1 | /* Copyright (c) 2018, Google Inc. |
2 | * |
3 | * Permission to use, copy, modify, and/or distribute this software for any |
4 | * purpose with or without fee is hereby granted, provided that the above |
5 | * copyright notice and this permission notice appear in all copies. |
6 | * |
7 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
8 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
9 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
10 | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
11 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
12 | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
13 | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
14 | |
15 | #include <openssl/bn.h> |
16 | |
17 | #include <assert.h> |
18 | |
19 | #include <openssl/err.h> |
20 | |
21 | #include "internal.h" |
22 | |
23 | |
24 | static BN_ULONG word_is_odd_mask(BN_ULONG a) { return (BN_ULONG)0 - (a & 1); } |
25 | |
26 | static void maybe_rshift1_words(BN_ULONG *a, BN_ULONG mask, BN_ULONG *tmp, |
27 | size_t num) { |
28 | bn_rshift1_words(tmp, a, num); |
29 | bn_select_words(a, mask, tmp, a, num); |
30 | } |
31 | |
32 | static void maybe_rshift1_words_carry(BN_ULONG *a, BN_ULONG carry, |
33 | BN_ULONG mask, BN_ULONG *tmp, |
34 | size_t num) { |
35 | maybe_rshift1_words(a, mask, tmp, num); |
36 | if (num != 0) { |
37 | carry &= mask; |
38 | a[num - 1] |= carry << (BN_BITS2-1); |
39 | } |
40 | } |
41 | |
42 | static BN_ULONG maybe_add_words(BN_ULONG *a, BN_ULONG mask, const BN_ULONG *b, |
43 | BN_ULONG *tmp, size_t num) { |
44 | BN_ULONG carry = bn_add_words(tmp, a, b, num); |
45 | bn_select_words(a, mask, tmp, a, num); |
46 | return carry & mask; |
47 | } |
48 | |
49 | static int bn_gcd_consttime(BIGNUM *r, unsigned *out_shift, const BIGNUM *x, |
50 | const BIGNUM *y, BN_CTX *ctx) { |
51 | size_t width = x->width > y->width ? x->width : y->width; |
52 | if (width == 0) { |
53 | *out_shift = 0; |
54 | BN_zero(r); |
55 | return 1; |
56 | } |
57 | |
58 | // This is a constant-time implementation of Stein's algorithm (binary GCD). |
59 | int ret = 0; |
60 | BN_CTX_start(ctx); |
61 | BIGNUM *u = BN_CTX_get(ctx); |
62 | BIGNUM *v = BN_CTX_get(ctx); |
63 | BIGNUM *tmp = BN_CTX_get(ctx); |
64 | if (u == NULL || v == NULL || tmp == NULL || |
65 | !BN_copy(u, x) || |
66 | !BN_copy(v, y) || |
67 | !bn_resize_words(u, width) || |
68 | !bn_resize_words(v, width) || |
69 | !bn_resize_words(tmp, width)) { |
70 | goto err; |
71 | } |
72 | |
73 | // Each loop iteration halves at least one of |u| and |v|. Thus we need at |
74 | // most the combined bit width of inputs for at least one value to be zero. |
75 | unsigned x_bits = x->width * BN_BITS2, y_bits = y->width * BN_BITS2; |
76 | unsigned num_iters = x_bits + y_bits; |
77 | if (num_iters < x_bits) { |
78 | OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG); |
79 | goto err; |
80 | } |
81 | |
82 | unsigned shift = 0; |
83 | for (unsigned i = 0; i < num_iters; i++) { |
84 | BN_ULONG both_odd = word_is_odd_mask(u->d[0]) & word_is_odd_mask(v->d[0]); |
85 | |
86 | // If both |u| and |v| are odd, subtract the smaller from the larger. |
