1 | /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
2 | * All rights reserved. |
3 | * |
4 | * This package is an SSL implementation written |
5 | * by Eric Young (eay@cryptsoft.com). |
6 | * The implementation was written so as to conform with Netscapes SSL. |
7 | * |
8 | * This library is free for commercial and non-commercial use as long as |
9 | * the following conditions are aheared to. The following conditions |
10 | * apply to all code found in this distribution, be it the RC4, RSA, |
11 | * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
12 | * included with this distribution is covered by the same copyright terms |
13 | * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
14 | * |
15 | * Copyright remains Eric Young's, and as such any Copyright notices in |
16 | * the code are not to be removed. |
17 | * If this package is used in a product, Eric Young should be given attribution |
18 | * as the author of the parts of the library used. |
19 | * This can be in the form of a textual message at program startup or |
20 | * in documentation (online or textual) provided with the package. |
21 | * |
22 | * Redistribution and use in source and binary forms, with or without |
23 | * modification, are permitted provided that the following conditions |
24 | * are met: |
25 | * 1. Redistributions of source code must retain the copyright |
26 | * notice, this list of conditions and the following disclaimer. |
27 | * 2. Redistributions in binary form must reproduce the above copyright |
28 | * notice, this list of conditions and the following disclaimer in the |
29 | * documentation and/or other materials provided with the distribution. |
30 | * 3. All advertising materials mentioning features or use of this software |
31 | * must display the following acknowledgement: |
32 | * "This product includes cryptographic software written by |
33 | * Eric Young (eay@cryptsoft.com)" |
34 | * The word 'cryptographic' can be left out if the rouines from the library |
35 | * being used are not cryptographic related :-). |
36 | * 4. If you include any Windows specific code (or a derivative thereof) from |
37 | * the apps directory (application code) you must include an acknowledgement: |
38 | * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
39 | * |
40 | * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
41 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
42 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
43 | * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
44 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
45 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
46 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
47 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
48 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
49 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
50 | * SUCH DAMAGE. |
51 | * |
52 | * The licence and distribution terms for any publically available version or |
53 | * derivative of this code cannot be changed. i.e. this code cannot simply be |
54 | * copied and put under another distribution licence |
55 | * [including the GNU Public Licence.] */ |
56 | |
57 | #include <openssl/bn.h> |
58 | |
59 | #include <assert.h> |
60 | #include <limits.h> |
61 | |
62 | #include <openssl/err.h> |
63 | |
64 | #include "internal.h" |
65 | |
66 | |
67 | #if !defined(BN_CAN_DIVIDE_ULLONG) && !defined(BN_CAN_USE_INLINE_ASM) |
68 | // bn_div_words divides a double-width |h|,|l| by |d| and returns the result, |
69 | // which must fit in a |BN_ULONG|. |
70 | static BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d) { |
71 | BN_ULONG dh, dl, q, ret = 0, th, tl, t; |
72 | int i, count = 2; |
73 | |
