esp, [esp - pageSize] 7 |
| 2295 | // test [esp], eax 3 |
| 2296 | // cmp esp, eax 2 |
| 2297 | // jge loop 2 |
| 2298 | // lea rsp, [rbp + frameSize] |
| 2299 | // |
| 2300 | // For AMD64 using RAX |
| 2301 | // lea rax, [rsp - frameSize] |
| 2302 | // loop: |
| 2303 | // lea rsp, [rsp - pageSize] 8 |
| 2304 | // test [rsp], rax 4 |
| 2305 | // cmp rsp, rax 3 |
| 2306 | // jge loop 2 |
| 2307 | // lea rsp, [rax + frameSize] |
| 2308 | // |
| 2309 | // For AMD64 using RBP |
| 2310 | // lea rbp, [rsp - frameSize] |
| 2311 | // loop: |
| 2312 | // lea rsp, [rsp - pageSize] 8 |
| 2313 | // test [rsp], rbp 4 |
| 2314 | // cmp rsp, rbp 3 |
| 2315 | // jge loop 2 |
| 2316 | // lea rsp, [rbp + frameSize] |
| 2317 | |
| 2318 | int sPageSize = (int)pageSize; |
| 2319 | |
| 2320 | getEmitter()->emitIns_R_AR(INS_lea, EA_PTRSIZE, initReg, REG_SPBASE, -((ssize_t)frameSize)); // get frame border |
| 2321 | |
| 2322 | getEmitter()->emitIns_R_AR(INS_lea, EA_PTRSIZE, REG_SPBASE, REG_SPBASE, -sPageSize); |
| 2323 | getEmitter()->emitIns_R_AR(INS_test, EA_PTRSIZE, initReg, REG_SPBASE, 0); |
| 2324 | inst_RV_RV(INS_cmp, REG_SPBASE, initReg); |
| 2325 | |
| 2326 | int bytesForBackwardJump; |
| 2327 | #ifdef _TARGET_AMD64_ |
| 2328 | assert((initReg == REG_EAX) || (initReg == REG_EBP)); // We use RBP as initReg for EH funclets. |
| 2329 | bytesForBackwardJump = -17; |
| 2330 | #else // !_TARGET_AMD64_ |
| 2331 | assert(initReg == REG_EAX); |
| 2332 | bytesForBackwardJump = -14; |
| 2333 | #endif // !_TARGET_AMD64_ |
| 2334 | |
| 2335 | inst_IV(INS_jge, bytesForBackwardJump); // Branch backwards to start of loop |
| 2336 | |
| 2337 | getEmitter()->emitIns_R_AR(INS_lea, EA_PTRSIZE, REG_SPBASE, initReg, frameSize); // restore stack pointer |
| 2338 | #endif // _TARGET_UNIX_ |
| 2339 | |
| 2340 | *pInitRegZeroed = false; // The initReg does not contain zero |
| 2341 | |
| 2342 | if (pushedStubParam) |
| 2343 | { |
| 2344 | // pop eax |
| 2345 | inst_RV(INS_pop, REG_SECRET_STUB_PARAM, TYP_I_IMPL); |
| 2346 | regSet.verifyRegUsed(REG_SECRET_STUB_PARAM); |
| 2347 | } |
| 2348 | |
| 2349 | // sub esp, frameSize 6 |
| 2350 | inst_RV_IV(INS_sub, REG_SPBASE, frameSize, EA_PTRSIZE); |
| 2351 | } |
| 2352 | |
| 2353 | compiler->unwindAllocStack(frameSize); |
| 2354 | |
| 2355 | if (!doubleAlignOrFramePointerUsed()) |
| 2356 | { |
| 2357 | psiAdjustStackLevel(frameSize); |
| 2358 | } |
| 2359 | } |
| 2360 | |
| 2361 | //------------------------------------------------------------------------ |
| 2362 | // genLclHeap: Generate code for localloc. |
| 2363 | // |
| 2364 | // Arguments: |
| 2365 | // tree - the localloc tree to generate. |
| 2366 | // |
| 2367 | // Notes: |
| 2368 | // Note that for x86, we don't track ESP movements while generating the localloc code. |
| 2369 | // The ESP tracking is used to report stack pointer-relative GC info, which is not |
| 2370 | // interesting while doing the localloc construction. Also, for functions with localloc, |
| 2371 | // we have EBP frames, and EBP-relative locals, and ESP-relative accesses only for function |
| 2372 | // call arguments. |
| 2373 | // |
| 2374 | // For x86, we store the ESP after the localloc is complete in the LocAllocSP |
| 2375 | // variable. This variable is implicitly reported to the VM in the GC info (its position |
| 2376 | // is defined by convention relative to other items), and is used by the GC to find the |
| 2377 | // "base" stack pointer in functions with localloc. |
| 2378 | // |
| 2379 | void CodeGen::genLclHeap(GenTree* tree) |
| 2380 | { |
| 2381 | assert(tree->OperGet() == GT_LCLHEAP); |
| 2382 | assert(compiler->compLocallocUsed); |
| 2383 | |
| 2384 | GenTree* size = tree->gtOp.gtOp1; |
| 2385 | noway_assert((genActualType(size->gtType) == TYP_INT) || (genActualType(size->gtType) == TYP_I_IMPL)); |
| 2386 | |
| 2387 | regNumber targetReg = tree->gtRegNum; |
| 2388 | regNumber regCnt = REG_NA; |
| 2389 | var_types type = genActualType(size->gtType); |
| 2390 | emitAttr easz = emitTypeSize(type); |
| 2391 | BasicBlock* endLabel = nullptr; |
| 2392 | |
| 2393 | #ifdef DEBUG |
| 2394 | genStackPointerCheck(compiler->opts.compStackCheckOnRet, compiler->lvaReturnSpCheck); |
| 2395 | #endif |
| 2396 | |
| 2397 | noway_assert(isFramePointerUsed()); // localloc requires Frame Pointer to be established since SP changes |
| 2398 | noway_assert(genStackLevel == 0); // Can't have anything on the stack |
| 2399 | |
| 2400 | unsigned stackAdjustment = 0; |
| 2401 | BasicBlock* loop = nullptr; |
| 2402 | |
| 2403 | // compute the amount of memory to allocate to properly STACK_ALIGN. |
| 2404 | size_t amount = 0; |
| 2405 | if (size->IsCnsIntOrI()) |
| 2406 | { |
| 2407 | // If size is a constant, then it must be contained. |
| 2408 | assert(size->isContained()); |
| 2409 | |
| 2410 | // If amount is zero then return null in targetReg |
| 2411 | amount = size->gtIntCon.gtIconVal; |
| 2412 | if (amount == 0) |
| 2413 | { |
| 2414 | instGen_Set_Reg_To_Zero(EA_PTRSIZE, targetReg); |
| 2415 | goto BAILOUT; |
| 2416 | } |
| 2417 | |
| 2418 | // 'amount' is the total number of bytes to localloc to properly STACK_ALIGN |
| 2419 | amount = AlignUp(amount, STACK_ALIGN); |
| 2420 | } |
| 2421 | else |
| 2422 | { |
| 2423 | // The localloc requested memory size is non-constant. |
| 2424 | |
| 2425 | // Put the size value in targetReg. If it is zero, bail out by returning null in targetReg. |
| 2426 | genConsumeRegAndCopy(size, targetReg); |
| 2427 | endLabel = genCreateTempLabel(); |
| 2428 | getEmitter()->emitIns_R_R(INS_test, easz, targetReg, targetReg); |
| 2429 | inst_JMP(EJ_je, endLabel); |
| 2430 | |
| 2431 | // Compute the size of the block to allocate and perform alignment. |
| 2432 | // If compInitMem=true, we can reuse targetReg as regcnt, |
| 2433 | // since we don't need any internal registers. |
| 2434 | if (compiler->info.compInitMem) |
| 2435 | { |
| 2436 | assert(tree->AvailableTempRegCount() == 0); |
| 2437 | regCnt = targetReg; |
| 2438 | } |
| 2439 | else |
| 2440 | { |
| 2441 | regCnt = tree->ExtractTempReg(); |
| 2442 | if (regCnt != targetReg) |
| 2443 | { |
| 2444 | // Above, we put the size in targetReg. Now, copy it to our new temp register if necessary. |
| 2445 | inst_RV_RV(INS_mov, regCnt, targetReg, size->TypeGet()); |
| 2446 | } |
| 2447 | } |
| 2448 | |
| 2449 | // Round up the number of bytes to allocate to a STACK_ALIGN boundary. This is done |
| 2450 | // by code like: |
| 2451 | // add reg, 15 |
| 2452 | // and reg, -16 |
| 2453 | // However, in the initialized memory case, we need the count of STACK_ALIGN-sized |
| 2454 | // elements, not a byte count, after the alignment. So instead of the "and", which |
| 2455 | // becomes unnecessary, generate a shift, e.g.: |
| 2456 | // add reg, 15 |
| 2457 | // shr reg, 4 |
| 2458 | |
| 2459 | inst_RV_IV(INS_add, regCnt, STACK_ALIGN - 1, emitActualTypeSize(type)); |
| 2460 | |
| 2461 | if (compiler->info.compInitMem) |
| 2462 | { |
| 2463 | // Convert the count from a count of bytes to a loop count. We will loop once per |
| 2464 | // stack alignment size, so each loop will zero 4 bytes on Windows/x86, and 16 bytes |
| 2465 | // on x64 and Linux/x86. |
| 2466 | // |
| 2467 | // Note that we zero a single reg-size word per iteration on x86, and 2 reg-size |
| 2468 | // words per iteration on x64. We will shift off all the stack alignment bits |
| 2469 | // added above, so there is no need for an 'and' instruction. |
| 2470 | |
| 2471 | // --- shr regCnt, 2 (or 4) --- |
| 2472 | inst_RV_SH(INS_SHIFT_RIGHT_LOGICAL, EA_PTRSIZE, regCnt, STACK_ALIGN_SHIFT); |
| 2473 | } |
| 2474 | else |
| 2475 | { |
| 2476 | // Otherwise, mask off the low bits to align the byte count. |
| 2477 | inst_RV_IV(INS_AND, regCnt, ~(STACK_ALIGN - 1), emitActualTypeSize(type)); |
| 2478 | } |
| 2479 | } |
| 2480 | |
| 2481 | #if FEATURE_FIXED_OUT_ARGS |
| 2482 | // If we have an outgoing arg area then we must adjust the SP by popping off the |
| 2483 | // outgoing arg area. We will restore it right before we return from this method. |
| 2484 | // |
| 2485 | // Localloc returns stack space that aligned to STACK_ALIGN bytes. The following |
| 2486 | // are the cases that need to be handled: |
| 2487 | // i) Method has out-going arg area. |
| 2488 | // It is guaranteed that size of out-going arg area is STACK_ALIGN'ed (see fgMorphArgs). |
| 2489 | // Therefore, we will pop off the out-going arg area from RSP before allocating the localloc space. |
| 2490 | // ii) Method has no out-going arg area. |
| 2491 | // Nothing to pop off from the stack. |
| 2492 | if (compiler->lvaOutgoingArgSpaceSize > 0) |
| 2493 | { |
| 2494 | assert((compiler->lvaOutgoingArgSpaceSize % STACK_ALIGN) == 0); // This must be true for the stack to remain |
| 2495 | // aligned |
| 2496 | inst_RV_IV(INS_add, REG_SPBASE, compiler->lvaOutgoingArgSpaceSize, EA_PTRSIZE); |
| 2497 | stackAdjustment += compiler->lvaOutgoingArgSpaceSize; |
| 2498 | } |
| 2499 | #endif |
| 2500 | |
| 2501 | if (size->IsCnsIntOrI()) |
| 2502 | { |
| 2503 | // We should reach here only for non-zero, constant size allocations. |
| 2504 | assert(amount > 0); |
| 2505 | assert((amount % STACK_ALIGN) == 0); |
| 2506 | assert((amount % REGSIZE_BYTES) == 0); |
| 2507 | |
| 2508 | // For small allocations we will generate up to six push 0 inline |
| 2509 | size_t cntRegSizedWords = amount / REGSIZE_BYTES; |
| 2510 | if (cntRegSizedWords <= 6) |
| 2511 | { |
| 2512 | for (; cntRegSizedWords != 0; cntRegSizedWords--) |
| 2513 | { |
| 2514 | inst_IV(INS_push_hide, 0); // push_hide means don't track the stack |
| 2515 | } |
| 2516 | goto ALLOC_DONE; |
| 2517 | } |
| 2518 | |
| 2519 | bool doNoInitLessThanOnePageAlloc = |
| 2520 | !compiler->info.compInitMem && (amount < compiler->eeGetPageSize()); // must be < not <= |
| 2521 | |
| 2522 | #ifdef _TARGET_X86_ |
| 2523 | bool needRegCntRegister = true; |
| 2524 | #else // !_TARGET_X86_ |
| 2525 | bool needRegCntRegister = !doNoInitLessThanOnePageAlloc; |
| 2526 | #endif // !_TARGET_X86_ |
| 2527 | |
| 2528 | if (needRegCntRegister) |
| 2529 | { |
| 2530 | // If compInitMem=true, we can reuse targetReg as regcnt. |
| 2531 | // Since size is a constant, regCnt is not yet initialized. |
| 2532 | assert(regCnt == REG_NA); |
| 2533 | if (compiler->info.compInitMem) |
| 2534 | { |
| 2535 | assert(tree->AvailableTempRegCount() == 0); |
| 2536 | regCnt = targetReg; |
| 2537 | } |
| 2538 | else |
| 2539 | { |
| 2540 | regCnt = tree->ExtractTempReg(); |
| 2541 | } |
| 2542 | } |
| 2543 | |
| 2544 | if (doNoInitLessThanOnePageAlloc) |
| 2545 | { |
| 2546 | // Since the size is less than a page, simply adjust ESP. |
| 2547 | // ESP might already be in the guard page, so we must touch it BEFORE |
| 2548 | // the alloc, not after. |
| 2549 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 2550 | |
| 2551 | #ifdef _TARGET_X86_ |
| 2552 | // For x86, we don't want to use "sub ESP" because we don't want the emitter to track the adjustment |
| 2553 | // to ESP. So do the work in the count register. |
| 2554 | // TODO-CQ: manipulate ESP directly, to share code, reduce #ifdefs, and improve CQ. This would require |
| 2555 | // creating a way to temporarily turn off the emitter's tracking of ESP, maybe marking instrDescs as "don't |
| 2556 | // track". |
| 2557 | inst_RV_RV(INS_mov, regCnt, REG_SPBASE, TYP_I_IMPL); |
| 2558 | getEmitter()->emitIns_AR_R(INS_TEST, EA_4BYTE, REG_SPBASE, REG_SPBASE, 0); |
| 2559 | inst_RV_IV(INS_sub, regCnt, amount, EA_PTRSIZE); |
| 2560 | inst_RV_RV(INS_mov, REG_SPBASE, regCnt, TYP_I_IMPL); |
| 2561 | #else // !_TARGET_X86_ |
| 2562 | getEmitter()->emitIns_AR_R(INS_TEST, EA_4BYTE, REG_SPBASE, REG_SPBASE, 0); |
| 2563 | inst_RV_IV(INS_sub, REG_SPBASE, amount, EA_PTRSIZE); |
| 2564 | #endif // !_TARGET_X86_ |
| 2565 | |
| 2566 | goto ALLOC_DONE; |
| 2567 | } |
| 2568 | |
| 2569 | // else, "mov regCnt, amount" |
| 2570 | |
| 2571 | if (compiler->info.compInitMem) |
| 2572 | { |
| 2573 | // When initializing memory, we want 'amount' to be the loop count. |
| 2574 | assert((amount % STACK_ALIGN) == 0); |
| 2575 | amount /= STACK_ALIGN; |
| 2576 | } |
| 2577 | |
| 2578 | genSetRegToIcon(regCnt, amount, ((int)amount == amount) ? TYP_INT : TYP_LONG); |
| 2579 | } |
| 2580 | |
| 2581 | loop = genCreateTempLabel(); |
| 2582 | if (compiler->info.compInitMem) |
| 2583 | { |
| 2584 | // At this point 'regCnt' is set to the number of loop iterations for this loop, if each |
| 2585 | // iteration zeros (and subtracts from the stack pointer) STACK_ALIGN bytes. |
| 2586 | // Since we have to zero out the allocated memory AND ensure that RSP is always valid |
| 2587 | // by tickling the pages, we will just push 0's on the stack. |
| 2588 | |
| 2589 | assert(genIsValidIntReg(regCnt)); |
| 2590 | |
| 2591 | // Loop: |
| 2592 | genDefineTempLabel(loop); |
| 2593 | |
| 2594 | static_assert_no_msg((STACK_ALIGN % REGSIZE_BYTES) == 0); |
| 2595 | unsigned const count = (STACK_ALIGN / REGSIZE_BYTES); |
| 2596 | |
| 2597 | for (unsigned i = 0; i < count; i++) |
| 2598 | { |
| 2599 | inst_IV(INS_push_hide, 0); // --- push REG_SIZE bytes of 0 |
| 2600 | } |
| 2601 | // Note that the stack must always be aligned to STACK_ALIGN bytes |
| 2602 | |
| 2603 | // Decrement the loop counter and loop if not done. |
| 2604 | inst_RV(INS_dec, regCnt, TYP_I_IMPL); |
| 2605 | inst_JMP(EJ_jne, loop); |
| 2606 | } |
| 2607 | else |
| 2608 | { |
| 2609 | // At this point 'regCnt' is set to the total number of bytes to localloc. |
| 2610 | // |
| 2611 | // We don't need to zero out the allocated memory. However, we do have |
| 2612 | // to tickle the pages to ensure that ESP is always valid and is |
| 2613 | // in sync with the "stack guard page". Note that in the worst |
| 2614 | // case ESP is on the last byte of the guard page. Thus you must |
| 2615 | // touch ESP+0 first not ESP+x01000. |
| 2616 | // |
| 2617 | // Another subtlety is that you don't want ESP to be exactly on the |
| 2618 | // boundary of the guard page because PUSH is predecrement, thus |
| 2619 | // call setup would not touch the guard page but just beyond it |
| 2620 | // |
| 2621 | // Note that we go through a few hoops so that ESP never points to |
| 2622 | // illegal pages at any time during the tickling process |
| 2623 | // |
| 2624 | // neg REGCNT |
| 2625 | // add REGCNT, ESP // reg now holds ultimate ESP |
| 2626 | // jb loop // result is smaller than orignial ESP (no wrap around) |
| 2627 | // xor REGCNT, REGCNT, // Overflow, pick lowest possible number |
| 2628 | // loop: |
| 2629 | // test ESP, [ESP+0] // tickle the page |
| 2630 | // mov REGTMP, ESP |
| 2631 | // sub REGTMP, GetOsPageSize() |
| 2632 | // mov ESP, REGTMP |
| 2633 | // cmp ESP, REGCNT |
| 2634 | // jae loop |
| 2635 | // |
| 2636 | // mov ESP, REG |
| 2637 | // end: |
| 2638 | inst_RV(INS_NEG, regCnt, TYP_I_IMPL); |
| 2639 | inst_RV_RV(INS_add, regCnt, REG_SPBASE, TYP_I_IMPL); |
| 2640 | inst_JMP(EJ_jb, loop); |
| 2641 | |
| 2642 | instGen_Set_Reg_To_Zero(EA_PTRSIZE, regCnt); |
| 2643 | |
| 2644 | genDefineTempLabel(loop); |
| 2645 | |
| 2646 | // Tickle the decremented value, and move back to ESP, |
| 2647 | // note that it has to be done BEFORE the update of ESP since |
| 2648 | // ESP might already be on the guard page. It is OK to leave |
| 2649 | // the final value of ESP on the guard page |
| 2650 | getEmitter()->emitIns_AR_R(INS_TEST, EA_4BYTE, REG_SPBASE, REG_SPBASE, 0); |
| 2651 | |
| 2652 | // This is a harmless trick to avoid the emitter trying to track the |
| 2653 | // decrement of the ESP - we do the subtraction in another reg instead |
| 2654 | // of adjusting ESP directly. |
| 2655 | regNumber regTmp = tree->GetSingleTempReg(); |
| 2656 | |
| 2657 | inst_RV_RV(INS_mov, regTmp, REG_SPBASE, TYP_I_IMPL); |
| 2658 | inst_RV_IV(INS_sub, regTmp, compiler->eeGetPageSize(), EA_PTRSIZE); |
| 2659 | inst_RV_RV(INS_mov, REG_SPBASE, regTmp, TYP_I_IMPL); |
| 2660 | |
| 2661 | inst_RV_RV(INS_cmp, REG_SPBASE, regCnt, TYP_I_IMPL); |
| 2662 | inst_JMP(EJ_jae, loop); |
| 2663 | |
| 2664 | // Move the final value to ESP |
| 2665 | inst_RV_RV(INS_mov, REG_SPBASE, regCnt); |
| 2666 | } |
| 2667 | |
| 2668 | ALLOC_DONE: |
| 2669 | // Re-adjust SP to allocate out-going arg area |
| 2670 | if (stackAdjustment > 0) |
| 2671 | { |
| 2672 | assert((stackAdjustment % STACK_ALIGN) == 0); // This must be true for the stack to remain aligned |
| 2673 | inst_RV_IV(INS_sub, REG_SPBASE, stackAdjustment, EA_PTRSIZE); |
| 2674 | } |
| 2675 | |
| 2676 | // Return the stackalloc'ed address in result register. |
| 2677 | // TargetReg = RSP + stackAdjustment. |
| 2678 | getEmitter()->emitIns_R_AR(INS_lea, EA_PTRSIZE, targetReg, REG_SPBASE, stackAdjustment); |
| 2679 | |
| 2680 | if (endLabel != nullptr) |
| 2681 | { |
| 2682 | genDefineTempLabel(endLabel); |
| 2683 | } |
| 2684 | |
| 2685 | BAILOUT: |
| 2686 | |
| 2687 | #ifdef JIT32_GCENCODER |
| 2688 | if (compiler->lvaLocAllocSPvar != BAD_VAR_NUM) |
| 2689 | { |
| 2690 | getEmitter()->emitIns_S_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE, REG_SPBASE, compiler->lvaLocAllocSPvar, 0); |
| 2691 | } |
| 2692 | #endif // JIT32_GCENCODER |
| 2693 | |
| 2694 | #if STACK_PROBES |
| 2695 | if (compiler->opts.compNeedStackProbes) |
| 2696 | { |
| 2697 | genGenerateStackProbe(); |
| 2698 | } |
| 2699 | #endif |
| 2700 | |
| 2701 | #ifdef DEBUG |
| 2702 | // Update local variable to reflect the new stack pointer. |
| 2703 | if (compiler->opts.compStackCheckOnRet) |
| 2704 | { |
| 2705 | noway_assert(compiler->lvaReturnSpCheck != 0xCCCCCCCC && |
| 2706 | compiler->lvaTable[compiler->lvaReturnSpCheck].lvDoNotEnregister && |
| 2707 | compiler->lvaTable[compiler->lvaReturnSpCheck].lvOnFrame); |
| 2708 | getEmitter()->emitIns_S_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE, REG_SPBASE, compiler->lvaReturnSpCheck, 0); |
| 2709 | } |
| 2710 | #endif |
| 2711 | |
| 2712 | genProduceReg(tree); |
| 2713 | } |
| 2714 | |
| 2715 | void CodeGen::genCodeForStoreBlk(GenTreeBlk* storeBlkNode) |
| 2716 | { |
| 2717 | assert(storeBlkNode->OperIs(GT_STORE_OBJ, GT_STORE_DYN_BLK, GT_STORE_BLK)); |
| 2718 | |
| 2719 | if (storeBlkNode->OperIs(GT_STORE_OBJ) && storeBlkNode->OperIsCopyBlkOp() && !storeBlkNode->gtBlkOpGcUnsafe) |
| 2720 | { |
| 2721 | assert(storeBlkNode->AsObj()->gtGcPtrCount != 0); |
| 2722 | genCodeForCpObj(storeBlkNode->AsObj()); |
| 2723 | return; |
| 2724 | } |
| 2725 | |
| 2726 | #ifdef JIT32_GCENCODER |
| 2727 | assert(!storeBlkNode->gtBlkOpGcUnsafe); |
| 2728 | #else |
| 2729 | if (storeBlkNode->gtBlkOpGcUnsafe) |
| 2730 | { |
| 2731 | getEmitter()->emitDisableGC(); |
| 2732 | } |
| 2733 | #endif // JIT32_GCENCODER |
| 2734 | |
| 2735 | bool isCopyBlk = storeBlkNode->OperIsCopyBlkOp(); |
| 2736 | |
| 2737 | switch (storeBlkNode->gtBlkOpKind) |
| 2738 | { |
| 2739 | #ifdef _TARGET_AMD64_ |
| 2740 | case GenTreeBlk::BlkOpKindHelper: |
| 2741 | if (isCopyBlk) |
| 2742 | { |
| 2743 | genCodeForCpBlk(storeBlkNode); |
| 2744 | } |
| 2745 | else |
| 2746 | { |
| 2747 | genCodeForInitBlk(storeBlkNode); |
| 2748 | } |
| 2749 | break; |
| 2750 | #endif // _TARGET_AMD64_ |
| 2751 | case GenTreeBlk::BlkOpKindRepInstr: |
| 2752 | if (isCopyBlk) |
| 2753 | { |
| 2754 | genCodeForCpBlkRepMovs(storeBlkNode); |
| 2755 | } |
| 2756 | else |
| 2757 | { |
| 2758 | genCodeForInitBlkRepStos(storeBlkNode); |
| 2759 | } |
| 2760 | break; |
| 2761 | case GenTreeBlk::BlkOpKindUnroll: |
| 2762 | if (isCopyBlk) |
| 2763 | { |
| 2764 | genCodeForCpBlkUnroll(storeBlkNode); |
| 2765 | } |
| 2766 | else |
| 2767 | { |
| 2768 | genCodeForInitBlkUnroll(storeBlkNode); |
| 2769 | } |
| 2770 | break; |
| 2771 | default: |
| 2772 | unreached(); |
| 2773 | } |
| 2774 | |
| 2775 | #ifndef JIT32_GCENCODER |
| 2776 | if (storeBlkNode->gtBlkOpGcUnsafe) |
| 2777 | { |
| 2778 | getEmitter()->emitEnableGC(); |
| 2779 | } |
| 2780 | #endif // !defined(JIT32_GCENCODER) |
| 2781 | } |
| 2782 | |
| 2783 | // |
| 2784 | //------------------------------------------------------------------------ |
| 2785 | // genCodeForInitBlkRepStos: Generate code for InitBlk using rep stos. |
| 2786 | // |
| 2787 | // Arguments: |
| 2788 | // initBlkNode - The Block store for which we are generating code. |
| 2789 | // |
| 2790 | // Preconditions: |
| 2791 | // On x64: |
| 2792 | // The size of the buffers must be a constant and also less than INITBLK_STOS_LIMIT bytes. |
| 2793 | // Any value larger than that, we'll use the helper even if both the fill byte and the |
| 2794 | // size are integer constants. |
| 2795 | // On x86: |
| 2796 | // The size must either be a non-constant or less than INITBLK_STOS_LIMIT bytes. |
| 2797 | // |
| 2798 | void CodeGen::genCodeForInitBlkRepStos(GenTreeBlk* initBlkNode) |
| 2799 | { |
| 2800 | // Make sure we got the arguments of the initblk/initobj operation in the right registers. |
| 2801 | unsigned size = initBlkNode->Size(); |
| 2802 | GenTree* dstAddr = initBlkNode->Addr(); |
| 2803 | GenTree* initVal = initBlkNode->Data(); |
| 2804 | if (initVal->OperIsInitVal()) |
| 2805 | { |
| 2806 | initVal = initVal->gtGetOp1(); |
| 2807 | } |
| 2808 | |
| 2809 | #ifdef DEBUG |
| 2810 | assert(dstAddr->isUsedFromReg()); |
| 2811 | assert(initVal->isUsedFromReg()); |
| 2812 | #ifdef _TARGET_AMD64_ |
| 2813 | assert(size != 0); |
| 2814 | #endif |
| 2815 | if (initVal->IsCnsIntOrI()) |
| 2816 | { |
| 2817 | #ifdef _TARGET_AMD64_ |
| 2818 | assert(size > CPBLK_UNROLL_LIMIT && size < CPBLK_MOVS_LIMIT); |
| 2819 | #else |
| 2820 | // Note that a size of zero means a non-constant size. |
| 2821 | assert((size == 0) || (size > CPBLK_UNROLL_LIMIT)); |
| 2822 | #endif |
| 2823 | } |
| 2824 | |
| 2825 | #endif // DEBUG |
| 2826 | |
| 2827 | genConsumeBlockOp(initBlkNode, REG_RDI, REG_RAX, REG_RCX); |
| 2828 | instGen(INS_r_stosb); |
| 2829 | } |
| 2830 | |
| 2831 | // Generate code for InitBlk by performing a loop unroll |
| 2832 | // Preconditions: |
| 2833 | // a) Both the size and fill byte value are integer constants. |
| 2834 | // b) The size of the struct to initialize is smaller than INITBLK_UNROLL_LIMIT bytes. |
| 2835 | // |
| 2836 | void CodeGen::genCodeForInitBlkUnroll(GenTreeBlk* initBlkNode) |
| 2837 | { |
| 2838 | // Make sure we got the arguments of the initblk/initobj operation in the right registers |
| 2839 | unsigned size = initBlkNode->Size(); |
| 2840 | GenTree* dstAddr = initBlkNode->Addr(); |
| 2841 | GenTree* initVal = initBlkNode->Data(); |
| 2842 | if (initVal->OperIsInitVal()) |
| 2843 | { |
| 2844 | initVal = initVal->gtGetOp1(); |
| 2845 | } |
| 2846 | |
| 2847 | assert(dstAddr->isUsedFromReg()); |
| 2848 | assert(initVal->isUsedFromReg() || (initVal->IsIntegralConst(0) && ((size & 0xf) == 0))); |
| 2849 | assert(size != 0); |
| 2850 | assert(size <= INITBLK_UNROLL_LIMIT); |
| 2851 | assert(initVal->gtSkipReloadOrCopy()->IsCnsIntOrI()); |
| 2852 | |
| 2853 | emitter* emit = getEmitter(); |
| 2854 | |
| 2855 | genConsumeOperands(initBlkNode); |
| 2856 | |
| 2857 | // If the initVal was moved, or spilled and reloaded to a different register, |
| 2858 | // get the original initVal from below the GT_RELOAD, but only after capturing the valReg, |
| 2859 | // which needs to be the new register. |
| 2860 | regNumber valReg = initVal->gtRegNum; |
| 2861 | initVal = initVal->gtSkipReloadOrCopy(); |
| 2862 | |
| 2863 | unsigned offset = 0; |
| 2864 | |
| 2865 | // Perform an unroll using SSE2 loads and stores. |
| 2866 | if (size >= XMM_REGSIZE_BYTES) |
| 2867 | { |
| 2868 | regNumber tmpReg = initBlkNode->GetSingleTempReg(); |
| 2869 | assert(genIsValidFloatReg(tmpReg)); |
| 2870 | |
| 2871 | if (initVal->gtIntCon.gtIconVal != 0) |
| 2872 | { |
| 2873 | emit->emitIns_R_R(INS_mov_i2xmm, EA_PTRSIZE, tmpReg, valReg); |
| 2874 | emit->emitIns_R_R(INS_punpckldq, EA_8BYTE, tmpReg, tmpReg); |
| 2875 | #ifdef _TARGET_X86_ |
| 2876 | // For x86, we need one more to convert it from 8 bytes to 16 bytes. |
| 2877 | emit->emitIns_R_R(INS_punpckldq, EA_8BYTE, tmpReg, tmpReg); |
| 2878 | #endif // _TARGET_X86_ |
| 2879 | } |
| 2880 | else |
| 2881 | { |
| 2882 | emit->emitIns_R_R(INS_xorps, EA_8BYTE, tmpReg, tmpReg); |
| 2883 | } |
| 2884 | |
| 2885 | // Determine how many 16 byte slots we're going to fill using SSE movs. |
| 2886 | size_t slots = size / XMM_REGSIZE_BYTES; |
| 2887 | |
| 2888 | while (slots-- > 0) |
| 2889 | { |
| 2890 | emit->emitIns_AR_R(INS_movdqu, EA_8BYTE, tmpReg, dstAddr->gtRegNum, offset); |
| 2891 | offset += XMM_REGSIZE_BYTES; |
| 2892 | } |
| 2893 | } |
| 2894 | |
| 2895 | // Fill the remainder (or a < 16 byte sized struct) |
| 2896 | if ((size & 8) != 0) |
| 2897 | { |
| 2898 | #ifdef _TARGET_X86_ |
| 2899 | // TODO-X86-CQ: [1091735] Revisit block ops codegen. One example: use movq for 8 byte movs. |
| 2900 | emit->emitIns_AR_R(INS_mov, EA_4BYTE, valReg, dstAddr->gtRegNum, offset); |
| 2901 | offset += 4; |
| 2902 | emit->emitIns_AR_R(INS_mov, EA_4BYTE, valReg, dstAddr->gtRegNum, offset); |
| 2903 | offset += 4; |
| 2904 | #else // !_TARGET_X86_ |
| 2905 | |
| 2906 | emit->emitIns_AR_R(INS_mov, EA_8BYTE, valReg, dstAddr->gtRegNum, offset); |
| 2907 | offset += 8; |
| 2908 | |
| 2909 | #endif // !_TARGET_X86_ |
| 2910 | } |
| 2911 | if ((size & 4) != 0) |
| 2912 | { |
| 2913 | emit->emitIns_AR_R(INS_mov, EA_4BYTE, valReg, dstAddr->gtRegNum, offset); |
| 2914 | offset += 4; |
| 2915 | } |
| 2916 | if ((size & 2) != 0) |
| 2917 | { |
| 2918 | emit->emitIns_AR_R(INS_mov, EA_2BYTE, valReg, dstAddr->gtRegNum, offset); |
| 2919 | offset += 2; |
| 2920 | } |
| 2921 | if ((size & 1) != 0) |
| 2922 | { |
| 2923 | emit->emitIns_AR_R(INS_mov, EA_1BYTE, valReg, dstAddr->gtRegNum, offset); |
| 2924 | } |
| 2925 | } |
| 2926 | |
| 2927 | // Generates code for InitBlk by calling the VM memset helper function. |
| 2928 | // Preconditions: |
| 2929 | // a) The size argument of the InitBlk is not an integer constant. |
| 2930 | // b) The size argument of the InitBlk is >= INITBLK_STOS_LIMIT bytes. |
| 2931 | void CodeGen::genCodeForInitBlk(GenTreeBlk* initBlkNode) |
| 2932 | { |
| 2933 | #ifdef _TARGET_AMD64_ |
| 2934 | // Make sure we got the arguments of the initblk operation in the right registers |
| 2935 | unsigned blockSize = initBlkNode->Size(); |
| 2936 | GenTree* dstAddr = initBlkNode->Addr(); |
| 2937 | GenTree* initVal = initBlkNode->Data(); |
| 2938 | if (initVal->OperIsInitVal()) |
| 2939 | { |
| 2940 | initVal = initVal->gtGetOp1(); |
| 2941 | } |
| 2942 | |
| 2943 | assert(dstAddr->isUsedFromReg()); |
| 2944 | assert(initVal->isUsedFromReg()); |
| 2945 | |
| 2946 | if (blockSize != 0) |
| 2947 | { |
| 2948 | assert(blockSize >= CPBLK_MOVS_LIMIT); |
| 2949 | } |
| 2950 | |
| 2951 | genConsumeBlockOp(initBlkNode, REG_ARG_0, REG_ARG_1, REG_ARG_2); |
| 2952 | |
| 2953 | genEmitHelperCall(CORINFO_HELP_MEMSET, 0, EA_UNKNOWN); |
| 2954 | #else // !_TARGET_AMD64_ |
| 2955 | NYI_X86("Helper call for InitBlk" ); |
| 2956 | #endif // !_TARGET_AMD64_ |
| 2957 | } |
| 2958 | |
| 2959 | // Generate code for a load from some address + offset |
| 2960 | // baseNode: tree node which can be either a local address or arbitrary node |
| 2961 | // offset: distance from the baseNode from which to load |
| 2962 | void CodeGen::genCodeForLoadOffset(instruction ins, emitAttr size, regNumber dst, GenTree* baseNode, unsigned offset) |
| 2963 | { |
| 2964 | emitter* emit = getEmitter(); |
| 2965 | |
| 2966 | if (baseNode->OperIsLocalAddr()) |
| 2967 | { |
| 2968 | if (baseNode->gtOper == GT_LCL_FLD_ADDR) |
| 2969 | { |
| 2970 | offset += baseNode->gtLclFld.gtLclOffs; |
| 2971 | } |
| 2972 | emit->emitIns_R_S(ins, size, dst, baseNode->gtLclVarCommon.gtLclNum, offset); |
| 2973 | } |
| 2974 | else |
| 2975 | { |
| 2976 | emit->emitIns_R_AR(ins, size, dst, baseNode->gtRegNum, offset); |
| 2977 | } |
| 2978 | } |
| 2979 | |
| 2980 | //------------------------------------------------------------------------ |
| 2981 | // genCodeForStoreOffset: Generate code to store a reg to [base + offset]. |
| 2982 | // |
| 2983 | // Arguments: |
| 2984 | // ins - the instruction to generate. |
| 2985 | // size - the size that needs to be stored. |
| 2986 | // src - the register which needs to be stored. |
| 2987 | // baseNode - the base, relative to which to store the src register. |
| 2988 | // offset - the offset that is added to the baseNode to calculate the address to store into. |
| 2989 | // |
| 2990 | void CodeGen::genCodeForStoreOffset(instruction ins, emitAttr size, regNumber src, GenTree* baseNode, unsigned offset) |
| 2991 | { |
| 2992 | emitter* emit = getEmitter(); |
| 2993 | |
| 2994 | if (baseNode->OperIsLocalAddr()) |
| 2995 | { |
| 2996 | if (baseNode->gtOper == GT_LCL_FLD_ADDR) |
| 2997 | { |
| 2998 | offset += baseNode->gtLclFld.gtLclOffs; |
| 2999 | } |
| 3000 | |
| 3001 | emit->emitIns_S_R(ins, size, src, baseNode->AsLclVarCommon()->GetLclNum(), offset); |
| 3002 | } |
| 3003 | else |
| 3004 | { |
| 3005 | emit->emitIns_AR_R(ins, size, src, baseNode->gtRegNum, offset); |
| 3006 | } |
| 3007 | } |
| 3008 | |
| 3009 | // Generates CpBlk code by performing a loop unroll |
| 3010 | // Preconditions: |
| 3011 | // The size argument of the CpBlk node is a constant and <= 64 bytes. |
| 3012 | // This may seem small but covers >95% of the cases in several framework assemblies. |
| 3013 | // |
| 3014 | void CodeGen::genCodeForCpBlkUnroll(GenTreeBlk* cpBlkNode) |
| 3015 | { |
| 3016 | // Make sure we got the arguments of the cpblk operation in the right registers |
| 3017 | unsigned size = cpBlkNode->Size(); |
| 3018 | GenTree* dstAddr = cpBlkNode->Addr(); |
| 3019 | GenTree* source = cpBlkNode->Data(); |
| 3020 | GenTree* srcAddr = nullptr; |
| 3021 | assert(size <= CPBLK_UNROLL_LIMIT); |
| 3022 | |
| 3023 | emitter* emit = getEmitter(); |
| 3024 | |
| 3025 | if (dstAddr->isUsedFromReg()) |
| 3026 | { |
| 3027 | genConsumeReg(dstAddr); |
| 3028 | } |
| 3029 | |
| 3030 | if (source->gtOper == GT_IND) |
| 3031 | { |
| 3032 | srcAddr = source->gtGetOp1(); |
| 3033 | if (srcAddr->isUsedFromReg()) |
| 3034 | { |
| 3035 | genConsumeReg(srcAddr); |
| 3036 | } |
| 3037 | } |
| 3038 | else |
| 3039 | { |
| 3040 | noway_assert(source->IsLocal()); |
| 3041 | // TODO-Cleanup: Consider making the addrForm() method in Rationalize public, e.g. in GenTree. |
| 3042 | // OR: transform source to GT_IND(GT_LCL_VAR_ADDR) |
| 3043 | if (source->OperGet() == GT_LCL_VAR) |
| 3044 | { |
| 3045 | source->SetOper(GT_LCL_VAR_ADDR); |
| 3046 | } |
| 3047 | else |
| 3048 | { |
| 3049 | assert(source->OperGet() == GT_LCL_FLD); |
| 3050 | source->SetOper(GT_LCL_FLD_ADDR); |
| 3051 | } |
| 3052 | srcAddr = source; |
| 3053 | } |
| 3054 | |
| 3055 | unsigned offset = 0; |
| 3056 | |
| 3057 | // If the size of this struct is larger than 16 bytes |
| 3058 | // let's use SSE2 to be able to do 16 byte at a time |
| 3059 | // loads and stores. |
| 3060 | |
| 3061 | if (size >= XMM_REGSIZE_BYTES) |
| 3062 | { |
| 3063 | regNumber xmmReg = cpBlkNode->GetSingleTempReg(RBM_ALLFLOAT); |
| 3064 | assert(genIsValidFloatReg(xmmReg)); |
| 3065 | size_t slots = size / XMM_REGSIZE_BYTES; |
| 3066 | |
| 3067 | // TODO: In the below code the load and store instructions are for 16 bytes, but the |
| 3068 | // type is EA_8BYTE. The movdqa/u are 16 byte instructions, so it works, but |
| 3069 | // this probably needs to be changed. |
| 3070 | while (slots-- > 0) |
| 3071 | { |
| 3072 | // Load |
| 3073 | genCodeForLoadOffset(INS_movdqu, EA_8BYTE, xmmReg, srcAddr, offset); |
| 3074 | // Store |
| 3075 | genCodeForStoreOffset(INS_movdqu, EA_8BYTE, xmmReg, dstAddr, offset); |
| 3076 | offset += XMM_REGSIZE_BYTES; |
| 3077 | } |
| 3078 | } |
| 3079 | |
| 3080 | // Fill the remainder (15 bytes or less) if there's one. |
| 3081 | if ((size & 0xf) != 0) |
| 3082 | { |
| 3083 | // Grab the integer temp register to emit the remaining loads and stores. |
| 3084 | regNumber tmpReg = cpBlkNode->GetSingleTempReg(RBM_ALLINT); |
| 3085 | |
| 3086 | if ((size & 8) != 0) |
| 3087 | { |
| 3088 | #ifdef _TARGET_X86_ |
| 3089 | // TODO-X86-CQ: [1091735] Revisit block ops codegen. One example: use movq for 8 byte movs. |
| 3090 | for (unsigned savedOffs = offset; offset < savedOffs + 8; offset += 4) |
| 3091 | { |
| 3092 | genCodeForLoadOffset(INS_mov, EA_4BYTE, tmpReg, srcAddr, offset); |
| 3093 | genCodeForStoreOffset(INS_mov, EA_4BYTE, tmpReg, dstAddr, offset); |
| 3094 | } |
| 3095 | #else // !_TARGET_X86_ |
| 3096 | genCodeForLoadOffset(INS_mov, EA_8BYTE, tmpReg, srcAddr, offset); |
| 3097 | genCodeForStoreOffset(INS_mov, EA_8BYTE, tmpReg, dstAddr, offset); |
| 3098 | offset += 8; |
| 3099 | #endif // !_TARGET_X86_ |
| 3100 | } |
| 3101 | if ((size & 4) != 0) |
| 3102 | { |
| 3103 | genCodeForLoadOffset(INS_mov, EA_4BYTE, tmpReg, srcAddr, offset); |
| 3104 | genCodeForStoreOffset(INS_mov, EA_4BYTE, tmpReg, dstAddr, offset); |
| 3105 | offset += 4; |
| 3106 | } |
| 3107 | if ((size & 2) != 0) |
| 3108 | { |
| 3109 | genCodeForLoadOffset(INS_mov, EA_2BYTE, tmpReg, srcAddr, offset); |
| 3110 | genCodeForStoreOffset(INS_mov, EA_2BYTE, tmpReg, dstAddr, offset); |
| 3111 | offset += 2; |
| 3112 | } |
| 3113 | if ((size & 1) != 0) |
| 3114 | { |
| 3115 | genCodeForLoadOffset(INS_mov, EA_1BYTE, tmpReg, srcAddr, offset); |
| 3116 | genCodeForStoreOffset(INS_mov, EA_1BYTE, tmpReg, dstAddr, offset); |
| 3117 | } |
| 3118 | } |
| 3119 | } |
| 3120 | |
| 3121 | // Generate code for CpBlk by using rep movs |
| 3122 | // Preconditions: |
| 3123 | // The size argument of the CpBlk is a constant and is between |
| 3124 | // CPBLK_UNROLL_LIMIT and CPBLK_MOVS_LIMIT bytes. |