87 | BN_ULONG u_less_than_v = |
88 | (BN_ULONG)0 - bn_sub_words(tmp->d, u->d, v->d, width); |
89 | bn_select_words(u->d, both_odd & ~u_less_than_v, tmp->d, u->d, width); |
90 | bn_sub_words(tmp->d, v->d, u->d, width); |
91 | bn_select_words(v->d, both_odd & u_less_than_v, tmp->d, v->d, width); |
92 | |
93 | // At least one of |u| and |v| is now even. |
94 | BN_ULONG u_is_odd = word_is_odd_mask(u->d[0]); |
95 | BN_ULONG v_is_odd = word_is_odd_mask(v->d[0]); |
96 | assert(!(u_is_odd & v_is_odd)); |
97 | |
98 | // If both are even, the final GCD gains a factor of two. |
99 | shift += 1 & (~u_is_odd & ~v_is_odd); |
100 | |
101 | // Halve any which are even. |
102 | maybe_rshift1_words(u->d, ~u_is_odd, tmp->d, width); |
103 | maybe_rshift1_words(v->d, ~v_is_odd, tmp->d, width); |
104 | } |
105 | |
106 | // One of |u| or |v| is zero at this point. The algorithm usually makes |u| |
107 | // zero, unless |y| was already zero on input. Fix this by combining the |
108 | // values. |
109 | assert(BN_is_zero(u) || BN_is_zero(v)); |
110 | for (size_t i = 0; i < width; i++) { |
111 | v->d[i] |= u->d[i]; |
112 | } |
113 | |
114 | *out_shift = shift; |
115 | ret = bn_set_words(r, v->d, width); |
116 | |
117 | err: |
118 | BN_CTX_end(ctx); |
119 | return ret; |
120 | } |
121 | |
122 | int BN_gcd(BIGNUM *r, const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) { |
123 | unsigned shift; |
124 | return bn_gcd_consttime(r, &shift, x, y, ctx) && |
125 | BN_lshift(r, r, shift); |
126 | } |
127 | |
128 | int bn_is_relatively_prime(int *out_relatively_prime, const BIGNUM *x, |
129 | const BIGNUM *y, BN_CTX *ctx) { |
130 | int ret = 0; |
131 | BN_CTX_start(ctx); |
132 | unsigned shift; |
133 | BIGNUM *gcd = BN_CTX_get(ctx); |
134 | if (gcd == NULL || |
135 | !bn_gcd_consttime(gcd, &shift, x, y, ctx)) { |
136 | goto err; |
137 | } |
138 | |
139 | // Check that 2^|shift| * |gcd| is one. |
140 | if (gcd->width == 0) { |
141 | *out_relatively_prime = 0; |
142 | } else { |
143 | BN_ULONG mask = shift | (gcd->d[0] ^ 1); |
144 | for (int i = 1; i < gcd->width; i++) { |
145 | mask |= gcd->d[i]; |
146 | } |
147 | *out_relatively_prime = mask == 0; |
148 | } |
149 | ret = 1; |
150 | |
151 | err: |
152 | BN_CTX_end(ctx); |
153 | return ret; |
154 | } |
155 | |
156 | int bn_lcm_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { |
157 | BN_CTX_start(ctx); |
158 | unsigned shift; |
159 | BIGNUM *gcd = BN_CTX_get(ctx); |
160 | int ret = gcd != NULL && |
161 | bn_mul_consttime(r, a, b, ctx) && |
162 | bn_gcd_consttime(gcd, &shift, a, b, ctx) && |
163 | bn_div_consttime(r, NULL, r, gcd, ctx) && |
164 | bn_rshift_secret_shift(r, r, shift, ctx); |
165 | BN_CTX_end(ctx); |
166 | return ret; |
167 | } |
168 | |
169 | int bn_mod_inverse_consttime(BIGNUM *r, int *out_no_inverse, const BIGNUM *a, |
170 | const BIGNUM *n, BN_CTX *ctx) { |
171 | *out_no_inverse = 0; |
172 | if (BN_is_negative(a) || BN_ucmp(a, n) >= 0) { |
173 | OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED); |
174 | return 0; |
175 | } |
176 | if (BN_is_zero(a)) { |
177 | if (BN_is_one(n)) { |
178 | BN_zero(r); |