74 | if (d == 0) { |
75 | return BN_MASK2; |
76 | } |
77 | |
78 | i = BN_num_bits_word(d); |
79 | assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i)); |
80 | |
81 | i = BN_BITS2 - i; |
82 | if (h >= d) { |
83 | h -= d; |
84 | } |
85 | |
86 | if (i) { |
87 | d <<= i; |
88 | h = (h << i) | (l >> (BN_BITS2 - i)); |
89 | l <<= i; |
90 | } |
91 | dh = (d & BN_MASK2h) >> BN_BITS4; |
92 | dl = (d & BN_MASK2l); |
93 | for (;;) { |
94 | if ((h >> BN_BITS4) == dh) { |
95 | q = BN_MASK2l; |
96 | } else { |
97 | q = h / dh; |
98 | } |
99 | |
100 | th = q * dh; |
101 | tl = dl * q; |
102 | for (;;) { |
103 | t = h - th; |
104 | if ((t & BN_MASK2h) || |
105 | ((tl) <= ((t << BN_BITS4) | ((l & BN_MASK2h) >> BN_BITS4)))) { |
106 | break; |
107 | } |
108 | q--; |
109 | th -= dh; |
110 | tl -= dl; |
111 | } |
112 | t = (tl >> BN_BITS4); |
113 | tl = (tl << BN_BITS4) & BN_MASK2h; |
114 | th += t; |
115 | |
116 | if (l < tl) { |
117 | th++; |
118 | } |
119 | l -= tl; |
120 | if (h < th) { |
121 | h += d; |
122 | q--; |
123 | } |
124 | h -= th; |
125 | |
126 | if (--count == 0) { |
127 | break; |
128 | } |
129 | |
130 | ret = q << BN_BITS4; |
131 | h = (h << BN_BITS4) | (l >> BN_BITS4); |
132 | l = (l & BN_MASK2l) << BN_BITS4; |
133 | } |
134 | |
135 | ret |= q; |
136 | return ret; |
137 | } |
138 | #endif // !defined(BN_CAN_DIVIDE_ULLONG) && !defined(BN_CAN_USE_INLINE_ASM) |
139 | |
140 | static inline void bn_div_rem_words(BN_ULONG *quotient_out, BN_ULONG *rem_out, |
141 | BN_ULONG n0, BN_ULONG n1, BN_ULONG d0) { |
142 | // GCC and Clang generate function calls to |__udivdi3| and |__umoddi3| when |
143 | // the |BN_ULLONG|-based C code is used. |
144 | // |
145 | // GCC bugs: |
146 | // * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=14224 |
147 | // * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=43721 |
148 | // * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=54183 |
149 | // * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58897 |
150 | // * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=65668 |
151 | // |
152 | // Clang bugs: |
153 | // * https://llvm.org/bugs/show_bug.cgi?id=6397 |
154 | // * https://llvm.org/bugs/show_bug.cgi?id=12418 |
155 | // |
156 | // These issues aren't specific to x86 and x86_64, so it might be worthwhile |
157 | // to add more assembly language implementations. |
158 | #if defined(BN_CAN_USE_INLINE_ASM) && defined(OPENSSL_X86) |
159 | __asm__ volatile("divl %4" |
160 | : "=a" (*quotient_out), "=d" (*rem_out) |
161 | : "a" (n1), "d" (n0), "rm" (d0) |
162 | : "cc" ); |
163 | #elif defined(BN_CAN_USE_INLINE_ASM) && defined(OPENSSL_X86_64) |
164 | __asm__ volatile("divq %4" |
165 | : "=a" (*quotient_out), "=d" (*rem_out) |
166 | : "a" (n1), "d" (n0), "rm" (d0) |
167 | : "cc" ); |
168 | #else |
169 | #if defined(BN_CAN_DIVIDE_ULLONG) |
170 | BN_ULLONG n = (((BN_ULLONG)n0) << BN_BITS2) | n1; |
171 | *quotient_out = (BN_ULONG)(n / d0); |
172 | #else |
173 | *quotient_out = bn_div_words(n0, n1, d0); |
174 | #endif |
175 | *rem_out = n1 - (*quotient_out * d0); |
176 | #endif |
177 | } |
178 | |
179 | // BN_div computes "quotient := numerator / divisor", rounding towards zero, |
180 | // and sets up |rem| such that "quotient * divisor + rem = numerator" holds. |
181 | // |
182 | // Thus: |
183 | // |
184 | // quotient->neg == numerator->neg ^ divisor->neg |
185 | // (unless the result is zero) |
186 | // rem->neg == numerator->neg |
187 | // (unless the remainder is zero) |
188 | // |
189 | // If |quotient| or |rem| is NULL, the respective value is not returned. |
190 | // |
191 | // This was specifically designed to contain fewer branches that may leak |
192 | // sensitive information; see "New Branch Prediction Vulnerabilities in OpenSSL |