| 3125 | void CodeGen::genCodeForCpBlkRepMovs(GenTreeBlk* cpBlkNode) |
| 3126 | { |
| 3127 | // Make sure we got the arguments of the cpblk operation in the right registers |
| 3128 | unsigned size = cpBlkNode->Size(); |
| 3129 | GenTree* dstAddr = cpBlkNode->Addr(); |
| 3130 | GenTree* source = cpBlkNode->Data(); |
| 3131 | GenTree* srcAddr = nullptr; |
| 3132 | |
| 3133 | #ifdef DEBUG |
| 3134 | assert(dstAddr->isUsedFromReg()); |
| 3135 | assert(source->isContained()); |
| 3136 | |
| 3137 | #ifdef _TARGET_X86_ |
| 3138 | if (size == 0) |
| 3139 | { |
| 3140 | noway_assert(cpBlkNode->OperGet() == GT_STORE_DYN_BLK); |
| 3141 | } |
| 3142 | else |
| 3143 | #endif |
| 3144 | { |
| 3145 | #ifdef _TARGET_X64_ |
| 3146 | assert(size > CPBLK_UNROLL_LIMIT && size < CPBLK_MOVS_LIMIT); |
| 3147 | #else |
| 3148 | assert(size > CPBLK_UNROLL_LIMIT); |
| 3149 | #endif |
| 3150 | } |
| 3151 | #endif // DEBUG |
| 3152 | |
| 3153 | genConsumeBlockOp(cpBlkNode, REG_RDI, REG_RSI, REG_RCX); |
| 3154 | instGen(INS_r_movsb); |
| 3155 | } |
| 3156 | |
| 3157 | #ifdef FEATURE_PUT_STRUCT_ARG_STK |
| 3158 | //------------------------------------------------------------------------ |
| 3159 | // CodeGen::genMove8IfNeeded: Conditionally move 8 bytes of a struct to the argument area |
| 3160 | // |
| 3161 | // Arguments: |
| 3162 | // size - The size of bytes remaining to be moved |
| 3163 | // longTmpReg - The tmp register to be used for the long value |
| 3164 | // srcAddr - The address of the source struct |
| 3165 | // offset - The current offset being copied |
| 3166 | // |
| 3167 | // Return Value: |
| 3168 | // Returns the number of bytes moved (8 or 0). |
| 3169 | // |
| 3170 | // Notes: |
| 3171 | // This is used in the PutArgStkKindUnroll case, to move any bytes that are |
| 3172 | // not an even multiple of 16. |
| 3173 | // On x86, longTmpReg must be an xmm reg; on x64 it must be an integer register. |
| 3174 | // This is checked by genStoreRegToStackArg. |
| 3175 | // |
| 3176 | unsigned CodeGen::genMove8IfNeeded(unsigned size, regNumber longTmpReg, GenTree* srcAddr, unsigned offset) |
| 3177 | { |
| 3178 | #ifdef _TARGET_X86_ |
| 3179 | instruction longMovIns = INS_movq; |
| 3180 | #else // !_TARGET_X86_ |
| 3181 | instruction longMovIns = INS_mov; |
| 3182 | #endif // !_TARGET_X86_ |
| 3183 | if ((size & 8) != 0) |
| 3184 | { |
| 3185 | genCodeForLoadOffset(longMovIns, EA_8BYTE, longTmpReg, srcAddr, offset); |
| 3186 | genStoreRegToStackArg(TYP_LONG, longTmpReg, offset); |
| 3187 | return 8; |
| 3188 | } |
| 3189 | return 0; |
| 3190 | } |
| 3191 | |
| 3192 | //------------------------------------------------------------------------ |
| 3193 | // CodeGen::genMove4IfNeeded: Conditionally move 4 bytes of a struct to the argument area |
| 3194 | // |
| 3195 | // Arguments: |
| 3196 | // size - The size of bytes remaining to be moved |
| 3197 | // intTmpReg - The tmp register to be used for the long value |
| 3198 | // srcAddr - The address of the source struct |
| 3199 | // offset - The current offset being copied |
| 3200 | // |
| 3201 | // Return Value: |
| 3202 | // Returns the number of bytes moved (4 or 0). |
| 3203 | // |
| 3204 | // Notes: |
| 3205 | // This is used in the PutArgStkKindUnroll case, to move any bytes that are |
| 3206 | // not an even multiple of 16. |
| 3207 | // intTmpReg must be an integer register. |
| 3208 | // This is checked by genStoreRegToStackArg. |
| 3209 | // |
| 3210 | unsigned CodeGen::genMove4IfNeeded(unsigned size, regNumber intTmpReg, GenTree* srcAddr, unsigned offset) |
| 3211 | { |
| 3212 | if ((size & 4) != 0) |
| 3213 | { |
| 3214 | genCodeForLoadOffset(INS_mov, EA_4BYTE, intTmpReg, srcAddr, offset); |
| 3215 | genStoreRegToStackArg(TYP_INT, intTmpReg, offset); |
| 3216 | return 4; |
| 3217 | } |
| 3218 | return 0; |
| 3219 | } |
| 3220 | |
| 3221 | //------------------------------------------------------------------------ |
| 3222 | // CodeGen::genMove2IfNeeded: Conditionally move 2 bytes of a struct to the argument area |
| 3223 | // |
| 3224 | // Arguments: |
| 3225 | // size - The size of bytes remaining to be moved |
| 3226 | // intTmpReg - The tmp register to be used for the long value |
| 3227 | // srcAddr - The address of the source struct |
| 3228 | // offset - The current offset being copied |
| 3229 | // |
| 3230 | // Return Value: |
| 3231 | // Returns the number of bytes moved (2 or 0). |
| 3232 | // |
| 3233 | // Notes: |
| 3234 | // This is used in the PutArgStkKindUnroll case, to move any bytes that are |
| 3235 | // not an even multiple of 16. |
| 3236 | // intTmpReg must be an integer register. |
| 3237 | // This is checked by genStoreRegToStackArg. |
| 3238 | // |
| 3239 | unsigned CodeGen::genMove2IfNeeded(unsigned size, regNumber intTmpReg, GenTree* srcAddr, unsigned offset) |
| 3240 | { |
| 3241 | if ((size & 2) != 0) |
| 3242 | { |
| 3243 | genCodeForLoadOffset(INS_mov, EA_2BYTE, intTmpReg, srcAddr, offset); |
| 3244 | genStoreRegToStackArg(TYP_SHORT, intTmpReg, offset); |
| 3245 | return 2; |
| 3246 | } |
| 3247 | return 0; |
| 3248 | } |
| 3249 | |
| 3250 | //------------------------------------------------------------------------ |
| 3251 | // CodeGen::genMove1IfNeeded: Conditionally move 1 byte of a struct to the argument area |
| 3252 | // |
| 3253 | // Arguments: |
| 3254 | // size - The size of bytes remaining to be moved |
| 3255 | // intTmpReg - The tmp register to be used for the long value |
| 3256 | // srcAddr - The address of the source struct |
| 3257 | // offset - The current offset being copied |
| 3258 | // |
| 3259 | // Return Value: |
| 3260 | // Returns the number of bytes moved (1 or 0). |
| 3261 | // |
| 3262 | // Notes: |
| 3263 | // This is used in the PutArgStkKindUnroll case, to move any bytes that are |
| 3264 | // not an even multiple of 16. |
| 3265 | // intTmpReg must be an integer register. |
| 3266 | // This is checked by genStoreRegToStackArg. |
| 3267 | // |
| 3268 | unsigned CodeGen::genMove1IfNeeded(unsigned size, regNumber intTmpReg, GenTree* srcAddr, unsigned offset) |
| 3269 | { |
| 3270 | if ((size & 1) != 0) |
| 3271 | { |
| 3272 | genCodeForLoadOffset(INS_mov, EA_1BYTE, intTmpReg, srcAddr, offset); |
| 3273 | genStoreRegToStackArg(TYP_BYTE, intTmpReg, offset); |
| 3274 | return 1; |
| 3275 | } |
| 3276 | return 0; |
| 3277 | } |
| 3278 | |
| 3279 | //---------------------------------------------------------------------------------------------------------------// |
| 3280 | // genStructPutArgUnroll: Generates code for passing a struct arg on stack by value using loop unrolling. |
| 3281 | // |
| 3282 | // Arguments: |
| 3283 | // putArgNode - the PutArgStk tree. |
| 3284 | // |
| 3285 | // Notes: |
| 3286 | // m_stkArgVarNum must be set to the base var number, relative to which the by-val struct will be copied to the |
| 3287 | // stack. |
| 3288 | // |
| 3289 | // TODO-Amd64-Unix: Try to share code with copyblk. |
| 3290 | // Need refactoring of copyblk before it could be used for putarg_stk. |
| 3291 | // The difference for now is that a putarg_stk contains its children, while cpyblk does not. |
| 3292 | // This creates differences in code. After some significant refactoring it could be reused. |
| 3293 | // |
| 3294 | void CodeGen::genStructPutArgUnroll(GenTreePutArgStk* putArgNode) |
| 3295 | { |
| 3296 | GenTree* src = putArgNode->gtOp.gtOp1; |
| 3297 | // We will never call this method for SIMD types, which are stored directly |
| 3298 | // in genPutStructArgStk(). |
| 3299 | noway_assert(src->TypeGet() == TYP_STRUCT); |
| 3300 | |
| 3301 | unsigned size = putArgNode->getArgSize(); |
| 3302 | assert(size <= CPBLK_UNROLL_LIMIT); |
| 3303 | |
| 3304 | emitter* emit = getEmitter(); |
| 3305 | unsigned putArgOffset = putArgNode->getArgOffset(); |
| 3306 | |
| 3307 | assert(src->isContained()); |
| 3308 | |
| 3309 | assert(src->gtOper == GT_OBJ); |
| 3310 | |
| 3311 | if (src->gtOp.gtOp1->isUsedFromReg()) |
| 3312 | { |
| 3313 | genConsumeReg(src->gtOp.gtOp1); |
| 3314 | } |
| 3315 | |
| 3316 | unsigned offset = 0; |
| 3317 | |
| 3318 | regNumber xmmTmpReg = REG_NA; |
| 3319 | regNumber intTmpReg = REG_NA; |
| 3320 | regNumber longTmpReg = REG_NA; |
| 3321 | #ifdef _TARGET_X86_ |
| 3322 | // On x86 we use an XMM register for both 16 and 8-byte chunks, but if it's |
| 3323 | // less than 16 bytes, we will just be using pushes |
| 3324 | if (size >= 8) |
| 3325 | { |
| 3326 | xmmTmpReg = putArgNode->GetSingleTempReg(RBM_ALLFLOAT); |
| 3327 | longTmpReg = xmmTmpReg; |
| 3328 | } |
| 3329 | if ((size & 0x7) != 0) |
| 3330 | { |
| 3331 | intTmpReg = putArgNode->GetSingleTempReg(RBM_ALLINT); |
| 3332 | } |
| 3333 | #else // !_TARGET_X86_ |
| 3334 | // On x64 we use an XMM register only for 16-byte chunks. |
| 3335 | if (size >= XMM_REGSIZE_BYTES) |
| 3336 | { |
| 3337 | xmmTmpReg = putArgNode->GetSingleTempReg(RBM_ALLFLOAT); |
| 3338 | } |
| 3339 | if ((size & 0xf) != 0) |
| 3340 | { |
| 3341 | intTmpReg = putArgNode->GetSingleTempReg(RBM_ALLINT); |
| 3342 | longTmpReg = intTmpReg; |
| 3343 | } |
| 3344 | #endif // !_TARGET_X86_ |
| 3345 | |
| 3346 | // If the size of this struct is larger than 16 bytes |
| 3347 | // let's use SSE2 to be able to do 16 byte at a time |
| 3348 | // loads and stores. |
| 3349 | if (size >= XMM_REGSIZE_BYTES) |
| 3350 | { |
| 3351 | #ifdef _TARGET_X86_ |
| 3352 | assert(!m_pushStkArg); |
| 3353 | #endif // _TARGET_X86_ |
| 3354 | size_t slots = size / XMM_REGSIZE_BYTES; |
| 3355 | |
| 3356 | assert(putArgNode->gtGetOp1()->isContained()); |
| 3357 | assert(putArgNode->gtGetOp1()->gtOp.gtOper == GT_OBJ); |
| 3358 | |
| 3359 | // TODO: In the below code the load and store instructions are for 16 bytes, but the |
| 3360 | // type is EA_8BYTE. The movdqa/u are 16 byte instructions, so it works, but |
| 3361 | // this probably needs to be changed. |
| 3362 | while (slots-- > 0) |
| 3363 | { |
| 3364 | // Load |
| 3365 | genCodeForLoadOffset(INS_movdqu, EA_8BYTE, xmmTmpReg, src->gtGetOp1(), offset); |
| 3366 | |
| 3367 | // Store |
| 3368 | genStoreRegToStackArg(TYP_STRUCT, xmmTmpReg, offset); |
| 3369 | |
| 3370 | offset += XMM_REGSIZE_BYTES; |
| 3371 | } |
| 3372 | } |
| 3373 | |
| 3374 | // Fill the remainder (15 bytes or less) if there's one. |
| 3375 | if ((size & 0xf) != 0) |
| 3376 | { |
| 3377 | #ifdef _TARGET_X86_ |
| 3378 | if (m_pushStkArg) |
| 3379 | { |
| 3380 | // This case is currently supported only for the case where the total size is |
| 3381 | // less than XMM_REGSIZE_BYTES. We need to push the remaining chunks in reverse |
| 3382 | // order. However, morph has ensured that we have a struct that is an even |
| 3383 | // multiple of TARGET_POINTER_SIZE, so we don't need to worry about alignment. |
| 3384 | assert(((size & 0xc) == size) && (offset == 0)); |
| 3385 | // If we have a 4 byte chunk, load it from either offset 0 or 8, depending on |
| 3386 | // whether we've got an 8 byte chunk, and then push it on the stack. |
| 3387 | unsigned pushedBytes = genMove4IfNeeded(size, intTmpReg, src->gtOp.gtOp1, size & 0x8); |
| 3388 | // Now if we have an 8 byte chunk, load it from offset 0 (it's the first chunk) |
| 3389 | // and push it on the stack. |
| 3390 | pushedBytes += genMove8IfNeeded(size, longTmpReg, src->gtOp.gtOp1, 0); |
| 3391 | } |
| 3392 | else |
| 3393 | #endif // _TARGET_X86_ |
| 3394 | { |
| 3395 | offset += genMove8IfNeeded(size, longTmpReg, src->gtOp.gtOp1, offset); |
| 3396 | offset += genMove4IfNeeded(size, intTmpReg, src->gtOp.gtOp1, offset); |
| 3397 | offset += genMove2IfNeeded(size, intTmpReg, src->gtOp.gtOp1, offset); |
| 3398 | offset += genMove1IfNeeded(size, intTmpReg, src->gtOp.gtOp1, offset); |
| 3399 | assert(offset == size); |
| 3400 | } |
| 3401 | } |
| 3402 | } |
| 3403 | |
| 3404 | //------------------------------------------------------------------------ |
| 3405 | // genStructPutArgRepMovs: Generates code for passing a struct arg by value on stack using Rep Movs. |
| 3406 | // |
| 3407 | // Arguments: |
| 3408 | // putArgNode - the PutArgStk tree. |
| 3409 | // |
| 3410 | // Preconditions: |
| 3411 | // The size argument of the PutArgStk (for structs) is a constant and is between |
| 3412 | // CPBLK_UNROLL_LIMIT and CPBLK_MOVS_LIMIT bytes. |
| 3413 | // m_stkArgVarNum must be set to the base var number, relative to which the by-val struct bits will go. |
| 3414 | // |
| 3415 | void CodeGen::genStructPutArgRepMovs(GenTreePutArgStk* putArgNode) |
| 3416 | { |
| 3417 | GenTree* srcAddr = putArgNode->gtGetOp1(); |
| 3418 | assert(srcAddr->TypeGet() == TYP_STRUCT); |
| 3419 | assert(putArgNode->getArgSize() > CPBLK_UNROLL_LIMIT); |
| 3420 | |
| 3421 | // Make sure we got the arguments of the cpblk operation in the right registers, and that |
| 3422 | // 'srcAddr' is contained as expected. |
| 3423 | assert(putArgNode->gtRsvdRegs == (RBM_RDI | RBM_RCX | RBM_RSI)); |
| 3424 | assert(srcAddr->isContained()); |
| 3425 | |
| 3426 | genConsumePutStructArgStk(putArgNode, REG_RDI, REG_RSI, REG_RCX); |
| 3427 | instGen(INS_r_movsb); |
| 3428 | } |
| 3429 | |
| 3430 | //------------------------------------------------------------------------ |
| 3431 | // If any Vector3 args are on stack and they are not pass-by-ref, the upper 32bits |
| 3432 | // must be cleared to zeroes. The native compiler doesn't clear the upper bits |
| 3433 | // and there is no way to know if the caller is native or not. So, the upper |
| 3434 | // 32 bits of Vector argument on stack are always cleared to zero. |
| 3435 | #if defined(UNIX_AMD64_ABI) && defined(FEATURE_SIMD) |
| 3436 | void CodeGen::genClearStackVec3ArgUpperBits() |
| 3437 | { |
| 3438 | #ifdef DEBUG |
| 3439 | if (verbose) |
| 3440 | { |
| 3441 | printf("*************** In genClearStackVec3ArgUpperBits()\n" ); |
| 3442 | } |
| 3443 | #endif |
| 3444 | |
| 3445 | assert(compiler->compGeneratingProlog); |
| 3446 | |
| 3447 | unsigned varNum = 0; |
| 3448 | |
| 3449 | for (unsigned varNum = 0; varNum < compiler->info.compArgsCount; varNum++) |
| 3450 | { |
| 3451 | LclVarDsc* varDsc = &(compiler->lvaTable[varNum]); |
| 3452 | assert(varDsc->lvIsParam); |
| 3453 | |
| 3454 | // Does var has simd12 type? |
| 3455 | if (varDsc->lvType != TYP_SIMD12) |
| 3456 | { |
| 3457 | continue; |
| 3458 | } |
| 3459 | |
| 3460 | if (!varDsc->lvIsRegArg) |
| 3461 | { |
| 3462 | // Clear the upper 32 bits by mov dword ptr [V_ARG_BASE+0xC], 0 |
| 3463 | getEmitter()->emitIns_S_I(ins_Store(TYP_INT), EA_4BYTE, varNum, genTypeSize(TYP_FLOAT) * 3, 0); |
| 3464 | } |
| 3465 | else |
| 3466 | { |
| 3467 | // Assume that for x64 linux, an argument is fully in registers |
| 3468 | // or fully on stack. |
| 3469 | regNumber argReg = varDsc->GetOtherArgReg(); |
| 3470 | |
| 3471 | // Clear the upper 32 bits by two shift instructions. |
| 3472 | // argReg = argReg << 96 |
| 3473 | getEmitter()->emitIns_R_I(INS_pslldq, emitActualTypeSize(TYP_SIMD12), argReg, 12); |
| 3474 | // argReg = argReg >> 96 |
| 3475 | getEmitter()->emitIns_R_I(INS_psrldq, emitActualTypeSize(TYP_SIMD12), argReg, 12); |
| 3476 | } |
| 3477 | } |
| 3478 | } |
| 3479 | #endif // defined(UNIX_AMD64_ABI) && defined(FEATURE_SIMD) |
| 3480 | #endif // FEATURE_PUT_STRUCT_ARG_STK |
| 3481 | |
| 3482 | // Generate code for CpObj nodes wich copy structs that have interleaved |
| 3483 | // GC pointers. |
| 3484 | // This will generate a sequence of movsp instructions for the cases of non-gc members. |
| 3485 | // Note that movsp is an alias for movsd on x86 and movsq on x64. |
| 3486 | // and calls to the BY_REF_ASSIGN helper otherwise. |
| 3487 | void CodeGen::genCodeForCpObj(GenTreeObj* cpObjNode) |
| 3488 | { |
| 3489 | // Make sure we got the arguments of the cpobj operation in the right registers |
| 3490 | GenTree* dstAddr = cpObjNode->Addr(); |
| 3491 | GenTree* source = cpObjNode->Data(); |
| 3492 | GenTree* srcAddr = nullptr; |
| 3493 | var_types srcAddrType = TYP_BYREF; |
| 3494 | bool sourceIsLocal = false; |
| 3495 | |
| 3496 | assert(source->isContained()); |
| 3497 | if (source->gtOper == GT_IND) |
| 3498 | { |
| 3499 | srcAddr = source->gtGetOp1(); |
| 3500 | assert(srcAddr->isUsedFromReg()); |
| 3501 | } |
| 3502 | else |
| 3503 | { |
| 3504 | noway_assert(source->IsLocal()); |
| 3505 | sourceIsLocal = true; |
| 3506 | } |
| 3507 | |
| 3508 | bool dstOnStack = dstAddr->gtSkipReloadOrCopy()->OperIsLocalAddr(); |
| 3509 | |
| 3510 | #ifdef DEBUG |
| 3511 | |
| 3512 | assert(dstAddr->isUsedFromReg()); |
| 3513 | |
| 3514 | // If the GenTree node has data about GC pointers, this means we're dealing |
| 3515 | // with CpObj, so this requires special logic. |
| 3516 | assert(cpObjNode->gtGcPtrCount > 0); |
| 3517 | |
| 3518 | // MovSp (alias for movsq on x64 and movsd on x86) instruction is used for copying non-gcref fields |
| 3519 | // and it needs src = RSI and dst = RDI. |
| 3520 | // Either these registers must not contain lclVars, or they must be dying or marked for spill. |
| 3521 | // This is because these registers are incremented as we go through the struct. |
| 3522 | if (!sourceIsLocal) |
| 3523 | { |
| 3524 | GenTree* actualSrcAddr = srcAddr->gtSkipReloadOrCopy(); |
| 3525 | GenTree* actualDstAddr = dstAddr->gtSkipReloadOrCopy(); |
| 3526 | unsigned srcLclVarNum = BAD_VAR_NUM; |
| 3527 | unsigned dstLclVarNum = BAD_VAR_NUM; |
| 3528 | bool isSrcAddrLiveOut = false; |
| 3529 | bool isDstAddrLiveOut = false; |
| 3530 | if (genIsRegCandidateLocal(actualSrcAddr)) |
| 3531 | { |
| 3532 | srcLclVarNum = actualSrcAddr->AsLclVarCommon()->gtLclNum; |
| 3533 | isSrcAddrLiveOut = ((actualSrcAddr->gtFlags & (GTF_VAR_DEATH | GTF_SPILL)) == 0); |
| 3534 | } |
| 3535 | if (genIsRegCandidateLocal(actualDstAddr)) |
| 3536 | { |
| 3537 | dstLclVarNum = actualDstAddr->AsLclVarCommon()->gtLclNum; |
| 3538 | isDstAddrLiveOut = ((actualDstAddr->gtFlags & (GTF_VAR_DEATH | GTF_SPILL)) == 0); |
| 3539 | } |
| 3540 | assert((actualSrcAddr->gtRegNum != REG_RSI) || !isSrcAddrLiveOut || |
| 3541 | ((srcLclVarNum == dstLclVarNum) && !isDstAddrLiveOut)); |
| 3542 | assert((actualDstAddr->gtRegNum != REG_RDI) || !isDstAddrLiveOut || |
| 3543 | ((srcLclVarNum == dstLclVarNum) && !isSrcAddrLiveOut)); |
| 3544 | srcAddrType = srcAddr->TypeGet(); |
| 3545 | } |
| 3546 | #endif // DEBUG |
| 3547 | |
| 3548 | // Consume the operands and get them into the right registers. |
| 3549 | // They may now contain gc pointers (depending on their type; gcMarkRegPtrVal will "do the right thing"). |
| 3550 | genConsumeBlockOp(cpObjNode, REG_RDI, REG_RSI, REG_NA); |
| 3551 | gcInfo.gcMarkRegPtrVal(REG_RSI, srcAddrType); |
| 3552 | gcInfo.gcMarkRegPtrVal(REG_RDI, dstAddr->TypeGet()); |
| 3553 | |
| 3554 | unsigned slots = cpObjNode->gtSlots; |
| 3555 | |
| 3556 | // If we can prove it's on the stack we don't need to use the write barrier. |
| 3557 | if (dstOnStack) |
| 3558 | { |
| 3559 | if (slots >= CPOBJ_NONGC_SLOTS_LIMIT) |
| 3560 | { |
| 3561 | // If the destination of the CpObj is on the stack, make sure we allocated |
| 3562 | // RCX to emit the movsp (alias for movsd or movsq for 32 and 64 bits respectively). |
| 3563 | assert((cpObjNode->gtRsvdRegs & RBM_RCX) != 0); |
| 3564 | |
| 3565 | getEmitter()->emitIns_R_I(INS_mov, EA_4BYTE, REG_RCX, slots); |
| 3566 | instGen(INS_r_movsp); |
| 3567 | } |
| 3568 | else |
| 3569 | { |
| 3570 | // For small structs, it's better to emit a sequence of movsp than to |
| 3571 | // emit a rep movsp instruction. |
| 3572 | while (slots > 0) |
| 3573 | { |
| 3574 | instGen(INS_movsp); |
| 3575 | slots--; |
| 3576 | } |
| 3577 | } |
| 3578 | } |
| 3579 | else |
| 3580 | { |
| 3581 | BYTE* gcPtrs = cpObjNode->gtGcPtrs; |
| 3582 | unsigned gcPtrCount = cpObjNode->gtGcPtrCount; |
| 3583 | |
| 3584 | unsigned i = 0; |
| 3585 | while (i < slots) |
| 3586 | { |
| 3587 | switch (gcPtrs[i]) |
| 3588 | { |
| 3589 | case TYPE_GC_NONE: |
| 3590 | // Let's see if we can use rep movsp instead of a sequence of movsp instructions |
| 3591 | // to save cycles and code size. |
| 3592 | { |
| 3593 | unsigned nonGcSlotCount = 0; |
| 3594 | |
| 3595 | do |
| 3596 | { |
| 3597 | nonGcSlotCount++; |
| 3598 | i++; |
| 3599 | } while (i < slots && gcPtrs[i] == TYPE_GC_NONE); |
| 3600 | |
| 3601 | // If we have a very small contiguous non-gc region, it's better just to |
| 3602 | // emit a sequence of movsp instructions |
| 3603 | if (nonGcSlotCount < CPOBJ_NONGC_SLOTS_LIMIT) |
| 3604 | { |
| 3605 | while (nonGcSlotCount > 0) |
| 3606 | { |
| 3607 | instGen(INS_movsp); |
| 3608 | nonGcSlotCount--; |
| 3609 | } |
| 3610 | } |
| 3611 | else |
| 3612 | { |
| 3613 | // Otherwise, we can save code-size and improve CQ by emitting |
| 3614 | // rep movsp (alias for movsd/movsq for x86/x64) |
| 3615 | assert((cpObjNode->gtRsvdRegs & RBM_RCX) != 0); |
| 3616 | |
| 3617 | getEmitter()->emitIns_R_I(INS_mov, EA_4BYTE, REG_RCX, nonGcSlotCount); |
| 3618 | instGen(INS_r_movsp); |
| 3619 | } |
| 3620 | } |
| 3621 | break; |
| 3622 | default: |
| 3623 | // We have a GC pointer, call the memory barrier. |
| 3624 | genEmitHelperCall(CORINFO_HELP_ASSIGN_BYREF, 0, EA_PTRSIZE); |
| 3625 | gcPtrCount--; |
| 3626 | i++; |
| 3627 | } |
| 3628 | } |
| 3629 | |
| 3630 | assert(gcPtrCount == 0); |
| 3631 | } |
| 3632 | |
| 3633 | // Clear the gcInfo for RSI and RDI. |
| 3634 | // While we normally update GC info prior to the last instruction that uses them, |
| 3635 | // these actually live into the helper call. |
| 3636 | gcInfo.gcMarkRegSetNpt(RBM_RSI); |
| 3637 | gcInfo.gcMarkRegSetNpt(RBM_RDI); |
| 3638 | } |
| 3639 | |
| 3640 | // Generate code for a CpBlk node by the means of the VM memcpy helper call |
| 3641 | // Preconditions: |
| 3642 | // a) The size argument of the CpBlk is not an integer constant |
| 3643 | // b) The size argument is a constant but is larger than CPBLK_MOVS_LIMIT bytes. |
| 3644 | void CodeGen::genCodeForCpBlk(GenTreeBlk* cpBlkNode) |
| 3645 | { |
| 3646 | #ifdef _TARGET_AMD64_ |
| 3647 | // Make sure we got the arguments of the cpblk operation in the right registers |
| 3648 | unsigned blockSize = cpBlkNode->Size(); |
| 3649 | GenTree* dstAddr = cpBlkNode->Addr(); |
| 3650 | GenTree* source = cpBlkNode->Data(); |
| 3651 | GenTree* srcAddr = nullptr; |
| 3652 | |
| 3653 | // Size goes in arg2 |
| 3654 | if (blockSize != 0) |
| 3655 | { |
| 3656 | assert(blockSize >= CPBLK_MOVS_LIMIT); |
| 3657 | assert((cpBlkNode->gtRsvdRegs & RBM_ARG_2) != 0); |
| 3658 | } |
| 3659 | else |
| 3660 | { |
| 3661 | noway_assert(cpBlkNode->gtOper == GT_STORE_DYN_BLK); |
| 3662 | } |
| 3663 | |
| 3664 | // Source address goes in arg1 |
| 3665 | if (source->gtOper == GT_IND) |
| 3666 | { |
| 3667 | srcAddr = source->gtGetOp1(); |
| 3668 | assert(srcAddr->isUsedFromReg()); |
| 3669 | } |
| 3670 | else |
| 3671 | { |
| 3672 | noway_assert(source->IsLocal()); |
| 3673 | assert((cpBlkNode->gtRsvdRegs & RBM_ARG_1) != 0); |
| 3674 | inst_RV_TT(INS_lea, REG_ARG_1, source, 0, EA_BYREF); |
| 3675 | } |
| 3676 | |
| 3677 | genConsumeBlockOp(cpBlkNode, REG_ARG_0, REG_ARG_1, REG_ARG_2); |
| 3678 | |
| 3679 | genEmitHelperCall(CORINFO_HELP_MEMCPY, 0, EA_UNKNOWN); |
| 3680 | #else // !_TARGET_AMD64_ |
| 3681 | noway_assert(false && "Helper call for CpBlk is not needed." ); |
| 3682 | #endif // !_TARGET_AMD64_ |
| 3683 | } |
| 3684 | |
| 3685 | // generate code do a switch statement based on a table of ip-relative offsets |
| 3686 | void CodeGen::genTableBasedSwitch(GenTree* treeNode) |
| 3687 | { |
| 3688 | genConsumeOperands(treeNode->AsOp()); |
| 3689 | regNumber idxReg = treeNode->gtOp.gtOp1->gtRegNum; |
| 3690 | regNumber baseReg = treeNode->gtOp.gtOp2->gtRegNum; |
| 3691 | |
| 3692 | regNumber tmpReg = treeNode->GetSingleTempReg(); |
| 3693 | |
| 3694 | // load the ip-relative offset (which is relative to start of fgFirstBB) |
| 3695 | getEmitter()->emitIns_R_ARX(INS_mov, EA_4BYTE, baseReg, baseReg, idxReg, 4, 0); |
| 3696 | |
| 3697 | // add it to the absolute address of fgFirstBB |
| 3698 | compiler->fgFirstBB->bbFlags |= BBF_JMP_TARGET; |
| 3699 | getEmitter()->emitIns_R_L(INS_lea, EA_PTR_DSP_RELOC, compiler->fgFirstBB, tmpReg); |
| 3700 | getEmitter()->emitIns_R_R(INS_add, EA_PTRSIZE, baseReg, tmpReg); |
| 3701 | // jmp baseReg |
| 3702 | getEmitter()->emitIns_R(INS_i_jmp, emitTypeSize(TYP_I_IMPL), baseReg); |
| 3703 | } |
| 3704 | |
| 3705 | // emits the table and an instruction to get the address of the first element |
| 3706 | void CodeGen::genJumpTable(GenTree* treeNode) |
| 3707 | { |
| 3708 | noway_assert(compiler->compCurBB->bbJumpKind == BBJ_SWITCH); |
| 3709 | assert(treeNode->OperGet() == GT_JMPTABLE); |
| 3710 | |
| 3711 | unsigned jumpCount = compiler->compCurBB->bbJumpSwt->bbsCount; |
| 3712 | BasicBlock** jumpTable = compiler->compCurBB->bbJumpSwt->bbsDstTab; |
| 3713 | unsigned jmpTabOffs; |
| 3714 | unsigned jmpTabBase; |
| 3715 | |
| 3716 | jmpTabBase = getEmitter()->emitBBTableDataGenBeg(jumpCount, true); |
| 3717 | |
| 3718 | jmpTabOffs = 0; |
| 3719 | |
| 3720 | JITDUMP("\n J_M%03u_DS%02u LABEL DWORD\n" , Compiler::s_compMethodsCount, jmpTabBase); |
| 3721 | |
| 3722 | for (unsigned i = 0; i < jumpCount; i++) |
| 3723 | { |
| 3724 | BasicBlock* target = *jumpTable++; |
| 3725 | noway_assert(target->bbFlags & BBF_JMP_TARGET); |
| 3726 | |
| 3727 | JITDUMP(" DD L_M%03u_" FMT_BB "\n" , Compiler::s_compMethodsCount, target->bbNum); |
| 3728 | |
| 3729 | getEmitter()->emitDataGenData(i, target); |
| 3730 | }; |
| 3731 | |
| 3732 | getEmitter()->emitDataGenEnd(); |
| 3733 | |
| 3734 | // Access to inline data is 'abstracted' by a special type of static member |
| 3735 | // (produced by eeFindJitDataOffs) which the emitter recognizes as being a reference |
| 3736 | // to constant data, not a real static field. |
| 3737 | getEmitter()->emitIns_R_C(INS_lea, emitTypeSize(TYP_I_IMPL), treeNode->gtRegNum, |
| 3738 | compiler->eeFindJitDataOffs(jmpTabBase), 0); |
| 3739 | genProduceReg(treeNode); |
| 3740 | } |
| 3741 | |
| 3742 | //------------------------------------------------------------------------ |
| 3743 | // genCodeForLockAdd: Generate code for a GT_LOCKADD node |
| 3744 | // |
| 3745 | // Arguments: |
| 3746 | // node - the GT_LOCKADD node |
| 3747 | // |
| 3748 | void CodeGen::genCodeForLockAdd(GenTreeOp* node) |
| 3749 | { |
| 3750 | assert(node->OperIs(GT_LOCKADD)); |
| 3751 | |
| 3752 | GenTree* addr = node->gtGetOp1(); |
| 3753 | GenTree* data = node->gtGetOp2(); |
| 3754 | emitAttr size = emitActualTypeSize(data->TypeGet()); |
| 3755 | |
| 3756 | assert(addr->isUsedFromReg()); |
| 3757 | assert(data->isUsedFromReg() || data->isContainedIntOrIImmed()); |
| 3758 | assert((size == EA_4BYTE) || (size == EA_PTRSIZE)); |
| 3759 | |
| 3760 | genConsumeOperands(node); |
| 3761 | instGen(INS_lock); |
| 3762 | |
| 3763 | if (data->isContainedIntOrIImmed()) |
| 3764 | { |
| 3765 | int imm = static_cast<int>(data->AsIntCon()->IconValue()); |
| 3766 | assert(imm == data->AsIntCon()->IconValue()); |
| 3767 | getEmitter()->emitIns_I_AR(INS_add, size, imm, addr->gtRegNum, 0); |
| 3768 | } |
| 3769 | else |
| 3770 | { |
| 3771 | getEmitter()->emitIns_AR_R(INS_add, size, data->gtRegNum, addr->gtRegNum, 0); |
| 3772 | } |
| 3773 | } |
| 3774 | |
| 3775 | //------------------------------------------------------------------------ |
| 3776 | // genLockedInstructions: Generate code for a GT_XADD or GT_XCHG node. |
| 3777 | // |
| 3778 | // Arguments: |
| 3779 | // node - the GT_XADD/XCHG node |
| 3780 | // |
| 3781 | void CodeGen::genLockedInstructions(GenTreeOp* node) |
| 3782 | { |
| 3783 | assert(node->OperIs(GT_XADD, GT_XCHG)); |
| 3784 | |
| 3785 | GenTree* addr = node->gtGetOp1(); |
| 3786 | GenTree* data = node->gtGetOp2(); |
| 3787 | emitAttr size = emitTypeSize(node->TypeGet()); |
| 3788 | |
| 3789 | assert(addr->isUsedFromReg()); |
| 3790 | assert(data->isUsedFromReg()); |
| 3791 | assert((size == EA_4BYTE) || (size == EA_PTRSIZE)); |
| 3792 | |
| 3793 | genConsumeOperands(node); |
| 3794 | |
| 3795 | if (node->gtRegNum != data->gtRegNum) |
| 3796 | { |
| 3797 | // If the destination register is different from the data register then we need |
| 3798 | // to first move the data to the target register. Make sure we don't overwrite |
| 3799 | // the address, the register allocator should have taken care of this. |
| 3800 | assert(node->gtRegNum != addr->gtRegNum); |
| 3801 | getEmitter()->emitIns_R_R(INS_mov, size, node->gtRegNum, data->gtRegNum); |
| 3802 | } |
| 3803 | |
| 3804 | instruction ins = node->OperIs(GT_XADD) ? INS_xadd : INS_xchg; |
| 3805 | |
| 3806 | // XCHG has an implied lock prefix when the first operand is a memory operand. |
| 3807 | if (ins != INS_xchg) |
| 3808 | { |
| 3809 | instGen(INS_lock); |
| 3810 | } |
| 3811 | |
| 3812 | getEmitter()->emitIns_AR_R(ins, size, node->gtRegNum, addr->gtRegNum, 0); |
| 3813 | genProduceReg(node); |
| 3814 | } |
| 3815 | |
| 3816 | //------------------------------------------------------------------------ |
| 3817 | // genCodeForCmpXchg: Produce code for a GT_CMPXCHG node. |
| 3818 | // |
| 3819 | // Arguments: |
| 3820 | // tree - the GT_CMPXCHG node |
| 3821 | // |
| 3822 | void CodeGen::genCodeForCmpXchg(GenTreeCmpXchg* tree) |
| 3823 | { |
| 3824 | assert(tree->OperIs(GT_CMPXCHG)); |
| 3825 | |
| 3826 | var_types targetType = tree->TypeGet(); |
| 3827 | regNumber targetReg = tree->gtRegNum; |
| 3828 | |
| 3829 | GenTree* location = tree->gtOpLocation; // arg1 |
| 3830 | GenTree* value = tree->gtOpValue; // arg2 |
| 3831 | GenTree* comparand = tree->gtOpComparand; // arg3 |
| 3832 | |
| 3833 | assert(location->gtRegNum != REG_NA && location->gtRegNum != REG_RAX); |
| 3834 | assert(value->gtRegNum != REG_NA && value->gtRegNum != REG_RAX); |
| 3835 | |
| 3836 | genConsumeReg(location); |
| 3837 | genConsumeReg(value); |
| 3838 | genConsumeReg(comparand); |
| 3839 | |
| 3840 | // comparand goes to RAX; |
| 3841 | // Note that we must issue this move after the genConsumeRegs(), in case any of the above |
| 3842 | // have a GT_COPY from RAX. |
| 3843 | if (comparand->gtRegNum != REG_RAX) |
| 3844 | { |
| 3845 | inst_RV_RV(ins_Copy(comparand->TypeGet()), REG_RAX, comparand->gtRegNum, comparand->TypeGet()); |
| 3846 | } |
| 3847 | |
| 3848 | // location is Rm |
| 3849 | instGen(INS_lock); |
| 3850 | |
| 3851 | getEmitter()->emitIns_AR_R(INS_cmpxchg, emitTypeSize(targetType), value->gtRegNum, location->gtRegNum, 0); |
| 3852 | |
| 3853 | // Result is in RAX |
| 3854 | if (targetReg != REG_RAX) |
| 3855 | { |
| 3856 | inst_RV_RV(ins_Copy(targetType), targetReg, REG_RAX, targetType); |
| 3857 | } |
| 3858 | |
| 3859 | genProduceReg(tree); |
| 3860 | } |
| 3861 | |
| 3862 | // generate code for BoundsCheck nodes |
| 3863 | void CodeGen::genRangeCheck(GenTree* oper) |
| 3864 | { |
| 3865 | noway_assert(oper->OperIsBoundsCheck()); |
| 3866 | GenTreeBoundsChk* bndsChk = oper->AsBoundsChk(); |
| 3867 | |
| 3868 | GenTree* arrIndex = bndsChk->gtIndex; |
| 3869 | GenTree* arrLen = bndsChk->gtArrLen; |
| 3870 | GenTree* arrRef = nullptr; |
| 3871 | int lenOffset = 0; |
| 3872 | |
| 3873 | GenTree * src1, *src2; |
| 3874 | emitJumpKind jmpKind; |
| 3875 | |
| 3876 | genConsumeRegs(arrIndex); |
| 3877 | genConsumeRegs(arrLen); |
| 3878 | |
| 3879 | if (arrIndex->isContainedIntOrIImmed()) |
| 3880 | { |
| 3881 | // arrIndex is a contained constant. In this case |
| 3882 | // we will generate one of the following |
| 3883 | // cmp [mem], immed (if arrLen is a memory op) |
| 3884 | // cmp reg, immed (if arrLen is in a reg) |
| 3885 | // |
| 3886 | // That is arrLen cannot be a contained immed. |
| 3887 | assert(!arrLen->isContainedIntOrIImmed()); |
| 3888 | |
| 3889 | src1 = arrLen; |
| 3890 | src2 = arrIndex; |
| 3891 | jmpKind = EJ_jbe; |
| 3892 | } |
| 3893 | else |
| 3894 | { |
| 3895 | // arrIndex could either be a contained memory op or a reg |
| 3896 | // In this case we will generate one of the following |
| 3897 | // cmp [mem], immed (if arrLen is a constant) |
| 3898 | // cmp [mem], reg (if arrLen is in a reg) |
| 3899 | // cmp reg, immed (if arrIndex is in a reg) |
| 3900 | // cmp reg1, reg2 (if arraIndex is in reg1) |
| 3901 | // cmp reg, [mem] (if arrLen is a memory op) |
| 3902 | // |
| 3903 | // That is only one of arrIndex or arrLen can be a memory op. |
| 3904 | assert(!arrIndex->isUsedFromMemory() || !arrLen->isUsedFromMemory()); |
| 3905 | |
| 3906 | src1 = arrIndex; |
| 3907 | src2 = arrLen; |
| 3908 | jmpKind = EJ_jae; |
| 3909 | } |
| 3910 | |
| 3911 | var_types bndsChkType = src2->TypeGet(); |
| 3912 | #if DEBUG |
| 3913 | // Bounds checks can only be 32 or 64 bit sized comparisons. |
| 3914 | assert(bndsChkType == TYP_INT || bndsChkType == TYP_LONG); |
| 3915 | |
| 3916 | // The type of the bounds check should always wide enough to compare against the index. |
| 3917 | assert(emitTypeSize(bndsChkType) >= emitTypeSize(src1->TypeGet())); |
| 3918 | #endif // DEBUG |
| 3919 | |
| 3920 | getEmitter()->emitInsBinary(INS_cmp, emitTypeSize(bndsChkType), src1, src2); |
| 3921 | genJumpToThrowHlpBlk(jmpKind, bndsChk->gtThrowKind, bndsChk->gtIndRngFailBB); |
| 3922 | } |
| 3923 | |
| 3924 | //--------------------------------------------------------------------- |
| 3925 | // genCodeForPhysReg - generate code for a GT_PHYSREG node |
| 3926 | // |
| 3927 | // Arguments |
| 3928 | // tree - the GT_PHYSREG node |
| 3929 | // |
| 3930 | // Return value: |
| 3931 | // None |
| 3932 | // |
| 3933 | void CodeGen::genCodeForPhysReg(GenTreePhysReg* tree) |
| 3934 | { |
| 3935 | assert(tree->OperIs(GT_PHYSREG)); |
| 3936 | |
| 3937 | var_types targetType = tree->TypeGet(); |
| 3938 | regNumber targetReg = tree->gtRegNum; |
| 3939 | |