179 | return 1; |
180 | } |
181 | *out_no_inverse = 1; |
182 | OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE); |
183 | return 0; |
184 | } |
185 | |
186 | // This is a constant-time implementation of the extended binary GCD |
187 | // algorithm. It is adapted from the Handbook of Applied Cryptography, section |
188 | // 14.4.3, algorithm 14.51, and modified to bound coefficients and avoid |
189 | // negative numbers. |
190 | // |
191 | // For more details and proof of correctness, see |
192 | // https://github.com/mit-plv/fiat-crypto/pull/333. In particular, see |step| |
193 | // and |mod_inverse_consttime| for the algorithm in Gallina and see |
194 | // |mod_inverse_consttime_spec| for the correctness result. |
195 | |
196 | if (!BN_is_odd(a) && !BN_is_odd(n)) { |
197 | *out_no_inverse = 1; |
198 | OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE); |
199 | return 0; |
200 | } |
201 | |
202 | // This function exists to compute the RSA private exponent, where |a| is one |
203 | // word. We'll thus use |a_width| when available. |
204 | size_t n_width = n->width, a_width = a->width; |
205 | if (a_width > n_width) { |
206 | a_width = n_width; |
207 | } |
208 | |
209 | int ret = 0; |
210 | BN_CTX_start(ctx); |
211 | BIGNUM *u = BN_CTX_get(ctx); |
212 | BIGNUM *v = BN_CTX_get(ctx); |
213 | BIGNUM *A = BN_CTX_get(ctx); |
214 | BIGNUM *B = BN_CTX_get(ctx); |
215 | BIGNUM *C = BN_CTX_get(ctx); |
216 | BIGNUM *D = BN_CTX_get(ctx); |
217 | BIGNUM *tmp = BN_CTX_get(ctx); |
218 | BIGNUM *tmp2 = BN_CTX_get(ctx); |
219 | if (u == NULL || v == NULL || A == NULL || B == NULL || C == NULL || |
220 | D == NULL || tmp == NULL || tmp2 == NULL || |
221 | !BN_copy(u, a) || |
222 | !BN_copy(v, n) || |
223 | !BN_one(A) || |
224 | !BN_one(D) || |
225 | // For convenience, size |u| and |v| equivalently. |
226 | !bn_resize_words(u, n_width) || |
227 | !bn_resize_words(v, n_width) || |
228 | // |A| and |C| are bounded by |m|. |
229 | !bn_resize_words(A, n_width) || |
230 | !bn_resize_words(C, n_width) || |
231 | // |B| and |D| are bounded by |a|. |
232 | !bn_resize_words(B, a_width) || |
233 | !bn_resize_words(D, a_width) || |
234 | // |tmp| and |tmp2| may be used at either size. |
235 | !bn_resize_words(tmp, n_width) || |
236 | !bn_resize_words(tmp2, n_width)) { |
237 | goto err; |
238 | } |
239 | |
240 | // Each loop iteration halves at least one of |u| and |v|. Thus we need at |
241 | // most the combined bit width of inputs for at least one value to be zero. |
242 | unsigned a_bits = a_width * BN_BITS2, n_bits = n_width * BN_BITS2; |
243 | unsigned num_iters = a_bits + n_bits; |
244 | if (num_iters < a_bits) { |
245 | OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG); |
246 | goto err; |
247 | } |
248 | |
249 | // Before and after each loop iteration, the following hold: |
250 | // |
251 | // u = A*a - B*n |
252 | // v = D*n - C*a |
253 | // 0 < u <= a |
254 | // 0 <= v <= n |
255 | // 0 <= A < n |
256 | // 0 <= B <= a |
257 | // 0 <= C < n |
258 | // 0 <= D <= a |
259 | // |
260 | // After each loop iteration, u and v only get smaller, and at least one of |