193 | // and Necessary Software Countermeasures" by Onur Acıçmez, Shay Gueron, and |
194 | // Jean-Pierre Seifert. |
195 | int BN_div(BIGNUM *quotient, BIGNUM *rem, const BIGNUM *numerator, |
196 | const BIGNUM *divisor, BN_CTX *ctx) { |
197 | int norm_shift, loop; |
198 | BIGNUM wnum; |
199 | BN_ULONG *resp, *wnump; |
200 | BN_ULONG d0, d1; |
201 | int num_n, div_n; |
202 | |
203 | // This function relies on the historical minimal-width |BIGNUM| invariant. |
204 | // It is already not constant-time (constant-time reductions should use |
205 | // Montgomery logic), so we shrink all inputs and intermediate values to |
206 | // retain the previous behavior. |
207 | |
208 | // Invalid zero-padding would have particularly bad consequences. |
209 | int numerator_width = bn_minimal_width(numerator); |
210 | int divisor_width = bn_minimal_width(divisor); |
211 | if ((numerator_width > 0 && numerator->d[numerator_width - 1] == 0) || |
212 | (divisor_width > 0 && divisor->d[divisor_width - 1] == 0)) { |
213 | OPENSSL_PUT_ERROR(BN, BN_R_NOT_INITIALIZED); |
214 | return 0; |
215 | } |
216 | |
217 | if (BN_is_zero(divisor)) { |
218 | OPENSSL_PUT_ERROR(BN, BN_R_DIV_BY_ZERO); |
219 | return 0; |
220 | } |
221 | |
222 | BN_CTX_start(ctx); |
223 | BIGNUM *tmp = BN_CTX_get(ctx); |
224 | BIGNUM *snum = BN_CTX_get(ctx); |
225 | BIGNUM *sdiv = BN_CTX_get(ctx); |
226 | BIGNUM *res = NULL; |
227 | if (quotient == NULL) { |
228 | res = BN_CTX_get(ctx); |
229 | } else { |
230 | res = quotient; |
231 | } |
232 | if (sdiv == NULL || res == NULL) { |
233 | goto err; |
234 | } |
235 | |
236 | // First we normalise the numbers |
237 | norm_shift = BN_BITS2 - (BN_num_bits(divisor) % BN_BITS2); |
238 | if (!BN_lshift(sdiv, divisor, norm_shift)) { |
239 | goto err; |
240 | } |
241 | bn_set_minimal_width(sdiv); |
242 | sdiv->neg = 0; |
243 | norm_shift += BN_BITS2; |
244 | if (!BN_lshift(snum, numerator, norm_shift)) { |
245 | goto err; |
246 | } |
247 | bn_set_minimal_width(snum); |
248 | snum->neg = 0; |
249 | |
250 | // Since we don't want to have special-case logic for the case where snum is |
251 | // larger than sdiv, we pad snum with enough zeroes without changing its |
252 | // value. |
253 | if (snum->width <= sdiv->width + 1) { |
254 | if (!bn_wexpand(snum, sdiv->width + 2)) { |
255 | goto err; |
256 | } |
257 | for (int i = snum->width; i < sdiv->width + 2; i++) { |
258 | snum->d[i] = 0; |
259 | } |
260 | snum->width = sdiv->width + 2; |
261 | } else { |
262 | if (!bn_wexpand(snum, snum->width + 1)) { |
263 | goto err; |
264 | } |
265 | snum->d[snum->width] = 0; |
266 | snum->width++; |
267 | } |
268 | |
269 | div_n = sdiv->width; |
270 | num_n = snum->width; |
271 | loop = num_n - div_n; |
272 | // Lets setup a 'window' into snum |
273 | // This is the part that corresponds to the current |
274 | // 'area' being divided |
275 | wnum.neg = 0; |
276 | wnum.d = &(snum->d[loop]); |
277 | wnum.width = div_n; |
278 | // only needed when BN_ucmp messes up the values between width and max |
279 | wnum.dmax = snum->dmax - loop; // so we don't step out of bounds |
280 | |
281 | // Get the top 2 words of sdiv |
282 | // div_n=sdiv->width; |
283 | d0 = sdiv->d[div_n - 1]; |
284 | d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2]; |
285 | |
286 | // pointer to the 'top' of snum |
287 | wnump = &(snum->d[num_n - 1]); |
288 | |
289 | // Setup to 'res' |
290 | res->neg = (numerator->neg ^ divisor->neg); |
291 | if (!bn_wexpand(res, loop + 1)) { |
292 | goto err; |
293 | } |
294 | res->width = loop - 1; |
295 | resp = &(res->d[loop - 1]); |
296 | |
297 | // space for temp |
298 | if (!bn_wexpand(tmp, div_n + 1)) { |
299 | goto err; |