| 3940 | if (targetReg != tree->gtSrcReg) |
| 3941 | { |
| 3942 | inst_RV_RV(ins_Copy(targetType), targetReg, tree->gtSrcReg, targetType); |
| 3943 | genTransferRegGCState(targetReg, tree->gtSrcReg); |
| 3944 | } |
| 3945 | |
| 3946 | genProduceReg(tree); |
| 3947 | } |
| 3948 | |
| 3949 | //--------------------------------------------------------------------- |
| 3950 | // genCodeForNullCheck - generate code for a GT_NULLCHECK node |
| 3951 | // |
| 3952 | // Arguments |
| 3953 | // tree - the GT_NULLCHECK node |
| 3954 | // |
| 3955 | // Return value: |
| 3956 | // None |
| 3957 | // |
| 3958 | void CodeGen::genCodeForNullCheck(GenTreeOp* tree) |
| 3959 | { |
| 3960 | assert(tree->OperIs(GT_NULLCHECK)); |
| 3961 | |
| 3962 | assert(tree->gtOp1->isUsedFromReg()); |
| 3963 | regNumber reg = genConsumeReg(tree->gtOp1); |
| 3964 | getEmitter()->emitIns_AR_R(INS_cmp, EA_4BYTE, reg, reg, 0); |
| 3965 | } |
| 3966 | |
| 3967 | //------------------------------------------------------------------------ |
| 3968 | // genOffsetOfMDArrayLowerBound: Returns the offset from the Array object to the |
| 3969 | // lower bound for the given dimension. |
| 3970 | // |
| 3971 | // Arguments: |
| 3972 | // elemType - the element type of the array |
| 3973 | // rank - the rank of the array |
| 3974 | // dimension - the dimension for which the lower bound offset will be returned. |
| 3975 | // |
| 3976 | // Return Value: |
| 3977 | // The offset. |
| 3978 | |
| 3979 | unsigned CodeGen::genOffsetOfMDArrayLowerBound(var_types elemType, unsigned rank, unsigned dimension) |
| 3980 | { |
| 3981 | // Note that the lower bound and length fields of the Array object are always TYP_INT, even on 64-bit targets. |
| 3982 | return compiler->eeGetArrayDataOffset(elemType) + genTypeSize(TYP_INT) * (dimension + rank); |
| 3983 | } |
| 3984 | |
| 3985 | //------------------------------------------------------------------------ |
| 3986 | // genOffsetOfMDArrayLength: Returns the offset from the Array object to the |
| 3987 | // size for the given dimension. |
| 3988 | // |
| 3989 | // Arguments: |
| 3990 | // elemType - the element type of the array |
| 3991 | // rank - the rank of the array |
| 3992 | // dimension - the dimension for which the lower bound offset will be returned. |
| 3993 | // |
| 3994 | // Return Value: |
| 3995 | // The offset. |
| 3996 | |
| 3997 | unsigned CodeGen::genOffsetOfMDArrayDimensionSize(var_types elemType, unsigned rank, unsigned dimension) |
| 3998 | { |
| 3999 | // Note that the lower bound and length fields of the Array object are always TYP_INT, even on 64-bit targets. |
| 4000 | return compiler->eeGetArrayDataOffset(elemType) + genTypeSize(TYP_INT) * dimension; |
| 4001 | } |
| 4002 | |
| 4003 | //------------------------------------------------------------------------ |
| 4004 | // genCodeForArrIndex: Generates code to bounds check the index for one dimension of an array reference, |
| 4005 | // producing the effective index by subtracting the lower bound. |
| 4006 | // |
| 4007 | // Arguments: |
| 4008 | // arrIndex - the node for which we're generating code |
| 4009 | // |
| 4010 | // Return Value: |
| 4011 | // None. |
| 4012 | // |
| 4013 | |
| 4014 | void CodeGen::genCodeForArrIndex(GenTreeArrIndex* arrIndex) |
| 4015 | { |
| 4016 | GenTree* arrObj = arrIndex->ArrObj(); |
| 4017 | GenTree* indexNode = arrIndex->IndexExpr(); |
| 4018 | |
| 4019 | regNumber arrReg = genConsumeReg(arrObj); |
| 4020 | regNumber indexReg = genConsumeReg(indexNode); |
| 4021 | regNumber tgtReg = arrIndex->gtRegNum; |
| 4022 | |
| 4023 | unsigned dim = arrIndex->gtCurrDim; |
| 4024 | unsigned rank = arrIndex->gtArrRank; |
| 4025 | var_types elemType = arrIndex->gtArrElemType; |
| 4026 | |
| 4027 | noway_assert(tgtReg != REG_NA); |
| 4028 | |
| 4029 | // Subtract the lower bound for this dimension. |
| 4030 | // TODO-XArch-CQ: make this contained if it's an immediate that fits. |
| 4031 | if (tgtReg != indexReg) |
| 4032 | { |
| 4033 | inst_RV_RV(INS_mov, tgtReg, indexReg, indexNode->TypeGet()); |
| 4034 | } |
| 4035 | getEmitter()->emitIns_R_AR(INS_sub, emitActualTypeSize(TYP_INT), tgtReg, arrReg, |
| 4036 | genOffsetOfMDArrayLowerBound(elemType, rank, dim)); |
| 4037 | getEmitter()->emitIns_R_AR(INS_cmp, emitActualTypeSize(TYP_INT), tgtReg, arrReg, |
| 4038 | genOffsetOfMDArrayDimensionSize(elemType, rank, dim)); |
| 4039 | genJumpToThrowHlpBlk(EJ_jae, SCK_RNGCHK_FAIL); |
| 4040 | |
| 4041 | genProduceReg(arrIndex); |
| 4042 | } |
| 4043 | |
| 4044 | //------------------------------------------------------------------------ |
| 4045 | // genCodeForArrOffset: Generates code to compute the flattened array offset for |
| 4046 | // one dimension of an array reference: |
| 4047 | // result = (prevDimOffset * dimSize) + effectiveIndex |
| 4048 | // where dimSize is obtained from the arrObj operand |
| 4049 | // |
| 4050 | // Arguments: |
| 4051 | // arrOffset - the node for which we're generating code |
| 4052 | // |
| 4053 | // Return Value: |
| 4054 | // None. |
| 4055 | // |
| 4056 | // Notes: |
| 4057 | // dimSize and effectiveIndex are always non-negative, the former by design, |
| 4058 | // and the latter because it has been normalized to be zero-based. |
| 4059 | |
| 4060 | void CodeGen::genCodeForArrOffset(GenTreeArrOffs* arrOffset) |
| 4061 | { |
| 4062 | GenTree* offsetNode = arrOffset->gtOffset; |
| 4063 | GenTree* indexNode = arrOffset->gtIndex; |
| 4064 | GenTree* arrObj = arrOffset->gtArrObj; |
| 4065 | |
| 4066 | regNumber tgtReg = arrOffset->gtRegNum; |
| 4067 | assert(tgtReg != REG_NA); |
| 4068 | |
| 4069 | unsigned dim = arrOffset->gtCurrDim; |
| 4070 | unsigned rank = arrOffset->gtArrRank; |
| 4071 | var_types elemType = arrOffset->gtArrElemType; |
| 4072 | |
| 4073 | // First, consume the operands in the correct order. |
| 4074 | regNumber offsetReg = REG_NA; |
| 4075 | regNumber tmpReg = REG_NA; |
| 4076 | if (!offsetNode->IsIntegralConst(0)) |
| 4077 | { |
| 4078 | offsetReg = genConsumeReg(offsetNode); |
| 4079 | |
| 4080 | // We will use a temp register for the offset*scale+effectiveIndex computation. |
| 4081 | tmpReg = arrOffset->GetSingleTempReg(); |
| 4082 | } |
| 4083 | else |
| 4084 | { |
| 4085 | assert(offsetNode->isContained()); |
| 4086 | } |
| 4087 | regNumber indexReg = genConsumeReg(indexNode); |
| 4088 | // Although arrReg may not be used in the constant-index case, if we have generated |
| 4089 | // the value into a register, we must consume it, otherwise we will fail to end the |
| 4090 | // live range of the gc ptr. |
| 4091 | // TODO-CQ: Currently arrObj will always have a register allocated to it. |
| 4092 | // We could avoid allocating a register for it, which would be of value if the arrObj |
| 4093 | // is an on-stack lclVar. |
| 4094 | regNumber arrReg = REG_NA; |
| 4095 | if (arrObj->gtHasReg()) |
| 4096 | { |
| 4097 | arrReg = genConsumeReg(arrObj); |
| 4098 | } |
| 4099 | |
| 4100 | if (!offsetNode->IsIntegralConst(0)) |
| 4101 | { |
| 4102 | assert(tmpReg != REG_NA); |
| 4103 | assert(arrReg != REG_NA); |
| 4104 | |
| 4105 | // Evaluate tgtReg = offsetReg*dim_size + indexReg. |
| 4106 | // tmpReg is used to load dim_size and the result of the multiplication. |
| 4107 | // Note that dim_size will never be negative. |
| 4108 | |
| 4109 | getEmitter()->emitIns_R_AR(INS_mov, emitActualTypeSize(TYP_INT), tmpReg, arrReg, |
| 4110 | genOffsetOfMDArrayDimensionSize(elemType, rank, dim)); |
| 4111 | inst_RV_RV(INS_imul, tmpReg, offsetReg); |
| 4112 | |
| 4113 | if (tmpReg == tgtReg) |
| 4114 | { |
| 4115 | inst_RV_RV(INS_add, tmpReg, indexReg); |
| 4116 | } |
| 4117 | else |
| 4118 | { |
| 4119 | if (indexReg != tgtReg) |
| 4120 | { |
| 4121 | inst_RV_RV(INS_mov, tgtReg, indexReg, TYP_I_IMPL); |
| 4122 | } |
| 4123 | inst_RV_RV(INS_add, tgtReg, tmpReg); |
| 4124 | } |
| 4125 | } |
| 4126 | else |
| 4127 | { |
| 4128 | if (indexReg != tgtReg) |
| 4129 | { |
| 4130 | inst_RV_RV(INS_mov, tgtReg, indexReg, TYP_INT); |
| 4131 | } |
| 4132 | } |
| 4133 | genProduceReg(arrOffset); |
| 4134 | } |
| 4135 | |
| 4136 | instruction CodeGen::genGetInsForOper(genTreeOps oper, var_types type) |
| 4137 | { |
| 4138 | instruction ins; |
| 4139 | |
| 4140 | // Operations on SIMD vectors shouldn't come this path |
| 4141 | assert(!varTypeIsSIMD(type)); |
| 4142 | if (varTypeIsFloating(type)) |
| 4143 | { |
| 4144 | return ins_MathOp(oper, type); |
| 4145 | } |
| 4146 | |
| 4147 | switch (oper) |
| 4148 | { |
| 4149 | case GT_ADD: |
| 4150 | ins = INS_add; |
| 4151 | break; |
| 4152 | case GT_AND: |
| 4153 | ins = INS_and; |
| 4154 | break; |
| 4155 | case GT_LSH: |
| 4156 | ins = INS_shl; |
| 4157 | break; |
| 4158 | case GT_MUL: |
| 4159 | ins = INS_imul; |
| 4160 | break; |
| 4161 | case GT_NEG: |
| 4162 | ins = INS_neg; |
| 4163 | break; |
| 4164 | case GT_NOT: |
| 4165 | ins = INS_not; |
| 4166 | break; |
| 4167 | case GT_OR: |
| 4168 | ins = INS_or; |
| 4169 | break; |
| 4170 | case GT_ROL: |
| 4171 | ins = INS_rol; |
| 4172 | break; |
| 4173 | case GT_ROR: |
| 4174 | ins = INS_ror; |
| 4175 | break; |
| 4176 | case GT_RSH: |
| 4177 | ins = INS_sar; |
| 4178 | break; |
| 4179 | case GT_RSZ: |
| 4180 | ins = INS_shr; |
| 4181 | break; |
| 4182 | case GT_SUB: |
| 4183 | ins = INS_sub; |
| 4184 | break; |
| 4185 | case GT_XOR: |
| 4186 | ins = INS_xor; |
| 4187 | break; |
| 4188 | #if !defined(_TARGET_64BIT_) |
| 4189 | case GT_ADD_LO: |
| 4190 | ins = INS_add; |
| 4191 | break; |
| 4192 | case GT_ADD_HI: |
| 4193 | ins = INS_adc; |
| 4194 | break; |
| 4195 | case GT_SUB_LO: |
| 4196 | ins = INS_sub; |
| 4197 | break; |
| 4198 | case GT_SUB_HI: |
| 4199 | ins = INS_sbb; |
| 4200 | break; |
| 4201 | case GT_LSH_HI: |
| 4202 | ins = INS_shld; |
| 4203 | break; |
| 4204 | case GT_RSH_LO: |
| 4205 | ins = INS_shrd; |
| 4206 | break; |
| 4207 | #endif // !defined(_TARGET_64BIT_) |
| 4208 | default: |
| 4209 | unreached(); |
| 4210 | break; |
| 4211 | } |
| 4212 | return ins; |
| 4213 | } |
| 4214 | |
| 4215 | //------------------------------------------------------------------------ |
| 4216 | // genCodeForShift: Generates the code sequence for a GenTree node that |
| 4217 | // represents a bit shift or rotate operation (<<, >>, >>>, rol, ror). |
| 4218 | // |
| 4219 | // Arguments: |
| 4220 | // tree - the bit shift node (that specifies the type of bit shift to perform). |
| 4221 | // |
| 4222 | // Assumptions: |
| 4223 | // a) All GenTrees are register allocated. |
| 4224 | // b) The shift-by-amount in tree->gtOp.gtOp2 is either a contained constant or |
| 4225 | // it's a register-allocated expression. If it is in a register that is |
| 4226 | // not RCX, it will be moved to RCX (so RCX better not be in use!). |
| 4227 | // |
| 4228 | void CodeGen::genCodeForShift(GenTree* tree) |
| 4229 | { |
| 4230 | // Only the non-RMW case here. |
| 4231 | assert(tree->OperIsShiftOrRotate()); |
| 4232 | assert(tree->gtOp.gtOp1->isUsedFromReg()); |
| 4233 | assert(tree->gtRegNum != REG_NA); |
| 4234 | |
| 4235 | genConsumeOperands(tree->AsOp()); |
| 4236 | |
| 4237 | var_types targetType = tree->TypeGet(); |
| 4238 | instruction ins = genGetInsForOper(tree->OperGet(), targetType); |
| 4239 | |
| 4240 | GenTree* operand = tree->gtGetOp1(); |
| 4241 | regNumber operandReg = operand->gtRegNum; |
| 4242 | |
| 4243 | GenTree* shiftBy = tree->gtGetOp2(); |
| 4244 | |
| 4245 | if (shiftBy->isContainedIntOrIImmed()) |
| 4246 | { |
| 4247 | // First, move the operand to the destination register and |
| 4248 | // later on perform the shift in-place. |
| 4249 | // (LSRA will try to avoid this situation through preferencing.) |
| 4250 | if (tree->gtRegNum != operandReg) |
| 4251 | { |
| 4252 | inst_RV_RV(INS_mov, tree->gtRegNum, operandReg, targetType); |
| 4253 | } |
| 4254 | |
| 4255 | int shiftByValue = (int)shiftBy->AsIntConCommon()->IconValue(); |
| 4256 | inst_RV_SH(ins, emitTypeSize(tree), tree->gtRegNum, shiftByValue); |
| 4257 | } |
| 4258 | else |
| 4259 | { |
| 4260 | // We must have the number of bits to shift stored in ECX, since we constrained this node to |
| 4261 | // sit in ECX. In case this didn't happen, LSRA expects the code generator to move it since it's a single |
| 4262 | // register destination requirement. |
| 4263 | genCopyRegIfNeeded(shiftBy, REG_RCX); |
| 4264 | |
| 4265 | // The operand to be shifted must not be in ECX |
| 4266 | noway_assert(operandReg != REG_RCX); |
| 4267 | |
| 4268 | if (tree->gtRegNum != operandReg) |
| 4269 | { |
| 4270 | inst_RV_RV(INS_mov, tree->gtRegNum, operandReg, targetType); |
| 4271 | } |
| 4272 | inst_RV_CL(ins, tree->gtRegNum, targetType); |
| 4273 | } |
| 4274 | |
| 4275 | genProduceReg(tree); |
| 4276 | } |
| 4277 | |
| 4278 | #ifdef _TARGET_X86_ |
| 4279 | //------------------------------------------------------------------------ |
| 4280 | // genCodeForShiftLong: Generates the code sequence for a GenTree node that |
| 4281 | // represents a three operand bit shift or rotate operation (<<Hi, >>Lo). |
| 4282 | // |
| 4283 | // Arguments: |
| 4284 | // tree - the bit shift node (that specifies the type of bit shift to perform). |
| 4285 | // |
| 4286 | // Assumptions: |
| 4287 | // a) All GenTrees are register allocated. |
| 4288 | // b) The shift-by-amount in tree->gtOp.gtOp2 is a contained constant |
| 4289 | // |
| 4290 | // TODO-X86-CQ: This only handles the case where the operand being shifted is in a register. We don't |
| 4291 | // need sourceHi to be always in reg in case of GT_LSH_HI (because it could be moved from memory to |
| 4292 | // targetReg if sourceHi is a memory operand). Similarly for GT_RSH_LO, sourceLo could be marked as |
| 4293 | // contained memory-op. Even if not a memory-op, we could mark it as reg-optional. |
| 4294 | // |
| 4295 | void CodeGen::genCodeForShiftLong(GenTree* tree) |
| 4296 | { |
| 4297 | // Only the non-RMW case here. |
| 4298 | genTreeOps oper = tree->OperGet(); |
| 4299 | assert(oper == GT_LSH_HI || oper == GT_RSH_LO); |
| 4300 | |
| 4301 | GenTree* operand = tree->gtOp.gtOp1; |
| 4302 | assert(operand->OperGet() == GT_LONG); |
| 4303 | assert(operand->gtOp.gtOp1->isUsedFromReg()); |
| 4304 | assert(operand->gtOp.gtOp2->isUsedFromReg()); |
| 4305 | |
| 4306 | GenTree* operandLo = operand->gtGetOp1(); |
| 4307 | GenTree* operandHi = operand->gtGetOp2(); |
| 4308 | |
| 4309 | regNumber regLo = operandLo->gtRegNum; |
| 4310 | regNumber regHi = operandHi->gtRegNum; |
| 4311 | |
| 4312 | genConsumeOperands(tree->AsOp()); |
| 4313 | |
| 4314 | var_types targetType = tree->TypeGet(); |
| 4315 | instruction ins = genGetInsForOper(oper, targetType); |
| 4316 | |
| 4317 | GenTree* shiftBy = tree->gtGetOp2(); |
| 4318 | |
| 4319 | assert(shiftBy->isContainedIntOrIImmed()); |
| 4320 | |
| 4321 | unsigned int count = shiftBy->AsIntConCommon()->IconValue(); |
| 4322 | |
| 4323 | regNumber regResult = (oper == GT_LSH_HI) ? regHi : regLo; |
| 4324 | |
| 4325 | if (regResult != tree->gtRegNum) |
| 4326 | { |
| 4327 | inst_RV_RV(INS_mov, tree->gtRegNum, regResult, targetType); |
| 4328 | } |
| 4329 | |
| 4330 | if (oper == GT_LSH_HI) |
| 4331 | { |
| 4332 | inst_RV_RV_IV(ins, emitTypeSize(targetType), tree->gtRegNum, regLo, count); |
| 4333 | } |
| 4334 | else |
| 4335 | { |
| 4336 | assert(oper == GT_RSH_LO); |
| 4337 | inst_RV_RV_IV(ins, emitTypeSize(targetType), tree->gtRegNum, regHi, count); |
| 4338 | } |
| 4339 | |
| 4340 | genProduceReg(tree); |
| 4341 | } |
| 4342 | #endif |
| 4343 | |
| 4344 | //------------------------------------------------------------------------ |
| 4345 | // genCodeForShiftRMW: Generates the code sequence for a GT_STOREIND GenTree node that |
| 4346 | // represents a RMW bit shift or rotate operation (<<, >>, >>>, rol, ror), for example: |
| 4347 | // GT_STOREIND( AddressTree, GT_SHL( Ind ( AddressTree ), Operand ) ) |
| 4348 | // |
| 4349 | // Arguments: |
| 4350 | // storeIndNode: the GT_STOREIND node. |
| 4351 | // |
| 4352 | void CodeGen::genCodeForShiftRMW(GenTreeStoreInd* storeInd) |
| 4353 | { |
| 4354 | GenTree* data = storeInd->Data(); |
| 4355 | GenTree* addr = storeInd->Addr(); |
| 4356 | |
| 4357 | assert(data->OperIsShift() || data->OperIsRotate()); |
| 4358 | |
| 4359 | // This function only handles the RMW case. |
| 4360 | assert(data->gtOp.gtOp1->isUsedFromMemory()); |
| 4361 | assert(data->gtOp.gtOp1->isIndir()); |
| 4362 | assert(Lowering::IndirsAreEquivalent(data->gtOp.gtOp1, storeInd)); |
| 4363 | assert(data->gtRegNum == REG_NA); |
| 4364 | |
| 4365 | var_types targetType = data->TypeGet(); |
| 4366 | genTreeOps oper = data->OperGet(); |
| 4367 | instruction ins = genGetInsForOper(oper, targetType); |
| 4368 | emitAttr attr = EA_ATTR(genTypeSize(targetType)); |
| 4369 | |
| 4370 | GenTree* shiftBy = data->gtOp.gtOp2; |
| 4371 | if (shiftBy->isContainedIntOrIImmed()) |
| 4372 | { |
| 4373 | int shiftByValue = (int)shiftBy->AsIntConCommon()->IconValue(); |
| 4374 | ins = genMapShiftInsToShiftByConstantIns(ins, shiftByValue); |
| 4375 | if (shiftByValue == 1) |
| 4376 | { |
| 4377 | // There is no source in this case, as the shift by count is embedded in the instruction opcode itself. |
| 4378 | getEmitter()->emitInsRMW(ins, attr, storeInd); |
| 4379 | } |
| 4380 | else |
| 4381 | { |
| 4382 | getEmitter()->emitInsRMW(ins, attr, storeInd, shiftBy); |
| 4383 | } |
| 4384 | } |
| 4385 | else |
| 4386 | { |
| 4387 | // We must have the number of bits to shift stored in ECX, since we constrained this node to |
| 4388 | // sit in ECX. In case this didn't happen, LSRA expects the code generator to move it since it's a single |
| 4389 | // register destination requirement. |
| 4390 | regNumber shiftReg = shiftBy->gtRegNum; |
| 4391 | genCopyRegIfNeeded(shiftBy, REG_RCX); |
| 4392 | |
| 4393 | // The shiftBy operand is implicit, so call the unary version of emitInsRMW. |
| 4394 | getEmitter()->emitInsRMW(ins, attr, storeInd); |
| 4395 | } |
| 4396 | } |
| 4397 | |
| 4398 | //------------------------------------------------------------------------ |
| 4399 | // genCodeForLclAddr: Generates the code for GT_LCL_FLD_ADDR/GT_LCL_VAR_ADDR. |
| 4400 | // |
| 4401 | // Arguments: |
| 4402 | // tree - the node. |
| 4403 | // |
| 4404 | void CodeGen::genCodeForLclAddr(GenTree* tree) |
| 4405 | { |
| 4406 | assert(tree->OperIs(GT_LCL_FLD_ADDR, GT_LCL_VAR_ADDR)); |
| 4407 | |
| 4408 | var_types targetType = tree->TypeGet(); |
| 4409 | regNumber targetReg = tree->gtRegNum; |
| 4410 | |
| 4411 | // Address of a local var. |
| 4412 | noway_assert(targetType == TYP_BYREF); |
| 4413 | |
| 4414 | inst_RV_TT(INS_lea, targetReg, tree, 0, EA_BYREF); |
| 4415 | genProduceReg(tree); |
| 4416 | } |
| 4417 | |
| 4418 | //------------------------------------------------------------------------ |
| 4419 | // genCodeForLclFld: Produce code for a GT_LCL_FLD node. |
| 4420 | // |
| 4421 | // Arguments: |
| 4422 | // tree - the GT_LCL_FLD node |
| 4423 | // |
| 4424 | void CodeGen::genCodeForLclFld(GenTreeLclFld* tree) |
| 4425 | { |
| 4426 | assert(tree->OperIs(GT_LCL_FLD)); |
| 4427 | |
| 4428 | var_types targetType = tree->TypeGet(); |
| 4429 | regNumber targetReg = tree->gtRegNum; |
| 4430 | |
| 4431 | noway_assert(targetReg != REG_NA); |
| 4432 | |
| 4433 | #ifdef FEATURE_SIMD |
| 4434 | // Loading of TYP_SIMD12 (i.e. Vector3) field |
| 4435 | if (targetType == TYP_SIMD12) |
| 4436 | { |
| 4437 | genLoadLclTypeSIMD12(tree); |
| 4438 | return; |
| 4439 | } |
| 4440 | #endif |
| 4441 | |
| 4442 | noway_assert(targetType != TYP_STRUCT); |
| 4443 | |
| 4444 | emitAttr size = emitTypeSize(targetType); |
| 4445 | unsigned offs = tree->gtLclOffs; |
| 4446 | unsigned varNum = tree->gtLclNum; |
| 4447 | assert(varNum < compiler->lvaCount); |
| 4448 | |
| 4449 | getEmitter()->emitIns_R_S(ins_Load(targetType), size, targetReg, varNum, offs); |
| 4450 | |
| 4451 | genProduceReg(tree); |
| 4452 | } |
| 4453 | |
| 4454 | //------------------------------------------------------------------------ |
| 4455 | // genCodeForLclVar: Produce code for a GT_LCL_VAR node. |
| 4456 | // |
| 4457 | // Arguments: |
| 4458 | // tree - the GT_LCL_VAR node |
| 4459 | // |
| 4460 | void CodeGen::genCodeForLclVar(GenTreeLclVar* tree) |
| 4461 | { |
| 4462 | assert(tree->OperIs(GT_LCL_VAR)); |
| 4463 | |
| 4464 | // lcl_vars are not defs |
| 4465 | assert((tree->gtFlags & GTF_VAR_DEF) == 0); |
| 4466 | |
| 4467 | bool isRegCandidate = compiler->lvaTable[tree->gtLclNum].lvIsRegCandidate(); |
| 4468 | |
| 4469 | // If this is a register candidate that has been spilled, genConsumeReg() will |
| 4470 | // reload it at the point of use. Otherwise, if it's not in a register, we load it here. |
| 4471 | |
| 4472 | if (!isRegCandidate && !(tree->gtFlags & GTF_SPILLED)) |
| 4473 | { |
| 4474 | #if defined(FEATURE_SIMD) && defined(_TARGET_X86_) |
| 4475 | // Loading of TYP_SIMD12 (i.e. Vector3) variable |
| 4476 | if (tree->TypeGet() == TYP_SIMD12) |
| 4477 | { |
| 4478 | genLoadLclTypeSIMD12(tree); |
| 4479 | return; |
| 4480 | } |
| 4481 | #endif // defined(FEATURE_SIMD) && defined(_TARGET_X86_) |
| 4482 | |
| 4483 | getEmitter()->emitIns_R_S(ins_Load(tree->TypeGet(), compiler->isSIMDTypeLocalAligned(tree->gtLclNum)), |
| 4484 | emitTypeSize(tree), tree->gtRegNum, tree->gtLclNum, 0); |
| 4485 | genProduceReg(tree); |
| 4486 | } |
| 4487 | } |
| 4488 | |
| 4489 | //------------------------------------------------------------------------ |
| 4490 | // genCodeForStoreLclFld: Produce code for a GT_STORE_LCL_FLD node. |
| 4491 | // |
| 4492 | // Arguments: |
| 4493 | // tree - the GT_STORE_LCL_FLD node |
| 4494 | // |
| 4495 | void CodeGen::genCodeForStoreLclFld(GenTreeLclFld* tree) |
| 4496 | { |
| 4497 | assert(tree->OperIs(GT_STORE_LCL_FLD)); |
| 4498 | |
| 4499 | var_types targetType = tree->TypeGet(); |
| 4500 | noway_assert(targetType != TYP_STRUCT); |
| 4501 | assert(!varTypeIsFloating(targetType) || (targetType == tree->gtOp1->TypeGet())); |
| 4502 | |
| 4503 | #ifdef FEATURE_SIMD |
| 4504 | // storing of TYP_SIMD12 (i.e. Vector3) field |
| 4505 | if (tree->TypeGet() == TYP_SIMD12) |
| 4506 | { |
| 4507 | genStoreLclTypeSIMD12(tree); |
| 4508 | return; |
| 4509 | } |
| 4510 | #endif // FEATURE_SIMD |
| 4511 | |
| 4512 | GenTree* op1 = tree->gtGetOp1(); |
| 4513 | genConsumeRegs(op1); |
| 4514 | getEmitter()->emitInsBinary(ins_Store(targetType), emitTypeSize(tree), tree, op1); |
| 4515 | |
| 4516 | genUpdateLife(tree); |
| 4517 | } |
| 4518 | |
| 4519 | //------------------------------------------------------------------------ |
| 4520 | // genCodeForStoreLclVar: Produce code for a GT_STORE_LCL_VAR node. |
| 4521 | // |
| 4522 | // Arguments: |
| 4523 | // tree - the GT_STORE_LCL_VAR node |
| 4524 | // |
| 4525 | void CodeGen::genCodeForStoreLclVar(GenTreeLclVar* tree) |
| 4526 | { |
| 4527 | assert(tree->OperIs(GT_STORE_LCL_VAR)); |
| 4528 | |
| 4529 | var_types targetType = tree->TypeGet(); |
| 4530 | regNumber targetReg = tree->gtRegNum; |
| 4531 | emitter* emit = getEmitter(); |
| 4532 | |
| 4533 | GenTree* op1 = tree->gtGetOp1(); |
| 4534 | |
| 4535 | // var = call, where call returns a multi-reg return value |
| 4536 | // case is handled separately. |
| 4537 | if (op1->gtSkipReloadOrCopy()->IsMultiRegCall()) |
| 4538 | { |
| 4539 | genMultiRegCallStoreToLocal(tree); |
| 4540 | } |
| 4541 | else |
| 4542 | { |
| 4543 | noway_assert(targetType != TYP_STRUCT); |
| 4544 | assert(!varTypeIsFloating(targetType) || (targetType == op1->TypeGet())); |
| 4545 | |
| 4546 | unsigned lclNum = tree->gtLclNum; |
| 4547 | LclVarDsc* varDsc = &(compiler->lvaTable[lclNum]); |
| 4548 | |
| 4549 | // Ensure that lclVar nodes are typed correctly. |
| 4550 | assert(!varDsc->lvNormalizeOnStore() || (targetType == genActualType(varDsc->TypeGet()))); |
| 4551 | |
| 4552 | #if !defined(_TARGET_64BIT_) |
| 4553 | if (targetType == TYP_LONG) |
| 4554 | { |
| 4555 | genStoreLongLclVar(tree); |
| 4556 | return; |
| 4557 | } |
| 4558 | #endif // !defined(_TARGET_64BIT_) |
| 4559 | |
| 4560 | #ifdef FEATURE_SIMD |
| 4561 | // storing of TYP_SIMD12 (i.e. Vector3) field |
| 4562 | if (targetType == TYP_SIMD12) |
| 4563 | { |
| 4564 | genStoreLclTypeSIMD12(tree); |
| 4565 | return; |
| 4566 | } |
| 4567 | |
| 4568 | if (varTypeIsSIMD(targetType) && (targetReg != REG_NA) && op1->IsCnsIntOrI()) |
| 4569 | { |
| 4570 | // This is only possible for a zero-init. |
| 4571 | noway_assert(op1->IsIntegralConst(0)); |
| 4572 | genSIMDZero(targetType, varDsc->lvBaseType, targetReg); |
| 4573 | genProduceReg(tree); |
| 4574 | return; |
| 4575 | } |
| 4576 | #endif // FEATURE_SIMD |
| 4577 | |
| 4578 | genConsumeRegs(op1); |
| 4579 | |
| 4580 | if (targetReg == REG_NA) |
| 4581 | { |
| 4582 | // stack store |
| 4583 | emit->emitInsStoreLcl(ins_Store(targetType, compiler->isSIMDTypeLocalAligned(lclNum)), |
| 4584 | emitTypeSize(targetType), tree); |
| 4585 | varDsc->lvRegNum = REG_STK; |
| 4586 | } |
| 4587 | else |
| 4588 | { |
| 4589 | // Look for the case where we have a constant zero which we've marked for reuse, |
| 4590 | // but which isn't actually in the register we want. In that case, it's better to create |
| 4591 | // zero in the target register, because an xor is smaller than a copy. Note that we could |
| 4592 | // potentially handle this in the register allocator, but we can't always catch it there |
| 4593 | // because the target may not have a register allocated for it yet. |
| 4594 | if (op1->isUsedFromReg() && (op1->gtRegNum != targetReg) && (op1->IsIntegralConst(0) || op1->IsFPZero())) |
| 4595 | { |
| 4596 | op1->gtRegNum = REG_NA; |
| 4597 | op1->ResetReuseRegVal(); |
| 4598 | op1->SetContained(); |
| 4599 | } |
| 4600 | |
| 4601 | if (!op1->isUsedFromReg()) |
| 4602 | { |
| 4603 | // Currently, we assume that the non-reg source of a GT_STORE_LCL_VAR writing to a register |
| 4604 | // must be a constant. However, in the future we might want to support an operand used from |
| 4605 | // memory. This is a bit tricky because we have to decide it can be used from memory before |
| 4606 | // register allocation, |
| 4607 | // and this would be a case where, once that's done, we need to mark that node as always |
| 4608 | // requiring a register - which we always assume now anyway, but once we "optimize" that |
| 4609 | // we'll have to take cases like this into account. |
| 4610 | assert((op1->gtRegNum == REG_NA) && op1->OperIsConst()); |
| 4611 | genSetRegToConst(targetReg, targetType, op1); |
| 4612 | } |
| 4613 | else if (op1->gtRegNum != targetReg) |
| 4614 | { |
| 4615 | assert(op1->gtRegNum != REG_NA); |
| 4616 | emit->emitInsBinary(ins_Move_Extend(targetType, true), emitTypeSize(tree), tree, op1); |
| 4617 | } |
| 4618 | } |
| 4619 | } |
| 4620 | |
| 4621 | if (targetReg != REG_NA) |
| 4622 | { |
| 4623 | genProduceReg(tree); |
| 4624 | } |
| 4625 | } |
| 4626 | |
| 4627 | //------------------------------------------------------------------------ |
| 4628 | // genCodeForIndexAddr: Produce code for a GT_INDEX_ADDR node. |
| 4629 | // |
| 4630 | // Arguments: |
| 4631 | // tree - the GT_INDEX_ADDR node |
| 4632 | // |
| 4633 | void CodeGen::genCodeForIndexAddr(GenTreeIndexAddr* node) |
| 4634 | { |
| 4635 | GenTree* const base = node->Arr(); |
| 4636 | GenTree* const index = node->Index(); |
| 4637 | |
| 4638 | genConsumeReg(base); |
| 4639 | genConsumeReg(index); |
| 4640 | |
| 4641 | // NOTE: `genConsumeReg` marks the consumed register as not a GC pointer, as it assumes that the input registers |
| 4642 | // die at the first instruction generated by the node. This is not the case for `INDEX_ADDR`, however, as the |
| 4643 | // base register is multiply-used. As such, we need to mark the base register as containing a GC pointer until |
| 4644 | // we are finished generating the code for this node. |
| 4645 | |
| 4646 | gcInfo.gcMarkRegPtrVal(base->gtRegNum, base->TypeGet()); |
| 4647 | assert(!varTypeIsGC(index->TypeGet())); |
| 4648 | |
| 4649 | regNumber tmpReg = REG_NA; |
| 4650 | |
| 4651 | // Generate the bounds check if necessary. |
| 4652 | if ((node->gtFlags & GTF_INX_RNGCHK) != 0) |
| 4653 | { |
| 4654 | // Create a GT_IND(GT_LEA)) tree for the array length access. |
| 4655 | GenTreeAddrMode arrLenAddr(base->TypeGet(), base, nullptr, 0, node->gtLenOffset); |
| 4656 | arrLenAddr.gtRegNum = REG_NA; |
| 4657 | arrLenAddr.SetContained(); |
| 4658 | |
| 4659 | GenTreeIndir arrLen = indirForm(TYP_INT, &arrLenAddr); |
| 4660 | |
| 4661 | #ifdef _TARGET_64BIT_ |
| 4662 | // The CLI Spec allows an array to be indexed by either an int32 or a native int. In the case that the index |
| 4663 | // is a native int on a 64-bit platform, we will need to widen the array length and the compare. |
| 4664 | if (index->TypeGet() == TYP_I_IMPL) |
| 4665 | { |
| 4666 | // Load the array length into a register. |
| 4667 | tmpReg = node->GetSingleTempReg(); |
| 4668 | arrLen.gtRegNum = tmpReg; |
| 4669 | arrLen.ClearContained(); |
| 4670 | getEmitter()->emitInsLoadInd(ins_Load(TYP_INT), EA_4BYTE, arrLen.gtRegNum, &arrLen); |
| 4671 | } |
| 4672 | else |
| 4673 | #endif |
| 4674 | { |
| 4675 | assert(varTypeIsIntegral(index->TypeGet())); |
| 4676 | |
| 4677 | arrLen.gtRegNum = REG_NA; |
| 4678 | arrLen.SetContained(); |
| 4679 | } |
| 4680 | |
| 4681 | // Generate the range check. |
| 4682 | getEmitter()->emitInsBinary(INS_cmp, emitTypeSize(TYP_I_IMPL), index, &arrLen); |
| 4683 | genJumpToThrowHlpBlk(EJ_jae, SCK_RNGCHK_FAIL, node->gtIndRngFailBB); |
| 4684 | } |
| 4685 | |
| 4686 | // Compute the address of the array element. |
| 4687 | switch (node->gtElemSize) |
| 4688 | { |
| 4689 | case 1: |
| 4690 | case 2: |
| 4691 | case 4: |
| 4692 | case 8: |
| 4693 | getEmitter()->emitIns_R_ARX(INS_lea, emitTypeSize(node), node->gtRegNum, base->gtRegNum, index->gtRegNum, |
| 4694 | node->gtElemSize, static_cast<int>(node->gtElemOffset)); |
| 4695 | break; |
| 4696 | |
| 4697 | default: |
| 4698 | { |
| 4699 | // Multiply the index by the element size. |
| 4700 | // |
| 4701 | // TODO-CQ: this should really just use `imul index, index, #gtElemSize` |
| 4702 | tmpReg = (tmpReg == REG_NA) ? node->GetSingleTempReg() : tmpReg; |
| 4703 | CodeGen::genSetRegToIcon(tmpReg, (ssize_t)node->gtElemSize, TYP_INT); |
| 4704 | inst_RV_RV(INS_imul, tmpReg, index->gtRegNum); |
| 4705 | getEmitter()->emitIns_R_ARX(INS_lea, emitTypeSize(node), node->gtRegNum, base->gtRegNum, tmpReg, 1, |
| 4706 | static_cast<int>(node->gtElemOffset)); |
| 4707 | break; |
| 4708 | } |
| 4709 | } |
| 4710 | |
| 4711 | gcInfo.gcMarkRegSetNpt(base->gtGetRegMask()); |
| 4712 | |
| 4713 | genProduceReg(node); |
| 4714 | } |
| 4715 | |
| 4716 | //------------------------------------------------------------------------ |
| 4717 | // genCodeForIndir: Produce code for a GT_IND node. |
| 4718 | // |
| 4719 | // Arguments: |
| 4720 | // tree - the GT_IND node |
| 4721 | // |
| 4722 | void CodeGen::genCodeForIndir(GenTreeIndir* tree) |
| 4723 | { |
| 4724 | assert(tree->OperIs(GT_IND)); |
| 4725 | |
| 4726 | #ifdef FEATURE_SIMD |
| 4727 | // Handling of Vector3 type values loaded through indirection. |
| 4728 | if (tree->TypeGet() == TYP_SIMD12) |
| 4729 | { |
| 4730 | genLoadIndTypeSIMD12(tree); |
| 4731 | return; |
| 4732 | } |
| 4733 | #endif // FEATURE_SIMD |
| 4734 | |
| 4735 | var_types targetType = tree->TypeGet(); |
| 4736 | emitter* emit = getEmitter(); |
| 4737 | |
| 4738 | GenTree* addr = tree->Addr(); |
| 4739 | if (addr->IsCnsIntOrI() && addr->IsIconHandle(GTF_ICON_TLS_HDL)) |
| 4740 | { |
| 4741 | noway_assert(EA_ATTR(genTypeSize(targetType)) == EA_PTRSIZE); |
| 4742 | emit->emitIns_R_C(ins_Load(TYP_I_IMPL), EA_PTRSIZE, tree->gtRegNum, FLD_GLOBAL_FS, |
| 4743 | (int)addr->gtIntCon.gtIconVal); |
| 4744 | } |
| 4745 | else |
| 4746 | { |
| 4747 | genConsumeAddress(addr); |
| 4748 | emit->emitInsLoadInd(ins_Load(targetType), emitTypeSize(tree), tree->gtRegNum, tree); |
| 4749 | } |
| 4750 | |
| 4751 | genProduceReg(tree); |
| 4752 | } |
| 4753 | |
| 4754 | //------------------------------------------------------------------------ |
| 4755 | // genRegCopy: Produce code for a GT_COPY node. |
| 4756 | // |
| 4757 | // Arguments: |
| 4758 | // tree - the GT_COPY node |
| 4759 | // |
| 4760 | // Notes: |
| 4761 | // This will copy the register(s) produced by this nodes source, to |
| 4762 | // the register(s) allocated to this GT_COPY node. |
| 4763 | // It has some special handling for these casess: |
| 4764 | // - when the source and target registers are in different register files |
| 4765 | // (note that this is *not* a conversion). |
| 4766 | // - when the source is a lclVar whose home location is being moved to a new |
| 4767 | // register (rather than just being copied for temporary use). |
| 4768 | // |
| 4769 | void CodeGen::genRegCopy(GenTree* treeNode) |
| 4770 | { |
| 4771 | assert(treeNode->OperGet() == GT_COPY); |
| 4772 | GenTree* op1 = treeNode->gtOp.gtOp1; |
| 4773 | |
| 4774 | if (op1->IsMultiRegNode()) |
| 4775 | { |
| 4776 | genConsumeReg(op1); |
| 4777 | |
| 4778 | GenTreeCopyOrReload* copyTree = treeNode->AsCopyOrReload(); |
| 4779 | unsigned regCount = treeNode->GetMultiRegCount(); |
| 4780 | |
| 4781 | for (unsigned i = 0; i < regCount; ++i) |
| 4782 | { |
| 4783 | var_types type = op1->GetRegTypeByIndex(i); |
| 4784 | regNumber fromReg = op1->GetRegByIndex(i); |
| 4785 | regNumber toReg = copyTree->GetRegNumByIdx(i); |
| 4786 | |
| 4787 | // A Multi-reg GT_COPY node will have a valid reg only for those positions for which a corresponding |
| 4788 | // result reg of the multi-reg node needs to be copied. |
| 4789 | if (toReg != REG_NA) |
| 4790 | { |
| 4791 | assert(toReg != fromReg); |