261 | // them shrinks by at least a factor of two. |
262 | for (unsigned i = 0; i < num_iters; i++) { |
263 | BN_ULONG both_odd = word_is_odd_mask(u->d[0]) & word_is_odd_mask(v->d[0]); |
264 | |
265 | // If both |u| and |v| are odd, subtract the smaller from the larger. |
266 | BN_ULONG v_less_than_u = |
267 | (BN_ULONG)0 - bn_sub_words(tmp->d, v->d, u->d, n_width); |
268 | bn_select_words(v->d, both_odd & ~v_less_than_u, tmp->d, v->d, n_width); |
269 | bn_sub_words(tmp->d, u->d, v->d, n_width); |
270 | bn_select_words(u->d, both_odd & v_less_than_u, tmp->d, u->d, n_width); |
271 | |
272 | // If we updated one of the values, update the corresponding coefficient. |
273 | BN_ULONG carry = bn_add_words(tmp->d, A->d, C->d, n_width); |
274 | carry -= bn_sub_words(tmp2->d, tmp->d, n->d, n_width); |
275 | bn_select_words(tmp->d, carry, tmp->d, tmp2->d, n_width); |
276 | bn_select_words(A->d, both_odd & v_less_than_u, tmp->d, A->d, n_width); |
277 | bn_select_words(C->d, both_odd & ~v_less_than_u, tmp->d, C->d, n_width); |
278 | |
279 | bn_add_words(tmp->d, B->d, D->d, a_width); |
280 | bn_sub_words(tmp2->d, tmp->d, a->d, a_width); |
281 | bn_select_words(tmp->d, carry, tmp->d, tmp2->d, a_width); |
282 | bn_select_words(B->d, both_odd & v_less_than_u, tmp->d, B->d, a_width); |
283 | bn_select_words(D->d, both_odd & ~v_less_than_u, tmp->d, D->d, a_width); |
284 | |
285 | // Our loop invariants hold at this point. Additionally, exactly one of |u| |
286 | // and |v| is now even. |
287 | BN_ULONG u_is_even = ~word_is_odd_mask(u->d[0]); |
288 | BN_ULONG v_is_even = ~word_is_odd_mask(v->d[0]); |
289 | assert(u_is_even != v_is_even); |
290 | |
291 | // Halve the even one and adjust the corresponding coefficient. |
292 | maybe_rshift1_words(u->d, u_is_even, tmp->d, n_width); |
293 | BN_ULONG A_or_B_is_odd = |
294 | word_is_odd_mask(A->d[0]) | word_is_odd_mask(B->d[0]); |
295 | BN_ULONG A_carry = |
296 | maybe_add_words(A->d, A_or_B_is_odd & u_is_even, n->d, tmp->d, n_width); |
297 | BN_ULONG B_carry = |
298 | maybe_add_words(B->d, A_or_B_is_odd & u_is_even, a->d, tmp->d, a_width); |
299 | maybe_rshift1_words_carry(A->d, A_carry, u_is_even, tmp->d, n_width); |
300 | maybe_rshift1_words_carry(B->d, B_carry, u_is_even, tmp->d, a_width); |
301 | |
302 | maybe_rshift1_words(v->d, v_is_even, tmp->d, n_width); |
303 | BN_ULONG C_or_D_is_odd = |
304 | word_is_odd_mask(C->d[0]) | word_is_odd_mask(D->d[0]); |
305 | BN_ULONG C_carry = |
306 | maybe_add_words(C->d, C_or_D_is_odd & v_is_even, n->d, tmp->d, n_width); |
307 | BN_ULONG D_carry = |
308 | maybe_add_words(D->d, C_or_D_is_odd & v_is_even, a->d, tmp->d, a_width); |
309 | maybe_rshift1_words_carry(C->d, C_carry, v_is_even, tmp->d, n_width); |
310 | maybe_rshift1_words_carry(D->d, D_carry, v_is_even, tmp->d, a_width); |
311 | } |
312 | |
313 | assert(BN_is_zero(v)); |
314 | if (!BN_is_one(u)) { |
315 | *out_no_inverse = 1; |
316 | OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE); |
317 | goto err; |
318 | } |
319 | |
320 | ret = BN_copy(r, A) != NULL; |
321 | |
322 | err: |
323 | BN_CTX_end(ctx); |
324 | return ret; |
325 | } |
326 | |