300 | } |
301 | |
302 | // if res->width == 0 then clear the neg value otherwise decrease |
303 | // the resp pointer |
304 | if (res->width == 0) { |
305 | res->neg = 0; |
306 | } else { |
307 | resp--; |
308 | } |
309 | |
310 | for (int i = 0; i < loop - 1; i++, wnump--, resp--) { |
311 | BN_ULONG q, l0; |
312 | // the first part of the loop uses the top two words of snum and sdiv to |
313 | // calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv |
314 | BN_ULONG n0, n1, rm = 0; |
315 | |
316 | n0 = wnump[0]; |
317 | n1 = wnump[-1]; |
318 | if (n0 == d0) { |
319 | q = BN_MASK2; |
320 | } else { |
321 | // n0 < d0 |
322 | bn_div_rem_words(&q, &rm, n0, n1, d0); |
323 | |
324 | #ifdef BN_ULLONG |
325 | BN_ULLONG t2 = (BN_ULLONG)d1 * q; |
326 | for (;;) { |
327 | if (t2 <= ((((BN_ULLONG)rm) << BN_BITS2) | wnump[-2])) { |
328 | break; |
329 | } |
330 | q--; |
331 | rm += d0; |
332 | if (rm < d0) { |
333 | break; // don't let rm overflow |
334 | } |
335 | t2 -= d1; |
336 | } |
337 | #else // !BN_ULLONG |
338 | BN_ULONG t2l, t2h; |
339 | BN_UMULT_LOHI(t2l, t2h, d1, q); |
340 | for (;;) { |
341 | if (t2h < rm || |
342 | (t2h == rm && t2l <= wnump[-2])) { |
343 | break; |
344 | } |
345 | q--; |
346 | rm += d0; |
347 | if (rm < d0) { |
348 | break; // don't let rm overflow |
349 | } |
350 | if (t2l < d1) { |
351 | t2h--; |
352 | } |
353 | t2l -= d1; |
354 | } |
355 | #endif // !BN_ULLONG |
356 | } |
357 | |
358 | l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q); |
359 | tmp->d[div_n] = l0; |
360 | wnum.d--; |
361 | // ingore top values of the bignums just sub the two |
362 | // BN_ULONG arrays with bn_sub_words |
363 | if (bn_sub_words(wnum.d, wnum.d, tmp->d, div_n + 1)) { |
364 | // Note: As we have considered only the leading |
365 | // two BN_ULONGs in the calculation of q, sdiv * q |
366 | // might be greater than wnum (but then (q-1) * sdiv |
367 | // is less or equal than wnum) |
368 | q--; |
369 | if (bn_add_words(wnum.d, wnum.d, sdiv->d, div_n)) { |
370 | // we can't have an overflow here (assuming |
371 | // that q != 0, but if q == 0 then tmp is |
372 | // zero anyway) |
373 | (*wnump)++; |
374 | } |
375 | } |
376 | // store part of the result |
377 | *resp = q; |
378 | } |
379 | |
380 | bn_set_minimal_width(snum); |
381 | |
382 | if (rem != NULL) { |
383 | // Keep a copy of the neg flag in numerator because if |rem| == |numerator| |
384 | // |BN_rshift| will overwrite it. |
385 | int neg = numerator->neg; |
386 | if (!BN_rshift(rem, snum, norm_shift)) { |
387 | goto err; |
388 | } |
389 | if (!BN_is_zero(rem)) { |
390 | rem->neg = neg; |
391 | } |
392 | } |
393 | |
394 | bn_set_minimal_width(res); |
395 | BN_CTX_end(ctx); |
396 | return 1; |
397 | |
398 | err: |
399 | BN_CTX_end(ctx); |
400 | return 0; |
401 | } |
402 | |
403 | int BN_nnmod(BIGNUM *r, const BIGNUM *m, const BIGNUM *d, BN_CTX *ctx) { |
404 | if (!(BN_mod(r, m, d, ctx))) { |
405 | return 0; |
406 | } |
407 | if (!r->neg) { |
408 | return 1; |
409 | } |
410 | |
411 | // now -|d| < r < 0, so we have to set r := r + |d|. |
412 | return (d->neg ? BN_sub : BN_add)(r, r, d); |
413 | } |
414 | |
415 | BN_ULONG bn_reduce_once(BN_ULONG *r, const BN_ULONG *a, BN_ULONG carry, |
416 | const BN_ULONG *m, size_t num) { |
417 | assert(r != a); |
418 | // |r| = |a| - |m|. |bn_sub_words| performs the bulk of the subtraction, and |
419 | // then we apply the borrow to |carry|. |
420 | carry -= bn_sub_words(r, a, m, num); |
421 | // We know 0 <= |a| < 2*|m|, so -|m| <= |r| < |m|. |
422 | // |
423 | // If 0 <= |r| < |m|, |r| fits in |num| words and |carry| is zero. We then |
424 | // wish to select |r| as the answer. Otherwise -m <= r < 0 and we wish to |