| 4792 | inst_RV_RV(ins_Copy(type), toReg, fromReg, type); |
| 4793 | } |
| 4794 | } |
| 4795 | } |
| 4796 | else |
| 4797 | { |
| 4798 | var_types targetType = treeNode->TypeGet(); |
| 4799 | regNumber targetReg = treeNode->gtRegNum; |
| 4800 | assert(targetReg != REG_NA); |
| 4801 | |
| 4802 | // Check whether this node and the node from which we're copying the value have |
| 4803 | // different register types. This can happen if (currently iff) we have a SIMD |
| 4804 | // vector type that fits in an integer register, in which case it is passed as |
| 4805 | // an argument, or returned from a call, in an integer register and must be |
| 4806 | // copied if it's in an xmm register. |
| 4807 | |
| 4808 | bool srcFltReg = (varTypeIsFloating(op1) || varTypeIsSIMD(op1)); |
| 4809 | bool tgtFltReg = (varTypeIsFloating(treeNode) || varTypeIsSIMD(treeNode)); |
| 4810 | if (srcFltReg != tgtFltReg) |
| 4811 | { |
| 4812 | instruction ins; |
| 4813 | regNumber fpReg; |
| 4814 | regNumber intReg; |
| 4815 | if (tgtFltReg) |
| 4816 | { |
| 4817 | ins = ins_CopyIntToFloat(op1->TypeGet(), treeNode->TypeGet()); |
| 4818 | fpReg = targetReg; |
| 4819 | intReg = op1->gtRegNum; |
| 4820 | } |
| 4821 | else |
| 4822 | { |
| 4823 | ins = ins_CopyFloatToInt(op1->TypeGet(), treeNode->TypeGet()); |
| 4824 | intReg = targetReg; |
| 4825 | fpReg = op1->gtRegNum; |
| 4826 | } |
| 4827 | inst_RV_RV(ins, fpReg, intReg, targetType); |
| 4828 | } |
| 4829 | else |
| 4830 | { |
| 4831 | inst_RV_RV(ins_Copy(targetType), targetReg, genConsumeReg(op1), targetType); |
| 4832 | } |
| 4833 | |
| 4834 | if (op1->IsLocal()) |
| 4835 | { |
| 4836 | // The lclVar will never be a def. |
| 4837 | // If it is a last use, the lclVar will be killed by genConsumeReg(), as usual, and genProduceReg will |
| 4838 | // appropriately set the gcInfo for the copied value. |
| 4839 | // If not, there are two cases we need to handle: |
| 4840 | // - If this is a TEMPORARY copy (indicated by the GTF_VAR_DEATH flag) the variable |
| 4841 | // will remain live in its original register. |
| 4842 | // genProduceReg() will appropriately set the gcInfo for the copied value, |
| 4843 | // and genConsumeReg will reset it. |
| 4844 | // - Otherwise, we need to update register info for the lclVar. |
| 4845 | |
| 4846 | GenTreeLclVarCommon* lcl = op1->AsLclVarCommon(); |
| 4847 | assert((lcl->gtFlags & GTF_VAR_DEF) == 0); |
| 4848 | |
| 4849 | if ((lcl->gtFlags & GTF_VAR_DEATH) == 0 && (treeNode->gtFlags & GTF_VAR_DEATH) == 0) |
| 4850 | { |
| 4851 | LclVarDsc* varDsc = &compiler->lvaTable[lcl->gtLclNum]; |
| 4852 | |
| 4853 | // If we didn't just spill it (in genConsumeReg, above), then update the register info |
| 4854 | if (varDsc->lvRegNum != REG_STK) |
| 4855 | { |
| 4856 | // The old location is dying |
| 4857 | genUpdateRegLife(varDsc, /*isBorn*/ false, /*isDying*/ true DEBUGARG(op1)); |
| 4858 | |
| 4859 | gcInfo.gcMarkRegSetNpt(genRegMask(op1->gtRegNum)); |
| 4860 | |
| 4861 | genUpdateVarReg(varDsc, treeNode); |
| 4862 | |
| 4863 | // The new location is going live |
| 4864 | genUpdateRegLife(varDsc, /*isBorn*/ true, /*isDying*/ false DEBUGARG(treeNode)); |
| 4865 | } |
| 4866 | } |
| 4867 | } |
| 4868 | } |
| 4869 | |
| 4870 | genProduceReg(treeNode); |
| 4871 | } |
| 4872 | |
| 4873 | //------------------------------------------------------------------------ |
| 4874 | // genCodeForStoreInd: Produce code for a GT_STOREIND node. |
| 4875 | // |
| 4876 | // Arguments: |
| 4877 | // tree - the GT_STOREIND node |
| 4878 | // |
| 4879 | void CodeGen::genCodeForStoreInd(GenTreeStoreInd* tree) |
| 4880 | { |
| 4881 | assert(tree->OperIs(GT_STOREIND)); |
| 4882 | |
| 4883 | #ifdef FEATURE_SIMD |
| 4884 | // Storing Vector3 of size 12 bytes through indirection |
| 4885 | if (tree->TypeGet() == TYP_SIMD12) |
| 4886 | { |
| 4887 | genStoreIndTypeSIMD12(tree); |
| 4888 | return; |
| 4889 | } |
| 4890 | #endif // FEATURE_SIMD |
| 4891 | |
| 4892 | GenTree* data = tree->Data(); |
| 4893 | GenTree* addr = tree->Addr(); |
| 4894 | var_types targetType = tree->TypeGet(); |
| 4895 | |
| 4896 | assert(!varTypeIsFloating(targetType) || (targetType == data->TypeGet())); |
| 4897 | |
| 4898 | GCInfo::WriteBarrierForm writeBarrierForm = gcInfo.gcIsWriteBarrierCandidate(tree, data); |
| 4899 | if (writeBarrierForm != GCInfo::WBF_NoBarrier) |
| 4900 | { |
| 4901 | // data and addr must be in registers. |
| 4902 | // Consume both registers so that any copies of interfering registers are taken care of. |
| 4903 | genConsumeOperands(tree); |
| 4904 | |
| 4905 | if (genEmitOptimizedGCWriteBarrier(writeBarrierForm, addr, data)) |
| 4906 | { |
| 4907 | return; |
| 4908 | } |
| 4909 | |
| 4910 | // At this point, we should not have any interference. |
| 4911 | // That is, 'data' must not be in REG_ARG_0, as that is where 'addr' must go. |
| 4912 | noway_assert(data->gtRegNum != REG_ARG_0); |
| 4913 | |
| 4914 | // addr goes in REG_ARG_0 |
| 4915 | genCopyRegIfNeeded(addr, REG_ARG_0); |
| 4916 | |
| 4917 | // data goes in REG_ARG_1 |
| 4918 | genCopyRegIfNeeded(data, REG_ARG_1); |
| 4919 | |
| 4920 | genGCWriteBarrier(tree, writeBarrierForm); |
| 4921 | } |
| 4922 | else |
| 4923 | { |
| 4924 | bool dataIsUnary = false; |
| 4925 | bool isRMWMemoryOp = tree->IsRMWMemoryOp(); |
| 4926 | GenTree* rmwSrc = nullptr; |
| 4927 | |
| 4928 | // We must consume the operands in the proper execution order, so that liveness is |
| 4929 | // updated appropriately. |
| 4930 | genConsumeAddress(addr); |
| 4931 | |
| 4932 | // If tree represents a RMW memory op then its data is a non-leaf node marked as contained |
| 4933 | // and non-indir operand of data is the source of RMW memory op. |
| 4934 | if (isRMWMemoryOp) |
| 4935 | { |
| 4936 | assert(data->isContained() && !data->OperIsLeaf()); |
| 4937 | |
| 4938 | GenTree* rmwDst = nullptr; |
| 4939 | |
| 4940 | dataIsUnary = (GenTree::OperIsUnary(data->OperGet()) != 0); |
| 4941 | if (!dataIsUnary) |
| 4942 | { |
| 4943 | if (tree->IsRMWDstOp1()) |
| 4944 | { |
| 4945 | rmwDst = data->gtGetOp1(); |
| 4946 | rmwSrc = data->gtGetOp2(); |
| 4947 | } |
| 4948 | else |
| 4949 | { |
| 4950 | assert(tree->IsRMWDstOp2()); |
| 4951 | rmwDst = data->gtGetOp2(); |
| 4952 | rmwSrc = data->gtGetOp1(); |
| 4953 | } |
| 4954 | |
| 4955 | genConsumeRegs(rmwSrc); |
| 4956 | } |
| 4957 | else |
| 4958 | { |
| 4959 | // *(p) = oper *(p): Here addr = p, rmwsrc=rmwDst = *(p) i.e. GT_IND(p) |
| 4960 | // For unary RMW ops, src and dst of RMW memory op is the same. Lower |
| 4961 | // clears operand counts on rmwSrc and we don't need to perform a |
| 4962 | // genConsumeReg() on it. |
| 4963 | assert(tree->IsRMWDstOp1()); |
| 4964 | rmwSrc = data->gtGetOp1(); |
| 4965 | rmwDst = data->gtGetOp1(); |
| 4966 | assert(rmwSrc->isUsedFromMemory()); |
| 4967 | } |
| 4968 | |
| 4969 | assert(rmwSrc != nullptr); |
| 4970 | assert(rmwDst != nullptr); |
| 4971 | assert(Lowering::IndirsAreEquivalent(rmwDst, tree)); |
| 4972 | } |
| 4973 | else |
| 4974 | { |
| 4975 | genConsumeRegs(data); |
| 4976 | } |
| 4977 | |
| 4978 | if (isRMWMemoryOp) |
| 4979 | { |
| 4980 | if (dataIsUnary) |
| 4981 | { |
| 4982 | // generate code for unary RMW memory ops like neg/not |
| 4983 | getEmitter()->emitInsRMW(genGetInsForOper(data->OperGet(), data->TypeGet()), emitTypeSize(tree), tree); |
| 4984 | } |
| 4985 | else |
| 4986 | { |
| 4987 | if (data->OperIsShiftOrRotate()) |
| 4988 | { |
| 4989 | // Generate code for shift RMW memory ops. |
| 4990 | // The data address needs to be op1 (it must be [addr] = [addr] <shift> <amount>, not [addr] = |
| 4991 | // <amount> <shift> [addr]). |
| 4992 | assert(tree->IsRMWDstOp1()); |
| 4993 | assert(rmwSrc == data->gtGetOp2()); |
| 4994 | genCodeForShiftRMW(tree); |
| 4995 | } |
| 4996 | else if (data->OperGet() == GT_ADD && (rmwSrc->IsIntegralConst(1) || rmwSrc->IsIntegralConst(-1))) |
| 4997 | { |
| 4998 | // Generate "inc/dec [mem]" instead of "add/sub [mem], 1". |
| 4999 | // |
| 5000 | // Notes: |
| 5001 | // 1) Global morph transforms GT_SUB(x, +/-1) into GT_ADD(x, -/+1). |
| 5002 | // 2) TODO-AMD64: Debugger routine NativeWalker::Decode() runs into |
| 5003 | // an assert while decoding ModR/M byte of "inc dword ptr [rax]". |
| 5004 | // It is not clear whether Decode() can handle all possible |
| 5005 | // addr modes with inc/dec. For this reason, inc/dec [mem] |
| 5006 | // is not generated while generating debuggable code. Update |
| 5007 | // the above if condition once Decode() routine is fixed. |
| 5008 | assert(rmwSrc->isContainedIntOrIImmed()); |
| 5009 | instruction ins = rmwSrc->IsIntegralConst(1) ? INS_inc : INS_dec; |
| 5010 | getEmitter()->emitInsRMW(ins, emitTypeSize(tree), tree); |
| 5011 | } |
| 5012 | else |
| 5013 | { |
| 5014 | // generate code for remaining binary RMW memory ops like add/sub/and/or/xor |
| 5015 | getEmitter()->emitInsRMW(genGetInsForOper(data->OperGet(), data->TypeGet()), emitTypeSize(tree), |
| 5016 | tree, rmwSrc); |
| 5017 | } |
| 5018 | } |
| 5019 | } |
| 5020 | else |
| 5021 | { |
| 5022 | getEmitter()->emitInsStoreInd(ins_Store(data->TypeGet()), emitTypeSize(tree), tree); |
| 5023 | } |
| 5024 | } |
| 5025 | } |
| 5026 | |
| 5027 | //------------------------------------------------------------------------ |
| 5028 | // genCodeForSwap: Produce code for a GT_SWAP node. |
| 5029 | // |
| 5030 | // Arguments: |
| 5031 | // tree - the GT_SWAP node |
| 5032 | // |
| 5033 | void CodeGen::genCodeForSwap(GenTreeOp* tree) |
| 5034 | { |
| 5035 | assert(tree->OperIs(GT_SWAP)); |
| 5036 | |
| 5037 | // Swap is only supported for lclVar operands that are enregistered |
| 5038 | // We do not consume or produce any registers. Both operands remain enregistered. |
| 5039 | // However, the gc-ness may change. |
| 5040 | assert(genIsRegCandidateLocal(tree->gtOp1) && genIsRegCandidateLocal(tree->gtOp2)); |
| 5041 | |
| 5042 | GenTreeLclVarCommon* lcl1 = tree->gtOp1->AsLclVarCommon(); |
| 5043 | LclVarDsc* varDsc1 = &(compiler->lvaTable[lcl1->gtLclNum]); |
| 5044 | var_types type1 = varDsc1->TypeGet(); |
| 5045 | GenTreeLclVarCommon* lcl2 = tree->gtOp2->AsLclVarCommon(); |
| 5046 | LclVarDsc* varDsc2 = &(compiler->lvaTable[lcl2->gtLclNum]); |
| 5047 | var_types type2 = varDsc2->TypeGet(); |
| 5048 | |
| 5049 | // We must have both int or both fp regs |
| 5050 | assert(!varTypeIsFloating(type1) || varTypeIsFloating(type2)); |
| 5051 | |
| 5052 | // FP swap is not yet implemented (and should have NYI'd in LSRA) |
| 5053 | assert(!varTypeIsFloating(type1)); |
| 5054 | |
| 5055 | regNumber oldOp1Reg = lcl1->gtRegNum; |
| 5056 | regMaskTP oldOp1RegMask = genRegMask(oldOp1Reg); |
| 5057 | regNumber oldOp2Reg = lcl2->gtRegNum; |
| 5058 | regMaskTP oldOp2RegMask = genRegMask(oldOp2Reg); |
| 5059 | |
| 5060 | // We don't call genUpdateVarReg because we don't have a tree node with the new register. |
| 5061 | varDsc1->lvRegNum = oldOp2Reg; |
| 5062 | varDsc2->lvRegNum = oldOp1Reg; |
| 5063 | |
| 5064 | // Do the xchg |
| 5065 | emitAttr size = EA_PTRSIZE; |
| 5066 | if (varTypeGCtype(type1) != varTypeGCtype(type2)) |
| 5067 | { |
| 5068 | // If the type specified to the emitter is a GC type, it will swap the GC-ness of the registers. |
| 5069 | // Otherwise it will leave them alone, which is correct if they have the same GC-ness. |
| 5070 | size = EA_GCREF; |
| 5071 | } |
| 5072 | inst_RV_RV(INS_xchg, oldOp1Reg, oldOp2Reg, TYP_I_IMPL, size); |
| 5073 | |
| 5074 | // Update the gcInfo. |
| 5075 | // Manually remove these regs for the gc sets (mostly to avoid confusing duplicative dump output) |
| 5076 | gcInfo.gcRegByrefSetCur &= ~(oldOp1RegMask | oldOp2RegMask); |
| 5077 | gcInfo.gcRegGCrefSetCur &= ~(oldOp1RegMask | oldOp2RegMask); |
| 5078 | |
| 5079 | // gcMarkRegPtrVal will do the appropriate thing for non-gc types. |
| 5080 | // It will also dump the updates. |
| 5081 | gcInfo.gcMarkRegPtrVal(oldOp2Reg, type1); |
| 5082 | gcInfo.gcMarkRegPtrVal(oldOp1Reg, type2); |
| 5083 | } |
| 5084 | |
| 5085 | //------------------------------------------------------------------------ |
| 5086 | // genEmitOptimizedGCWriteBarrier: Generate write barrier store using the optimized |
| 5087 | // helper functions. |
| 5088 | // |
| 5089 | // Arguments: |
| 5090 | // writeBarrierForm - the write barrier form to use |
| 5091 | // addr - the address at which to do the store |
| 5092 | // data - the data to store |
| 5093 | // |
| 5094 | // Return Value: |
| 5095 | // true if an optimized write barrier form was used, false if not. If this |
| 5096 | // function returns false, the caller must emit a "standard" write barrier. |
| 5097 | |
| 5098 | bool CodeGen::genEmitOptimizedGCWriteBarrier(GCInfo::WriteBarrierForm writeBarrierForm, GenTree* addr, GenTree* data) |
| 5099 | { |
| 5100 | assert(writeBarrierForm != GCInfo::WBF_NoBarrier); |
| 5101 | |
| 5102 | #if defined(_TARGET_X86_) && NOGC_WRITE_BARRIERS |
| 5103 | if (!genUseOptimizedWriteBarriers(writeBarrierForm)) |
| 5104 | { |
| 5105 | return false; |
| 5106 | } |
| 5107 | |
| 5108 | const static int regToHelper[2][8] = { |
| 5109 | // If the target is known to be in managed memory |
| 5110 | { |
| 5111 | CORINFO_HELP_ASSIGN_REF_EAX, // EAX |
| 5112 | CORINFO_HELP_ASSIGN_REF_ECX, // ECX |
| 5113 | -1, // EDX (always the target address) |
| 5114 | CORINFO_HELP_ASSIGN_REF_EBX, // EBX |
| 5115 | -1, // ESP |
| 5116 | CORINFO_HELP_ASSIGN_REF_EBP, // EBP |
| 5117 | CORINFO_HELP_ASSIGN_REF_ESI, // ESI |
| 5118 | CORINFO_HELP_ASSIGN_REF_EDI, // EDI |
| 5119 | }, |
| 5120 | |
| 5121 | // Don't know if the target is in managed memory |
| 5122 | { |
| 5123 | CORINFO_HELP_CHECKED_ASSIGN_REF_EAX, // EAX |
| 5124 | CORINFO_HELP_CHECKED_ASSIGN_REF_ECX, // ECX |
| 5125 | -1, // EDX (always the target address) |
| 5126 | CORINFO_HELP_CHECKED_ASSIGN_REF_EBX, // EBX |
| 5127 | -1, // ESP |
| 5128 | CORINFO_HELP_CHECKED_ASSIGN_REF_EBP, // EBP |
| 5129 | CORINFO_HELP_CHECKED_ASSIGN_REF_ESI, // ESI |
| 5130 | CORINFO_HELP_CHECKED_ASSIGN_REF_EDI, // EDI |
| 5131 | }, |
| 5132 | }; |
| 5133 | |
| 5134 | noway_assert(regToHelper[0][REG_EAX] == CORINFO_HELP_ASSIGN_REF_EAX); |
| 5135 | noway_assert(regToHelper[0][REG_ECX] == CORINFO_HELP_ASSIGN_REF_ECX); |
| 5136 | noway_assert(regToHelper[0][REG_EBX] == CORINFO_HELP_ASSIGN_REF_EBX); |
| 5137 | noway_assert(regToHelper[0][REG_ESP] == -1); |
| 5138 | noway_assert(regToHelper[0][REG_EBP] == CORINFO_HELP_ASSIGN_REF_EBP); |
| 5139 | noway_assert(regToHelper[0][REG_ESI] == CORINFO_HELP_ASSIGN_REF_ESI); |
| 5140 | noway_assert(regToHelper[0][REG_EDI] == CORINFO_HELP_ASSIGN_REF_EDI); |
| 5141 | |
| 5142 | noway_assert(regToHelper[1][REG_EAX] == CORINFO_HELP_CHECKED_ASSIGN_REF_EAX); |
| 5143 | noway_assert(regToHelper[1][REG_ECX] == CORINFO_HELP_CHECKED_ASSIGN_REF_ECX); |
| 5144 | noway_assert(regToHelper[1][REG_EBX] == CORINFO_HELP_CHECKED_ASSIGN_REF_EBX); |
| 5145 | noway_assert(regToHelper[1][REG_ESP] == -1); |
| 5146 | noway_assert(regToHelper[1][REG_EBP] == CORINFO_HELP_CHECKED_ASSIGN_REF_EBP); |
| 5147 | noway_assert(regToHelper[1][REG_ESI] == CORINFO_HELP_CHECKED_ASSIGN_REF_ESI); |
| 5148 | noway_assert(regToHelper[1][REG_EDI] == CORINFO_HELP_CHECKED_ASSIGN_REF_EDI); |
| 5149 | |
| 5150 | regNumber reg = data->gtRegNum; |
| 5151 | noway_assert((reg != REG_ESP) && (reg != REG_WRITE_BARRIER)); |
| 5152 | |
| 5153 | // Generate the following code: |
| 5154 | // lea edx, addr |
| 5155 | // call write_barrier_helper_reg |
| 5156 | |
| 5157 | // addr goes in REG_ARG_0 |
| 5158 | genCopyRegIfNeeded(addr, REG_WRITE_BARRIER); |
| 5159 | |
| 5160 | unsigned tgtAnywhere = 0; |
| 5161 | if (writeBarrierForm != GCInfo::WBF_BarrierUnchecked) |
| 5162 | { |
| 5163 | tgtAnywhere = 1; |
| 5164 | } |
| 5165 | |
| 5166 | // We might want to call a modified version of genGCWriteBarrier() to get the benefit of |
| 5167 | // the FEATURE_COUNT_GC_WRITE_BARRIERS code there, but that code doesn't look like it works |
| 5168 | // with rationalized RyuJIT IR. So, for now, just emit the helper call directly here. |
| 5169 | |
| 5170 | genEmitHelperCall(regToHelper[tgtAnywhere][reg], |
| 5171 | 0, // argSize |
| 5172 | EA_PTRSIZE); // retSize |
| 5173 | |
| 5174 | return true; |
| 5175 | #else // !defined(_TARGET_X86_) || !NOGC_WRITE_BARRIERS |
| 5176 | return false; |
| 5177 | #endif // !defined(_TARGET_X86_) || !NOGC_WRITE_BARRIERS |
| 5178 | } |
| 5179 | |
| 5180 | // Produce code for a GT_CALL node |
| 5181 | void CodeGen::genCallInstruction(GenTreeCall* call) |
| 5182 | { |
| 5183 | genAlignStackBeforeCall(call); |
| 5184 | |
| 5185 | gtCallTypes callType = (gtCallTypes)call->gtCallType; |
| 5186 | |
| 5187 | IL_OFFSETX ilOffset = BAD_IL_OFFSET; |
| 5188 | |
| 5189 | // all virtuals should have been expanded into a control expression |
| 5190 | assert(!call->IsVirtual() || call->gtControlExpr || call->gtCallAddr); |
| 5191 | |
| 5192 | // Insert a GS check if necessary |
| 5193 | if (call->IsTailCallViaHelper()) |
| 5194 | { |
| 5195 | if (compiler->getNeedsGSSecurityCookie()) |
| 5196 | { |
| 5197 | #if FEATURE_FIXED_OUT_ARGS |
| 5198 | // If either of the conditions below is true, we will need a temporary register in order to perform the GS |
| 5199 | // cookie check. When FEATURE_FIXED_OUT_ARGS is disabled, we save and restore the temporary register using |
| 5200 | // push/pop. When FEATURE_FIXED_OUT_ARGS is enabled, however, we need an alternative solution. For now, |
| 5201 | // though, the tail prefix is ignored on all platforms that use fixed out args, so we should never hit this |
| 5202 | // case. |
| 5203 | assert(compiler->gsGlobalSecurityCookieAddr == nullptr); |
| 5204 | assert((int)compiler->gsGlobalSecurityCookieVal == (ssize_t)compiler->gsGlobalSecurityCookieVal); |
| 5205 | #endif |
| 5206 | genEmitGSCookieCheck(true); |
| 5207 | } |
| 5208 | } |
| 5209 | |
| 5210 | // Consume all the arg regs |
| 5211 | for (GenTree* list = call->gtCallLateArgs; list; list = list->MoveNext()) |
| 5212 | { |
| 5213 | assert(list->OperIsList()); |
| 5214 | |
| 5215 | GenTree* argNode = list->Current(); |
| 5216 | |
| 5217 | fgArgTabEntry* curArgTabEntry = compiler->gtArgEntryByNode(call, argNode->gtSkipReloadOrCopy()); |
| 5218 | assert(curArgTabEntry); |
| 5219 | |
| 5220 | if (curArgTabEntry->regNum == REG_STK) |
| 5221 | { |
| 5222 | continue; |
| 5223 | } |
| 5224 | |
| 5225 | #ifdef UNIX_AMD64_ABI |
| 5226 | // Deal with multi register passed struct args. |
| 5227 | if (argNode->OperGet() == GT_FIELD_LIST) |
| 5228 | { |
| 5229 | GenTreeFieldList* fieldListPtr = argNode->AsFieldList(); |
| 5230 | unsigned iterationNum = 0; |
| 5231 | for (; fieldListPtr != nullptr; fieldListPtr = fieldListPtr->Rest(), iterationNum++) |
| 5232 | { |
| 5233 | GenTree* putArgRegNode = fieldListPtr->gtOp.gtOp1; |
| 5234 | assert(putArgRegNode->gtOper == GT_PUTARG_REG); |
| 5235 | regNumber argReg = REG_NA; |
| 5236 | |
| 5237 | if (iterationNum == 0) |
| 5238 | { |
| 5239 | argReg = curArgTabEntry->regNum; |
| 5240 | } |
| 5241 | else |
| 5242 | { |
| 5243 | assert(iterationNum == 1); |
| 5244 | argReg = curArgTabEntry->otherRegNum; |
| 5245 | } |
| 5246 | |
| 5247 | genConsumeReg(putArgRegNode); |
| 5248 | |
| 5249 | // Validate the putArgRegNode has the right type. |
| 5250 | assert(varTypeIsFloating(putArgRegNode->TypeGet()) == genIsValidFloatReg(argReg)); |
| 5251 | if (putArgRegNode->gtRegNum != argReg) |
| 5252 | { |
| 5253 | inst_RV_RV(ins_Move_Extend(putArgRegNode->TypeGet(), false), argReg, putArgRegNode->gtRegNum); |
| 5254 | } |
| 5255 | } |
| 5256 | } |
| 5257 | else |
| 5258 | #endif // UNIX_AMD64_ABI |
| 5259 | { |
| 5260 | regNumber argReg = curArgTabEntry->regNum; |
| 5261 | genConsumeReg(argNode); |
| 5262 | if (argNode->gtRegNum != argReg) |
| 5263 | { |
| 5264 | inst_RV_RV(ins_Move_Extend(argNode->TypeGet(), false), argReg, argNode->gtRegNum); |
| 5265 | } |
| 5266 | } |
| 5267 | |
| 5268 | #if FEATURE_VARARG |
| 5269 | // In the case of a varargs call, |
| 5270 | // the ABI dictates that if we have floating point args, |
| 5271 | // we must pass the enregistered arguments in both the |
| 5272 | // integer and floating point registers so, let's do that. |
| 5273 | if (call->IsVarargs() && varTypeIsFloating(argNode)) |
| 5274 | { |
| 5275 | regNumber targetReg = compiler->getCallArgIntRegister(argNode->gtRegNum); |
| 5276 | instruction ins = ins_CopyFloatToInt(argNode->TypeGet(), TYP_LONG); |
| 5277 | inst_RV_RV(ins, argNode->gtRegNum, targetReg); |
| 5278 | } |
| 5279 | #endif // FEATURE_VARARG |
| 5280 | } |
| 5281 | |
| 5282 | #if defined(_TARGET_X86_) || defined(UNIX_AMD64_ABI) |
| 5283 | // The call will pop its arguments. |
| 5284 | // for each putarg_stk: |
| 5285 | ssize_t stackArgBytes = 0; |
| 5286 | GenTree* args = call->gtCallArgs; |
| 5287 | while (args) |
| 5288 | { |
| 5289 | GenTree* arg = args->gtOp.gtOp1; |
| 5290 | if (arg->OperGet() != GT_ARGPLACE && !(arg->gtFlags & GTF_LATE_ARG)) |
| 5291 | { |
| 5292 | if (arg->OperGet() == GT_PUTARG_STK) |
| 5293 | { |
| 5294 | GenTree* source = arg->gtOp.gtOp1; |
| 5295 | unsigned size = arg->AsPutArgStk()->getArgSize(); |
| 5296 | stackArgBytes += size; |
| 5297 | #ifdef DEBUG |
| 5298 | fgArgTabEntry* curArgTabEntry = compiler->gtArgEntryByNode(call, arg); |
| 5299 | assert(curArgTabEntry); |
| 5300 | assert(size == (curArgTabEntry->numSlots * TARGET_POINTER_SIZE)); |
| 5301 | #ifdef FEATURE_PUT_STRUCT_ARG_STK |
| 5302 | if (source->TypeGet() == TYP_STRUCT) |
| 5303 | { |
| 5304 | GenTreeObj* obj = source->AsObj(); |
| 5305 | unsigned argBytes = roundUp(obj->gtBlkSize, TARGET_POINTER_SIZE); |
| 5306 | assert((curArgTabEntry->numSlots * TARGET_POINTER_SIZE) == argBytes); |
| 5307 | } |
| 5308 | #endif // FEATURE_PUT_STRUCT_ARG_STK |
| 5309 | #endif // DEBUG |
| 5310 | } |
| 5311 | } |
| 5312 | args = args->gtOp.gtOp2; |
| 5313 | } |
| 5314 | #endif // defined(_TARGET_X86_) || defined(UNIX_AMD64_ABI) |
| 5315 | |
| 5316 | // Insert a null check on "this" pointer if asked. |
| 5317 | if (call->NeedsNullCheck()) |
| 5318 | { |
| 5319 | const regNumber regThis = genGetThisArgReg(call); |
| 5320 | getEmitter()->emitIns_AR_R(INS_cmp, EA_4BYTE, regThis, regThis, 0); |
| 5321 | } |
| 5322 | |
| 5323 | // Either gtControlExpr != null or gtCallAddr != null or it is a direct non-virtual call to a user or helper method. |
| 5324 | CORINFO_METHOD_HANDLE methHnd; |
| 5325 | GenTree* target = call->gtControlExpr; |
| 5326 | if (callType == CT_INDIRECT) |
| 5327 | { |
| 5328 | assert(target == nullptr); |
| 5329 | target = call->gtCallAddr; |
| 5330 | methHnd = nullptr; |
| 5331 | } |
| 5332 | else |
| 5333 | { |
| 5334 | methHnd = call->gtCallMethHnd; |
| 5335 | } |
| 5336 | |
| 5337 | CORINFO_SIG_INFO* sigInfo = nullptr; |
| 5338 | #ifdef DEBUG |
| 5339 | // Pass the call signature information down into the emitter so the emitter can associate |
| 5340 | // native call sites with the signatures they were generated from. |
| 5341 | if (callType != CT_HELPER) |
| 5342 | { |
| 5343 | sigInfo = call->callSig; |
| 5344 | } |
| 5345 | #endif // DEBUG |
| 5346 | |
| 5347 | // If fast tail call, then we are done. In this case we setup the args (both reg args |
| 5348 | // and stack args in incoming arg area) and call target in rax. Epilog sequence would |
| 5349 | // generate "jmp rax". |
| 5350 | if (call->IsFastTailCall()) |
| 5351 | { |
| 5352 | // Don't support fast tail calling JIT helpers |
| 5353 | assert(callType != CT_HELPER); |
| 5354 | |
| 5355 | // Fast tail calls materialize call target either in gtControlExpr or in gtCallAddr. |
| 5356 | assert(target != nullptr); |
| 5357 | |
| 5358 | genConsumeReg(target); |
| 5359 | genCopyRegIfNeeded(target, REG_RAX); |
| 5360 | return; |
| 5361 | } |
| 5362 | |
| 5363 | // For a pinvoke to unmanged code we emit a label to clear |
| 5364 | // the GC pointer state before the callsite. |
| 5365 | // We can't utilize the typical lazy killing of GC pointers |
| 5366 | // at (or inside) the callsite. |
| 5367 | if (compiler->killGCRefs(call)) |
| 5368 | { |
| 5369 | genDefineTempLabel(genCreateTempLabel()); |
| 5370 | } |
| 5371 | |
| 5372 | // Determine return value size(s). |
| 5373 | ReturnTypeDesc* retTypeDesc = call->GetReturnTypeDesc(); |
| 5374 | emitAttr retSize = EA_PTRSIZE; |
| 5375 | emitAttr secondRetSize = EA_UNKNOWN; |
| 5376 | |
| 5377 | if (call->HasMultiRegRetVal()) |
| 5378 | { |
| 5379 | retSize = emitTypeSize(retTypeDesc->GetReturnRegType(0)); |
| 5380 | secondRetSize = emitTypeSize(retTypeDesc->GetReturnRegType(1)); |
| 5381 | } |
| 5382 | else |
| 5383 | { |
| 5384 | assert(!varTypeIsStruct(call)); |
| 5385 | |
| 5386 | if (call->gtType == TYP_REF) |
| 5387 | { |
| 5388 | retSize = EA_GCREF; |
| 5389 | } |
| 5390 | else if (call->gtType == TYP_BYREF) |
| 5391 | { |
| 5392 | retSize = EA_BYREF; |
| 5393 | } |
| 5394 | } |
| 5395 | |
| 5396 | #if defined(DEBUG) && defined(_TARGET_X86_) |
| 5397 | // Store the stack pointer so we can check it after the call. |
| 5398 | if (compiler->opts.compStackCheckOnCall && call->gtCallType == CT_USER_FUNC) |
| 5399 | { |
| 5400 | noway_assert(compiler->lvaCallSpCheck != 0xCCCCCCCC && |
| 5401 | compiler->lvaTable[compiler->lvaCallSpCheck].lvDoNotEnregister && |
| 5402 | compiler->lvaTable[compiler->lvaCallSpCheck].lvOnFrame); |
| 5403 | getEmitter()->emitIns_S_R(ins_Store(TYP_I_IMPL), EA_PTRSIZE, REG_SPBASE, compiler->lvaCallSpCheck, 0); |
| 5404 | } |
| 5405 | #endif // defined(DEBUG) && defined(_TARGET_X86_) |
| 5406 | |
| 5407 | bool fPossibleSyncHelperCall = false; |
| 5408 | CorInfoHelpFunc helperNum = CORINFO_HELP_UNDEF; |
| 5409 | |
| 5410 | // We need to propagate the IL offset information to the call instruction, so we can emit |
| 5411 | // an IL to native mapping record for the call, to support managed return value debugging. |
| 5412 | // We don't want tail call helper calls that were converted from normal calls to get a record, |
| 5413 | // so we skip this hash table lookup logic in that case. |
| 5414 | if (compiler->opts.compDbgInfo && compiler->genCallSite2ILOffsetMap != nullptr && !call->IsTailCall()) |
| 5415 | { |
| 5416 | (void)compiler->genCallSite2ILOffsetMap->Lookup(call, &ilOffset); |
| 5417 | } |
| 5418 | |
| 5419 | #if defined(_TARGET_X86_) |
| 5420 | bool fCallerPop = call->CallerPop(); |
| 5421 | |
| 5422 | #ifdef UNIX_X86_ABI |
| 5423 | if (!call->IsUnmanaged()) |
| 5424 | { |
| 5425 | CorInfoCallConv callConv = CORINFO_CALLCONV_DEFAULT; |
| 5426 | |
| 5427 | if ((callType != CT_HELPER) && call->callSig) |
| 5428 | { |
| 5429 | callConv = call->callSig->callConv; |
| 5430 | } |
| 5431 | |
| 5432 | fCallerPop |= IsCallerPop(callConv); |
| 5433 | } |
| 5434 | #endif // UNIX_X86_ABI |
| 5435 | |
| 5436 | // If the callee pops the arguments, we pass a positive value as the argSize, and the emitter will |
| 5437 | // adjust its stack level accordingly. |
| 5438 | // If the caller needs to explicitly pop its arguments, we must pass a negative value, and then do the |
| 5439 | // pop when we're done. |
| 5440 | ssize_t argSizeForEmitter = stackArgBytes; |
| 5441 | if (fCallerPop) |
| 5442 | { |
| 5443 | argSizeForEmitter = -stackArgBytes; |
| 5444 | } |
| 5445 | #endif // defined(_TARGET_X86_) |
| 5446 | |
| 5447 | // When it's a PInvoke call and the call type is USER function, we issue VZEROUPPER here |
| 5448 | // if the function contains 256bit AVX instructions, this is to avoid AVX-256 to Legacy SSE |
| 5449 | // transition penalty, assuming the user function contains legacy SSE instruction. |
| 5450 | // To limit code size increase impact: we only issue VZEROUPPER before PInvoke call, not issue |
| 5451 | // VZEROUPPER after PInvoke call because transition penalty from legacy SSE to AVX only happens |
| 5452 | // when there's preceding 256-bit AVX to legacy SSE transition penalty. |
| 5453 | if (call->IsPInvoke() && (call->gtCallType == CT_USER_FUNC) && getEmitter()->Contains256bitAVX()) |
| 5454 | { |
| 5455 | assert(compiler->canUseVexEncoding()); |
| 5456 | instGen(INS_vzeroupper); |
| 5457 | } |
| 5458 | |
| 5459 | if (target != nullptr) |
| 5460 | { |
| 5461 | #ifdef _TARGET_X86_ |
| 5462 | if (call->IsVirtualStub() && (call->gtCallType == CT_INDIRECT)) |
| 5463 | { |
| 5464 | // On x86, we need to generate a very specific pattern for indirect VSD calls: |
| 5465 | // |
| 5466 | // 3-byte nop |
| 5467 | // call dword ptr [eax] |
| 5468 | // |
| 5469 | // Where EAX is also used as an argument to the stub dispatch helper. Make |
| 5470 | // sure that the call target address is computed into EAX in this case. |
| 5471 | |
| 5472 | assert(compiler->virtualStubParamInfo->GetReg() == REG_VIRTUAL_STUB_TARGET); |
| 5473 | |
| 5474 | assert(target->isContainedIndir()); |
| 5475 | assert(target->OperGet() == GT_IND); |
| 5476 | |
| 5477 | GenTree* addr = target->AsIndir()->Addr(); |
| 5478 | assert(addr->isUsedFromReg()); |
| 5479 | |
| 5480 | genConsumeReg(addr); |
| 5481 | genCopyRegIfNeeded(addr, REG_VIRTUAL_STUB_TARGET); |
| 5482 | |
| 5483 | getEmitter()->emitIns_Nop(3); |
| 5484 | |
| 5485 | // clang-format off |
| 5486 | getEmitter()->emitIns_Call(emitter::EmitCallType(emitter::EC_INDIR_ARD), |
| 5487 | methHnd, |
| 5488 | INDEBUG_LDISASM_COMMA(sigInfo) |
| 5489 | nullptr, |
| 5490 | argSizeForEmitter, |
| 5491 | retSize |
| 5492 | MULTIREG_HAS_SECOND_GC_RET_ONLY_ARG(secondRetSize), |
| 5493 | gcInfo.gcVarPtrSetCur, |
| 5494 | gcInfo.gcRegGCrefSetCur, |
| 5495 | gcInfo.gcRegByrefSetCur, |
| 5496 | ilOffset, REG_VIRTUAL_STUB_TARGET, REG_NA, 1, 0); |
| 5497 | // clang-format on |
| 5498 | } |
| 5499 | else |
| 5500 | #endif |
| 5501 | if (target->isContainedIndir()) |
| 5502 | { |
| 5503 | if (target->AsIndir()->HasBase() && target->AsIndir()->Base()->isContainedIntOrIImmed()) |
| 5504 | { |
| 5505 | // Note that if gtControlExpr is an indir of an absolute address, we mark it as |
| 5506 | // contained only if it can be encoded as PC-relative offset. |
| 5507 | assert(target->AsIndir()->Base()->AsIntConCommon()->FitsInAddrBase(compiler)); |
| 5508 | |
| 5509 | // clang-format off |
| 5510 | genEmitCall(emitter::EC_FUNC_TOKEN_INDIR, |
| 5511 | methHnd, |
| 5512 | INDEBUG_LDISASM_COMMA(sigInfo) |
| 5513 | (void*) target->AsIndir()->Base()->AsIntConCommon()->IconValue() |
| 5514 | X86_ARG(argSizeForEmitter), |
| 5515 | retSize |
| 5516 | MULTIREG_HAS_SECOND_GC_RET_ONLY_ARG(secondRetSize), |
| 5517 | ilOffset); |
| 5518 | // clang-format on |
| 5519 | } |
| 5520 | else |
| 5521 | { |
| 5522 | // clang-format off |
| 5523 | genEmitCall(emitter::EC_INDIR_ARD, |
| 5524 | methHnd, |
| 5525 | INDEBUG_LDISASM_COMMA(sigInfo) |
| 5526 | target->AsIndir() |
| 5527 | X86_ARG(argSizeForEmitter), |
| 5528 | retSize |
| 5529 | MULTIREG_HAS_SECOND_GC_RET_ONLY_ARG(secondRetSize), |
| 5530 | ilOffset); |
| 5531 | // clang-format on |
| 5532 | } |
| 5533 | } |
| 5534 | else |
| 5535 | { |
| 5536 | // We have already generated code for gtControlExpr evaluating it into a register. |
| 5537 | // We just need to emit "call reg" in this case. |
| 5538 | assert(genIsValidIntReg(target->gtRegNum)); |
| 5539 | |
| 5540 | // clang-format off |
| 5541 | genEmitCall(emitter::EC_INDIR_R, |
| 5542 | methHnd, |
| 5543 | INDEBUG_LDISASM_COMMA(sigInfo) |
| 5544 | nullptr // addr |
| 5545 | X86_ARG(argSizeForEmitter), |
| 5546 | retSize |
| 5547 | MULTIREG_HAS_SECOND_GC_RET_ONLY_ARG(secondRetSize), |
| 5548 | ilOffset, |
| 5549 | genConsumeReg(target)); |
| 5550 | // clang-format on |
| 5551 | } |
| 5552 | } |
| 5553 | #ifdef FEATURE_READYTORUN_COMPILER |
| 5554 | else if (call->gtEntryPoint.addr != nullptr) |
| 5555 | { |
| 5556 | // clang-format off |
| 5557 | genEmitCall((call->gtEntryPoint.accessType == IAT_VALUE) ? emitter::EC_FUNC_TOKEN |
| 5558 | : emitter::EC_FUNC_TOKEN_INDIR, |
| 5559 | methHnd, |
| 5560 | INDEBUG_LDISASM_COMMA(sigInfo) |
| 5561 | (void*) call->gtEntryPoint.addr |
| 5562 | X86_ARG(argSizeForEmitter), |
| 5563 | retSize |
| 5564 | MULTIREG_HAS_SECOND_GC_RET_ONLY_ARG(secondRetSize), |
| 5565 | ilOffset); |
| 5566 | // clang-format on |
| 5567 | } |
| 5568 | #endif |
| 5569 | else |
| 5570 | { |
| 5571 | // Generate a direct call to a non-virtual user defined or helper method |
| 5572 | assert(callType == CT_HELPER || callType == CT_USER_FUNC); |
| 5573 | |
| 5574 | void* addr = nullptr; |
| 5575 | if (callType == CT_HELPER) |
| 5576 | { |
| 5577 | // Direct call to a helper method. |
| 5578 | helperNum = compiler->eeGetHelperNum(methHnd); |
| 5579 | noway_assert(helperNum != CORINFO_HELP_UNDEF); |
| 5580 | |
| 5581 | void* pAddr = nullptr; |
| 5582 | addr = compiler->compGetHelperFtn(helperNum, (void**)&pAddr); |
| 5583 | assert(pAddr == nullptr); |
| 5584 | |
| 5585 | // tracking of region protected by the monitor in synchronized methods |
| 5586 | if (compiler->info.compFlags & CORINFO_FLG_SYNCH) |
| 5587 | { |
| 5588 | fPossibleSyncHelperCall = true; |
| 5589 | } |
| 5590 | } |
| 5591 | else |
| 5592 | { |
| 5593 | // Direct call to a non-virtual user function. |
| 5594 | addr = call->gtDirectCallAddress; |
| 5595 | } |
| 5596 | |
| 5597 | assert(addr != nullptr); |
| 5598 | |
| 5599 | // Non-virtual direct calls to known addresses |
| 5600 | |
| 5601 | // clang-format off |
| 5602 | genEmitCall(emitter::EC_FUNC_TOKEN, |
| 5603 | methHnd, |
| 5604 | INDEBUG_LDISASM_COMMA(sigInfo) |
| 5605 | addr |
| 5606 | X86_ARG(argSizeForEmitter), |
| 5607 | retSize |
| 5608 | MULTIREG_HAS_SECOND_GC_RET_ONLY_ARG(secondRetSize), |
| 5609 | ilOffset); |
| 5610 | // clang-format on |
| 5611 | } |
| 5612 | |
| 5613 | // if it was a pinvoke we may have needed to get the address of a label |
| 5614 | if (genPendingCallLabel) |
| 5615 | { |
| 5616 | assert(call->IsUnmanaged()); |
| 5617 | genDefineTempLabel(genPendingCallLabel); |
| 5618 | genPendingCallLabel = nullptr; |
| 5619 | } |
| 5620 | |
| 5621 | // Update GC info: |
| 5622 | // All Callee arg registers are trashed and no longer contain any GC pointers. |
| 5623 | // TODO-XArch-Bug?: As a matter of fact shouldn't we be killing all of callee trashed regs here? |
| 5624 | // For now we will assert that other than arg regs gc ref/byref set doesn't contain any other |
| 5625 | // registers from RBM_CALLEE_TRASH. |
| 5626 | assert((gcInfo.gcRegGCrefSetCur & (RBM_CALLEE_TRASH & ~RBM_ARG_REGS)) == 0); |
| 5627 | assert((gcInfo.gcRegByrefSetCur & (RBM_CALLEE_TRASH & ~RBM_ARG_REGS)) == 0); |
| 5628 | gcInfo.gcRegGCrefSetCur &= ~RBM_ARG_REGS; |
| 5629 | gcInfo.gcRegByrefSetCur &= ~RBM_ARG_REGS; |
| 5630 | |
| 5631 | var_types returnType = call->TypeGet(); |
| 5632 | if (returnType != TYP_VOID) |
| 5633 | { |
| 5634 | #ifdef _TARGET_X86_ |
| 5635 | if (varTypeIsFloating(returnType)) |
| 5636 | { |
| 5637 | // Spill the value from the fp stack. |
| 5638 | // Then, load it into the target register. |
| 5639 | call->gtFlags |= GTF_SPILL; |
| 5640 | regSet.rsSpillFPStack(call); |
| 5641 | call->gtFlags |= GTF_SPILLED; |
| 5642 | call->gtFlags &= ~GTF_SPILL; |
| 5643 | } |
| 5644 | else |
| 5645 | #endif // _TARGET_X86_ |
| 5646 | { |
| 5647 | regNumber returnReg; |
| 5648 | |
| 5649 | if (call->HasMultiRegRetVal()) |
| 5650 | { |
| 5651 | assert(retTypeDesc != nullptr); |
| 5652 | unsigned regCount = retTypeDesc->GetReturnRegCount(); |
| 5653 | |
| 5654 | // If regs allocated to call node are different from ABI return |
| 5655 | // regs in which the call has returned its result, move the result |
| 5656 | // to regs allocated to call node. |
| 5657 | for (unsigned i = 0; i < regCount; ++i) |
| 5658 | { |
| 5659 | var_types regType = retTypeDesc->GetReturnRegType(i); |
| 5660 | returnReg = retTypeDesc->GetABIReturnReg(i); |
| 5661 | regNumber allocatedReg = call->GetRegNumByIdx(i); |
| 5662 | if (returnReg != allocatedReg) |
| 5663 | { |
| 5664 | inst_RV_RV(ins_Copy(regType), allocatedReg, returnReg, regType); |
| 5665 | } |
| 5666 | } |
| 5667 | |
| 5668 | #ifdef FEATURE_SIMD |
| 5669 | // A Vector3 return value is stored in xmm0 and xmm1. |
| 5670 | // RyuJIT assumes that the upper unused bits of xmm1 are cleared but |
| 5671 | // the native compiler doesn't guarantee it. |
| 5672 | if (returnType == TYP_SIMD12) |
| 5673 | { |
| 5674 | returnReg = retTypeDesc->GetABIReturnReg(1); |
| 5675 | // Clear the upper 32 bits by two shift instructions. |
| 5676 | // retReg = retReg << 96 |
| 5677 | // retReg = retReg >> 96 |
| 5678 | getEmitter()->emitIns_R_I(INS_pslldq, emitActualTypeSize(TYP_SIMD12), returnReg, 12); |
| 5679 | getEmitter()->emitIns_R_I(INS_psrldq, emitActualTypeSize(TYP_SIMD12), returnReg, 12); |
| 5680 | } |
| 5681 | #endif // FEATURE_SIMD |
| 5682 | } |
| 5683 | else |
| 5684 | { |
| 5685 | #ifdef _TARGET_X86_ |
| 5686 | if (call->IsHelperCall(compiler, CORINFO_HELP_INIT_PINVOKE_FRAME)) |
| 5687 | { |
| 5688 | // The x86 CORINFO_HELP_INIT_PINVOKE_FRAME helper uses a custom calling convention that returns with |
| 5689 | // TCB in REG_PINVOKE_TCB. AMD64/ARM64 use the standard calling convention. fgMorphCall() sets the |
| 5690 | // correct argument registers. |
| 5691 | returnReg = REG_PINVOKE_TCB; |
| 5692 | } |
| 5693 | else |
| 5694 | #endif // _TARGET_X86_ |
| 5695 | if (varTypeIsFloating(returnType)) |
| 5696 | { |
| 5697 | returnReg = REG_FLOATRET; |
| 5698 | } |
| 5699 | else |
| 5700 | { |
| 5701 | returnReg = REG_INTRET; |
| 5702 | } |
| 5703 | |
| 5704 | if (call->gtRegNum != returnReg) |
| 5705 | { |
| 5706 | inst_RV_RV(ins_Copy(returnType), call->gtRegNum, returnReg, returnType); |
| 5707 | } |
| 5708 | } |
| 5709 | |
| 5710 | genProduceReg(call); |
| 5711 | } |
| 5712 | } |
| 5713 | |
| 5714 | // If there is nothing next, that means the result is thrown away, so this value is not live. |
| 5715 | // However, for minopts or debuggable code, we keep it live to support managed return value debugging. |
| 5716 | if ((call->gtNext == nullptr) && compiler->opts.OptimizationEnabled()) |
| 5717 | { |
| 5718 | gcInfo.gcMarkRegSetNpt(RBM_INTRET); |
| 5719 | } |
| 5720 | |
| 5721 | #if defined(DEBUG) && defined(_TARGET_X86_) |
| 5722 | if (compiler->opts.compStackCheckOnCall && call->gtCallType == CT_USER_FUNC) |
| 5723 | { |
| 5724 | noway_assert(compiler->lvaCallSpCheck != 0xCCCCCCCC && |
| 5725 | compiler->lvaTable[compiler->lvaCallSpCheck].lvDoNotEnregister && |
| 5726 | compiler->lvaTable[compiler->lvaCallSpCheck].lvOnFrame); |
| 5727 | if (!fCallerPop && (stackArgBytes != 0)) |
| 5728 | { |
| 5729 | // ECX is trashed, so can be used to compute the expected SP. We saved the value of SP |
| 5730 | // after pushing all the stack arguments, but the caller popped the arguments, so we need |
| 5731 | // to do some math to figure a good comparison. |
| 5732 | getEmitter()->emitIns_R_R(INS_mov, EA_4BYTE, REG_ARG_0, REG_SPBASE); |
| 5733 | getEmitter()->emitIns_R_I(INS_sub, EA_4BYTE, REG_ARG_0, stackArgBytes); |
| 5734 | getEmitter()->emitIns_S_R(INS_cmp, EA_4BYTE, REG_ARG_0, compiler->lvaCallSpCheck, 0); |
| 5735 | } |
| 5736 | else |
| 5737 | { |
| 5738 | getEmitter()->emitIns_S_R(INS_cmp, EA_4BYTE, REG_SPBASE, compiler->lvaCallSpCheck, 0); |
| 5739 | } |
| 5740 | |
| 5741 | BasicBlock* sp_check = genCreateTempLabel(); |
| 5742 | getEmitter()->emitIns_J(INS_je, sp_check); |
| 5743 | instGen(INS_BREAKPOINT); |
| 5744 | genDefineTempLabel(sp_check); |
| 5745 | } |
| 5746 | #endif // defined(DEBUG) && defined(_TARGET_X86_) |
| 5747 | |
| 5748 | #if !FEATURE_EH_FUNCLETS |
| 5749 | //------------------------------------------------------------------------- |
| 5750 | // Create a label for tracking of region protected by the monitor in synchronized methods. |
| 5751 | // This needs to be here, rather than above where fPossibleSyncHelperCall is set, |
| 5752 | // so the GC state vars have been updated before creating the label. |
| 5753 | |
| 5754 | if (fPossibleSyncHelperCall) |
| 5755 | { |
| 5756 | switch (helperNum) |
| 5757 | { |
| 5758 | case CORINFO_HELP_MON_ENTER: |
| 5759 | case CORINFO_HELP_MON_ENTER_STATIC: |
| 5760 | noway_assert(compiler->syncStartEmitCookie == NULL); |
| 5761 | compiler->syncStartEmitCookie = |
| 5762 | getEmitter()->emitAddLabel(gcInfo.gcVarPtrSetCur, gcInfo.gcRegGCrefSetCur, gcInfo.gcRegByrefSetCur); |
| 5763 | noway_assert(compiler->syncStartEmitCookie != NULL); |
| 5764 | break; |
| 5765 | case CORINFO_HELP_MON_EXIT: |
| 5766 | case CORINFO_HELP_MON_EXIT_STATIC: |
| 5767 | noway_assert(compiler->syncEndEmitCookie == NULL); |
| 5768 | compiler->syncEndEmitCookie = |
| 5769 | getEmitter()->emitAddLabel(gcInfo.gcVarPtrSetCur, gcInfo.gcRegGCrefSetCur, gcInfo.gcRegByrefSetCur); |
| 5770 | noway_assert(compiler->syncEndEmitCookie != NULL); |
| 5771 | break; |
| 5772 | default: |
| 5773 | break; |
| 5774 | } |
| 5775 | } |
| 5776 | #endif // !FEATURE_EH_FUNCLETS |
| 5777 | |
| 5778 | unsigned stackAdjustBias = 0; |
| 5779 | |
| 5780 | #if defined(_TARGET_X86_) |
| 5781 | // Is the caller supposed to pop the arguments? |
| 5782 | if (fCallerPop && (stackArgBytes != 0)) |
| 5783 | { |
| 5784 | stackAdjustBias = stackArgBytes; |
| 5785 | } |
| 5786 | |
| 5787 | SubtractStackLevel(stackArgBytes); |
| 5788 | #endif // _TARGET_X86_ |
| 5789 | |
| 5790 | genRemoveAlignmentAfterCall(call, stackAdjustBias); |
| 5791 | } |
| 5792 | |
| 5793 | // Produce code for a GT_JMP node. |
| 5794 | // The arguments of the caller needs to be transferred to the callee before exiting caller. |
| 5795 | // The actual jump to callee is generated as part of caller epilog sequence. |
| 5796 | // Therefore the codegen of GT_JMP is to ensure that the callee arguments are correctly setup. |
| 5797 | void CodeGen::genJmpMethod(GenTree* jmp) |
| 5798 | { |
| 5799 | assert(jmp->OperGet() == GT_JMP); |
| 5800 | assert(compiler->compJmpOpUsed); |
| 5801 | |
| 5802 | // If no arguments, nothing to do |
| 5803 | if (compiler->info.compArgsCount == 0) |
| 5804 | { |
| 5805 | return; |
| 5806 | } |
| 5807 | |
| 5808 | // Make sure register arguments are in their initial registers |
| 5809 | // and stack arguments are put back as well. |
| 5810 | unsigned varNum; |
| 5811 | LclVarDsc* varDsc; |
| 5812 | |
| 5813 | // First move any en-registered stack arguments back to the stack. |
| 5814 | // At the same time any reg arg not in correct reg is moved back to its stack location. |
| 5815 | // |
| 5816 | // We are not strictly required to spill reg args that are not in the desired reg for a jmp call |
| 5817 | // But that would require us to deal with circularity while moving values around. Spilling |
| 5818 | // to stack makes the implementation simple, which is not a bad trade off given Jmp calls |
| 5819 | // are not frequent. |
| 5820 | for (varNum = 0; (varNum < compiler->info.compArgsCount); varNum++) |
| 5821 | { |
| 5822 | varDsc = compiler->lvaTable + varNum; |
| 5823 | |
| 5824 | if (varDsc->lvPromoted) |
| 5825 | { |
| 5826 | noway_assert(varDsc->lvFieldCnt == 1); // We only handle one field here |
| 5827 | |
| 5828 | unsigned fieldVarNum = varDsc->lvFieldLclStart; |
| 5829 | varDsc = compiler->lvaTable + fieldVarNum; |
| 5830 | } |
| 5831 | noway_assert(varDsc->lvIsParam); |
| 5832 | |
| 5833 | if (varDsc->lvIsRegArg && (varDsc->lvRegNum != REG_STK)) |
| 5834 | { |
| 5835 | // Skip reg args which are already in its right register for jmp call. |
| 5836 | // If not, we will spill such args to their stack locations. |
| 5837 | // |
| 5838 | // If we need to generate a tail call profiler hook, then spill all |
| 5839 | // arg regs to free them up for the callback. |
| 5840 | if (!compiler->compIsProfilerHookNeeded() && (varDsc->lvRegNum == varDsc->lvArgReg)) |
| 5841 | { |
| 5842 | continue; |
| 5843 | } |
| 5844 | } |
| 5845 | else if (varDsc->lvRegNum == REG_STK) |
| 5846 | { |
| 5847 | // Skip args which are currently living in stack. |
| 5848 | continue; |
| 5849 | } |
| 5850 | |
| 5851 | // If we came here it means either a reg argument not in the right register or |
| 5852 | // a stack argument currently living in a register. In either case the following |
| 5853 | // assert should hold. |
| 5854 | assert(varDsc->lvRegNum != REG_STK); |
| 5855 | |
| 5856 | assert(!varDsc->lvIsStructField || (compiler->lvaTable[varDsc->lvParentLcl].lvFieldCnt == 1)); |
| 5857 | var_types storeType = genActualType(varDsc->lvaArgType()); // We own the memory and can use the full move. |
| 5858 | getEmitter()->emitIns_S_R(ins_Store(storeType), emitTypeSize(storeType), varDsc->lvRegNum, varNum, 0); |
| 5859 | |
| 5860 | // Update lvRegNum life and GC info to indicate lvRegNum is dead and varDsc stack slot is going live. |
| 5861 | // Note that we cannot modify varDsc->lvRegNum here because another basic block may not be expecting it. |
| 5862 | // Therefore manually update life of varDsc->lvRegNum. |
| 5863 | regMaskTP tempMask = varDsc->lvRegMask(); |
| 5864 | regSet.RemoveMaskVars(tempMask); |
| 5865 | gcInfo.gcMarkRegSetNpt(tempMask); |
| 5866 | if (compiler->lvaIsGCTracked(varDsc)) |
| 5867 | { |
| 5868 | #ifdef DEBUG |
| 5869 | if (!VarSetOps::IsMember(compiler, gcInfo.gcVarPtrSetCur, varDsc->lvVarIndex)) |
| 5870 | { |
| 5871 | JITDUMP("\t\t\t\t\t\t\tVar V%02u becoming live\n" , varNum); |
| 5872 | } |
| 5873 | else |
| 5874 | { |
| 5875 | JITDUMP("\t\t\t\t\t\t\tVar V%02u continuing live\n" , varNum); |
| 5876 | } |
| 5877 | #endif // DEBUG |
| 5878 | |
| 5879 | VarSetOps::AddElemD(compiler, gcInfo.gcVarPtrSetCur, varDsc->lvVarIndex); |
| 5880 | } |
| 5881 | } |
| 5882 | |
| 5883 | #ifdef PROFILING_SUPPORTED |
| 5884 | // At this point all arg regs are free. |
| 5885 | // Emit tail call profiler callback. |
| 5886 | genProfilingLeaveCallback(CORINFO_HELP_PROF_FCN_TAILCALL); |
| 5887 | #endif |
| 5888 | |
| 5889 | // Next move any un-enregistered register arguments back to their register. |
| 5890 | regMaskTP fixedIntArgMask = RBM_NONE; // tracks the int arg regs occupying fixed args in case of a vararg method. |
| 5891 | unsigned firstArgVarNum = BAD_VAR_NUM; // varNum of the first argument in case of a vararg method. |
| 5892 | for (varNum = 0; (varNum < compiler->info.compArgsCount); varNum++) |
| 5893 | { |
| 5894 | varDsc = compiler->lvaTable + varNum; |
| 5895 | if (varDsc->lvPromoted) |
| 5896 | { |
| 5897 | noway_assert(varDsc->lvFieldCnt == 1); // We only handle one field here |
| 5898 | |
| 5899 | unsigned fieldVarNum = varDsc->lvFieldLclStart; |
| 5900 | varDsc = compiler->lvaTable + fieldVarNum; |
| 5901 | } |
| 5902 | noway_assert(varDsc->lvIsParam); |
| 5903 | |
| 5904 | // Skip if arg not passed in a register. |
| 5905 | if (!varDsc->lvIsRegArg) |
| 5906 | { |
| 5907 | continue; |
| 5908 | } |
| 5909 | |
| 5910 | #if defined(UNIX_AMD64_ABI) |
| 5911 | if (varTypeIsStruct(varDsc)) |
| 5912 | { |
| 5913 | CORINFO_CLASS_HANDLE typeHnd = varDsc->lvVerTypeInfo.GetClassHandle(); |
| 5914 | assert(typeHnd != nullptr); |
| 5915 | |
| 5916 | SYSTEMV_AMD64_CORINFO_STRUCT_REG_PASSING_DESCRIPTOR structDesc; |
| 5917 | compiler->eeGetSystemVAmd64PassStructInRegisterDescriptor(typeHnd, &structDesc); |
| 5918 | assert(structDesc.passedInRegisters); |
| 5919 | |
| 5920 | unsigned __int8 offset0 = 0; |
| 5921 | unsigned __int8 offset1 = 0; |
| 5922 | var_types type0 = TYP_UNKNOWN; |
| 5923 | var_types type1 = TYP_UNKNOWN; |
| 5924 | |
| 5925 | // Get the eightbyte data |
| 5926 | compiler->GetStructTypeOffset(structDesc, &type0, &type1, &offset0, &offset1); |
| 5927 | |
| 5928 | // Move the values into the right registers. |
| 5929 | // |
| 5930 | |
| 5931 | // Update varDsc->lvArgReg and lvOtherArgReg life and GC Info to indicate varDsc stack slot is dead and |
| 5932 | // argReg is going live. Note that we cannot modify varDsc->lvRegNum and lvOtherArgReg here because another |
| 5933 | // basic block may not be expecting it. Therefore manually update life of argReg. Note that GT_JMP marks |
| 5934 | // the end of the basic block and after which reg life and gc info will be recomputed for the new block in |
| 5935 | // genCodeForBBList(). |
| 5936 | if (type0 != TYP_UNKNOWN) |
| 5937 | { |
| 5938 | getEmitter()->emitIns_R_S(ins_Load(type0), emitTypeSize(type0), varDsc->lvArgReg, varNum, offset0); |
| 5939 | regSet.rsMaskVars |= genRegMask(varDsc->lvArgReg); |
| 5940 | gcInfo.gcMarkRegPtrVal(varDsc->lvArgReg, type0); |
| 5941 | } |
| 5942 | |
| 5943 | if (type1 != TYP_UNKNOWN) |
| 5944 | { |
| 5945 | getEmitter()->emitIns_R_S(ins_Load(type1), emitTypeSize(type1), varDsc->lvOtherArgReg, varNum, offset1); |
| 5946 | regSet.rsMaskVars |= genRegMask(varDsc->lvOtherArgReg); |
| 5947 | gcInfo.gcMarkRegPtrVal(varDsc->lvOtherArgReg, type1); |
| 5948 | } |
| 5949 | |
| 5950 | if (varDsc->lvTracked) |
| 5951 | { |
| 5952 | VarSetOps::RemoveElemD(compiler, gcInfo.gcVarPtrSetCur, varDsc->lvVarIndex); |
| 5953 | } |
| 5954 | } |
| 5955 | else |
| 5956 | #endif // !defined(UNIX_AMD64_ABI) |
| 5957 | { |
| 5958 | // Register argument |
| 5959 | noway_assert(isRegParamType(genActualType(varDsc->TypeGet()))); |
| 5960 | |
| 5961 | // Is register argument already in the right register? |
| 5962 | // If not load it from its stack location. |
| 5963 | var_types loadType = varDsc->lvaArgType(); |
| 5964 | regNumber argReg = varDsc->lvArgReg; // incoming arg register |
| 5965 | |
| 5966 | if (varDsc->lvRegNum != argReg) |
| 5967 | { |
| 5968 | assert(genIsValidReg(argReg)); |
| 5969 | getEmitter()->emitIns_R_S(ins_Load(loadType), emitTypeSize(loadType), argReg, varNum, 0); |
| 5970 | |
| 5971 | // Update argReg life and GC Info to indicate varDsc stack slot is dead and argReg is going live. |
| 5972 | // Note that we cannot modify varDsc->lvRegNum here because another basic block may not be expecting it. |
| 5973 | // Therefore manually update life of argReg. Note that GT_JMP marks the end of the basic block |
| 5974 | // and after which reg life and gc info will be recomputed for the new block in genCodeForBBList(). |
| 5975 | regSet.AddMaskVars(genRegMask(argReg)); |
| 5976 | gcInfo.gcMarkRegPtrVal(argReg, loadType); |
| 5977 | if (compiler->lvaIsGCTracked(varDsc)) |
| 5978 | { |
| 5979 | #ifdef DEBUG |
| 5980 | if (VarSetOps::IsMember(compiler, gcInfo.gcVarPtrSetCur, varDsc->lvVarIndex)) |
| 5981 | { |
| 5982 | JITDUMP("\t\t\t\t\t\t\tVar V%02u becoming dead\n" , varNum); |
| 5983 | } |
| 5984 | else |
| 5985 | { |
| 5986 | JITDUMP("\t\t\t\t\t\t\tVar V%02u continuing dead\n" , varNum); |
| 5987 | } |
| 5988 | #endif // DEBUG |
| 5989 | |
| 5990 | VarSetOps::RemoveElemD(compiler, gcInfo.gcVarPtrSetCur, varDsc->lvVarIndex); |
| 5991 | } |
| 5992 | } |
| 5993 | } |
| 5994 | |
| 5995 | #if FEATURE_VARARG && defined(_TARGET_AMD64_) |
| 5996 | // In case of a jmp call to a vararg method also pass the float/double arg in the corresponding int arg |
| 5997 | // register. This is due to the AMD64 ABI which requires floating point values passed to varargs functions to |
| 5998 | // be passed in both integer and floating point registers. It doesn't apply to x86, which passes floating point |
| 5999 | // values on the stack. |
| 6000 | if (compiler->info.compIsVarArgs) |
| 6001 | { |
| 6002 | regNumber intArgReg; |
| 6003 | var_types loadType = varDsc->lvaArgType(); |
| 6004 | regNumber argReg = varDsc->lvArgReg; // incoming arg register |
| 6005 | |
| 6006 | if (varTypeIsFloating(loadType)) |
| 6007 | { |
| 6008 | intArgReg = compiler->getCallArgIntRegister(argReg); |
| 6009 | instruction ins = ins_CopyFloatToInt(loadType, TYP_LONG); |
| 6010 | inst_RV_RV(ins, argReg, intArgReg, loadType); |
| 6011 | } |
| 6012 | else |
| 6013 | { |
| 6014 | intArgReg = argReg; |
| 6015 | } |
| 6016 | |
| 6017 | fixedIntArgMask |= genRegMask(intArgReg); |
| 6018 | |
| 6019 | if (intArgReg == REG_ARG_0) |
| 6020 | { |
| 6021 | assert(firstArgVarNum == BAD_VAR_NUM); |
| 6022 | firstArgVarNum = varNum; |
| 6023 | } |
| 6024 | } |
| 6025 | #endif // FEATURE_VARARG |
| 6026 | } |
| 6027 | |
| 6028 | #if FEATURE_VARARG && defined(_TARGET_AMD64_) |
| 6029 | // Jmp call to a vararg method - if the method has fewer than 4 fixed arguments, |
| 6030 | // load the remaining arg registers (both int and float) from the corresponding |
| 6031 | // shadow stack slots. This is for the reason that we don't know the number and type |
| 6032 | // of non-fixed params passed by the caller, therefore we have to assume the worst case |
| 6033 | // of caller passing float/double args both in int and float arg regs. |
| 6034 | // |
| 6035 | // This doesn't apply to x86, which doesn't pass floating point values in floating |
| 6036 | // point registers. |
| 6037 | // |
| 6038 | // The caller could have passed gc-ref/byref type var args. Since these are var args |
| 6039 | // the callee no way of knowing their gc-ness. Therefore, mark the region that loads |
| 6040 | // remaining arg registers from shadow stack slots as non-gc interruptible. |
| 6041 | if (fixedIntArgMask != RBM_NONE) |
| 6042 | { |
| 6043 | assert(compiler->info.compIsVarArgs); |
| 6044 | assert(firstArgVarNum != BAD_VAR_NUM); |
| 6045 | |
| 6046 | regMaskTP remainingIntArgMask = RBM_ARG_REGS & ~fixedIntArgMask; |
| 6047 | if (remainingIntArgMask != RBM_NONE) |
| 6048 | { |
| 6049 | instruction insCopyIntToFloat = ins_CopyIntToFloat(TYP_LONG, TYP_DOUBLE); |
| 6050 | getEmitter()->emitDisableGC(); |
| 6051 | for (int argNum = 0, argOffset = 0; argNum < MAX_REG_ARG; ++argNum) |
| 6052 | { |
| 6053 | regNumber argReg = intArgRegs[argNum]; |
| 6054 | regMaskTP argRegMask = genRegMask(argReg); |
| 6055 | |
| 6056 | if ((remainingIntArgMask & argRegMask) != 0) |
| 6057 | { |
| 6058 | remainingIntArgMask &= ~argRegMask; |
| 6059 | getEmitter()->emitIns_R_S(INS_mov, EA_8BYTE, argReg, firstArgVarNum, argOffset); |
| 6060 | |
| 6061 | // also load it in corresponding float arg reg |
| 6062 | regNumber floatReg = compiler->getCallArgFloatRegister(argReg); |
| 6063 | inst_RV_RV(insCopyIntToFloat, floatReg, argReg); |
| 6064 | } |
| 6065 | |
| 6066 | argOffset += REGSIZE_BYTES; |
| 6067 | } |
| 6068 | getEmitter()->emitEnableGC(); |
| 6069 | } |
| 6070 | } |
| 6071 | #endif // FEATURE_VARARG |
| 6072 | } |
| 6073 | |
| 6074 | // produce code for a GT_LEA subnode |
| 6075 | void CodeGen::genLeaInstruction(GenTreeAddrMode* lea) |
| 6076 | { |
| 6077 | emitAttr size = emitTypeSize(lea); |
| 6078 | genConsumeOperands(lea); |
| 6079 | |
| 6080 | if (lea->Base() && lea->Index()) |
| 6081 | { |
| 6082 | regNumber baseReg = lea->Base()->gtRegNum; |
| 6083 | regNumber indexReg = lea->Index()->gtRegNum; |
| 6084 | getEmitter()->emitIns_R_ARX(INS_lea, size, lea->gtRegNum, baseReg, indexReg, lea->gtScale, lea->Offset()); |
| 6085 | } |
| 6086 | else if (lea->Base()) |
| 6087 | { |
| 6088 | getEmitter()->emitIns_R_AR(INS_lea, size, lea->gtRegNum, lea->Base()->gtRegNum, lea->Offset()); |
| 6089 | } |
| 6090 | else if (lea->Index()) |
| 6091 | { |
| 6092 | getEmitter()->emitIns_R_ARX(INS_lea, size, lea->gtRegNum, REG_NA, lea->Index()->gtRegNum, lea->gtScale, |
| 6093 | lea->Offset()); |
| 6094 | } |
| 6095 | |
| 6096 | genProduceReg(lea); |
| 6097 | } |
| 6098 | |
| 6099 | //------------------------------------------------------------------------------------------- |
| 6100 | // genJumpKindsForTree: Determine the number and kinds of conditional branches |
| 6101 | // necessary to implement the given GT_CMP node |
| 6102 | // |
| 6103 | // Arguments: |
| 6104 | // cmpTree - (input) The GenTree node that is used to set the Condition codes |
| 6105 | // - The GenTree Relop node that was used to set the Condition codes |
| 6106 | // jmpKind[2] - (output) One or two conditional branch instructions |
| 6107 | // jmpToTrueLabel[2] - (output) When true we branch to the true case |
| 6108 | // When false we create a second label and branch to the false case |
| 6109 | // Only GT_EQ for a floating point compares can have a false value. |
| 6110 | // |
| 6111 | // Return Value: |
| 6112 | // Sets the proper values into the array elements of jmpKind[] and jmpToTrueLabel[] |
| 6113 | // |
| 6114 | // Assumptions: |
| 6115 | // At least one conditional branch instruction will be returned. |
| 6116 | // Typically only one conditional branch is needed |
| 6117 | // and the second jmpKind[] value is set to EJ_NONE |
| 6118 | // |
| 6119 | // Notes: |
| 6120 | // jmpToTrueLabel[i]= true implies branch when the compare operation is true. |
| 6121 | // jmpToTrueLabel[i]= false implies branch when the compare operation is false. |
| 6122 | //------------------------------------------------------------------------------------------- |
| 6123 | |
| 6124 | // static |
| 6125 | void CodeGen::genJumpKindsForTree(GenTree* cmpTree, emitJumpKind jmpKind[2], bool jmpToTrueLabel[2]) |
| 6126 | { |
| 6127 | // Except for BEQ (= ordered GT_EQ) both jumps are to the true label. |
| 6128 | jmpToTrueLabel[0] = true; |
| 6129 | jmpToTrueLabel[1] = true; |
| 6130 | |
| 6131 | // For integer comparisons just use genJumpKindForOper |
| 6132 | if (!varTypeIsFloating(cmpTree->gtOp.gtOp1)) |
| 6133 | { |
| 6134 | CompareKind compareKind = ((cmpTree->gtFlags & GTF_UNSIGNED) != 0) ? CK_UNSIGNED : CK_SIGNED; |
| 6135 | jmpKind[0] = genJumpKindForOper(cmpTree->gtOper, compareKind); |
| 6136 | jmpKind[1] = EJ_NONE; |
| 6137 | } |
| 6138 | else |
| 6139 | { |
| 6140 | assert(cmpTree->OperIsCompare()); |
| 6141 | |
| 6142 | // For details on how we arrived at this mapping, see the comment block in genCodeForTreeNode() |
| 6143 | // while generating code for compare opererators (e.g. GT_EQ etc). |
| 6144 | if ((cmpTree->gtFlags & GTF_RELOP_NAN_UN) != 0) |
| 6145 | { |
| 6146 | // Must branch if we have an NaN, unordered |
| 6147 | switch (cmpTree->gtOper) |
| 6148 | { |
| 6149 | case GT_LT: |
| 6150 | case GT_GT: |
| 6151 | jmpKind[0] = EJ_jb; |
| 6152 | jmpKind[1] = EJ_NONE; |
| 6153 | break; |
| 6154 | |
| 6155 | case GT_LE: |
| 6156 | case GT_GE: |
| 6157 | jmpKind[0] = EJ_jbe; |
| 6158 | jmpKind[1] = EJ_NONE; |
| 6159 | break; |
| 6160 | |
| 6161 | case GT_NE: |
| 6162 | jmpKind[0] = EJ_jpe; |
| 6163 | jmpKind[1] = EJ_jne; |
| 6164 | break; |
| 6165 | |
| 6166 | case GT_EQ: |
| 6167 | jmpKind[0] = EJ_je; |
| 6168 | jmpKind[1] = EJ_NONE; |
| 6169 | break; |
| 6170 | |
| 6171 | default: |
| 6172 | unreached(); |
| 6173 | } |
| 6174 | } |
| 6175 | else // ((cmpTree->gtFlags & GTF_RELOP_NAN_UN) == 0) |
| 6176 | { |
| 6177 | // Do not branch if we have an NaN, unordered |
| 6178 | switch (cmpTree->gtOper) |
| 6179 | { |
| 6180 | case GT_LT: |
| 6181 | case GT_GT: |
| 6182 | jmpKind[0] = EJ_ja; |
| 6183 | jmpKind[1] = EJ_NONE; |
| 6184 | break; |
| 6185 | |
| 6186 | case GT_LE: |
| 6187 | case GT_GE: |
| 6188 | jmpKind[0] = EJ_jae; |
| 6189 | jmpKind[1] = EJ_NONE; |
| 6190 | break; |
| 6191 | |
| 6192 | case GT_NE: |
| 6193 | jmpKind[0] = EJ_jne; |
| 6194 | jmpKind[1] = EJ_NONE; |
| 6195 | break; |
| 6196 | |
| 6197 | case GT_EQ: |
| 6198 | jmpKind[0] = EJ_jpe; |
| 6199 | jmpKind[1] = EJ_je; |
| 6200 | jmpToTrueLabel[0] = false; |
| 6201 | break; |
| 6202 | |
| 6203 | default: |
| 6204 | unreached(); |
| 6205 | } |
| 6206 | } |
| 6207 | } |
| 6208 | } |
| 6209 | |
| 6210 | //------------------------------------------------------------------------ |
| 6211 | // genCompareFloat: Generate code for comparing two floating point values |
| 6212 | // |
| 6213 | // Arguments: |
| 6214 | // treeNode - the compare tree |
| 6215 | // |
| 6216 | // Return Value: |
| 6217 | // None. |
| 6218 | // Comments: |
| 6219 | // SSE2 instruction ucomis[s|d] is performs unordered comparison and |
| 6220 | // updates rFLAGS register as follows. |
| 6221 | // Result of compare ZF PF CF |
| 6222 | // ----------------- ------------ |
| 6223 | // Unordered 1 1 1 <-- this result implies one of operands of compare is a NAN. |
| 6224 | // Greater 0 0 0 |
| 6225 | // Less Than 0 0 1 |
| 6226 | // Equal 1 0 0 |
| 6227 | // |
| 6228 | // From the above table the following equalities follow. As per ECMA spec *.UN opcodes perform |
| 6229 | // unordered comparison of floating point values. That is *.UN comparisons result in true when |
| 6230 | // one of the operands is a NaN whereas ordered comparisons results in false. |
| 6231 | // |
| 6232 | // Opcode Amd64 equivalent Comment |
| 6233 | // ------ ----------------- -------- |
| 6234 | // BLT.UN(a,b) ucomis[s|d] a, b Jb branches if CF=1, which means either a<b or unordered from the above |
| 6235 | // jb table |
| 6236 | // |
| 6237 | // BLT(a,b) ucomis[s|d] b, a Ja branches if CF=0 and ZF=0, which means b>a that in turn implies a<b |
| 6238 | // ja |
| 6239 | // |
| 6240 | // BGT.UN(a,b) ucomis[s|d] b, a branch if b<a or unordered ==> branch if a>b or unordered |
| 6241 | // jb |
| 6242 | // |
| 6243 | // BGT(a, b) ucomis[s|d] a, b branch if a>b |
| 6244 | // ja |
| 6245 | // |
| 6246 | // BLE.UN(a,b) ucomis[s|d] a, b jbe branches if CF=1 or ZF=1, which implies a<=b or unordered |
| 6247 | // jbe |
| 6248 | // |
| 6249 | // BLE(a,b) ucomis[s|d] b, a jae branches if CF=0, which mean b>=a or a<=b |
| 6250 | // jae |
| 6251 | // |
| 6252 | // BGE.UN(a,b) ucomis[s|d] b, a branch if b<=a or unordered ==> branch if a>=b or unordered |
| 6253 | // jbe |
| 6254 | // |
| 6255 | // BGE(a,b) ucomis[s|d] a, b branch if a>=b |
| 6256 | // jae |
| 6257 | // |
| 6258 | // BEQ.UN(a,b) ucomis[s|d] a, b branch if a==b or unordered. There is no BEQ.UN opcode in ECMA spec. |
| 6259 | // je This case is given for completeness, in case if JIT generates such |
| 6260 | // a gentree internally. |
| 6261 | // |
| 6262 | // BEQ(a,b) ucomis[s|d] a, b From the above table, PF=0 and ZF=1 corresponds to a==b. |
| 6263 | // jpe L1 |
| 6264 | // je <true label> |
| 6265 | // L1: |
| 6266 | // |
| 6267 | // BNE(a,b) ucomis[s|d] a, b branch if a!=b. There is no BNE opcode in ECMA spec. This case is |
| 6268 | // jne given for completeness, in case if JIT generates such a gentree |
| 6269 | // internally. |
| 6270 | // |
| 6271 | // BNE.UN(a,b) ucomis[s|d] a, b From the above table, PF=1 or ZF=0 implies unordered or a!=b |
| 6272 | // jpe <true label> |
| 6273 | // jne <true label> |
| 6274 | // |
| 6275 | // As we can see from the above equalities that the operands of a compare operator need to be |
| 6276 | // reversed in case of BLT/CLT, BGT.UN/CGT.UN, BLE/CLE, BGE.UN/CGE.UN. |
| 6277 | void CodeGen::genCompareFloat(GenTree* treeNode) |
| 6278 | { |
| 6279 | assert(treeNode->OperIsCompare()); |
| 6280 | |
| 6281 | GenTreeOp* tree = treeNode->AsOp(); |
| 6282 | GenTree* op1 = tree->gtOp1; |
| 6283 | GenTree* op2 = tree->gtOp2; |
| 6284 | var_types op1Type = op1->TypeGet(); |
| 6285 | var_types op2Type = op2->TypeGet(); |
| 6286 | |
| 6287 | genConsumeOperands(tree); |
| 6288 | |
| 6289 | assert(varTypeIsFloating(op1Type)); |
| 6290 | assert(op1Type == op2Type); |
| 6291 | |
| 6292 | regNumber targetReg = treeNode->gtRegNum; |
| 6293 | instruction ins; |
| 6294 | emitAttr cmpAttr; |
| 6295 | |
| 6296 | bool reverseOps; |
| 6297 | if ((tree->gtFlags & GTF_RELOP_NAN_UN) != 0) |
| 6298 | { |
| 6299 | // Unordered comparison case |
| 6300 | reverseOps = (tree->gtOper == GT_GT || tree->gtOper == GT_GE); |
| 6301 | } |
| 6302 | else |
| 6303 | { |
| 6304 | reverseOps = (tree->gtOper == GT_LT || tree->gtOper == GT_LE); |
| 6305 | } |
| 6306 | |
| 6307 | if (reverseOps) |
| 6308 | { |
| 6309 | GenTree* tmp = op1; |
| 6310 | op1 = op2; |
| 6311 | op2 = tmp; |
| 6312 | } |
| 6313 | |
| 6314 | ins = ins_FloatCompare(op1Type); |
| 6315 | cmpAttr = emitTypeSize(op1Type); |
| 6316 | |
| 6317 | getEmitter()->emitInsBinary(ins, cmpAttr, op1, op2); |
| 6318 | |
| 6319 | // Are we evaluating this into a register? |
| 6320 | if (targetReg != REG_NA) |
| 6321 | { |
| 6322 | genSetRegToCond(targetReg, tree); |
| 6323 | genProduceReg(tree); |
| 6324 | } |
| 6325 | } |
| 6326 | |
| 6327 | //------------------------------------------------------------------------ |
| 6328 | // genCompareInt: Generate code for comparing ints or, on amd64, longs. |
| 6329 | // |
| 6330 | // Arguments: |
| 6331 | // treeNode - the compare tree |
| 6332 | // |
| 6333 | // Return Value: |
| 6334 | // None. |
| 6335 | void CodeGen::genCompareInt(GenTree* treeNode) |
| 6336 | { |
| 6337 | assert(treeNode->OperIsCompare() || treeNode->OperIs(GT_CMP)); |
| 6338 | |
| 6339 | GenTreeOp* tree = treeNode->AsOp(); |
| 6340 | GenTree* op1 = tree->gtOp1; |
| 6341 | GenTree* op2 = tree->gtOp2; |
| 6342 | var_types op1Type = op1->TypeGet(); |
| 6343 | var_types op2Type = op2->TypeGet(); |
| 6344 | regNumber targetReg = tree->gtRegNum; |
| 6345 | |
| 6346 | genConsumeOperands(tree); |
| 6347 | |
| 6348 | assert(!op1->isContainedIntOrIImmed()); |
| 6349 | assert(!varTypeIsFloating(op2Type)); |
| 6350 | |
| 6351 | instruction ins; |
| 6352 | var_types type = TYP_UNKNOWN; |
| 6353 | |
| 6354 | if (tree->OperIs(GT_TEST_EQ, GT_TEST_NE)) |
| 6355 | { |
| 6356 | ins = INS_test; |
| 6357 | |
| 6358 | // Unlike many xarch instructions TEST doesn't have a form with a 16/32/64 bit first operand and |
| 6359 | // an 8 bit immediate second operand. But if the immediate value fits in 8 bits then we can simply |
| 6360 | // emit a 8 bit TEST instruction, unless we're targeting x86 and the first operand is a non-byteable |
| 6361 | // register. |
| 6362 | // Note that lowering does something similar but its main purpose is to allow memory operands to be |
| 6363 | // contained so it doesn't handle other kind of operands. It could do more but on x86 that results |
| 6364 | // in additional register constrains and that may be worse than wasting 3 bytes on an immediate. |
| 6365 | if ( |
| 6366 | #ifdef _TARGET_X86_ |
| 6367 | (!op1->isUsedFromReg() || isByteReg(op1->gtRegNum)) && |
| 6368 | #endif |
| 6369 | (op2->IsCnsIntOrI() && genSmallTypeCanRepresentValue(TYP_UBYTE, op2->AsIntCon()->IconValue()))) |
| 6370 | { |
| 6371 | type = TYP_UBYTE; |
| 6372 | } |
| 6373 | } |
| 6374 | else if (op1->isUsedFromReg() && op2->IsIntegralConst(0)) |
| 6375 | { |
| 6376 | // We're comparing a register to 0 so we can generate "test reg1, reg1" |
| 6377 | // instead of the longer "cmp reg1, 0" |
| 6378 | ins = INS_test; |
| 6379 | op2 = op1; |
| 6380 | } |
| 6381 | else |
| 6382 | { |
| 6383 | ins = INS_cmp; |
| 6384 | } |
| 6385 | |
| 6386 | if (type == TYP_UNKNOWN) |
| 6387 | { |
| 6388 | if (op1Type == op2Type) |
| 6389 | { |
| 6390 | type = op1Type; |
| 6391 | } |
| 6392 | else if (genTypeSize(op1Type) == genTypeSize(op2Type)) |
| 6393 | { |
| 6394 | // If the types are different but have the same size then we'll use TYP_INT or TYP_LONG. |
| 6395 | // This primarily deals with small type mixes (e.g. byte/ubyte) that need to be widened |
| 6396 | // and compared as int. We should not get long type mixes here but handle that as well |
| 6397 | // just in case. |
| 6398 | type = genTypeSize(op1Type) == 8 ? TYP_LONG : TYP_INT; |
| 6399 | } |
| 6400 | else |
| 6401 | { |
| 6402 | // In the types are different simply use TYP_INT. This deals with small type/int type |
| 6403 | // mixes (e.g. byte/short ubyte/int) that need to be widened and compared as int. |
| 6404 | // Lowering is expected to handle any mixes that involve long types (e.g. int/long). |
| 6405 | type = TYP_INT; |
| 6406 | } |
| 6407 | |
| 6408 | // The common type cannot be smaller than any of the operand types, we're probably mixing int/long |
| 6409 | assert(genTypeSize(type) >= max(genTypeSize(op1Type), genTypeSize(op2Type))); |