425 | // return |r| + |m|, or |a|. |carry| must then be -1 or all ones. In both |
426 | // cases, |carry| is a suitable input to |bn_select_words|. |
427 | // |
428 | // Although |carry| may be one if it was one on input and |bn_sub_words| |
429 | // returns zero, this would give |r| > |m|, violating our input assumptions. |
430 | assert(carry == 0 || carry == (BN_ULONG)-1); |
431 | bn_select_words(r, carry, a /* r < 0 */, r /* r >= 0 */, num); |
432 | return carry; |
433 | } |
434 | |
435 | BN_ULONG bn_reduce_once_in_place(BN_ULONG *r, BN_ULONG carry, const BN_ULONG *m, |
436 | BN_ULONG *tmp, size_t num) { |
437 | // See |bn_reduce_once| for why this logic works. |
438 | carry -= bn_sub_words(tmp, r, m, num); |
439 | assert(carry == 0 || carry == (BN_ULONG)-1); |
440 | bn_select_words(r, carry, r /* tmp < 0 */, tmp /* tmp >= 0 */, num); |
441 | return carry; |
442 | } |
443 | |
444 | void bn_mod_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, |
445 | const BN_ULONG *m, BN_ULONG *tmp, size_t num) { |
446 | // r = a - b |
447 | BN_ULONG borrow = bn_sub_words(r, a, b, num); |
448 | // tmp = a - b + m |
449 | bn_add_words(tmp, r, m, num); |
450 | bn_select_words(r, 0 - borrow, tmp /* r < 0 */, r /* r >= 0 */, num); |
451 | } |
452 | |
453 | void bn_mod_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, |
454 | const BN_ULONG *m, BN_ULONG *tmp, size_t num) { |
455 | BN_ULONG carry = bn_add_words(r, a, b, num); |
456 | bn_reduce_once_in_place(r, carry, m, tmp, num); |
457 | } |
458 | |
459 | int bn_div_consttime(BIGNUM *quotient, BIGNUM *remainder, |
460 | const BIGNUM *numerator, const BIGNUM *divisor, |
461 | BN_CTX *ctx) { |
462 | if (BN_is_negative(numerator) || BN_is_negative(divisor)) { |
463 | OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER); |
464 | return 0; |
465 | } |
466 | if (BN_is_zero(divisor)) { |
467 | OPENSSL_PUT_ERROR(BN, BN_R_DIV_BY_ZERO); |
468 | return 0; |
469 | } |
470 | |
471 | // This function implements long division in binary. It is not very efficient, |
472 | // but it is simple, easy to make constant-time, and performant enough for RSA |
473 | // key generation. |
474 | |
475 | int ret = 0; |
476 | BN_CTX_start(ctx); |
477 | BIGNUM *q = quotient, *r = remainder; |
478 | if (quotient == NULL || quotient == numerator || quotient == divisor) { |
479 | q = BN_CTX_get(ctx); |
480 | } |
481 | if (remainder == NULL || remainder == numerator || remainder == divisor) { |
482 | r = BN_CTX_get(ctx); |
483 | } |
484 | BIGNUM *tmp = BN_CTX_get(ctx); |
485 | if (q == NULL || r == NULL || tmp == NULL || |
486 | !bn_wexpand(q, numerator->width) || |
487 | !bn_wexpand(r, divisor->width) || |
488 | !bn_wexpand(tmp, divisor->width)) { |
489 | goto err; |
490 | } |
491 | |
492 | OPENSSL_memset(q->d, 0, numerator->width * sizeof(BN_ULONG)); |
493 | q->width = numerator->width; |
494 | q->neg = 0; |
495 | |
496 | OPENSSL_memset(r->d, 0, divisor->width * sizeof(BN_ULONG)); |
497 | r->width = divisor->width; |
498 | r->neg = 0; |
499 | |
500 | // Incorporate |numerator| into |r|, one bit at a time, reducing after each |
501 | // step. At the start of each loop iteration, |r| < |divisor| |
502 | for (int i = numerator->width - 1; i >= 0; i--) { |
503 | for (int bit = BN_BITS2 - 1; bit >= 0; bit--) { |
504 | // Incorporate the next bit of the numerator, by computing |
505 | // r = 2*r or 2*r + 1. Note the result fits in one more word. We store the |
506 | // extra word in |carry|. |
507 | BN_ULONG carry = bn_add_words(r->d, r->d, r->d, divisor->width); |
508 | r->d[0] |= (numerator->d[i] >> bit) & 1; |
509 | // |r| was previously fully-reduced, so we know: |
510 | // 2*0 <= r <= 2*(divisor-1) + 1 |
511 | // 0 <= r <= 2*divisor - 1 < 2*divisor. |