| 6410 | // Small unsigned int types (TYP_BOOL can use anything) should use unsigned comparisons |
| 6411 | assert(!(varTypeIsSmallInt(type) && varTypeIsUnsigned(type)) || ((tree->gtFlags & GTF_UNSIGNED) != 0)); |
| 6412 | // If op1 is smaller then it cannot be in memory, we're probably missing a cast |
| 6413 | assert((genTypeSize(op1Type) >= genTypeSize(type)) || !op1->isUsedFromMemory()); |
| 6414 | // If op2 is smaller then it cannot be in memory, we're probably missing a cast |
| 6415 | assert((genTypeSize(op2Type) >= genTypeSize(type)) || !op2->isUsedFromMemory()); |
| 6416 | // If we ended up with a small type and op2 is a constant then make sure we don't lose constant bits |
| 6417 | assert(!op2->IsCnsIntOrI() || !varTypeIsSmall(type) || |
| 6418 | genSmallTypeCanRepresentValue(type, op2->AsIntCon()->IconValue())); |
| 6419 | } |
| 6420 | |
| 6421 | // The type cannot be larger than the machine word size |
| 6422 | assert(genTypeSize(type) <= genTypeSize(TYP_I_IMPL)); |
| 6423 | // TYP_UINT and TYP_ULONG should not appear here, only small types can be unsigned |
| 6424 | assert(!varTypeIsUnsigned(type) || varTypeIsSmall(type)); |
| 6425 | |
| 6426 | getEmitter()->emitInsBinary(ins, emitTypeSize(type), op1, op2); |
| 6427 | |
| 6428 | // Are we evaluating this into a register? |
| 6429 | if (targetReg != REG_NA) |
| 6430 | { |
| 6431 | genSetRegToCond(targetReg, tree); |
| 6432 | genProduceReg(tree); |
| 6433 | } |
| 6434 | } |
| 6435 | |
| 6436 | //------------------------------------------------------------------------------------------- |
| 6437 | // genSetRegToCond: Set a register 'dstReg' to the appropriate one or zero value |
| 6438 | // corresponding to a binary Relational operator result. |
| 6439 | // |
| 6440 | // Arguments: |
| 6441 | // dstReg - The target register to set to 1 or 0 |
| 6442 | // tree - The GenTree Relop node that was used to set the Condition codes |
| 6443 | // |
| 6444 | // Return Value: none |
| 6445 | // |
| 6446 | // Notes: |
| 6447 | // A full 64-bit value of either 1 or 0 is setup in the 'dstReg' |
| 6448 | //------------------------------------------------------------------------------------------- |
| 6449 | |
| 6450 | void CodeGen::genSetRegToCond(regNumber dstReg, GenTree* tree) |
| 6451 | { |
| 6452 | noway_assert((genRegMask(dstReg) & RBM_BYTE_REGS) != 0); |
| 6453 | |
| 6454 | emitJumpKind jumpKind[2]; |
| 6455 | bool branchToTrueLabel[2]; |
| 6456 | genJumpKindsForTree(tree, jumpKind, branchToTrueLabel); |
| 6457 | |
| 6458 | if (jumpKind[1] == EJ_NONE) |
| 6459 | { |
| 6460 | // Set (lower byte of) reg according to the flags |
| 6461 | inst_SET(jumpKind[0], dstReg); |
| 6462 | } |
| 6463 | else |
| 6464 | { |
| 6465 | #ifdef DEBUG |
| 6466 | // jmpKind[1] != EJ_NONE implies BEQ and BEN.UN of floating point values. |
| 6467 | // These are represented by two conditions. |
| 6468 | if (tree->gtOper == GT_EQ) |
| 6469 | { |
| 6470 | // This must be an ordered comparison. |
| 6471 | assert((tree->gtFlags & GTF_RELOP_NAN_UN) == 0); |
| 6472 | } |
| 6473 | else |
| 6474 | { |
| 6475 | // This must be BNE.UN |
| 6476 | assert((tree->gtOper == GT_NE) && ((tree->gtFlags & GTF_RELOP_NAN_UN) != 0)); |
| 6477 | } |
| 6478 | #endif |
| 6479 | |
| 6480 | // Here is the sample code generated in each case: |
| 6481 | // BEQ == cmp, jpe <false label>, je <true label> |
| 6482 | // That is, to materialize comparison reg needs to be set if PF=0 and ZF=1 |
| 6483 | // setnp reg // if (PF==0) reg = 1 else reg = 0 |
| 6484 | // jpe L1 // Jmp if PF==1 |
| 6485 | // sete reg |
| 6486 | // L1: |
| 6487 | // |
| 6488 | // BNE.UN == cmp, jpe <true label>, jne <true label> |
| 6489 | // That is, to materialize the comparison reg needs to be set if either PF=1 or ZF=0; |
| 6490 | // setp reg |
| 6491 | // jpe L1 |
| 6492 | // setne reg |
| 6493 | // L1: |
| 6494 | |
| 6495 | // reverse the jmpkind condition before setting dstReg if it is to false label. |
| 6496 | inst_SET(branchToTrueLabel[0] ? jumpKind[0] : emitter::emitReverseJumpKind(jumpKind[0]), dstReg); |
| 6497 | |
| 6498 | BasicBlock* label = genCreateTempLabel(); |
| 6499 | inst_JMP(jumpKind[0], label); |
| 6500 | |
| 6501 | // second branch is always to true label |
| 6502 | assert(branchToTrueLabel[1]); |
| 6503 | inst_SET(jumpKind[1], dstReg); |
| 6504 | genDefineTempLabel(label); |
| 6505 | } |
| 6506 | |
| 6507 | var_types treeType = tree->TypeGet(); |
| 6508 | if (treeType == TYP_INT || treeType == TYP_LONG) |
| 6509 | { |
| 6510 | // Set the higher bytes to 0 |
| 6511 | inst_RV_RV(ins_Move_Extend(TYP_UBYTE, true), dstReg, dstReg, TYP_UBYTE, emitTypeSize(TYP_UBYTE)); |
| 6512 | } |
| 6513 | else |
| 6514 | { |
| 6515 | noway_assert(treeType == TYP_BYTE); |
| 6516 | } |
| 6517 | } |
| 6518 | |
| 6519 | #if !defined(_TARGET_64BIT_) |
| 6520 | //------------------------------------------------------------------------ |
| 6521 | // genLongToIntCast: Generate code for long to int casts on x86. |
| 6522 | // |
| 6523 | // Arguments: |
| 6524 | // cast - The GT_CAST node |
| 6525 | // |
| 6526 | // Return Value: |
| 6527 | // None. |
| 6528 | // |
| 6529 | // Assumptions: |
| 6530 | // The cast node and its sources (via GT_LONG) must have been assigned registers. |
| 6531 | // The destination cannot be a floating point type or a small integer type. |
| 6532 | // |
| 6533 | void CodeGen::genLongToIntCast(GenTree* cast) |
| 6534 | { |
| 6535 | assert(cast->OperGet() == GT_CAST); |
| 6536 | |
| 6537 | GenTree* src = cast->gtGetOp1(); |
| 6538 | noway_assert(src->OperGet() == GT_LONG); |
| 6539 | |
| 6540 | genConsumeRegs(src); |
| 6541 | |
| 6542 | var_types srcType = ((cast->gtFlags & GTF_UNSIGNED) != 0) ? TYP_ULONG : TYP_LONG; |
| 6543 | var_types dstType = cast->CastToType(); |
| 6544 | regNumber loSrcReg = src->gtGetOp1()->gtRegNum; |
| 6545 | regNumber hiSrcReg = src->gtGetOp2()->gtRegNum; |
| 6546 | regNumber dstReg = cast->gtRegNum; |
| 6547 | |
| 6548 | assert((dstType == TYP_INT) || (dstType == TYP_UINT)); |
| 6549 | assert(genIsValidIntReg(loSrcReg)); |
| 6550 | assert(genIsValidIntReg(hiSrcReg)); |
| 6551 | assert(genIsValidIntReg(dstReg)); |
| 6552 | |
| 6553 | if (cast->gtOverflow()) |
| 6554 | { |
| 6555 | // |
| 6556 | // Generate an overflow check for [u]long to [u]int casts: |
| 6557 | // |
| 6558 | // long -> int - check if the upper 33 bits are all 0 or all 1 |
| 6559 | // |
| 6560 | // ulong -> int - check if the upper 33 bits are all 0 |
| 6561 | // |
| 6562 | // long -> uint - check if the upper 32 bits are all 0 |
| 6563 | // ulong -> uint - check if the upper 32 bits are all 0 |
| 6564 | // |
| 6565 | |
| 6566 | if ((srcType == TYP_LONG) && (dstType == TYP_INT)) |
| 6567 | { |
| 6568 | BasicBlock* allOne = genCreateTempLabel(); |
| 6569 | BasicBlock* success = genCreateTempLabel(); |
| 6570 | |
| 6571 | inst_RV_RV(INS_test, loSrcReg, loSrcReg, TYP_INT, EA_4BYTE); |
| 6572 | inst_JMP(EJ_js, allOne); |
| 6573 | |
| 6574 | inst_RV_RV(INS_test, hiSrcReg, hiSrcReg, TYP_INT, EA_4BYTE); |
| 6575 | genJumpToThrowHlpBlk(EJ_jne, SCK_OVERFLOW); |
| 6576 | inst_JMP(EJ_jmp, success); |
| 6577 | |
| 6578 | genDefineTempLabel(allOne); |
| 6579 | inst_RV_IV(INS_cmp, hiSrcReg, -1, EA_4BYTE); |
| 6580 | genJumpToThrowHlpBlk(EJ_jne, SCK_OVERFLOW); |
| 6581 | |
| 6582 | genDefineTempLabel(success); |
| 6583 | } |
| 6584 | else |
| 6585 | { |
| 6586 | if ((srcType == TYP_ULONG) && (dstType == TYP_INT)) |
| 6587 | { |
| 6588 | inst_RV_RV(INS_test, loSrcReg, loSrcReg, TYP_INT, EA_4BYTE); |
| 6589 | genJumpToThrowHlpBlk(EJ_js, SCK_OVERFLOW); |
| 6590 | } |
| 6591 | |
| 6592 | inst_RV_RV(INS_test, hiSrcReg, hiSrcReg, TYP_INT, EA_4BYTE); |
| 6593 | genJumpToThrowHlpBlk(EJ_jne, SCK_OVERFLOW); |
| 6594 | } |
| 6595 | } |
| 6596 | |
| 6597 | if (dstReg != loSrcReg) |
| 6598 | { |
| 6599 | inst_RV_RV(INS_mov, dstReg, loSrcReg, TYP_INT, EA_4BYTE); |
| 6600 | } |
| 6601 | |
| 6602 | genProduceReg(cast); |
| 6603 | } |
| 6604 | #endif |
| 6605 | |
| 6606 | //------------------------------------------------------------------------ |
| 6607 | // genIntCastOverflowCheck: Generate overflow checking code for an integer cast. |
| 6608 | // |
| 6609 | // Arguments: |
| 6610 | // cast - The GT_CAST node |
| 6611 | // desc - The cast description |
| 6612 | // reg - The register containing the value to check |
| 6613 | // |
| 6614 | void CodeGen::genIntCastOverflowCheck(GenTreeCast* cast, const GenIntCastDesc& desc, regNumber reg) |
| 6615 | { |
| 6616 | switch (desc.CheckKind()) |
| 6617 | { |
| 6618 | case GenIntCastDesc::CHECK_POSITIVE: |
| 6619 | getEmitter()->emitIns_R_R(INS_test, EA_SIZE(desc.CheckSrcSize()), reg, reg); |
| 6620 | genJumpToThrowHlpBlk(EJ_jl, SCK_OVERFLOW); |
| 6621 | break; |
| 6622 | |
| 6623 | #ifdef _TARGET_64BIT_ |
| 6624 | case GenIntCastDesc::CHECK_UINT_RANGE: |
| 6625 | { |
| 6626 | // We need to check if the value is not greater than 0xFFFFFFFF but this value |
| 6627 | // cannot be encoded in an immediate operand. Use a right shift to test if the |
| 6628 | // upper 32 bits are zero. This requires a temporary register. |
| 6629 | const regNumber tempReg = cast->GetSingleTempReg(); |
| 6630 | assert(tempReg != reg); |
| 6631 | getEmitter()->emitIns_R_R(INS_mov, EA_8BYTE, tempReg, reg); |
| 6632 | getEmitter()->emitIns_R_I(INS_shr_N, EA_8BYTE, tempReg, 32); |
| 6633 | genJumpToThrowHlpBlk(EJ_jne, SCK_OVERFLOW); |
| 6634 | } |
| 6635 | break; |
| 6636 | |
| 6637 | case GenIntCastDesc::CHECK_POSITIVE_INT_RANGE: |
| 6638 | getEmitter()->emitIns_R_I(INS_cmp, EA_8BYTE, reg, INT32_MAX); |
| 6639 | genJumpToThrowHlpBlk(EJ_ja, SCK_OVERFLOW); |
| 6640 | break; |
| 6641 | |
| 6642 | case GenIntCastDesc::CHECK_INT_RANGE: |
| 6643 | getEmitter()->emitIns_R_I(INS_cmp, EA_8BYTE, reg, INT32_MAX); |
| 6644 | genJumpToThrowHlpBlk(EJ_jg, SCK_OVERFLOW); |
| 6645 | getEmitter()->emitIns_R_I(INS_cmp, EA_8BYTE, reg, INT32_MIN); |
| 6646 | genJumpToThrowHlpBlk(EJ_jl, SCK_OVERFLOW); |
| 6647 | break; |
| 6648 | #endif |
| 6649 | |
| 6650 | default: |
| 6651 | { |
| 6652 | assert(desc.CheckKind() == GenIntCastDesc::CHECK_SMALL_INT_RANGE); |
| 6653 | const int castMaxValue = desc.CheckSmallIntMax(); |
| 6654 | const int castMinValue = desc.CheckSmallIntMin(); |
| 6655 | |
| 6656 | getEmitter()->emitIns_R_I(INS_cmp, EA_SIZE(desc.CheckSrcSize()), reg, castMaxValue); |
| 6657 | genJumpToThrowHlpBlk((castMinValue == 0) ? EJ_ja : EJ_jg, SCK_OVERFLOW); |
| 6658 | |
| 6659 | if (castMinValue != 0) |
| 6660 | { |
| 6661 | getEmitter()->emitIns_R_I(INS_cmp, EA_SIZE(desc.CheckSrcSize()), reg, castMinValue); |
| 6662 | genJumpToThrowHlpBlk(EJ_jl, SCK_OVERFLOW); |
| 6663 | } |
| 6664 | } |
| 6665 | break; |
| 6666 | } |
| 6667 | } |
| 6668 | |
| 6669 | //------------------------------------------------------------------------ |
| 6670 | // genIntToIntCast: Generate code for an integer cast, with or without overflow check. |
| 6671 | // |
| 6672 | // Arguments: |
| 6673 | // cast - The GT_CAST node |
| 6674 | // |
| 6675 | // Assumptions: |
| 6676 | // The cast node is not a contained node and must have an assigned register. |
| 6677 | // Neither the source nor target type can be a floating point type. |
| 6678 | // On x86 casts to (U)BYTE require that the source be in a byte register. |
| 6679 | // |
| 6680 | // TODO-XArch-CQ: Allow castOp to be a contained node without an assigned register. |
| 6681 | // |
| 6682 | void CodeGen::genIntToIntCast(GenTreeCast* cast) |
| 6683 | { |
| 6684 | genConsumeRegs(cast->gtGetOp1()); |
| 6685 | |
| 6686 | const regNumber srcReg = cast->gtGetOp1()->gtRegNum; |
| 6687 | const regNumber dstReg = cast->gtRegNum; |
| 6688 | |
| 6689 | assert(genIsValidIntReg(srcReg)); |
| 6690 | assert(genIsValidIntReg(dstReg)); |
| 6691 | |
| 6692 | GenIntCastDesc desc(cast); |
| 6693 | |
| 6694 | if (desc.CheckKind() != GenIntCastDesc::CHECK_NONE) |
| 6695 | { |
| 6696 | genIntCastOverflowCheck(cast, desc, srcReg); |
| 6697 | } |
| 6698 | |
| 6699 | if ((desc.ExtendKind() != GenIntCastDesc::COPY) || (srcReg != dstReg)) |
| 6700 | { |
| 6701 | instruction ins; |
| 6702 | unsigned insSize; |
| 6703 | |
| 6704 | switch (desc.ExtendKind()) |
| 6705 | { |
| 6706 | case GenIntCastDesc::ZERO_EXTEND_SMALL_INT: |
| 6707 | ins = INS_movzx; |
| 6708 | insSize = desc.ExtendSrcSize(); |
| 6709 | break; |
| 6710 | case GenIntCastDesc::SIGN_EXTEND_SMALL_INT: |
| 6711 | ins = INS_movsx; |
| 6712 | insSize = desc.ExtendSrcSize(); |
| 6713 | break; |
| 6714 | #ifdef _TARGET_64BIT_ |
| 6715 | case GenIntCastDesc::ZERO_EXTEND_INT: |
| 6716 | ins = INS_mov; |
| 6717 | insSize = 4; |
| 6718 | break; |
| 6719 | case GenIntCastDesc::SIGN_EXTEND_INT: |
| 6720 | ins = INS_movsxd; |
| 6721 | insSize = 4; |
| 6722 | break; |
| 6723 | #endif |
| 6724 | default: |
| 6725 | assert(desc.ExtendKind() == GenIntCastDesc::COPY); |
| 6726 | ins = INS_mov; |
| 6727 | insSize = desc.ExtendSrcSize(); |
| 6728 | break; |
| 6729 | } |
| 6730 | |
| 6731 | getEmitter()->emitIns_R_R(ins, EA_ATTR(insSize), dstReg, srcReg); |
| 6732 | } |
| 6733 | |
| 6734 | genProduceReg(cast); |
| 6735 | } |
| 6736 | |
| 6737 | //------------------------------------------------------------------------ |
| 6738 | // genFloatToFloatCast: Generate code for a cast between float and double |
| 6739 | // |
| 6740 | // Arguments: |
| 6741 | // treeNode - The GT_CAST node |
| 6742 | // |
| 6743 | // Return Value: |
| 6744 | // None. |
| 6745 | // |
| 6746 | // Assumptions: |
| 6747 | // Cast is a non-overflow conversion. |
| 6748 | // The treeNode must have an assigned register. |
| 6749 | // The cast is between float and double or vice versa. |
| 6750 | // |
| 6751 | void CodeGen::genFloatToFloatCast(GenTree* treeNode) |
| 6752 | { |
| 6753 | // float <--> double conversions are always non-overflow ones |
| 6754 | assert(treeNode->OperGet() == GT_CAST); |
| 6755 | assert(!treeNode->gtOverflow()); |
| 6756 | |
| 6757 | regNumber targetReg = treeNode->gtRegNum; |
| 6758 | assert(genIsValidFloatReg(targetReg)); |
| 6759 | |
| 6760 | GenTree* op1 = treeNode->gtOp.gtOp1; |
| 6761 | #ifdef DEBUG |
| 6762 | // If not contained, must be a valid float reg. |
| 6763 | if (op1->isUsedFromReg()) |
| 6764 | { |
| 6765 | assert(genIsValidFloatReg(op1->gtRegNum)); |
| 6766 | } |
| 6767 | #endif |
| 6768 | |
| 6769 | var_types dstType = treeNode->CastToType(); |
| 6770 | var_types srcType = op1->TypeGet(); |
| 6771 | assert(varTypeIsFloating(srcType) && varTypeIsFloating(dstType)); |
| 6772 | |
| 6773 | genConsumeOperands(treeNode->AsOp()); |
| 6774 | if (srcType == dstType && (op1->isUsedFromReg() && (targetReg == op1->gtRegNum))) |
| 6775 | { |
| 6776 | // source and destinations types are the same and also reside in the same register. |
| 6777 | // we just need to consume and produce the reg in this case. |
| 6778 | ; |
| 6779 | } |
| 6780 | else |
| 6781 | { |
| 6782 | instruction ins = ins_FloatConv(dstType, srcType); |
| 6783 | getEmitter()->emitInsBinary(ins, emitTypeSize(dstType), treeNode, op1); |
| 6784 | } |
| 6785 | |
| 6786 | genProduceReg(treeNode); |
| 6787 | } |
| 6788 | |
| 6789 | //------------------------------------------------------------------------ |
| 6790 | // genIntToFloatCast: Generate code to cast an int/long to float/double |
| 6791 | // |
| 6792 | // Arguments: |
| 6793 | // treeNode - The GT_CAST node |
| 6794 | // |
| 6795 | // Return Value: |
| 6796 | // None. |
| 6797 | // |
| 6798 | // Assumptions: |
| 6799 | // Cast is a non-overflow conversion. |
| 6800 | // The treeNode must have an assigned register. |
| 6801 | // SrcType= int32/uint32/int64/uint64 and DstType=float/double. |
| 6802 | // |
| 6803 | void CodeGen::genIntToFloatCast(GenTree* treeNode) |
| 6804 | { |
| 6805 | // int type --> float/double conversions are always non-overflow ones |
| 6806 | assert(treeNode->OperGet() == GT_CAST); |
| 6807 | assert(!treeNode->gtOverflow()); |
| 6808 | |
| 6809 | regNumber targetReg = treeNode->gtRegNum; |
| 6810 | assert(genIsValidFloatReg(targetReg)); |
| 6811 | |
| 6812 | GenTree* op1 = treeNode->gtOp.gtOp1; |
| 6813 | #ifdef DEBUG |
| 6814 | if (op1->isUsedFromReg()) |
| 6815 | { |
| 6816 | assert(genIsValidIntReg(op1->gtRegNum)); |
| 6817 | } |
| 6818 | #endif |
| 6819 | |
| 6820 | var_types dstType = treeNode->CastToType(); |
| 6821 | var_types srcType = op1->TypeGet(); |
| 6822 | assert(!varTypeIsFloating(srcType) && varTypeIsFloating(dstType)); |
| 6823 | |
| 6824 | #if !defined(_TARGET_64BIT_) |
| 6825 | // We expect morph to replace long to float/double casts with helper calls |
| 6826 | noway_assert(!varTypeIsLong(srcType)); |
| 6827 | #endif // !defined(_TARGET_64BIT_) |
| 6828 | |
| 6829 | // Since xarch emitter doesn't handle reporting gc-info correctly while casting away gc-ness we |
| 6830 | // ensure srcType of a cast is non gc-type. Codegen should never see BYREF as source type except |
| 6831 | // for GT_LCL_VAR_ADDR and GT_LCL_FLD_ADDR that represent stack addresses and can be considered |
| 6832 | // as TYP_I_IMPL. In all other cases where src operand is a gc-type and not known to be on stack, |
| 6833 | // Front-end (see fgMorphCast()) ensures this by assigning gc-type local to a non gc-type |
| 6834 | // temp and using temp as operand of cast operation. |
| 6835 | if (srcType == TYP_BYREF) |
| 6836 | { |
| 6837 | noway_assert(op1->OperGet() == GT_LCL_VAR_ADDR || op1->OperGet() == GT_LCL_FLD_ADDR); |
| 6838 | srcType = TYP_I_IMPL; |
| 6839 | } |
| 6840 | |
| 6841 | // force the srcType to unsigned if GT_UNSIGNED flag is set |
| 6842 | if (treeNode->gtFlags & GTF_UNSIGNED) |
| 6843 | { |
| 6844 | srcType = genUnsignedType(srcType); |
| 6845 | } |
| 6846 | |
| 6847 | noway_assert(!varTypeIsGC(srcType)); |
| 6848 | |
| 6849 | // We should never be seeing srcType whose size is not sizeof(int) nor sizeof(long). |
| 6850 | // For conversions from byte/sbyte/int16/uint16 to float/double, we would expect |
| 6851 | // either the front-end or lowering phase to have generated two levels of cast. |
| 6852 | // The first one is for widening smaller int type to int32 and the second one is |
| 6853 | // to the float/double. |
| 6854 | emitAttr srcSize = EA_ATTR(genTypeSize(srcType)); |
| 6855 | noway_assert((srcSize == EA_ATTR(genTypeSize(TYP_INT))) || (srcSize == EA_ATTR(genTypeSize(TYP_LONG)))); |
| 6856 | |
| 6857 | // Also we don't expect to see uint32 -> float/double and uint64 -> float conversions |
| 6858 | // here since they should have been lowered apropriately. |
| 6859 | noway_assert(srcType != TYP_UINT); |
| 6860 | noway_assert((srcType != TYP_ULONG) || (dstType != TYP_FLOAT)); |
| 6861 | |
| 6862 | // To convert int to a float/double, cvtsi2ss/sd SSE2 instruction is used |
| 6863 | // which does a partial write to lower 4/8 bytes of xmm register keeping the other |
| 6864 | // upper bytes unmodified. If "cvtsi2ss/sd xmmReg, r32/r64" occurs inside a loop, |
| 6865 | // the partial write could introduce a false dependency and could cause a stall |
| 6866 | // if there are further uses of xmmReg. We have such a case occurring with a |
| 6867 | // customer reported version of SpectralNorm benchmark, resulting in 2x perf |
| 6868 | // regression. To avoid false dependency, we emit "xorps xmmReg, xmmReg" before |
| 6869 | // cvtsi2ss/sd instruction. |
| 6870 | |
| 6871 | genConsumeOperands(treeNode->AsOp()); |
| 6872 | getEmitter()->emitIns_R_R(INS_xorps, EA_4BYTE, treeNode->gtRegNum, treeNode->gtRegNum); |
| 6873 | |
| 6874 | // Note that here we need to specify srcType that will determine |
| 6875 | // the size of source reg/mem operand and rex.w prefix. |
| 6876 | instruction ins = ins_FloatConv(dstType, TYP_INT); |
| 6877 | getEmitter()->emitInsBinary(ins, emitTypeSize(srcType), treeNode, op1); |
| 6878 | |
| 6879 | // Handle the case of srcType = TYP_ULONG. SSE2 conversion instruction |
| 6880 | // will interpret ULONG value as LONG. Hence we need to adjust the |
| 6881 | // result if sign-bit of srcType is set. |
| 6882 | if (srcType == TYP_ULONG) |
| 6883 | { |
| 6884 | // The instruction sequence below is less accurate than what clang |
| 6885 | // and gcc generate. However, we keep the current sequence for backward compatibility. |
| 6886 | // If we change the instructions below, FloatingPointUtils::convertUInt64ToDobule |
| 6887 | // should be also updated for consistent conversion result. |
| 6888 | assert(dstType == TYP_DOUBLE); |
| 6889 | assert(op1->isUsedFromReg()); |
| 6890 | |
| 6891 | // Set the flags without modifying op1. |
| 6892 | // test op1Reg, op1Reg |
| 6893 | inst_RV_RV(INS_test, op1->gtRegNum, op1->gtRegNum, srcType); |
| 6894 | |
| 6895 | // No need to adjust result if op1 >= 0 i.e. positive |
| 6896 | // Jge label |
| 6897 | BasicBlock* label = genCreateTempLabel(); |
| 6898 | inst_JMP(EJ_jge, label); |
| 6899 | |
| 6900 | // Adjust the result |
| 6901 | // result = result + 0x43f00000 00000000 |
| 6902 | // addsd resultReg, 0x43f00000 00000000 |
| 6903 | CORINFO_FIELD_HANDLE* cns = &u8ToDblBitmask; |
| 6904 | if (*cns == nullptr) |
| 6905 | { |
| 6906 | double d; |
| 6907 | static_assert_no_msg(sizeof(double) == sizeof(__int64)); |
| 6908 | *((__int64*)&d) = 0x43f0000000000000LL; |
| 6909 | |
| 6910 | *cns = getEmitter()->emitFltOrDblConst(d, EA_8BYTE); |
| 6911 | } |
| 6912 | getEmitter()->emitIns_R_C(INS_addsd, EA_8BYTE, treeNode->gtRegNum, *cns, 0); |
| 6913 | |
| 6914 | genDefineTempLabel(label); |
| 6915 | } |
| 6916 | |
| 6917 | genProduceReg(treeNode); |
| 6918 | } |
| 6919 | |
| 6920 | //------------------------------------------------------------------------ |
| 6921 | // genFloatToIntCast: Generate code to cast float/double to int/long |
| 6922 | // |
| 6923 | // Arguments: |
| 6924 | // treeNode - The GT_CAST node |
| 6925 | // |
| 6926 | // Return Value: |
| 6927 | // None. |
| 6928 | // |
| 6929 | // Assumptions: |
| 6930 | // Cast is a non-overflow conversion. |
| 6931 | // The treeNode must have an assigned register. |
| 6932 | // SrcType=float/double and DstType= int32/uint32/int64/uint64 |
| 6933 | // |
| 6934 | // TODO-XArch-CQ: (Low-pri) - generate in-line code when DstType = uint64 |
| 6935 | // |
| 6936 | void CodeGen::genFloatToIntCast(GenTree* treeNode) |
| 6937 | { |
| 6938 | // we don't expect to see overflow detecting float/double --> int type conversions here |
| 6939 | // as they should have been converted into helper calls by front-end. |
| 6940 | assert(treeNode->OperGet() == GT_CAST); |
| 6941 | assert(!treeNode->gtOverflow()); |
| 6942 | |
| 6943 | regNumber targetReg = treeNode->gtRegNum; |
| 6944 | assert(genIsValidIntReg(targetReg)); |
| 6945 | |
| 6946 | GenTree* op1 = treeNode->gtOp.gtOp1; |
| 6947 | #ifdef DEBUG |
| 6948 | if (op1->isUsedFromReg()) |
| 6949 | { |
| 6950 | assert(genIsValidFloatReg(op1->gtRegNum)); |
| 6951 | } |
| 6952 | #endif |
| 6953 | |
| 6954 | var_types dstType = treeNode->CastToType(); |
| 6955 | var_types srcType = op1->TypeGet(); |
| 6956 | assert(varTypeIsFloating(srcType) && !varTypeIsFloating(dstType)); |
| 6957 | |
| 6958 | // We should never be seeing dstType whose size is neither sizeof(TYP_INT) nor sizeof(TYP_LONG). |
| 6959 | // For conversions to byte/sbyte/int16/uint16 from float/double, we would expect the |
| 6960 | // front-end or lowering phase to have generated two levels of cast. The first one is |
| 6961 | // for float or double to int32/uint32 and the second one for narrowing int32/uint32 to |
| 6962 | // the required smaller int type. |
| 6963 | emitAttr dstSize = EA_ATTR(genTypeSize(dstType)); |
| 6964 | noway_assert((dstSize == EA_ATTR(genTypeSize(TYP_INT))) || (dstSize == EA_ATTR(genTypeSize(TYP_LONG)))); |
| 6965 | |
| 6966 | // We shouldn't be seeing uint64 here as it should have been converted |
| 6967 | // into a helper call by either front-end or lowering phase. |
| 6968 | noway_assert(!varTypeIsUnsigned(dstType) || (dstSize != EA_ATTR(genTypeSize(TYP_LONG)))); |
| 6969 | |
| 6970 | // If the dstType is TYP_UINT, we have 32-bits to encode the |
| 6971 | // float number. Any of 33rd or above bits can be the sign bit. |
| 6972 | // To achieve it we pretend as if we are converting it to a long. |
| 6973 | if (varTypeIsUnsigned(dstType) && (dstSize == EA_ATTR(genTypeSize(TYP_INT)))) |
| 6974 | { |
| 6975 | dstType = TYP_LONG; |
| 6976 | } |
| 6977 | |
| 6978 | // Note that we need to specify dstType here so that it will determine |
| 6979 | // the size of destination integer register and also the rex.w prefix. |
| 6980 | genConsumeOperands(treeNode->AsOp()); |
| 6981 | instruction ins = ins_FloatConv(TYP_INT, srcType); |
| 6982 | getEmitter()->emitInsBinary(ins, emitTypeSize(dstType), treeNode, op1); |
| 6983 | genProduceReg(treeNode); |
| 6984 | } |
| 6985 | |
| 6986 | //------------------------------------------------------------------------ |
| 6987 | // genCkfinite: Generate code for ckfinite opcode. |
| 6988 | // |
| 6989 | // Arguments: |
| 6990 | // treeNode - The GT_CKFINITE node |
| 6991 | // |
| 6992 | // Return Value: |
| 6993 | // None. |
| 6994 | // |
| 6995 | // Assumptions: |
| 6996 | // GT_CKFINITE node has reserved an internal register. |
| 6997 | // |
| 6998 | // TODO-XArch-CQ - mark the operand as contained if known to be in |
| 6999 | // memory (e.g. field or an array element). |
| 7000 | // |
| 7001 | void CodeGen::genCkfinite(GenTree* treeNode) |
| 7002 | { |
| 7003 | assert(treeNode->OperGet() == GT_CKFINITE); |
| 7004 | |
| 7005 | GenTree* op1 = treeNode->gtOp.gtOp1; |
| 7006 | var_types targetType = treeNode->TypeGet(); |
| 7007 | int expMask = (targetType == TYP_FLOAT) ? 0x7F800000 : 0x7FF00000; // Bit mask to extract exponent. |
| 7008 | regNumber targetReg = treeNode->gtRegNum; |
| 7009 | |
| 7010 | // Extract exponent into a register. |
| 7011 | regNumber tmpReg = treeNode->GetSingleTempReg(); |
| 7012 | |
| 7013 | genConsumeReg(op1); |
| 7014 | |
| 7015 | #ifdef _TARGET_64BIT_ |
| 7016 | |
| 7017 | // Copy the floating-point value to an integer register. If we copied a float to a long, then |
| 7018 | // right-shift the value so the high 32 bits of the floating-point value sit in the low 32 |
| 7019 | // bits of the integer register. |
| 7020 | instruction ins = ins_CopyFloatToInt(targetType, (targetType == TYP_FLOAT) ? TYP_INT : TYP_LONG); |
| 7021 | inst_RV_RV(ins, op1->gtRegNum, tmpReg, targetType); |
| 7022 | if (targetType == TYP_DOUBLE) |
| 7023 | { |
| 7024 | // right shift by 32 bits to get to exponent. |
| 7025 | inst_RV_SH(INS_shr, EA_8BYTE, tmpReg, 32); |
| 7026 | } |
| 7027 | |
| 7028 | // Mask exponent with all 1's and check if the exponent is all 1's |
| 7029 | inst_RV_IV(INS_and, tmpReg, expMask, EA_4BYTE); |
| 7030 | inst_RV_IV(INS_cmp, tmpReg, expMask, EA_4BYTE); |
| 7031 | |
| 7032 | // If exponent is all 1's, throw ArithmeticException |
| 7033 | genJumpToThrowHlpBlk(EJ_je, SCK_ARITH_EXCPN); |
| 7034 | |
| 7035 | // if it is a finite value copy it to targetReg |
| 7036 | if (targetReg != op1->gtRegNum) |
| 7037 | { |
| 7038 | inst_RV_RV(ins_Copy(targetType), targetReg, op1->gtRegNum, targetType); |
| 7039 | } |
| 7040 | |
| 7041 | #else // !_TARGET_64BIT_ |
| 7042 | |
| 7043 | // If the target type is TYP_DOUBLE, we want to extract the high 32 bits into the register. |
| 7044 | // There is no easy way to do this. To not require an extra register, we'll use shuffles |
| 7045 | // to move the high 32 bits into the low 32 bits, then shuffle it back, since we |
| 7046 | // need to produce the value into the target register. |
| 7047 | // |
| 7048 | // For TYP_DOUBLE, we'll generate (for targetReg != op1->gtRegNum): |
| 7049 | // movaps targetReg, op1->gtRegNum |
| 7050 | // shufps targetReg, targetReg, 0xB1 // WZYX => ZWXY |
| 7051 | // mov_xmm2i tmpReg, targetReg // tmpReg <= Y |
| 7052 | // and tmpReg, <mask> |
| 7053 | // cmp tmpReg, <mask> |
| 7054 | // je <throw block> |
| 7055 | // movaps targetReg, op1->gtRegNum // copy the value again, instead of un-shuffling it |
| 7056 | // |
| 7057 | // For TYP_DOUBLE with (targetReg == op1->gtRegNum): |
| 7058 | // shufps targetReg, targetReg, 0xB1 // WZYX => ZWXY |
| 7059 | // mov_xmm2i tmpReg, targetReg // tmpReg <= Y |
| 7060 | // and tmpReg, <mask> |
| 7061 | // cmp tmpReg, <mask> |
| 7062 | // je <throw block> |
| 7063 | // shufps targetReg, targetReg, 0xB1 // ZWXY => WZYX |
| 7064 | // |
| 7065 | // For TYP_FLOAT, it's the same as _TARGET_64BIT_: |
| 7066 | // mov_xmm2i tmpReg, targetReg // tmpReg <= low 32 bits |
| 7067 | // and tmpReg, <mask> |
| 7068 | // cmp tmpReg, <mask> |
| 7069 | // je <throw block> |
| 7070 | // movaps targetReg, op1->gtRegNum // only if targetReg != op1->gtRegNum |
| 7071 | |
| 7072 | regNumber copyToTmpSrcReg; // The register we'll copy to the integer temp. |
| 7073 | |
| 7074 | if (targetType == TYP_DOUBLE) |
| 7075 | { |
| 7076 | if (targetReg != op1->gtRegNum) |
| 7077 | { |
| 7078 | inst_RV_RV(ins_Copy(targetType), targetReg, op1->gtRegNum, targetType); |
| 7079 | } |
| 7080 | inst_RV_RV_IV(INS_shufps, EA_16BYTE, targetReg, targetReg, 0xb1); |
| 7081 | copyToTmpSrcReg = targetReg; |
| 7082 | } |
| 7083 | else |
| 7084 | { |
| 7085 | copyToTmpSrcReg = op1->gtRegNum; |
| 7086 | } |
| 7087 | |
| 7088 | // Copy only the low 32 bits. This will be the high order 32 bits of the floating-point |
| 7089 | // value, no matter the floating-point type. |
| 7090 | inst_RV_RV(ins_CopyFloatToInt(TYP_FLOAT, TYP_INT), copyToTmpSrcReg, tmpReg, TYP_FLOAT); |
| 7091 | |
| 7092 | // Mask exponent with all 1's and check if the exponent is all 1's |
| 7093 | inst_RV_IV(INS_and, tmpReg, expMask, EA_4BYTE); |
| 7094 | inst_RV_IV(INS_cmp, tmpReg, expMask, EA_4BYTE); |
| 7095 | |
| 7096 | // If exponent is all 1's, throw ArithmeticException |
| 7097 | genJumpToThrowHlpBlk(EJ_je, SCK_ARITH_EXCPN); |
| 7098 | |
| 7099 | if (targetReg != op1->gtRegNum) |
| 7100 | { |
| 7101 | // In both the TYP_FLOAT and TYP_DOUBLE case, the op1 register is untouched, |
| 7102 | // so copy it to the targetReg. This is faster and smaller for TYP_DOUBLE |
| 7103 | // than re-shuffling the targetReg. |
| 7104 | inst_RV_RV(ins_Copy(targetType), targetReg, op1->gtRegNum, targetType); |
| 7105 | } |
| 7106 | else if (targetType == TYP_DOUBLE) |
| 7107 | { |
| 7108 | // We need to re-shuffle the targetReg to get the correct result. |
| 7109 | inst_RV_RV_IV(INS_shufps, EA_16BYTE, targetReg, targetReg, 0xb1); |
| 7110 | } |
| 7111 | |
| 7112 | #endif // !_TARGET_64BIT_ |
| 7113 | |
| 7114 | genProduceReg(treeNode); |
| 7115 | } |
| 7116 | |
| 7117 | #ifdef _TARGET_AMD64_ |
| 7118 | int CodeGenInterface::genSPtoFPdelta() |
| 7119 | { |
| 7120 | int delta; |
| 7121 | |
| 7122 | #ifdef UNIX_AMD64_ABI |
| 7123 | |
| 7124 | // We require frame chaining on Unix to support native tool unwinding (such as |
| 7125 | // unwinding by the native debugger). We have a CLR-only extension to the |
| 7126 | // unwind codes (UWOP_SET_FPREG_LARGE) to support SP->FP offsets larger than 240. |
| 7127 | // If Unix ever supports EnC, the RSP == RBP assumption will have to be reevaluated. |
| 7128 | delta = genTotalFrameSize(); |
| 7129 | |
| 7130 | #else // !UNIX_AMD64_ABI |
| 7131 | |
| 7132 | // As per Amd64 ABI, RBP offset from initial RSP can be between 0 and 240 if |
| 7133 | // RBP needs to be reported in unwind codes. This case would arise for methods |
| 7134 | // with localloc. |
| 7135 | if (compiler->compLocallocUsed) |
| 7136 | { |
| 7137 | // We cannot base delta computation on compLclFrameSize since it changes from |
| 7138 | // tentative to final frame layout and hence there is a possibility of |
| 7139 | // under-estimating offset of vars from FP, which in turn results in under- |
| 7140 | // estimating instruction size. |
| 7141 | // |
| 7142 | // To be predictive and so as never to under-estimate offset of vars from FP |
| 7143 | // we will always position FP at min(240, outgoing arg area size). |
| 7144 | delta = Min(240, (int)compiler->lvaOutgoingArgSpaceSize); |
| 7145 | } |
| 7146 | else if (compiler->opts.compDbgEnC) |
| 7147 | { |
| 7148 | // vm assumption on EnC methods is that rsp and rbp are equal |
| 7149 | delta = 0; |
| 7150 | } |
| 7151 | else |
| 7152 | { |
| 7153 | delta = genTotalFrameSize(); |
| 7154 | } |
| 7155 | |
| 7156 | #endif // !UNIX_AMD64_ABI |
| 7157 | |
| 7158 | return delta; |
| 7159 | } |
| 7160 | |
| 7161 | //--------------------------------------------------------------------- |
| 7162 | // genTotalFrameSize - return the total size of the stack frame, including local size, |
| 7163 | // callee-saved register size, etc. For AMD64, this does not include the caller-pushed |
| 7164 | // return address. |
| 7165 | // |
| 7166 | // Return value: |
| 7167 | // Total frame size |
| 7168 | // |
| 7169 | |
| 7170 | int CodeGenInterface::genTotalFrameSize() |
| 7171 | { |
| 7172 | assert(!IsUninitialized(compiler->compCalleeRegsPushed)); |
| 7173 | |
| 7174 | int totalFrameSize = compiler->compCalleeRegsPushed * REGSIZE_BYTES + compiler->compLclFrameSize; |
| 7175 | |
| 7176 | assert(totalFrameSize >= 0); |
| 7177 | return totalFrameSize; |
| 7178 | } |
| 7179 | |
| 7180 | //--------------------------------------------------------------------- |
| 7181 | // genCallerSPtoFPdelta - return the offset from Caller-SP to the frame pointer. |
| 7182 | // This number is going to be negative, since the Caller-SP is at a higher |
| 7183 | // address than the frame pointer. |
| 7184 | // |
| 7185 | // There must be a frame pointer to call this function! |
| 7186 | // |
| 7187 | // We can't compute this directly from the Caller-SP, since the frame pointer |
| 7188 | // is based on a maximum delta from Initial-SP, so first we find SP, then |
| 7189 | // compute the FP offset. |
| 7190 | |
| 7191 | int CodeGenInterface::genCallerSPtoFPdelta() |
| 7192 | { |
| 7193 | assert(isFramePointerUsed()); |
| 7194 | int callerSPtoFPdelta; |
| 7195 | |
| 7196 | callerSPtoFPdelta = genCallerSPtoInitialSPdelta() + genSPtoFPdelta(); |
| 7197 | |
| 7198 | assert(callerSPtoFPdelta <= 0); |
| 7199 | return callerSPtoFPdelta; |
| 7200 | } |
| 7201 | |
| 7202 | //--------------------------------------------------------------------- |
| 7203 | // genCallerSPtoInitialSPdelta - return the offset from Caller-SP to Initial SP. |
| 7204 | // |
| 7205 | // This number will be negative. |
| 7206 | |
| 7207 | int CodeGenInterface::genCallerSPtoInitialSPdelta() |
| 7208 | { |
| 7209 | int callerSPtoSPdelta = 0; |
| 7210 | |
| 7211 | callerSPtoSPdelta -= genTotalFrameSize(); |
| 7212 | callerSPtoSPdelta -= REGSIZE_BYTES; // caller-pushed return address |
| 7213 | |
| 7214 | // compCalleeRegsPushed does not account for the frame pointer |
| 7215 | // TODO-Cleanup: shouldn't this be part of genTotalFrameSize? |
| 7216 | if (isFramePointerUsed()) |
| 7217 | { |
| 7218 | callerSPtoSPdelta -= REGSIZE_BYTES; |
| 7219 | } |
| 7220 | |
| 7221 | assert(callerSPtoSPdelta <= 0); |
| 7222 | return callerSPtoSPdelta; |
| 7223 | } |
| 7224 | #endif // _TARGET_AMD64_ |
| 7225 | |
| 7226 | //----------------------------------------------------------------------------------------- |
| 7227 | // genSSE2BitwiseOp - generate SSE2 code for the given oper as "Operand BitWiseOp BitMask" |
| 7228 | // |
| 7229 | // Arguments: |
| 7230 | // treeNode - tree node |
| 7231 | // |
| 7232 | // Return value: |
| 7233 | // None |
| 7234 | // |
| 7235 | // Assumptions: |
| 7236 | // i) tree oper is one of GT_NEG or GT_INTRINSIC Abs() |
| 7237 | // ii) tree type is floating point type. |
| 7238 | // iii) caller of this routine needs to call genProduceReg() |
| 7239 | void CodeGen::genSSE2BitwiseOp(GenTree* treeNode) |
| 7240 | { |
| 7241 | regNumber targetReg = treeNode->gtRegNum; |
| 7242 | var_types targetType = treeNode->TypeGet(); |
| 7243 | assert(varTypeIsFloating(targetType)); |
| 7244 | |
| 7245 | float f; |
| 7246 | double d; |
| 7247 | CORINFO_FIELD_HANDLE* bitMask = nullptr; |
| 7248 | instruction ins = INS_invalid; |
| 7249 | void* cnsAddr = nullptr; |
| 7250 | bool dblAlign = false; |
| 7251 | |
| 7252 | switch (treeNode->OperGet()) |
| 7253 | { |
| 7254 | case GT_NEG: |
| 7255 | // Neg(x) = flip the sign bit. |
| 7256 | // Neg(f) = f ^ 0x80000000 |
| 7257 | // Neg(d) = d ^ 0x8000000000000000 |
| 7258 | ins = INS_xorps; |
| 7259 | if (targetType == TYP_FLOAT) |
| 7260 | { |
| 7261 | bitMask = &negBitmaskFlt; |
| 7262 | |
| 7263 | static_assert_no_msg(sizeof(float) == sizeof(int)); |
| 7264 | *((int*)&f) = 0x80000000; |
| 7265 | cnsAddr = &f; |
| 7266 | } |
| 7267 | else |
| 7268 | { |
| 7269 | bitMask = &negBitmaskDbl; |
| 7270 | |
| 7271 | static_assert_no_msg(sizeof(double) == sizeof(__int64)); |
| 7272 | *((__int64*)&d) = 0x8000000000000000LL; |
| 7273 | cnsAddr = &d; |
| 7274 | dblAlign = true; |
| 7275 | } |
| 7276 | break; |
| 7277 | |
| 7278 | case GT_INTRINSIC: |
| 7279 | assert(treeNode->gtIntrinsic.gtIntrinsicId == CORINFO_INTRINSIC_Abs); |
| 7280 | |
| 7281 | // Abs(x) = set sign-bit to zero |
| 7282 | // Abs(f) = f & 0x7fffffff |
| 7283 | // Abs(d) = d & 0x7fffffffffffffff |
| 7284 | ins = INS_andps; |
| 7285 | if (targetType == TYP_FLOAT) |
| 7286 | { |
| 7287 | bitMask = &absBitmaskFlt; |
| 7288 | |
| 7289 | static_assert_no_msg(sizeof(float) == sizeof(int)); |
| 7290 | *((int*)&f) = 0x7fffffff; |
| 7291 | cnsAddr = &f; |
| 7292 | } |
| 7293 | else |
| 7294 | { |
| 7295 | bitMask = &absBitmaskDbl; |
| 7296 | |
| 7297 | static_assert_no_msg(sizeof(double) == sizeof(__int64)); |
| 7298 | *((__int64*)&d) = 0x7fffffffffffffffLL; |
| 7299 | cnsAddr = &d; |
| 7300 | dblAlign = true; |
| 7301 | } |
| 7302 | break; |
| 7303 | |
| 7304 | default: |
| 7305 | assert(!"genSSE2: unsupported oper" ); |
| 7306 | unreached(); |
| 7307 | break; |
| 7308 | } |
| 7309 | |
| 7310 | if (*bitMask == nullptr) |
| 7311 | { |
| 7312 | assert(cnsAddr != nullptr); |
| 7313 | *bitMask = getEmitter()->emitAnyConst(cnsAddr, genTypeSize(targetType), dblAlign); |
| 7314 | } |
| 7315 | |
| 7316 | // We need an additional register for bitmask. |
| 7317 | regNumber tmpReg = treeNode->GetSingleTempReg(); |
| 7318 | |
| 7319 | // Move operand into targetReg only if the reg reserved for |
| 7320 | // internal purpose is not the same as targetReg. |
| 7321 | GenTree* op1 = treeNode->gtOp.gtOp1; |
| 7322 | assert(op1->isUsedFromReg()); |
| 7323 | regNumber operandReg = genConsumeReg(op1); |
| 7324 | if (tmpReg != targetReg) |
| 7325 | { |
| 7326 | if (operandReg != targetReg) |
| 7327 | { |
| 7328 | inst_RV_RV(ins_Copy(targetType), targetReg, operandReg, targetType); |
| 7329 | } |
| 7330 | |
| 7331 | operandReg = tmpReg; |
| 7332 | } |
| 7333 | |
| 7334 | getEmitter()->emitIns_R_C(ins_Load(targetType, false), emitTypeSize(targetType), tmpReg, *bitMask, 0); |
| 7335 | assert(ins != INS_invalid); |
| 7336 | inst_RV_RV(ins, targetReg, operandReg, targetType); |
| 7337 | } |
| 7338 | |
| 7339 | //----------------------------------------------------------------------------------------- |
| 7340 | // genSSE41RoundOp - generate SSE41 code for the given tree as a round operation |
| 7341 | // |
| 7342 | // Arguments: |
| 7343 | // treeNode - tree node |
| 7344 | // |
| 7345 | // Return value: |
| 7346 | // None |
| 7347 | // |
| 7348 | // Assumptions: |
| 7349 | // i) SSE4.1 is supported by the underlying hardware |
| 7350 | // ii) treeNode oper is a GT_INTRINSIC |
| 7351 | // iii) treeNode type is a floating point type |
| 7352 | // iv) treeNode is not used from memory |
| 7353 | // v) tree oper is CORINFO_INTRINSIC_Round, _Ceiling, or _Floor |
| 7354 | // vi) caller of this routine needs to call genProduceReg() |
| 7355 | void CodeGen::genSSE41RoundOp(GenTreeOp* treeNode) |
| 7356 | { |
| 7357 | // i) SSE4.1 is supported by the underlying hardware |
| 7358 | assert(compiler->compSupports(InstructionSet_SSE41)); |
| 7359 | |
| 7360 | // ii) treeNode oper is a GT_INTRINSIC |
| 7361 | assert(treeNode->OperGet() == GT_INTRINSIC); |
| 7362 | |
| 7363 | GenTree* srcNode = treeNode->gtGetOp1(); |
| 7364 | |
| 7365 | // iii) treeNode type is floating point type |
| 7366 | assert(varTypeIsFloating(srcNode)); |
| 7367 | assert(srcNode->TypeGet() == treeNode->TypeGet()); |
| 7368 | |
| 7369 | // iv) treeNode is not used from memory |
| 7370 | assert(!treeNode->isUsedFromMemory()); |
| 7371 | |
| 7372 | genConsumeOperands(treeNode); |
| 7373 | |
| 7374 | instruction ins = (treeNode->TypeGet() == TYP_FLOAT) ? INS_roundss : INS_roundsd; |
| 7375 | emitAttr size = emitTypeSize(treeNode); |
| 7376 | |
| 7377 | regNumber dstReg = treeNode->gtRegNum; |
| 7378 | |
| 7379 | unsigned ival = 0; |
| 7380 | |
| 7381 | // v) tree oper is CORINFO_INTRINSIC_Round, _Ceiling, or _Floor |
| 7382 | switch (treeNode->gtIntrinsic.gtIntrinsicId) |
| 7383 | { |
| 7384 | case CORINFO_INTRINSIC_Round: |
| 7385 | ival = 4; |
| 7386 | break; |
| 7387 | |
| 7388 | case CORINFO_INTRINSIC_Ceiling: |
| 7389 | ival = 10; |
| 7390 | break; |
| 7391 | |
| 7392 | case CORINFO_INTRINSIC_Floor: |
| 7393 | ival = 9; |
| 7394 | break; |
| 7395 | |
| 7396 | default: |
| 7397 | ins = INS_invalid; |
| 7398 | assert(!"genSSE41RoundOp: unsupported intrinsic" ); |
| 7399 | unreached(); |
| 7400 | } |
| 7401 | |
| 7402 | if (srcNode->isContained() || srcNode->isUsedFromSpillTemp()) |
| 7403 | { |
| 7404 | emitter* emit = getEmitter(); |
| 7405 | |
| 7406 | TempDsc* tmpDsc = nullptr; |
| 7407 | unsigned varNum = BAD_VAR_NUM; |
| 7408 | unsigned offset = (unsigned)-1; |
| 7409 | |
| 7410 | if (srcNode->isUsedFromSpillTemp()) |
| 7411 | { |
| 7412 | assert(srcNode->IsRegOptional()); |
| 7413 | |
| 7414 | tmpDsc = getSpillTempDsc(srcNode); |
| 7415 | varNum = tmpDsc->tdTempNum(); |
| 7416 | offset = 0; |
| 7417 | |
| 7418 | regSet.tmpRlsTemp(tmpDsc); |
| 7419 | } |
| 7420 | else if (srcNode->isIndir()) |
| 7421 | { |
| 7422 | GenTreeIndir* memIndir = srcNode->AsIndir(); |
| 7423 | GenTree* memBase = memIndir->gtOp1; |
| 7424 | |
| 7425 | switch (memBase->OperGet()) |
| 7426 | { |
| 7427 | case GT_LCL_VAR_ADDR: |
| 7428 | { |
| 7429 | varNum = memBase->AsLclVarCommon()->GetLclNum(); |
| 7430 | offset = 0; |
| 7431 | |
| 7432 | // Ensure that all the GenTreeIndir values are set to their defaults. |
| 7433 | assert(memBase->gtRegNum == REG_NA); |
| 7434 | assert(!memIndir->HasIndex()); |
| 7435 | assert(memIndir->Scale() == 1); |
| 7436 | assert(memIndir->Offset() == 0); |
| 7437 | |
| 7438 | break; |
| 7439 | } |
| 7440 | |
| 7441 | case GT_CLS_VAR_ADDR: |
| 7442 | { |
| 7443 | emit->emitIns_R_C_I(ins, size, dstReg, memBase->gtClsVar.gtClsVarHnd, 0, ival); |
| 7444 | return; |
| 7445 | } |
| 7446 | |
| 7447 | default: |
| 7448 | { |
| 7449 | emit->emitIns_R_A_I(ins, size, dstReg, memIndir, ival); |
| 7450 | return; |
| 7451 | } |
| 7452 | } |
| 7453 | } |
| 7454 | else |
| 7455 | { |
| 7456 | switch (srcNode->OperGet()) |
| 7457 | { |
| 7458 | case GT_CNS_DBL: |
| 7459 | { |
| 7460 | GenTreeDblCon* dblConst = srcNode->AsDblCon(); |
| 7461 | CORINFO_FIELD_HANDLE hnd = emit->emitFltOrDblConst(dblConst->gtDconVal, emitTypeSize(dblConst)); |
| 7462 | |
| 7463 | emit->emitIns_R_C_I(ins, size, dstReg, hnd, 0, ival); |
| 7464 | return; |
| 7465 | } |
| 7466 | |
| 7467 | case GT_LCL_FLD: |
| 7468 | { |
| 7469 | GenTreeLclFld* lclField = srcNode->AsLclFld(); |
| 7470 | |
| 7471 | varNum = lclField->GetLclNum(); |
| 7472 | offset = lclField->gtLclFld.gtLclOffs; |
| 7473 | break; |
| 7474 | } |
| 7475 | |
| 7476 | case GT_LCL_VAR: |
| 7477 | { |
| 7478 | assert(srcNode->IsRegOptional() || |
| 7479 | !compiler->lvaTable[srcNode->gtLclVar.gtLclNum].lvIsRegCandidate()); |
| 7480 | |
| 7481 | varNum = srcNode->AsLclVar()->GetLclNum(); |
| 7482 | offset = 0; |
| 7483 | break; |
| 7484 | } |
| 7485 | |
| 7486 | default: |
| 7487 | unreached(); |
| 7488 | break; |
| 7489 | } |
| 7490 | } |
| 7491 | |
| 7492 | // Ensure we got a good varNum and offset. |
| 7493 | // We also need to check for `tmpDsc != nullptr` since spill temp numbers |
| 7494 | // are negative and start with -1, which also happens to be BAD_VAR_NUM. |
| 7495 | assert((varNum != BAD_VAR_NUM) || (tmpDsc != nullptr)); |
| 7496 | assert(offset != (unsigned)-1); |
| 7497 | |
| 7498 | emit->emitIns_R_S_I(ins, size, dstReg, varNum, offset, ival); |
| 7499 | } |
| 7500 | else |
| 7501 | { |
| 7502 | inst_RV_RV_IV(ins, size, dstReg, srcNode->gtRegNum, ival); |
| 7503 | } |
| 7504 | } |
| 7505 | |
| 7506 | //--------------------------------------------------------------------- |
| 7507 | // genIntrinsic - generate code for a given intrinsic |
| 7508 | // |
| 7509 | // Arguments |
| 7510 | // treeNode - the GT_INTRINSIC node |
| 7511 | // |
| 7512 | // Return value: |
| 7513 | // None |
| 7514 | // |
| 7515 | void CodeGen::genIntrinsic(GenTree* treeNode) |
| 7516 | { |
| 7517 | // Right now only Sqrt/Abs are treated as math intrinsics. |
| 7518 | switch (treeNode->gtIntrinsic.gtIntrinsicId) |
| 7519 | { |
| 7520 | case CORINFO_INTRINSIC_Sqrt: |
| 7521 | { |
| 7522 | // Both operand and its result must be of the same floating point type. |
| 7523 | GenTree* srcNode = treeNode->gtOp.gtOp1; |
| 7524 | assert(varTypeIsFloating(srcNode)); |
| 7525 | assert(srcNode->TypeGet() == treeNode->TypeGet()); |
| 7526 | |
| 7527 | genConsumeOperands(treeNode->AsOp()); |
| 7528 | getEmitter()->emitInsBinary(ins_FloatSqrt(treeNode->TypeGet()), emitTypeSize(treeNode), treeNode, srcNode); |
| 7529 | break; |
| 7530 | } |
| 7531 | |
| 7532 | case CORINFO_INTRINSIC_Abs: |
| 7533 | genSSE2BitwiseOp(treeNode); |
| 7534 | break; |
| 7535 | |
| 7536 | case CORINFO_INTRINSIC_Round: |
| 7537 | case CORINFO_INTRINSIC_Ceiling: |
| 7538 | case CORINFO_INTRINSIC_Floor: |
| 7539 | genSSE41RoundOp(treeNode->AsOp()); |
| 7540 | break; |
| 7541 | |
| 7542 | default: |
| 7543 | assert(!"genIntrinsic: Unsupported intrinsic" ); |
| 7544 | unreached(); |
| 7545 | } |
| 7546 | |
| 7547 | genProduceReg(treeNode); |
| 7548 | } |
| 7549 | |
| 7550 | //-------------------------------------------------------------------------- // |
| 7551 | // getBaseVarForPutArgStk - returns the baseVarNum for passing a stack arg. |
| 7552 | // |
| 7553 | // Arguments |
| 7554 | // treeNode - the GT_PUTARG_STK node |
| 7555 | // |
| 7556 | // Return value: |
| 7557 | // The number of the base variable. |
| 7558 | // |
| 7559 | // Note: |
| 7560 | // If tail call the outgoing args are placed in the caller's incoming arg stack space. |
| 7561 | // Otherwise, they go in the outgoing arg area on the current frame. |
| 7562 | // |
| 7563 | // On Windows the caller always creates slots (homing space) in its frame for the |
| 7564 | // first 4 arguments of a callee (register passed args). So, the baseVarNum is always 0. |
| 7565 | // For System V systems there is no such calling convention requirement, and the code needs to find |
| 7566 | // the first stack passed argument from the caller. This is done by iterating over |
| 7567 | // all the lvParam variables and finding the first with lvArgReg equals to REG_STK. |
| 7568 | // |
| 7569 | unsigned CodeGen::getBaseVarForPutArgStk(GenTree* treeNode) |
| 7570 | { |
| 7571 | assert(treeNode->OperGet() == GT_PUTARG_STK); |
| 7572 | |
| 7573 | unsigned baseVarNum; |
| 7574 | |
| 7575 | // Whether to setup stk arg in incoming or out-going arg area? |
| 7576 | // Fast tail calls implemented as epilog+jmp = stk arg is setup in incoming arg area. |
| 7577 | // All other calls - stk arg is setup in out-going arg area. |
| 7578 | if (treeNode->AsPutArgStk()->putInIncomingArgArea()) |
| 7579 | { |
| 7580 | // See the note in the function header re: finding the first stack passed argument. |
| 7581 | baseVarNum = getFirstArgWithStackSlot(); |
| 7582 | assert(baseVarNum != BAD_VAR_NUM); |
| 7583 | |
| 7584 | #ifdef DEBUG |
| 7585 | // This must be a fast tail call. |
| 7586 | assert(treeNode->AsPutArgStk()->gtCall->AsCall()->IsFastTailCall()); |
| 7587 | |
| 7588 | // Since it is a fast tail call, the existence of first incoming arg is guaranteed |
| 7589 | // because fast tail call requires that in-coming arg area of caller is >= out-going |
| 7590 | // arg area required for tail call. |
| 7591 | LclVarDsc* varDsc = &(compiler->lvaTable[baseVarNum]); |
| 7592 | assert(varDsc != nullptr); |
| 7593 | |
| 7594 | #ifdef UNIX_AMD64_ABI |
| 7595 | assert(!varDsc->lvIsRegArg && varDsc->lvArgReg == REG_STK); |
| 7596 | #else // !UNIX_AMD64_ABI |
| 7597 | // On Windows this assert is always true. The first argument will always be in REG_ARG_0 or REG_FLTARG_0. |
| 7598 | assert(varDsc->lvIsRegArg && (varDsc->lvArgReg == REG_ARG_0 || varDsc->lvArgReg == REG_FLTARG_0)); |
| 7599 | #endif // !UNIX_AMD64_ABI |
| 7600 | #endif // !DEBUG |
| 7601 | } |
| 7602 | else |
| 7603 | { |
| 7604 | #if FEATURE_FIXED_OUT_ARGS |
| 7605 | baseVarNum = compiler->lvaOutgoingArgSpaceVar; |
| 7606 | #else // !FEATURE_FIXED_OUT_ARGS |
| 7607 | assert(!"No BaseVarForPutArgStk on x86" ); |
| 7608 | baseVarNum = BAD_VAR_NUM; |
| 7609 | #endif // !FEATURE_FIXED_OUT_ARGS |
| 7610 | } |
| 7611 | |
| 7612 | return baseVarNum; |
| 7613 | } |
| 7614 | |
| 7615 | //--------------------------------------------------------------------- |
| 7616 | // genAlignStackBeforeCall: Align the stack if necessary before a call. |
| 7617 | // |
| 7618 | // Arguments: |
| 7619 | // putArgStk - the putArgStk node. |
| 7620 | // |
| 7621 | void CodeGen::genAlignStackBeforeCall(GenTreePutArgStk* putArgStk) |
| 7622 | { |
| 7623 | #if defined(UNIX_X86_ABI) |
| 7624 | |
| 7625 | genAlignStackBeforeCall(putArgStk->gtCall); |
| 7626 | |
| 7627 | #endif // UNIX_X86_ABI |
| 7628 | } |
| 7629 | |
| 7630 | //--------------------------------------------------------------------- |
| 7631 | // genAlignStackBeforeCall: Align the stack if necessary before a call. |
| 7632 | // |
| 7633 | // Arguments: |
| 7634 | // call - the call node. |
| 7635 | // |
| 7636 | void CodeGen::genAlignStackBeforeCall(GenTreeCall* call) |
| 7637 | { |
| 7638 | #if defined(UNIX_X86_ABI) |
| 7639 | |
| 7640 | // Have we aligned the stack yet? |
| 7641 | if (!call->fgArgInfo->IsStkAlignmentDone()) |
| 7642 | { |
| 7643 | // We haven't done any stack alignment yet for this call. We might need to create |
| 7644 | // an alignment adjustment, even if this function itself doesn't have any stack args. |
| 7645 | // This can happen if this function call is part of a nested call sequence, and the outer |
| 7646 | // call has already pushed some arguments. |
| 7647 | |
| 7648 | unsigned stkLevel = genStackLevel + call->fgArgInfo->GetStkSizeBytes(); |
| 7649 | call->fgArgInfo->ComputeStackAlignment(stkLevel); |
| 7650 | |
| 7651 | unsigned padStkAlign = call->fgArgInfo->GetStkAlign(); |
| 7652 | if (padStkAlign != 0) |
| 7653 | { |
| 7654 | // Now generate the alignment |
| 7655 | inst_RV_IV(INS_sub, REG_SPBASE, padStkAlign, EA_PTRSIZE); |
| 7656 | AddStackLevel(padStkAlign); |
| 7657 | AddNestedAlignment(padStkAlign); |
| 7658 | } |
| 7659 | |
| 7660 | call->fgArgInfo->SetStkAlignmentDone(); |
| 7661 | } |
| 7662 | |
| 7663 | #endif // UNIX_X86_ABI |
| 7664 | } |
| 7665 | |
| 7666 | //--------------------------------------------------------------------- |
| 7667 | // genRemoveAlignmentAfterCall: After a call, remove the alignment |
| 7668 | // added before the call, if any. |
| 7669 | // |
| 7670 | // Arguments: |
| 7671 | // call - the call node. |
| 7672 | // bias - additional stack adjustment |
| 7673 | // |
| 7674 | // Note: |
| 7675 | // When bias > 0, caller should adjust stack level appropriately as |
| 7676 | // bias is not considered when adjusting stack level. |
| 7677 | // |
| 7678 | void CodeGen::genRemoveAlignmentAfterCall(GenTreeCall* call, unsigned bias) |
| 7679 | { |
| 7680 | #if defined(_TARGET_X86_) |
| 7681 | #if defined(UNIX_X86_ABI) |
| 7682 | // Put back the stack pointer if there was any padding for stack alignment |
| 7683 | unsigned padStkAlign = call->fgArgInfo->GetStkAlign(); |
| 7684 | unsigned padStkAdjust = padStkAlign + bias; |
| 7685 | |
| 7686 | if (padStkAdjust != 0) |
| 7687 | { |
| 7688 | inst_RV_IV(INS_add, REG_SPBASE, padStkAdjust, EA_PTRSIZE); |
| 7689 | SubtractStackLevel(padStkAlign); |
| 7690 | SubtractNestedAlignment(padStkAlign); |
| 7691 | } |
| 7692 | #else // UNIX_X86_ABI |
| 7693 | if (bias != 0) |
| 7694 | { |
| 7695 | genAdjustSP(bias); |
| 7696 | } |
| 7697 | #endif // !UNIX_X86_ABI_ |
| 7698 | #else // _TARGET_X86_ |
| 7699 | assert(bias == 0); |
| 7700 | #endif // !_TARGET_X86 |
| 7701 | } |
| 7702 | |
| 7703 | #ifdef _TARGET_X86_ |
| 7704 | |
| 7705 | //--------------------------------------------------------------------- |
| 7706 | // genAdjustStackForPutArgStk: |
| 7707 | // adjust the stack pointer for a putArgStk node if necessary. |
| 7708 | // |
| 7709 | // Arguments: |
| 7710 | // putArgStk - the putArgStk node. |
| 7711 | // |
| 7712 | // Returns: true if the stack pointer was adjusted; false otherwise. |
| 7713 | // |
| 7714 | // Notes: |
| 7715 | // Sets `m_pushStkArg` to true if the stack arg needs to be pushed, |
| 7716 | // false if the stack arg needs to be stored at the current stack |
| 7717 | // pointer address. This is exactly the opposite of the return value |
| 7718 | // of this function. |
| 7719 | // |
| 7720 | bool CodeGen::genAdjustStackForPutArgStk(GenTreePutArgStk* putArgStk) |
| 7721 | { |
| 7722 | const unsigned argSize = putArgStk->getArgSize(); |
| 7723 | GenTree* source = putArgStk->gtGetOp1(); |
| 7724 | |
| 7725 | #ifdef FEATURE_SIMD |
| 7726 | if (!source->OperIs(GT_FIELD_LIST) && varTypeIsSIMD(source)) |
| 7727 | { |
| 7728 | inst_RV_IV(INS_sub, REG_SPBASE, argSize, EA_PTRSIZE); |
| 7729 | AddStackLevel(argSize); |
| 7730 | m_pushStkArg = false; |
| 7731 | return true; |
| 7732 | } |
| 7733 | #endif // FEATURE_SIMD |
| 7734 | |
| 7735 | // If the gtPutArgStkKind is one of the push types, we do not pre-adjust the stack. |
| 7736 | // This is set in Lowering, and is true if and only if: |
| 7737 | // - This argument contains any GC pointers OR |
| 7738 | // - It is a GT_FIELD_LIST OR |
| 7739 | // - It is less than 16 bytes in size. |
| 7740 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 7741 | |
| 7742 | #ifdef DEBUG |
| 7743 | switch (putArgStk->gtPutArgStkKind) |
| 7744 | { |
| 7745 | case GenTreePutArgStk::Kind::RepInstr: |
| 7746 | case GenTreePutArgStk::Kind::Unroll: |
| 7747 | assert((putArgStk->gtNumberReferenceSlots == 0) && (source->OperGet() != GT_FIELD_LIST) && (argSize >= 16)); |
| 7748 | break; |
| 7749 | case GenTreePutArgStk::Kind::Push: |
| 7750 | case GenTreePutArgStk::Kind::PushAllSlots: |
| 7751 | assert((putArgStk->gtNumberReferenceSlots != 0) || (source->OperGet() == GT_FIELD_LIST) || (argSize < 16)); |
| 7752 | break; |
| 7753 | case GenTreePutArgStk::Kind::Invalid: |
| 7754 | default: |
| 7755 | assert(!"Uninitialized GenTreePutArgStk::Kind" ); |
| 7756 | break; |
| 7757 | } |
| 7758 | #endif // DEBUG |
| 7759 | |
| 7760 | if (putArgStk->isPushKind()) |
| 7761 | { |
| 7762 | m_pushStkArg = true; |
| 7763 | return false; |
| 7764 | } |
| 7765 | else |
| 7766 | { |
| 7767 | m_pushStkArg = false; |
| 7768 | inst_RV_IV(INS_sub, REG_SPBASE, argSize, EA_PTRSIZE); |
| 7769 | AddStackLevel(argSize); |
| 7770 | return true; |
| 7771 | } |
| 7772 | } |
| 7773 | |
| 7774 | //--------------------------------------------------------------------- |
| 7775 | // genPutArgStkFieldList - generate code for passing a GT_FIELD_LIST arg on the stack. |
| 7776 | // |
| 7777 | // Arguments |
| 7778 | // treeNode - the GT_PUTARG_STK node whose op1 is a GT_FIELD_LIST |
| 7779 | // |
| 7780 | // Return value: |
| 7781 | // None |
| 7782 | // |
| 7783 | void CodeGen::genPutArgStkFieldList(GenTreePutArgStk* putArgStk) |
| 7784 | { |
| 7785 | GenTreeFieldList* const fieldList = putArgStk->gtOp1->AsFieldList(); |
| 7786 | assert(fieldList != nullptr); |
| 7787 | |
| 7788 | // Set m_pushStkArg and pre-adjust the stack if necessary. |
| 7789 | const bool preAdjustedStack = genAdjustStackForPutArgStk(putArgStk); |
| 7790 | |
| 7791 | // For now, we only support the "push" case; we will push a full slot for the first field of each slot |
| 7792 | // within the struct. |
| 7793 | assert((putArgStk->isPushKind()) && !preAdjustedStack && m_pushStkArg); |
| 7794 | |
| 7795 | // If we have pre-adjusted the stack and are simply storing the fields in order, set the offset to 0. |
| 7796 | // (Note that this mode is not currently being used.) |
| 7797 | // If we are pushing the arguments (i.e. we have not pre-adjusted the stack), then we are pushing them |
| 7798 | // in reverse order, so we start with the current field offset at the size of the struct arg (which must be |
| 7799 | // a multiple of the target pointer size). |
| 7800 | unsigned currentOffset = (preAdjustedStack) ? 0 : putArgStk->getArgSize(); |
| 7801 | unsigned prevFieldOffset = currentOffset; |
| 7802 | regNumber intTmpReg = REG_NA; |
| 7803 | regNumber simdTmpReg = REG_NA; |
| 7804 | if (putArgStk->AvailableTempRegCount() != 0) |
| 7805 | { |
| 7806 | regMaskTP rsvdRegs = putArgStk->gtRsvdRegs; |
| 7807 | if ((rsvdRegs & RBM_ALLINT) != 0) |
| 7808 | { |
| 7809 | intTmpReg = putArgStk->GetSingleTempReg(RBM_ALLINT); |
| 7810 | assert(genIsValidIntReg(intTmpReg)); |
| 7811 | } |
| 7812 | if ((rsvdRegs & RBM_ALLFLOAT) != 0) |
| 7813 | { |
| 7814 | simdTmpReg = putArgStk->GetSingleTempReg(RBM_ALLFLOAT); |
| 7815 | assert(genIsValidFloatReg(simdTmpReg)); |
| 7816 | } |
| 7817 | assert(genCountBits(rsvdRegs) == (unsigned)((intTmpReg == REG_NA) ? 0 : 1) + ((simdTmpReg == REG_NA) ? 0 : 1)); |
| 7818 | } |
| 7819 | |
| 7820 | for (GenTreeFieldList* current = fieldList; current != nullptr; current = current->Rest()) |
| 7821 | { |
| 7822 | GenTree* const fieldNode = current->Current(); |
| 7823 | const unsigned fieldOffset = current->gtFieldOffset; |
| 7824 | var_types fieldType = current->gtFieldType; |
| 7825 | |
| 7826 | // Long-typed nodes should have been handled by the decomposition pass, and lowering should have sorted the |
| 7827 | // field list in descending order by offset. |
| 7828 | assert(!varTypeIsLong(fieldType)); |
| 7829 | assert(fieldOffset <= prevFieldOffset); |
| 7830 | |
| 7831 | // Consume the register, if any, for this field. Note that genConsumeRegs() will appropriately |
| 7832 | // update the liveness info for a lclVar that has been marked RegOptional, which hasn't been |
| 7833 | // assigned a register, and which is therefore contained. |
| 7834 | // Unlike genConsumeReg(), it handles the case where no registers are being consumed. |
| 7835 | genConsumeRegs(fieldNode); |
| 7836 | regNumber argReg = fieldNode->isUsedFromSpillTemp() ? REG_NA : fieldNode->gtRegNum; |
| 7837 | |
| 7838 | // If the field is slot-like, we can use a push instruction to store the entire register no matter the type. |
| 7839 | // |
| 7840 | // The GC encoder requires that the stack remain 4-byte aligned at all times. Round the adjustment up |
| 7841 | // to the next multiple of 4. If we are going to generate a `push` instruction, the adjustment must |
| 7842 | // not require rounding. |
| 7843 | // NOTE: if the field is of GC type, we must use a push instruction, since the emitter is not otherwise |
| 7844 | // able to detect stores into the outgoing argument area of the stack on x86. |
| 7845 | const bool fieldIsSlot = ((fieldOffset % 4) == 0) && ((prevFieldOffset - fieldOffset) >= 4); |
| 7846 | int adjustment = roundUp(currentOffset - fieldOffset, 4); |
| 7847 | if (fieldIsSlot && !varTypeIsSIMD(fieldType)) |
| 7848 | { |
| 7849 | fieldType = genActualType(fieldType); |
| 7850 | unsigned pushSize = genTypeSize(fieldType); |
| 7851 | assert((pushSize % 4) == 0); |
| 7852 | adjustment -= pushSize; |
| 7853 | while (adjustment != 0) |
| 7854 | { |
| 7855 | inst_IV(INS_push, 0); |
| 7856 | currentOffset -= pushSize; |
| 7857 | AddStackLevel(pushSize); |
| 7858 | adjustment -= pushSize; |
| 7859 | } |
| 7860 | m_pushStkArg = true; |
| 7861 | } |
| 7862 | else |
| 7863 | { |
| 7864 | m_pushStkArg = false; |
| 7865 | |
| 7866 | // We always "push" floating point fields (i.e. they are full slot values that don't |
| 7867 | // require special handling). |
| 7868 | assert(varTypeIsIntegralOrI(fieldNode) || varTypeIsSIMD(fieldNode)); |
| 7869 | |
| 7870 | // If we can't push this field, it needs to be in a register so that we can store |
| 7871 | // it to the stack location. |
| 7872 | if (adjustment != 0) |
| 7873 | { |
| 7874 | // This moves the stack pointer to fieldOffset. |
| 7875 | // For this case, we must adjust the stack and generate stack-relative stores rather than pushes. |
| 7876 | // Adjust the stack pointer to the next slot boundary. |
| 7877 | inst_RV_IV(INS_sub, REG_SPBASE, adjustment, EA_PTRSIZE); |
| 7878 | currentOffset -= adjustment; |
| 7879 | AddStackLevel(adjustment); |
| 7880 | } |
| 7881 | |
| 7882 | // Does it need to be in a byte register? |
| 7883 | // If so, we'll use intTmpReg, which must have been allocated as a byte register. |
| 7884 | // If it's already in a register, but not a byteable one, then move it. |
| 7885 | if (varTypeIsByte(fieldType) && ((argReg == REG_NA) || ((genRegMask(argReg) & RBM_BYTE_REGS) == 0))) |
| 7886 | { |
| 7887 | assert(intTmpReg != REG_NA); |
| 7888 | noway_assert((genRegMask(intTmpReg) & RBM_BYTE_REGS) != 0); |
| 7889 | if (argReg != REG_NA) |
| 7890 | { |
| 7891 | inst_RV_RV(INS_mov, intTmpReg, argReg, fieldType); |
| 7892 | argReg = intTmpReg; |
| 7893 | } |
| 7894 | } |
| 7895 | } |
| 7896 | |
| 7897 | if (argReg == REG_NA) |
| 7898 | { |
| 7899 | if (m_pushStkArg) |
| 7900 | { |
| 7901 | if (fieldNode->isUsedFromSpillTemp()) |
| 7902 | { |
| 7903 | assert(!varTypeIsSIMD(fieldType)); // Q: can we get here with SIMD? |
| 7904 | assert(fieldNode->IsRegOptional()); |
| 7905 | TempDsc* tmp = getSpillTempDsc(fieldNode); |
| 7906 | getEmitter()->emitIns_S(INS_push, emitActualTypeSize(fieldNode->TypeGet()), tmp->tdTempNum(), 0); |
| 7907 | regSet.tmpRlsTemp(tmp); |
| 7908 | } |
| 7909 | else |
| 7910 | { |
| 7911 | assert(varTypeIsIntegralOrI(fieldNode)); |
| 7912 | switch (fieldNode->OperGet()) |
| 7913 | { |
| 7914 | case GT_LCL_VAR: |
| 7915 | inst_TT(INS_push, fieldNode, 0, 0, emitActualTypeSize(fieldNode->TypeGet())); |
| 7916 | break; |
| 7917 | case GT_CNS_INT: |
| 7918 | if (fieldNode->IsIconHandle()) |
| 7919 | { |
| 7920 | inst_IV_handle(INS_push, fieldNode->gtIntCon.gtIconVal); |
| 7921 | } |
| 7922 | else |
| 7923 | { |
| 7924 | inst_IV(INS_push, fieldNode->gtIntCon.gtIconVal); |
| 7925 | } |
| 7926 | break; |
| 7927 | default: |
| 7928 | unreached(); |
| 7929 | } |
| 7930 | } |
| 7931 | currentOffset -= TARGET_POINTER_SIZE; |
| 7932 | AddStackLevel(TARGET_POINTER_SIZE); |
| 7933 | } |
| 7934 | else |
| 7935 | { |
| 7936 | // The stack has been adjusted and we will load the field to intTmpReg and then store it on the stack. |
| 7937 | assert(varTypeIsIntegralOrI(fieldNode)); |
| 7938 | switch (fieldNode->OperGet()) |
| 7939 | { |
| 7940 | case GT_LCL_VAR: |
| 7941 | inst_RV_TT(INS_mov, intTmpReg, fieldNode); |
| 7942 | break; |
| 7943 | case GT_CNS_INT: |
| 7944 | genSetRegToConst(intTmpReg, fieldNode->TypeGet(), fieldNode); |
| 7945 | break; |
| 7946 | default: |
| 7947 | unreached(); |
| 7948 | } |
| 7949 | genStoreRegToStackArg(fieldType, intTmpReg, fieldOffset - currentOffset); |
| 7950 | } |
| 7951 | } |
| 7952 | else |
| 7953 | { |
| 7954 | #if defined(FEATURE_SIMD) |
| 7955 | if (fieldType == TYP_SIMD12) |
| 7956 | { |
| 7957 | assert(genIsValidFloatReg(simdTmpReg)); |
| 7958 | genStoreSIMD12ToStack(argReg, simdTmpReg); |
| 7959 | } |
| 7960 | else |
| 7961 | #endif // defined(FEATURE_SIMD) |
| 7962 | { |
| 7963 | genStoreRegToStackArg(fieldType, argReg, fieldOffset - currentOffset); |
| 7964 | } |
| 7965 | if (m_pushStkArg) |
| 7966 | { |
| 7967 | // We always push a slot-rounded size |
| 7968 | currentOffset -= genTypeSize(fieldType); |
| 7969 | } |
| 7970 | } |
| 7971 | |
| 7972 | prevFieldOffset = fieldOffset; |
| 7973 | } |
| 7974 | if (currentOffset != 0) |
| 7975 | { |
| 7976 | // We don't expect padding at the beginning of a struct, but it could happen with explicit layout. |
| 7977 | inst_RV_IV(INS_sub, REG_SPBASE, currentOffset, EA_PTRSIZE); |
| 7978 | AddStackLevel(currentOffset); |
| 7979 | } |
| 7980 | } |
| 7981 | #endif // _TARGET_X86_ |
| 7982 | |
| 7983 | //--------------------------------------------------------------------- |
| 7984 | // genPutArgStk - generate code for passing an arg on the stack. |
| 7985 | // |
| 7986 | // Arguments |
| 7987 | // treeNode - the GT_PUTARG_STK node |
| 7988 | // targetType - the type of the treeNode |
| 7989 | // |
| 7990 | // Return value: |
| 7991 | // None |
| 7992 | // |
| 7993 | void CodeGen::genPutArgStk(GenTreePutArgStk* putArgStk) |
| 7994 | { |
| 7995 | GenTree* data = putArgStk->gtOp1; |
| 7996 | var_types targetType = genActualType(data->TypeGet()); |
| 7997 | |
| 7998 | #ifdef _TARGET_X86_ |
| 7999 | |
| 8000 | genAlignStackBeforeCall(putArgStk); |
| 8001 | |
| 8002 | if ((data->OperGet() != GT_FIELD_LIST) && varTypeIsStruct(targetType)) |
| 8003 | { |
| 8004 | (void)genAdjustStackForPutArgStk(putArgStk); |
| 8005 | genPutStructArgStk(putArgStk); |
| 8006 | return; |
| 8007 | } |
| 8008 | |
| 8009 | // On a 32-bit target, all of the long arguments are handled with GT_FIELD_LISTs of TYP_INT. |
| 8010 | assert(targetType != TYP_LONG); |
| 8011 | |
| 8012 | const unsigned argSize = putArgStk->getArgSize(); |
| 8013 | assert((argSize % TARGET_POINTER_SIZE) == 0); |
| 8014 | |
| 8015 | if (data->isContainedIntOrIImmed()) |
| 8016 | { |
| 8017 | if (data->IsIconHandle()) |
| 8018 | { |
| 8019 | inst_IV_handle(INS_push, data->gtIntCon.gtIconVal); |
| 8020 | } |
| 8021 | else |
| 8022 | { |
| 8023 | inst_IV(INS_push, data->gtIntCon.gtIconVal); |
| 8024 | } |
| 8025 | AddStackLevel(argSize); |
| 8026 | } |
| 8027 | else if (data->OperGet() == GT_FIELD_LIST) |
| 8028 | { |
| 8029 | genPutArgStkFieldList(putArgStk); |
| 8030 | } |
| 8031 | else |
| 8032 | { |
| 8033 | // We should not see any contained nodes that are not immediates. |
| 8034 | assert(data->isUsedFromReg()); |
| 8035 | genConsumeReg(data); |
| 8036 | genPushReg(targetType, data->gtRegNum); |
| 8037 | } |
| 8038 | #else // !_TARGET_X86_ |
| 8039 | { |
| 8040 | unsigned baseVarNum = getBaseVarForPutArgStk(putArgStk); |
| 8041 | |
| 8042 | #ifdef UNIX_AMD64_ABI |
| 8043 | |
| 8044 | if (data->OperIs(GT_FIELD_LIST)) |
| 8045 | { |
| 8046 | genPutArgStkFieldList(putArgStk, baseVarNum); |
| 8047 | return; |
| 8048 | } |
| 8049 | else if (varTypeIsStruct(targetType)) |
| 8050 | { |
| 8051 | m_stkArgVarNum = baseVarNum; |
| 8052 | m_stkArgOffset = putArgStk->getArgOffset(); |
| 8053 | genPutStructArgStk(putArgStk); |
| 8054 | m_stkArgVarNum = BAD_VAR_NUM; |
| 8055 | return; |
| 8056 | } |
| 8057 | #endif // UNIX_AMD64_ABI |
| 8058 | |
| 8059 | noway_assert(targetType != TYP_STRUCT); |
| 8060 | |
| 8061 | // Get argument offset on stack. |
| 8062 | // Here we cross check that argument offset hasn't changed from lowering to codegen since |
| 8063 | // we are storing arg slot number in GT_PUTARG_STK node in lowering phase. |
| 8064 | int argOffset = putArgStk->getArgOffset(); |
| 8065 | |
| 8066 | #ifdef DEBUG |
| 8067 | fgArgTabEntry* curArgTabEntry = compiler->gtArgEntryByNode(putArgStk->gtCall, putArgStk); |
| 8068 | assert(curArgTabEntry); |