512 | // Thus |r| satisfies the preconditions for |bn_reduce_once_in_place|. |
513 | BN_ULONG subtracted = bn_reduce_once_in_place(r->d, carry, divisor->d, |
514 | tmp->d, divisor->width); |
515 | // The corresponding bit of the quotient is set iff we needed to subtract. |
516 | q->d[i] |= (~subtracted & 1) << bit; |
517 | } |
518 | } |
519 | |
520 | if ((quotient != NULL && !BN_copy(quotient, q)) || |
521 | (remainder != NULL && !BN_copy(remainder, r))) { |
522 | goto err; |
523 | } |
524 | |
525 | ret = 1; |
526 | |
527 | err: |
528 | BN_CTX_end(ctx); |
529 | return ret; |
530 | } |
531 | |
532 | static BIGNUM *bn_scratch_space_from_ctx(size_t width, BN_CTX *ctx) { |
533 | BIGNUM *ret = BN_CTX_get(ctx); |
534 | if (ret == NULL || |
535 | !bn_wexpand(ret, width)) { |
536 | return NULL; |
537 | } |
538 | ret->neg = 0; |
539 | ret->width = width; |
540 | return ret; |
541 | } |
542 | |
543 | // bn_resized_from_ctx returns |bn| with width at least |width| or NULL on |
544 | // error. This is so it may be used with low-level "words" functions. If |
545 | // necessary, it allocates a new |BIGNUM| with a lifetime of the current scope |
546 | // in |ctx|, so the caller does not need to explicitly free it. |bn| must fit in |
547 | // |width| words. |
548 | static const BIGNUM *bn_resized_from_ctx(const BIGNUM *bn, size_t width, |
549 | BN_CTX *ctx) { |
550 | if ((size_t)bn->width >= width) { |
551 | // Any excess words must be zero. |
552 | assert(bn_fits_in_words(bn, width)); |
553 | return bn; |
554 | } |
555 | BIGNUM *ret = bn_scratch_space_from_ctx(width, ctx); |
556 | if (ret == NULL || |
557 | !BN_copy(ret, bn) || |
558 | !bn_resize_words(ret, width)) { |
559 | return NULL; |
560 | } |
561 | return ret; |
562 | } |
563 | |
564 | int BN_mod_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, |
565 | BN_CTX *ctx) { |
566 | if (!BN_add(r, a, b)) { |
567 | return 0; |
568 | } |
569 | return BN_nnmod(r, r, m, ctx); |
570 | } |
571 | |
572 | int BN_mod_add_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
573 | const BIGNUM *m) { |
574 | BN_CTX *ctx = BN_CTX_new(); |
575 | int ok = ctx != NULL && |
576 | bn_mod_add_consttime(r, a, b, m, ctx); |
577 | BN_CTX_free(ctx); |
578 | return ok; |
579 | } |
580 | |
581 | int bn_mod_add_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
582 | const BIGNUM *m, BN_CTX *ctx) { |
583 | BN_CTX_start(ctx); |
584 | a = bn_resized_from_ctx(a, m->width, ctx); |
585 | b = bn_resized_from_ctx(b, m->width, ctx); |
586 | BIGNUM *tmp = bn_scratch_space_from_ctx(m->width, ctx); |
587 | int ok = a != NULL && b != NULL && tmp != NULL && |
588 | bn_wexpand(r, m->width); |
589 | if (ok) { |
590 | bn_mod_add_words(r->d, a->d, b->d, m->d, tmp->d, m->width); |
591 | r->width = m->width; |
592 | r->neg = 0; |
593 | } |
594 | BN_CTX_end(ctx); |
595 | return ok; |
596 | } |
597 | |
598 | int BN_mod_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, |
599 | BN_CTX *ctx) { |
600 | if (!BN_sub(r, a, b)) { |
601 | return 0; |
602 | } |
603 | return BN_nnmod(r, r, m, ctx); |
604 | } |
605 | |
606 | int bn_mod_sub_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
607 | const BIGNUM *m, BN_CTX *ctx) { |
608 | BN_CTX_start(ctx); |
609 | a = bn_resized_from_ctx(a, m->width, ctx); |
610 | b = bn_resized_from_ctx(b, m->width, ctx); |
611 | BIGNUM *tmp = bn_scratch_space_from_ctx(m->width, ctx); |
612 | int ok = a != NULL && b != NULL && tmp != NULL && |
613 | bn_wexpand(r, m->width); |
614 | if (ok) { |
615 | bn_mod_sub_words(r->d, a->d, b->d, m->d, tmp->d, m->width); |
616 | r->width = m->width; |
617 | r->neg = 0; |
618 | } |
619 | BN_CTX_end(ctx); |
620 | return ok; |
621 | } |
622 | |
623 | int BN_mod_sub_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
624 | const BIGNUM *m) { |
625 | BN_CTX *ctx = BN_CTX_new(); |
626 | int ok = ctx != NULL && |
627 | bn_mod_sub_consttime(r, a, b, m, ctx); |
628 | BN_CTX_free(ctx); |
629 | return ok; |
630 | } |
631 | |
632 | int BN_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, const BIGNUM *m, |
633 | BN_CTX *ctx) { |
634 | BIGNUM *t; |
635 | int ret = 0; |
636 | |
637 | BN_CTX_start(ctx); |
638 | t = BN_CTX_get(ctx); |
639 | if (t == NULL) { |
640 | goto err; |
641 | } |
642 | |
643 | if (a == b) { |
644 | if (!BN_sqr(t, a, ctx)) { |
645 | goto err; |
646 | } |
647 | } else { |
648 | if (!BN_mul(t, a, b, ctx)) { |
649 | goto err; |
650 | } |
651 | } |
652 | |
653 | if (!BN_nnmod(r, t, m, ctx)) { |
654 | goto err; |
655 | } |
656 | |
657 | ret = 1; |
658 | |
659 | err: |
660 | BN_CTX_end(ctx); |
661 | return ret; |
662 | } |
663 | |
664 | int BN_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) { |
665 | if (!BN_sqr(r, a, ctx)) { |
666 | return 0; |
667 | } |
668 | |
669 | // r->neg == 0, thus we don't need BN_nnmod |
670 | return BN_mod(r, r, m, ctx); |
671 | } |
672 | |
673 | int BN_mod_lshift(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, |
674 | BN_CTX *ctx) { |
675 | BIGNUM *abs_m = NULL; |
676 | int ret; |
677 | |
678 | if (!BN_nnmod(r, a, m, ctx)) { |
679 | return 0; |
680 | } |
681 | |
682 | if (m->neg) { |
683 | abs_m = BN_dup(m); |
684 | if (abs_m == NULL) { |
685 | return 0; |
686 | } |
687 | abs_m->neg = 0; |
688 | } |
689 | |
690 | ret = bn_mod_lshift_consttime(r, r, n, (abs_m ? abs_m : m), ctx); |
691 | |
692 | BN_free(abs_m); |
693 | return ret; |
694 | } |
695 | |
696 | int bn_mod_lshift_consttime(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m, |
697 | BN_CTX *ctx) { |
698 | if (!BN_copy(r, a)) { |
699 | return 0; |
700 | } |
701 | for (int i = 0; i < n; i++) { |
702 | if (!bn_mod_lshift1_consttime(r, r, m, ctx)) { |
703 | return 0; |
704 | } |
705 | } |
706 | return 1; |
707 | } |
708 | |
709 | int BN_mod_lshift_quick(BIGNUM *r, const BIGNUM *a, int n, const BIGNUM *m) { |
710 | BN_CTX *ctx = BN_CTX_new(); |
711 | int ok = ctx != NULL && |
712 | bn_mod_lshift_consttime(r, a, n, m, ctx); |
713 | BN_CTX_free(ctx); |
714 | return ok; |
715 | } |
716 | |
717 | int BN_mod_lshift1(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx) { |
718 | if (!BN_lshift1(r, a)) { |
719 | return 0; |
720 | } |
721 | |
722 | return BN_nnmod(r, r, m, ctx); |
723 | } |
724 | |
725 | int bn_mod_lshift1_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, |
726 | BN_CTX *ctx) { |
727 | return bn_mod_add_consttime(r, a, a, m, ctx); |
728 | } |
729 | |
730 | int BN_mod_lshift1_quick(BIGNUM *r, const BIGNUM *a, const BIGNUM *m) { |
731 | BN_CTX *ctx = BN_CTX_new(); |
732 | int ok = ctx != NULL && |
733 | bn_mod_lshift1_consttime(r, a, m, ctx); |
734 | BN_CTX_free(ctx); |
735 | return ok; |
736 | } |
737 | |
738 | BN_ULONG BN_div_word(BIGNUM *a, BN_ULONG w) { |
739 | BN_ULONG ret = 0; |
740 | int i, j; |
741 | |
742 | if (!w) { |
743 | // actually this an error (division by zero) |
744 | return (BN_ULONG) - 1; |
745 | } |
746 | |
747 | if (a->width == 0) { |
748 | return 0; |
749 | } |
750 | |
751 | // normalize input for |bn_div_rem_words|. |
752 | j = BN_BITS2 - BN_num_bits_word(w); |
753 | w <<= j; |
754 | if (!BN_lshift(a, a, j)) { |
755 | return (BN_ULONG) - 1; |
756 | } |
757 | |
758 | for (i = a->width - 1; i >= 0; i--) { |
759 | BN_ULONG l = a->d[i]; |
760 | BN_ULONG d; |
761 | BN_ULONG unused_rem; |
762 | bn_div_rem_words(&d, &unused_rem, ret, l, w); |
763 | ret = l - (d * w); |
764 | a->d[i] = d; |
765 | } |
766 | |
767 | bn_set_minimal_width(a); |
768 | ret >>= j; |
769 | return ret; |
770 | } |
771 | |