| 8069 | assert(argOffset == (int)curArgTabEntry->slotNum * TARGET_POINTER_SIZE); |
| 8070 | #endif |
| 8071 | |
| 8072 | if (data->isContainedIntOrIImmed()) |
| 8073 | { |
| 8074 | getEmitter()->emitIns_S_I(ins_Store(targetType), emitTypeSize(targetType), baseVarNum, argOffset, |
| 8075 | (int)data->AsIntConCommon()->IconValue()); |
| 8076 | } |
| 8077 | else |
| 8078 | { |
| 8079 | assert(data->isUsedFromReg()); |
| 8080 | genConsumeReg(data); |
| 8081 | getEmitter()->emitIns_S_R(ins_Store(targetType), emitTypeSize(targetType), data->gtRegNum, baseVarNum, |
| 8082 | argOffset); |
| 8083 | } |
| 8084 | } |
| 8085 | #endif // !_TARGET_X86_ |
| 8086 | } |
| 8087 | |
| 8088 | //--------------------------------------------------------------------- |
| 8089 | // genPutArgReg - generate code for a GT_PUTARG_REG node |
| 8090 | // |
| 8091 | // Arguments |
| 8092 | // tree - the GT_PUTARG_REG node |
| 8093 | // |
| 8094 | // Return value: |
| 8095 | // None |
| 8096 | // |
| 8097 | void CodeGen::genPutArgReg(GenTreeOp* tree) |
| 8098 | { |
| 8099 | assert(tree->OperIs(GT_PUTARG_REG)); |
| 8100 | |
| 8101 | var_types targetType = tree->TypeGet(); |
| 8102 | regNumber targetReg = tree->gtRegNum; |
| 8103 | |
| 8104 | #ifndef UNIX_AMD64_ABI |
| 8105 | assert(targetType != TYP_STRUCT); |
| 8106 | #endif // !UNIX_AMD64_ABI |
| 8107 | |
| 8108 | GenTree* op1 = tree->gtOp1; |
| 8109 | genConsumeReg(op1); |
| 8110 | |
| 8111 | // If child node is not already in the register we need, move it |
| 8112 | if (targetReg != op1->gtRegNum) |
| 8113 | { |
| 8114 | inst_RV_RV(ins_Copy(targetType), targetReg, op1->gtRegNum, targetType); |
| 8115 | } |
| 8116 | |
| 8117 | genProduceReg(tree); |
| 8118 | } |
| 8119 | |
| 8120 | #ifdef _TARGET_X86_ |
| 8121 | // genPushReg: Push a register value onto the stack and adjust the stack level |
| 8122 | // |
| 8123 | // Arguments: |
| 8124 | // type - the type of value to be stored |
| 8125 | // reg - the register containing the value |
| 8126 | // |
| 8127 | // Notes: |
| 8128 | // For TYP_LONG, the srcReg must be a floating point register. |
| 8129 | // Otherwise, the register type must be consistent with the given type. |
| 8130 | // |
| 8131 | void CodeGen::genPushReg(var_types type, regNumber srcReg) |
| 8132 | { |
| 8133 | unsigned size = genTypeSize(type); |
| 8134 | if (varTypeIsIntegralOrI(type) && type != TYP_LONG) |
| 8135 | { |
| 8136 | assert(genIsValidIntReg(srcReg)); |
| 8137 | inst_RV(INS_push, srcReg, type); |
| 8138 | } |
| 8139 | else |
| 8140 | { |
| 8141 | instruction ins; |
| 8142 | emitAttr attr = emitTypeSize(type); |
| 8143 | if (type == TYP_LONG) |
| 8144 | { |
| 8145 | // On x86, the only way we can push a TYP_LONG from a register is if it is in an xmm reg. |
| 8146 | // This is only used when we are pushing a struct from memory to memory, and basically is |
| 8147 | // handling an 8-byte "chunk", as opposed to strictly a long type. |
| 8148 | ins = INS_movq; |
| 8149 | } |
| 8150 | else |
| 8151 | { |
| 8152 | ins = ins_Store(type); |
| 8153 | } |
| 8154 | assert(genIsValidFloatReg(srcReg)); |
| 8155 | inst_RV_IV(INS_sub, REG_SPBASE, size, EA_PTRSIZE); |
| 8156 | getEmitter()->emitIns_AR_R(ins, attr, srcReg, REG_SPBASE, 0); |
| 8157 | } |
| 8158 | AddStackLevel(size); |
| 8159 | } |
| 8160 | #endif // _TARGET_X86_ |
| 8161 | |
| 8162 | #if defined(FEATURE_PUT_STRUCT_ARG_STK) |
| 8163 | // genStoreRegToStackArg: Store a register value into the stack argument area |
| 8164 | // |
| 8165 | // Arguments: |
| 8166 | // type - the type of value to be stored |
| 8167 | // reg - the register containing the value |
| 8168 | // offset - the offset from the base (see Assumptions below) |
| 8169 | // |
| 8170 | // Notes: |
| 8171 | // A type of TYP_STRUCT instructs this method to store a 16-byte chunk |
| 8172 | // at the given offset (i.e. not the full struct). |
| 8173 | // |
| 8174 | // Assumptions: |
| 8175 | // The caller must set the context appropriately before calling this method: |
| 8176 | // - On x64, m_stkArgVarNum must be set according to whether this is a regular or tail call. |
| 8177 | // - On x86, the caller must set m_pushStkArg if this method should push the argument. |
| 8178 | // Otherwise, the argument is stored at the given offset from sp. |
| 8179 | // |
| 8180 | // TODO: In the below code the load and store instructions are for 16 bytes, but the |
| 8181 | // type is EA_8BYTE. The movdqa/u are 16 byte instructions, so it works, but |
| 8182 | // this probably needs to be changed. |
| 8183 | // |
| 8184 | void CodeGen::genStoreRegToStackArg(var_types type, regNumber srcReg, int offset) |
| 8185 | { |
| 8186 | assert(srcReg != REG_NA); |
| 8187 | instruction ins; |
| 8188 | emitAttr attr; |
| 8189 | unsigned size; |
| 8190 | |
| 8191 | if (type == TYP_STRUCT) |
| 8192 | { |
| 8193 | ins = INS_movdqu; |
| 8194 | // This should be changed! |
| 8195 | attr = EA_8BYTE; |
| 8196 | size = 16; |
| 8197 | } |
| 8198 | else |
| 8199 | { |
| 8200 | #ifdef FEATURE_SIMD |
| 8201 | if (varTypeIsSIMD(type)) |
| 8202 | { |
| 8203 | assert(genIsValidFloatReg(srcReg)); |
| 8204 | ins = ins_Store(type); // TODO-CQ: pass 'aligned' correctly |
| 8205 | } |
| 8206 | else |
| 8207 | #endif // FEATURE_SIMD |
| 8208 | #ifdef _TARGET_X86_ |
| 8209 | if (type == TYP_LONG) |
| 8210 | { |
| 8211 | assert(genIsValidFloatReg(srcReg)); |
| 8212 | ins = INS_movq; |
| 8213 | } |
| 8214 | else |
| 8215 | #endif // _TARGET_X86_ |
| 8216 | { |
| 8217 | assert((varTypeIsFloating(type) && genIsValidFloatReg(srcReg)) || |
| 8218 | (varTypeIsIntegralOrI(type) && genIsValidIntReg(srcReg))); |
| 8219 | ins = ins_Store(type); |
| 8220 | } |
| 8221 | attr = emitTypeSize(type); |
| 8222 | size = genTypeSize(type); |
| 8223 | } |
| 8224 | |
| 8225 | #ifdef _TARGET_X86_ |
| 8226 | if (m_pushStkArg) |
| 8227 | { |
| 8228 | genPushReg(type, srcReg); |
| 8229 | } |
| 8230 | else |
| 8231 | { |
| 8232 | getEmitter()->emitIns_AR_R(ins, attr, srcReg, REG_SPBASE, offset); |
| 8233 | } |
| 8234 | #else // !_TARGET_X86_ |
| 8235 | assert(m_stkArgVarNum != BAD_VAR_NUM); |
| 8236 | getEmitter()->emitIns_S_R(ins, attr, srcReg, m_stkArgVarNum, m_stkArgOffset + offset); |
| 8237 | #endif // !_TARGET_X86_ |
| 8238 | } |
| 8239 | |
| 8240 | //--------------------------------------------------------------------- |
| 8241 | // genPutStructArgStk - generate code for copying a struct arg on the stack by value. |
| 8242 | // In case there are references to heap object in the struct, |
| 8243 | // it generates the gcinfo as well. |
| 8244 | // |
| 8245 | // Arguments |
| 8246 | // putArgStk - the GT_PUTARG_STK node |
| 8247 | // |
| 8248 | // Notes: |
| 8249 | // In the case of fixed out args, the caller must have set m_stkArgVarNum to the variable number |
| 8250 | // corresponding to the argument area (where we will put the argument on the stack). |
| 8251 | // For tail calls this is the baseVarNum = 0. |
| 8252 | // For non tail calls this is the outgoingArgSpace. |
| 8253 | void CodeGen::genPutStructArgStk(GenTreePutArgStk* putArgStk) |
| 8254 | { |
| 8255 | GenTree* source = putArgStk->gtGetOp1(); |
| 8256 | var_types targetType = source->TypeGet(); |
| 8257 | |
| 8258 | #if defined(_TARGET_X86_) && defined(FEATURE_SIMD) |
| 8259 | if (putArgStk->isSIMD12()) |
| 8260 | { |
| 8261 | genPutArgStkSIMD12(putArgStk); |
| 8262 | return; |
| 8263 | } |
| 8264 | #endif // defined(_TARGET_X86_) && defined(FEATURE_SIMD) |
| 8265 | |
| 8266 | if (varTypeIsSIMD(targetType)) |
| 8267 | { |
| 8268 | regNumber srcReg = genConsumeReg(source); |
| 8269 | assert((srcReg != REG_NA) && (genIsValidFloatReg(srcReg))); |
| 8270 | genStoreRegToStackArg(targetType, srcReg, 0); |
| 8271 | return; |
| 8272 | } |
| 8273 | |
| 8274 | assert(targetType == TYP_STRUCT); |
| 8275 | |
| 8276 | if (putArgStk->gtNumberReferenceSlots == 0) |
| 8277 | { |
| 8278 | switch (putArgStk->gtPutArgStkKind) |
| 8279 | { |
| 8280 | case GenTreePutArgStk::Kind::RepInstr: |
| 8281 | genStructPutArgRepMovs(putArgStk); |
| 8282 | break; |
| 8283 | case GenTreePutArgStk::Kind::Unroll: |
| 8284 | genStructPutArgUnroll(putArgStk); |
| 8285 | break; |
| 8286 | case GenTreePutArgStk::Kind::Push: |
| 8287 | genStructPutArgUnroll(putArgStk); |
| 8288 | break; |
| 8289 | default: |
| 8290 | unreached(); |
| 8291 | } |
| 8292 | } |
| 8293 | else |
| 8294 | { |
| 8295 | // No need to disable GC the way COPYOBJ does. Here the refs are copied in atomic operations always. |
| 8296 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 8297 | |
| 8298 | #ifdef _TARGET_X86_ |
| 8299 | // On x86, any struct that has contains GC references must be stored to the stack using `push` instructions so |
| 8300 | // that the emitter properly detects the need to update the method's GC information. |
| 8301 | // |
| 8302 | // Strictly speaking, it is only necessary to use `push` to store the GC references themselves, so for structs |
| 8303 | // with large numbers of consecutive non-GC-ref-typed fields, we may be able to improve the code size in the |
| 8304 | // future. |
| 8305 | assert(m_pushStkArg); |
| 8306 | |
| 8307 | GenTree* srcAddr = source->gtGetOp1(); |
| 8308 | BYTE* gcPtrs = putArgStk->gtGcPtrs; |
| 8309 | const unsigned numSlots = putArgStk->gtNumSlots; |
| 8310 | |
| 8311 | regNumber srcRegNum = srcAddr->gtRegNum; |
| 8312 | const bool srcAddrInReg = srcRegNum != REG_NA; |
| 8313 | |
| 8314 | unsigned srcLclNum = 0; |
| 8315 | unsigned srcLclOffset = 0; |
| 8316 | if (srcAddrInReg) |
| 8317 | { |
| 8318 | genConsumeReg(srcAddr); |
| 8319 | } |
| 8320 | else |
| 8321 | { |
| 8322 | assert(srcAddr->OperIsLocalAddr()); |
| 8323 | |
| 8324 | srcLclNum = srcAddr->AsLclVarCommon()->gtLclNum; |
| 8325 | if (srcAddr->OperGet() == GT_LCL_FLD_ADDR) |
| 8326 | { |
| 8327 | srcLclOffset = srcAddr->AsLclFld()->gtLclOffs; |
| 8328 | } |
| 8329 | } |
| 8330 | |
| 8331 | for (int i = numSlots - 1; i >= 0; --i) |
| 8332 | { |
| 8333 | emitAttr slotAttr; |
| 8334 | if (gcPtrs[i] == TYPE_GC_NONE) |
| 8335 | { |
| 8336 | slotAttr = EA_4BYTE; |
| 8337 | } |
| 8338 | else if (gcPtrs[i] == TYPE_GC_REF) |
| 8339 | { |
| 8340 | slotAttr = EA_GCREF; |
| 8341 | } |
| 8342 | else |
| 8343 | { |
| 8344 | assert(gcPtrs[i] == TYPE_GC_BYREF); |
| 8345 | slotAttr = EA_BYREF; |
| 8346 | } |
| 8347 | |
| 8348 | const unsigned offset = i * TARGET_POINTER_SIZE; |
| 8349 | if (srcAddrInReg) |
| 8350 | { |
| 8351 | getEmitter()->emitIns_AR_R(INS_push, slotAttr, REG_NA, srcRegNum, offset); |
| 8352 | } |
| 8353 | else |
| 8354 | { |
| 8355 | getEmitter()->emitIns_S(INS_push, slotAttr, srcLclNum, srcLclOffset + offset); |
| 8356 | } |
| 8357 | AddStackLevel(TARGET_POINTER_SIZE); |
| 8358 | } |
| 8359 | #else // !defined(_TARGET_X86_) |
| 8360 | |
| 8361 | // Consume these registers. |
| 8362 | // They may now contain gc pointers (depending on their type; gcMarkRegPtrVal will "do the right thing"). |
| 8363 | genConsumePutStructArgStk(putArgStk, REG_RDI, REG_RSI, REG_NA); |
| 8364 | |
| 8365 | const bool srcIsLocal = putArgStk->gtOp1->AsObj()->gtOp1->OperIsLocalAddr(); |
| 8366 | const emitAttr srcAddrAttr = srcIsLocal ? EA_PTRSIZE : EA_BYREF; |
| 8367 | |
| 8368 | #if DEBUG |
| 8369 | unsigned numGCSlotsCopied = 0; |
| 8370 | #endif // DEBUG |
| 8371 | |
| 8372 | BYTE* gcPtrs = putArgStk->gtGcPtrs; |
| 8373 | const unsigned numSlots = putArgStk->gtNumSlots; |
| 8374 | for (unsigned i = 0; i < numSlots;) |
| 8375 | { |
| 8376 | if (gcPtrs[i] == TYPE_GC_NONE) |
| 8377 | { |
| 8378 | // Let's see if we can use rep movsp (alias for movsd or movsq for 32 and 64 bits respectively) |
| 8379 | // instead of a sequence of movsp instructions to save cycles and code size. |
| 8380 | unsigned adjacentNonGCSlotCount = 0; |
| 8381 | do |
| 8382 | { |
| 8383 | adjacentNonGCSlotCount++; |
| 8384 | i++; |
| 8385 | } while ((i < numSlots) && (gcPtrs[i] == TYPE_GC_NONE)); |
| 8386 | |
| 8387 | // If we have a very small contiguous non-ref region, it's better just to |
| 8388 | // emit a sequence of movsp instructions |
| 8389 | if (adjacentNonGCSlotCount < CPOBJ_NONGC_SLOTS_LIMIT) |
| 8390 | { |
| 8391 | for (; adjacentNonGCSlotCount > 0; adjacentNonGCSlotCount--) |
| 8392 | { |
| 8393 | instGen(INS_movsp); |
| 8394 | } |
| 8395 | } |
| 8396 | else |
| 8397 | { |
| 8398 | getEmitter()->emitIns_R_I(INS_mov, EA_4BYTE, REG_RCX, adjacentNonGCSlotCount); |
| 8399 | instGen(INS_r_movsp); |
| 8400 | } |
| 8401 | } |
| 8402 | else |
| 8403 | { |
| 8404 | assert((gcPtrs[i] == TYPE_GC_REF) || (gcPtrs[i] == TYPE_GC_BYREF)); |
| 8405 | |
| 8406 | // We have a GC (byref or ref) pointer |
| 8407 | // TODO-Amd64-Unix: Here a better solution (for code size and CQ) would be to use movsp instruction, |
| 8408 | // but the logic for emitting a GC info record is not available (it is internal for the emitter |
| 8409 | // only.) See emitGCVarLiveUpd function. If we could call it separately, we could do |
| 8410 | // instGen(INS_movsp); and emission of gc info. |
| 8411 | |
| 8412 | var_types memType = (gcPtrs[i] == TYPE_GC_REF) ? TYP_REF : TYP_BYREF; |
| 8413 | getEmitter()->emitIns_R_AR(ins_Load(memType), emitTypeSize(memType), REG_RCX, REG_RSI, 0); |
| 8414 | genStoreRegToStackArg(memType, REG_RCX, i * TARGET_POINTER_SIZE); |
| 8415 | #ifdef DEBUG |
| 8416 | numGCSlotsCopied++; |
| 8417 | #endif // DEBUG |
| 8418 | |
| 8419 | i++; |
| 8420 | if (i < numSlots) |
| 8421 | { |
| 8422 | // Source for the copy operation. |
| 8423 | // If a LocalAddr, use EA_PTRSIZE - copy from stack. |
| 8424 | // If not a LocalAddr, use EA_BYREF - the source location is not on the stack. |
| 8425 | getEmitter()->emitIns_R_I(INS_add, srcAddrAttr, REG_RSI, TARGET_POINTER_SIZE); |
| 8426 | |
| 8427 | // Always copying to the stack - outgoing arg area |
| 8428 | // (or the outgoing arg area of the caller for a tail call) - use EA_PTRSIZE. |
| 8429 | getEmitter()->emitIns_R_I(INS_add, EA_PTRSIZE, REG_RDI, TARGET_POINTER_SIZE); |
| 8430 | } |
| 8431 | } |
| 8432 | } |
| 8433 | |
| 8434 | assert(numGCSlotsCopied == putArgStk->gtNumberReferenceSlots); |
| 8435 | #endif // _TARGET_X86_ |
| 8436 | } |
| 8437 | } |
| 8438 | #endif // defined(FEATURE_PUT_STRUCT_ARG_STK) |
| 8439 | |
| 8440 | /***************************************************************************** |
| 8441 | * |
| 8442 | * Create and record GC Info for the function. |
| 8443 | */ |
| 8444 | #ifndef JIT32_GCENCODER |
| 8445 | void |
| 8446 | #else // !JIT32_GCENCODER |
| 8447 | void* |
| 8448 | #endif // !JIT32_GCENCODER |
| 8449 | CodeGen::genCreateAndStoreGCInfo(unsigned codeSize, unsigned prologSize, unsigned epilogSize DEBUGARG(void* codePtr)) |
| 8450 | { |
| 8451 | #ifdef JIT32_GCENCODER |
| 8452 | return genCreateAndStoreGCInfoJIT32(codeSize, prologSize, epilogSize DEBUGARG(codePtr)); |
| 8453 | #else // !JIT32_GCENCODER |
| 8454 | genCreateAndStoreGCInfoX64(codeSize, prologSize DEBUGARG(codePtr)); |
| 8455 | #endif // !JIT32_GCENCODER |
| 8456 | } |
| 8457 | |
| 8458 | #ifdef JIT32_GCENCODER |
| 8459 | void* CodeGen::genCreateAndStoreGCInfoJIT32(unsigned codeSize, |
| 8460 | unsigned prologSize, |
| 8461 | unsigned epilogSize DEBUGARG(void* codePtr)) |
| 8462 | { |
| 8463 | BYTE headerBuf[64]; |
| 8464 | InfoHdr header; |
| 8465 | |
| 8466 | int s_cached; |
| 8467 | |
| 8468 | #ifdef WIN64EXCEPTIONS |
| 8469 | // We should do this before gcInfoBlockHdrSave since varPtrTableSize must be finalized before it |
| 8470 | if (compiler->ehAnyFunclets()) |
| 8471 | { |
| 8472 | gcInfo.gcMarkFilterVarsPinned(); |
| 8473 | } |
| 8474 | #endif |
| 8475 | |
| 8476 | #ifdef DEBUG |
| 8477 | size_t headerSize = |
| 8478 | #endif |
| 8479 | compiler->compInfoBlkSize = |
| 8480 | gcInfo.gcInfoBlockHdrSave(headerBuf, 0, codeSize, prologSize, epilogSize, &header, &s_cached); |
| 8481 | |
| 8482 | size_t argTabOffset = 0; |
| 8483 | size_t ptrMapSize = gcInfo.gcPtrTableSize(header, codeSize, &argTabOffset); |
| 8484 | |
| 8485 | #if DISPLAY_SIZES |
| 8486 | |
| 8487 | if (genInterruptible) |
| 8488 | { |
| 8489 | gcHeaderISize += compiler->compInfoBlkSize; |
| 8490 | gcPtrMapISize += ptrMapSize; |
| 8491 | } |
| 8492 | else |
| 8493 | { |
| 8494 | gcHeaderNSize += compiler->compInfoBlkSize; |
| 8495 | gcPtrMapNSize += ptrMapSize; |
| 8496 | } |
| 8497 | |
| 8498 | #endif // DISPLAY_SIZES |
| 8499 | |
| 8500 | compiler->compInfoBlkSize += ptrMapSize; |
| 8501 | |
| 8502 | /* Allocate the info block for the method */ |
| 8503 | |
| 8504 | compiler->compInfoBlkAddr = (BYTE*)compiler->info.compCompHnd->allocGCInfo(compiler->compInfoBlkSize); |
| 8505 | |
| 8506 | #if 0 // VERBOSE_SIZES |
| 8507 | // TODO-X86-Cleanup: 'dataSize', below, is not defined |
| 8508 | |
| 8509 | // if (compiler->compInfoBlkSize > codeSize && compiler->compInfoBlkSize > 100) |
| 8510 | { |
| 8511 | printf("[%7u VM, %7u+%7u/%7u x86 %03u/%03u%%] %s.%s\n" , |
| 8512 | compiler->info.compILCodeSize, |
| 8513 | compiler->compInfoBlkSize, |
| 8514 | codeSize + dataSize, |
| 8515 | codeSize + dataSize - prologSize - epilogSize, |
| 8516 | 100 * (codeSize + dataSize) / compiler->info.compILCodeSize, |
| 8517 | 100 * (codeSize + dataSize + compiler->compInfoBlkSize) / compiler->info.compILCodeSize, |
| 8518 | compiler->info.compClassName, |
| 8519 | compiler->info.compMethodName); |
| 8520 | } |
| 8521 | |
| 8522 | #endif |
| 8523 | |
| 8524 | /* Fill in the info block and return it to the caller */ |
| 8525 | |
| 8526 | void* infoPtr = compiler->compInfoBlkAddr; |
| 8527 | |
| 8528 | /* Create the method info block: header followed by GC tracking tables */ |
| 8529 | |
| 8530 | compiler->compInfoBlkAddr += |
| 8531 | gcInfo.gcInfoBlockHdrSave(compiler->compInfoBlkAddr, -1, codeSize, prologSize, epilogSize, &header, &s_cached); |
| 8532 | |
| 8533 | assert(compiler->compInfoBlkAddr == (BYTE*)infoPtr + headerSize); |
| 8534 | compiler->compInfoBlkAddr = gcInfo.gcPtrTableSave(compiler->compInfoBlkAddr, header, codeSize, &argTabOffset); |
| 8535 | assert(compiler->compInfoBlkAddr == (BYTE*)infoPtr + headerSize + ptrMapSize); |
| 8536 | |
| 8537 | #ifdef DEBUG |
| 8538 | |
| 8539 | if (0) |
| 8540 | { |
| 8541 | BYTE* temp = (BYTE*)infoPtr; |
| 8542 | unsigned size = compiler->compInfoBlkAddr - temp; |
| 8543 | BYTE* ptab = temp + headerSize; |
| 8544 | |
| 8545 | noway_assert(size == headerSize + ptrMapSize); |
| 8546 | |
| 8547 | printf("Method info block - header [%u bytes]:" , headerSize); |
| 8548 | |
| 8549 | for (unsigned i = 0; i < size; i++) |
| 8550 | { |
| 8551 | if (temp == ptab) |
| 8552 | { |
| 8553 | printf("\nMethod info block - ptrtab [%u bytes]:" , ptrMapSize); |
| 8554 | printf("\n %04X: %*c" , i & ~0xF, 3 * (i & 0xF), ' '); |
| 8555 | } |
| 8556 | else |
| 8557 | { |
| 8558 | if (!(i % 16)) |
| 8559 | printf("\n %04X: " , i); |
| 8560 | } |
| 8561 | |
| 8562 | printf("%02X " , *temp++); |
| 8563 | } |
| 8564 | |
| 8565 | printf("\n" ); |
| 8566 | } |
| 8567 | |
| 8568 | #endif // DEBUG |
| 8569 | |
| 8570 | #if DUMP_GC_TABLES |
| 8571 | |
| 8572 | if (compiler->opts.dspGCtbls) |
| 8573 | { |
| 8574 | const BYTE* base = (BYTE*)infoPtr; |
| 8575 | unsigned size; |
| 8576 | unsigned methodSize; |
| 8577 | InfoHdr dumpHeader; |
| 8578 | |
| 8579 | printf("GC Info for method %s\n" , compiler->info.compFullName); |
| 8580 | printf("GC info size = %3u\n" , compiler->compInfoBlkSize); |
| 8581 | |
| 8582 | size = gcInfo.gcInfoBlockHdrDump(base, &dumpHeader, &methodSize); |
| 8583 | // printf("size of header encoding is %3u\n", size); |
| 8584 | printf("\n" ); |
| 8585 | |
| 8586 | if (compiler->opts.dspGCtbls) |
| 8587 | { |
| 8588 | base += size; |
| 8589 | size = gcInfo.gcDumpPtrTable(base, dumpHeader, methodSize); |
| 8590 | // printf("size of pointer table is %3u\n", size); |
| 8591 | printf("\n" ); |
| 8592 | noway_assert(compiler->compInfoBlkAddr == (base + size)); |
| 8593 | } |
| 8594 | } |
| 8595 | |
| 8596 | #ifdef DEBUG |
| 8597 | if (jitOpts.testMask & 128) |
| 8598 | { |
| 8599 | for (unsigned offs = 0; offs < codeSize; offs++) |
| 8600 | { |
| 8601 | gcInfo.gcFindPtrsInFrame(infoPtr, codePtr, offs); |
| 8602 | } |
| 8603 | } |
| 8604 | #endif // DEBUG |
| 8605 | #endif // DUMP_GC_TABLES |
| 8606 | |
| 8607 | /* Make sure we ended up generating the expected number of bytes */ |
| 8608 | |
| 8609 | noway_assert(compiler->compInfoBlkAddr == (BYTE*)infoPtr + compiler->compInfoBlkSize); |
| 8610 | |
| 8611 | return infoPtr; |
| 8612 | } |
| 8613 | |
| 8614 | #else // !JIT32_GCENCODER |
| 8615 | void CodeGen::genCreateAndStoreGCInfoX64(unsigned codeSize, unsigned prologSize DEBUGARG(void* codePtr)) |
| 8616 | { |
| 8617 | IAllocator* allowZeroAlloc = new (compiler, CMK_GC) CompIAllocator(compiler->getAllocatorGC()); |
| 8618 | GcInfoEncoder* gcInfoEncoder = new (compiler, CMK_GC) |
| 8619 | GcInfoEncoder(compiler->info.compCompHnd, compiler->info.compMethodInfo, allowZeroAlloc, NOMEM); |
| 8620 | assert(gcInfoEncoder); |
| 8621 | |
| 8622 | // Follow the code pattern of the x86 gc info encoder (genCreateAndStoreGCInfoJIT32). |
| 8623 | gcInfo.gcInfoBlockHdrSave(gcInfoEncoder, codeSize, prologSize); |
| 8624 | |
| 8625 | // We keep the call count for the second call to gcMakeRegPtrTable() below. |
| 8626 | unsigned callCnt = 0; |
| 8627 | // First we figure out the encoder ID's for the stack slots and registers. |
| 8628 | gcInfo.gcMakeRegPtrTable(gcInfoEncoder, codeSize, prologSize, GCInfo::MAKE_REG_PTR_MODE_ASSIGN_SLOTS, &callCnt); |
| 8629 | // Now we've requested all the slots we'll need; "finalize" these (make more compact data structures for them). |
| 8630 | gcInfoEncoder->FinalizeSlotIds(); |
| 8631 | // Now we can actually use those slot ID's to declare live ranges. |
| 8632 | gcInfo.gcMakeRegPtrTable(gcInfoEncoder, codeSize, prologSize, GCInfo::MAKE_REG_PTR_MODE_DO_WORK, &callCnt); |
| 8633 | |
| 8634 | if (compiler->opts.compDbgEnC) |
| 8635 | { |
| 8636 | // what we have to preserve is called the "frame header" (see comments in VM\eetwain.cpp) |
| 8637 | // which is: |
| 8638 | // -return address |
| 8639 | // -saved off RBP |
| 8640 | // -saved 'this' pointer and bool for synchronized methods |
| 8641 | |
| 8642 | // 4 slots for RBP + return address + RSI + RDI |
| 8643 | int preservedAreaSize = 4 * REGSIZE_BYTES; |
| 8644 | |
| 8645 | if (compiler->info.compFlags & CORINFO_FLG_SYNCH) |
| 8646 | { |
| 8647 | if (!(compiler->info.compFlags & CORINFO_FLG_STATIC)) |
| 8648 | { |
| 8649 | preservedAreaSize += REGSIZE_BYTES; |
| 8650 | } |
| 8651 | |
| 8652 | // bool in synchronized methods that tracks whether the lock has been taken (takes 4 bytes on stack) |
| 8653 | preservedAreaSize += 4; |
| 8654 | } |
| 8655 | |
| 8656 | // Used to signal both that the method is compiled for EnC, and also the size of the block at the top of the |
| 8657 | // frame |
| 8658 | gcInfoEncoder->SetSizeOfEditAndContinuePreservedArea(preservedAreaSize); |
| 8659 | } |
| 8660 | |
| 8661 | if (compiler->opts.IsReversePInvoke()) |
| 8662 | { |
| 8663 | unsigned reversePInvokeFrameVarNumber = compiler->lvaReversePInvokeFrameVar; |
| 8664 | assert(reversePInvokeFrameVarNumber != BAD_VAR_NUM && reversePInvokeFrameVarNumber < compiler->lvaRefCount); |
| 8665 | LclVarDsc& reversePInvokeFrameVar = compiler->lvaTable[reversePInvokeFrameVarNumber]; |
| 8666 | gcInfoEncoder->SetReversePInvokeFrameSlot(reversePInvokeFrameVar.lvStkOffs); |
| 8667 | } |
| 8668 | |
| 8669 | gcInfoEncoder->Build(); |
| 8670 | |
| 8671 | // GC Encoder automatically puts the GC info in the right spot using ICorJitInfo::allocGCInfo(size_t) |
| 8672 | // let's save the values anyway for debugging purposes |
| 8673 | compiler->compInfoBlkAddr = gcInfoEncoder->Emit(); |
| 8674 | compiler->compInfoBlkSize = 0; // not exposed by the GCEncoder interface |
| 8675 | } |
| 8676 | #endif // !JIT32_GCENCODER |
| 8677 | |
| 8678 | /***************************************************************************** |
| 8679 | * Emit a call to a helper function. |
| 8680 | * |
| 8681 | */ |
| 8682 | |
| 8683 | void CodeGen::genEmitHelperCall(unsigned helper, int argSize, emitAttr retSize, regNumber callTargetReg) |
| 8684 | { |
| 8685 | void* addr = nullptr; |
| 8686 | void* pAddr = nullptr; |
| 8687 | |
| 8688 | emitter::EmitCallType callType = emitter::EC_FUNC_TOKEN; |
| 8689 | addr = compiler->compGetHelperFtn((CorInfoHelpFunc)helper, &pAddr); |
| 8690 | regNumber callTarget = REG_NA; |
| 8691 | regMaskTP killMask = compiler->compHelperCallKillSet((CorInfoHelpFunc)helper); |
| 8692 | |
| 8693 | if (!addr) |
| 8694 | { |
| 8695 | assert(pAddr != nullptr); |
| 8696 | |
| 8697 | // Absolute indirect call addr |
| 8698 | // Note: Order of checks is important. First always check for pc-relative and next |
| 8699 | // zero-relative. Because the former encoding is 1-byte smaller than the latter. |
| 8700 | if (genCodeIndirAddrCanBeEncodedAsPCRelOffset((size_t)pAddr) || |
| 8701 | genCodeIndirAddrCanBeEncodedAsZeroRelOffset((size_t)pAddr)) |
| 8702 | { |
| 8703 | // generate call whose target is specified by 32-bit offset relative to PC or zero. |
| 8704 | callType = emitter::EC_FUNC_TOKEN_INDIR; |
| 8705 | addr = pAddr; |
| 8706 | } |
| 8707 | else |
| 8708 | { |
| 8709 | #ifdef _TARGET_AMD64_ |
| 8710 | // If this indirect address cannot be encoded as 32-bit offset relative to PC or Zero, |
| 8711 | // load it into REG_HELPER_CALL_TARGET and use register indirect addressing mode to |
| 8712 | // make the call. |
| 8713 | // mov reg, addr |
| 8714 | // call [reg] |
| 8715 | |
| 8716 | if (callTargetReg == REG_NA) |
| 8717 | { |
| 8718 | // If a callTargetReg has not been explicitly provided, we will use REG_DEFAULT_HELPER_CALL_TARGET, but |
| 8719 | // this is only a valid assumption if the helper call is known to kill REG_DEFAULT_HELPER_CALL_TARGET. |
| 8720 | callTargetReg = REG_DEFAULT_HELPER_CALL_TARGET; |
| 8721 | regMaskTP callTargetMask = genRegMask(callTargetReg); |
| 8722 | noway_assert((callTargetMask & killMask) == callTargetMask); |
| 8723 | } |
| 8724 | else |
| 8725 | { |
| 8726 | // The call target must not overwrite any live variable, though it may not be in the |
| 8727 | // kill set for the call. |
| 8728 | regMaskTP callTargetMask = genRegMask(callTargetReg); |
| 8729 | noway_assert((callTargetMask & regSet.rsMaskVars) == RBM_NONE); |
| 8730 | } |
| 8731 | #endif |
| 8732 | |
| 8733 | callTarget = callTargetReg; |
| 8734 | CodeGen::genSetRegToIcon(callTarget, (ssize_t)pAddr, TYP_I_IMPL); |
| 8735 | callType = emitter::EC_INDIR_ARD; |
| 8736 | } |
| 8737 | } |
| 8738 | |
| 8739 | // clang-format off |
| 8740 | getEmitter()->emitIns_Call(callType, |
| 8741 | compiler->eeFindHelper(helper), |
| 8742 | INDEBUG_LDISASM_COMMA(nullptr) addr, |
| 8743 | argSize, |
| 8744 | retSize |
| 8745 | MULTIREG_HAS_SECOND_GC_RET_ONLY_ARG(EA_UNKNOWN), |
| 8746 | gcInfo.gcVarPtrSetCur, |
| 8747 | gcInfo.gcRegGCrefSetCur, |
| 8748 | gcInfo.gcRegByrefSetCur, |
| 8749 | BAD_IL_OFFSET, // IL offset |
| 8750 | callTarget, // ireg |
| 8751 | REG_NA, 0, 0, // xreg, xmul, disp |
| 8752 | false // isJump |
| 8753 | ); |
| 8754 | // clang-format on |
| 8755 | |
| 8756 | regSet.verifyRegistersUsed(killMask); |
| 8757 | } |
| 8758 | |
| 8759 | /***************************************************************************** |
| 8760 | * Unit testing of the XArch emitter: generate a bunch of instructions into the prolog |
| 8761 | * (it's as good a place as any), then use COMPlus_JitLateDisasm=* to see if the late |
| 8762 | * disassembler thinks the instructions as the same as we do. |
| 8763 | */ |
| 8764 | |
| 8765 | // Uncomment "#define ALL_ARM64_EMITTER_UNIT_TESTS" to run all the unit tests here. |
| 8766 | // After adding a unit test, and verifying it works, put it under this #ifdef, so we don't see it run every time. |
| 8767 | //#define ALL_XARCH_EMITTER_UNIT_TESTS |
| 8768 | |
| 8769 | #if defined(DEBUG) && defined(LATE_DISASM) && defined(_TARGET_AMD64_) |
| 8770 | void CodeGen::genAmd64EmitterUnitTests() |
| 8771 | { |
| 8772 | if (!verbose) |
| 8773 | { |
| 8774 | return; |
| 8775 | } |
| 8776 | |
| 8777 | if (!compiler->opts.altJit) |
| 8778 | { |
| 8779 | // No point doing this in a "real" JIT. |
| 8780 | return; |
| 8781 | } |
| 8782 | |
| 8783 | // Mark the "fake" instructions in the output. |
| 8784 | printf("*************** In genAmd64EmitterUnitTests()\n" ); |
| 8785 | |
| 8786 | // We use this: |
| 8787 | // genDefineTempLabel(genCreateTempLabel()); |
| 8788 | // to create artificial labels to help separate groups of tests. |
| 8789 | |
| 8790 | // |
| 8791 | // Loads |
| 8792 | // |
| 8793 | CLANG_FORMAT_COMMENT_ANCHOR; |
| 8794 | |
| 8795 | #ifdef ALL_XARCH_EMITTER_UNIT_TESTS |
| 8796 | genDefineTempLabel(genCreateTempLabel()); |
| 8797 | |
| 8798 | // vhaddpd ymm0,ymm1,ymm2 |
| 8799 | getEmitter()->emitIns_R_R_R(INS_haddpd, EA_32BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8800 | // vaddss xmm0,xmm1,xmm2 |
| 8801 | getEmitter()->emitIns_R_R_R(INS_addss, EA_4BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8802 | // vaddsd xmm0,xmm1,xmm2 |
| 8803 | getEmitter()->emitIns_R_R_R(INS_addsd, EA_8BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8804 | // vaddps xmm0,xmm1,xmm2 |
| 8805 | getEmitter()->emitIns_R_R_R(INS_addps, EA_16BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8806 | // vaddps ymm0,ymm1,ymm2 |
| 8807 | getEmitter()->emitIns_R_R_R(INS_addps, EA_32BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8808 | // vaddpd xmm0,xmm1,xmm2 |
| 8809 | getEmitter()->emitIns_R_R_R(INS_addpd, EA_16BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8810 | // vaddpd ymm0,ymm1,ymm2 |
| 8811 | getEmitter()->emitIns_R_R_R(INS_addpd, EA_32BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8812 | // vsubss xmm0,xmm1,xmm2 |
| 8813 | getEmitter()->emitIns_R_R_R(INS_subss, EA_4BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8814 | // vsubsd xmm0,xmm1,xmm2 |
| 8815 | getEmitter()->emitIns_R_R_R(INS_subsd, EA_8BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8816 | // vsubps ymm0,ymm1,ymm2 |
| 8817 | getEmitter()->emitIns_R_R_R(INS_subps, EA_16BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8818 | // vsubps ymm0,ymm1,ymm2 |
| 8819 | getEmitter()->emitIns_R_R_R(INS_subps, EA_32BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8820 | // vsubpd xmm0,xmm1,xmm2 |
| 8821 | getEmitter()->emitIns_R_R_R(INS_subpd, EA_16BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8822 | // vsubpd ymm0,ymm1,ymm2 |
| 8823 | getEmitter()->emitIns_R_R_R(INS_subpd, EA_32BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8824 | // vmulss xmm0,xmm1,xmm2 |
| 8825 | getEmitter()->emitIns_R_R_R(INS_mulss, EA_4BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8826 | // vmulsd xmm0,xmm1,xmm2 |
| 8827 | getEmitter()->emitIns_R_R_R(INS_mulsd, EA_8BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8828 | // vmulps xmm0,xmm1,xmm2 |
| 8829 | getEmitter()->emitIns_R_R_R(INS_mulps, EA_16BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8830 | // vmulpd xmm0,xmm1,xmm2 |
| 8831 | getEmitter()->emitIns_R_R_R(INS_mulpd, EA_16BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8832 | // vmulps ymm0,ymm1,ymm2 |
| 8833 | getEmitter()->emitIns_R_R_R(INS_mulps, EA_32BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8834 | // vmulpd ymm0,ymm1,ymm2 |
| 8835 | getEmitter()->emitIns_R_R_R(INS_mulpd, EA_32BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8836 | // vandps xmm0,xmm1,xmm2 |
| 8837 | getEmitter()->emitIns_R_R_R(INS_andps, EA_16BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8838 | // vandpd xmm0,xmm1,xmm2 |
| 8839 | getEmitter()->emitIns_R_R_R(INS_andpd, EA_16BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8840 | // vandps ymm0,ymm1,ymm2 |
| 8841 | getEmitter()->emitIns_R_R_R(INS_andps, EA_32BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8842 | // vandpd ymm0,ymm1,ymm2 |
| 8843 | getEmitter()->emitIns_R_R_R(INS_andpd, EA_32BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8844 | // vorps xmm0,xmm1,xmm2 |
| 8845 | getEmitter()->emitIns_R_R_R(INS_orps, EA_16BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8846 | // vorpd xmm0,xmm1,xmm2 |
| 8847 | getEmitter()->emitIns_R_R_R(INS_orpd, EA_16BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8848 | // vorps ymm0,ymm1,ymm2 |
| 8849 | getEmitter()->emitIns_R_R_R(INS_orps, EA_32BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8850 | // vorpd ymm0,ymm1,ymm2 |
| 8851 | getEmitter()->emitIns_R_R_R(INS_orpd, EA_32BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8852 | // vdivss xmm0,xmm1,xmm2 |
| 8853 | getEmitter()->emitIns_R_R_R(INS_divss, EA_4BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8854 | // vdivsd xmm0,xmm1,xmm2 |
| 8855 | getEmitter()->emitIns_R_R_R(INS_divsd, EA_8BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8856 | // vdivss xmm0,xmm1,xmm2 |
| 8857 | getEmitter()->emitIns_R_R_R(INS_divss, EA_4BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8858 | // vdivsd xmm0,xmm1,xmm2 |
| 8859 | getEmitter()->emitIns_R_R_R(INS_divsd, EA_8BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8860 | |
| 8861 | // vdivss xmm0,xmm1,xmm2 |
| 8862 | getEmitter()->emitIns_R_R_R(INS_cvtss2sd, EA_4BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8863 | // vdivsd xmm0,xmm1,xmm2 |
| 8864 | getEmitter()->emitIns_R_R_R(INS_cvtsd2ss, EA_8BYTE, REG_XMM0, REG_XMM1, REG_XMM2); |
| 8865 | #endif // ALL_XARCH_EMITTER_UNIT_TESTS |
| 8866 | printf("*************** End of genAmd64EmitterUnitTests()\n" ); |
| 8867 | } |
| 8868 | |
| 8869 | #endif // defined(DEBUG) && defined(LATE_DISASM) && defined(_TARGET_AMD64_) |
| 8870 | |
| 8871 | #endif // _TARGET_AMD64_ |
| 8872 | |