772 | BN_ULONG BN_mod_word(const BIGNUM *a, BN_ULONG w) { |
773 | #ifndef BN_CAN_DIVIDE_ULLONG |
774 | BN_ULONG ret = 0; |
775 | #else |
776 | BN_ULLONG ret = 0; |
777 | #endif |
778 | int i; |
779 | |
780 | if (w == 0) { |
781 | return (BN_ULONG) -1; |
782 | } |
783 | |
784 | #ifndef BN_CAN_DIVIDE_ULLONG |
785 | // If |w| is too long and we don't have |BN_ULLONG| division then we need to |
786 | // fall back to using |BN_div_word|. |
787 | if (w > ((BN_ULONG)1 << BN_BITS4)) { |
788 | BIGNUM *tmp = BN_dup(a); |
789 | if (tmp == NULL) { |
790 | return (BN_ULONG)-1; |
791 | } |
792 | ret = BN_div_word(tmp, w); |
793 | BN_free(tmp); |
794 | return ret; |
795 | } |
796 | #endif |
797 | |
798 | for (i = a->width - 1; i >= 0; i--) { |
799 | #ifndef BN_CAN_DIVIDE_ULLONG |
800 | ret = ((ret << BN_BITS4) | ((a->d[i] >> BN_BITS4) & BN_MASK2l)) % w; |
801 | ret = ((ret << BN_BITS4) | (a->d[i] & BN_MASK2l)) % w; |
802 | #else |
803 | ret = (BN_ULLONG)(((ret << (BN_ULLONG)BN_BITS2) | a->d[i]) % (BN_ULLONG)w); |
804 | #endif |
805 | } |
806 | return (BN_ULONG)ret; |
807 | } |
808 | |
809 | int BN_mod_pow2(BIGNUM *r, const BIGNUM *a, size_t e) { |
810 | if (e == 0 || a->width == 0) { |
811 | BN_zero(r); |
812 | return 1; |
813 | } |
814 | |
815 | size_t num_words = 1 + ((e - 1) / BN_BITS2); |
816 | |
817 | // If |a| definitely has less than |e| bits, just BN_copy. |
818 | if ((size_t) a->width < num_words) { |
819 | return BN_copy(r, a) != NULL; |
820 | } |
821 | |
822 | // Otherwise, first make sure we have enough space in |r|. |
823 | // Note that this will fail if num_words > INT_MAX. |
824 | if (!bn_wexpand(r, num_words)) { |
825 | return 0; |
826 | } |
827 | |
828 | // Copy the content of |a| into |r|. |
829 | OPENSSL_memcpy(r->d, a->d, num_words * sizeof(BN_ULONG)); |
830 | |
831 | // If |e| isn't word-aligned, we have to mask off some of our bits. |
832 | size_t top_word_exponent = e % (sizeof(BN_ULONG) * 8); |
833 | if (top_word_exponent != 0) { |
834 | r->d[num_words - 1] &= (((BN_ULONG) 1) << top_word_exponent) - 1; |
835 | } |
836 | |
837 | // Fill in the remaining fields of |r|. |
838 | r->neg = a->neg; |
839 | r->width = (int) num_words; |
840 | bn_set_minimal_width(r); |
841 | return 1; |
842 | } |
843 | |
844 | int BN_nnmod_pow2(BIGNUM *r, const BIGNUM *a, size_t e) { |
845 | if (!BN_mod_pow2(r, a, e)) { |
846 | return 0; |
847 | } |
848 | |
849 | // If the returned value was non-negative, we're done. |
850 | if (BN_is_zero(r) || !r->neg) { |
851 | return 1; |
852 | } |
853 | |
854 | size_t num_words = 1 + (e - 1) / BN_BITS2; |
855 | |
856 | // Expand |r| to the size of our modulus. |
857 | if (!bn_wexpand(r, num_words)) { |
858 | return 0; |
859 | } |
860 | |
861 | // Clear the upper words of |r|. |
862 | OPENSSL_memset(&r->d[r->width], 0, (num_words - r->width) * BN_BYTES); |
863 | |
864 | // Set parameters of |r|. |
865 | r->neg = 0; |
866 | r->width = (int) num_words; |
867 | |
868 | // Now, invert every word. The idea here is that we want to compute 2^e-|x|, |
869 | // which is actually equivalent to the twos-complement representation of |x| |
870 | // in |e| bits, which is -x = ~x + 1. |
871 | for (int i = 0; i < r->width; i++) { |
872 | r->d[i] = ~r->d[i]; |
873 | } |
874 | |
875 | // If our exponent doesn't span the top word, we have to mask the rest. |
876 | size_t top_word_exponent = e % BN_BITS2; |
877 | if (top_word_exponent != 0) { |
878 | r->d[r->width - 1] &= (((BN_ULONG) 1) << top_word_exponent) - 1; |
879 | } |
880 | |
881 | // Keep the minimal-width invariant for |BIGNUM|. |
882 | bn_set_minimal_width(r); |
883 | |
884 | // Finally, add one, for the reason described above. |
885 | return BN_add(r, r, BN_value_one()); |
886 | } |
887 | |