| 1 | /* Copyright (c) 2018, Google Inc. |
| 2 | * |
| 3 | * Permission to use, copy, modify, and/or distribute this software for any |
| 4 | * purpose with or without fee is hereby granted, provided that the above |
| 5 | * copyright notice and this permission notice appear in all copies. |
| 6 | * |
| 7 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| 8 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 9 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| 10 | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 11 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| 12 | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| 13 | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| 14 | |
| 15 | #include <openssl/bn.h> |
| 16 | |
| 17 | #include <assert.h> |
| 18 | |
| 19 | #include <openssl/err.h> |
| 20 | |
| 21 | #include "internal.h" |
| 22 | |
| 23 | |
| 24 | static BN_ULONG word_is_odd_mask(BN_ULONG a) { return (BN_ULONG)0 - (a & 1); } |
| 25 | |
| 26 | static void maybe_rshift1_words(BN_ULONG *a, BN_ULONG mask, BN_ULONG *tmp, |
| 27 | size_t num) { |
| 28 | bn_rshift1_words(tmp, a, num); |
| 29 | bn_select_words(a, mask, tmp, a, num); |
| 30 | } |
| 31 | |
| 32 | static void maybe_rshift1_words_carry(BN_ULONG *a, BN_ULONG carry, |
| 33 | BN_ULONG mask, BN_ULONG *tmp, |
| 34 | size_t num) { |
| 35 | maybe_rshift1_words(a, mask, tmp, num); |
| 36 | if (num != 0) { |
| 37 | carry &= mask; |
| 38 | a[num - 1] |= carry << (BN_BITS2-1); |
| 39 | } |
| 40 | } |
| 41 | |
| 42 | static BN_ULONG maybe_add_words(BN_ULONG *a, BN_ULONG mask, const BN_ULONG *b, |
| 43 | BN_ULONG *tmp, size_t num) { |
| 44 | BN_ULONG carry = bn_add_words(tmp, a, b, num); |
| 45 | bn_select_words(a, mask, tmp, a, num); |
| 46 | return carry & mask; |
| 47 | } |
| 48 | |
| 49 | static int bn_gcd_consttime(BIGNUM *r, unsigned *out_shift, const BIGNUM *x, |
| 50 | const BIGNUM *y, BN_CTX *ctx) { |
| 51 | size_t width = x->width > y->width ? x->width : y->width; |
| 52 | if (width == 0) { |
| 53 | *out_shift = 0; |
| 54 | BN_zero(r); |
| 55 | return 1; |
| 56 | } |
| 57 | |
| 58 | // This is a constant-time implementation of Stein's algorithm (binary GCD). |
| 59 | int ret = 0; |
| 60 | BN_CTX_start(ctx); |
| 61 | BIGNUM *u = BN_CTX_get(ctx); |
| 62 | BIGNUM *v = BN_CTX_get(ctx); |
| 63 | BIGNUM *tmp = BN_CTX_get(ctx); |
| 64 | if (u == NULL || v == NULL || tmp == NULL || |
| 65 | !BN_copy(u, x) || |
| 66 | !BN_copy(v, y) || |
| 67 | !bn_resize_words(u, width) || |
| 68 | !bn_resize_words(v, width) || |
| 69 | !bn_resize_words(tmp, width)) { |
| 70 | goto err; |
| 71 | } |
| 72 | |
| 73 | // Each loop iteration halves at least one of |u| and |v|. Thus we need at |
| 74 | // most the combined bit width of inputs for at least one value to be zero. |
| 75 | unsigned x_bits = x->width * BN_BITS2, y_bits = y->width * BN_BITS2; |
| 76 | unsigned num_iters = x_bits + y_bits; |
| 77 | if (num_iters < x_bits) { |
| 78 | OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG); |
| 79 | goto err; |
| 80 | } |
| 81 | |
| 82 | unsigned shift = 0; |
| 83 | for (unsigned i = 0; i < num_iters; i++) { |
| 84 | BN_ULONG both_odd = word_is_odd_mask(u->d[0]) & word_is_odd_mask(v->d[0]); |
| 85 | |
| 86 | // If both |u| and |v| are odd, subtract the smaller from the larger. |
| 87 | BN_ULONG u_less_than_v = |
| 88 | (BN_ULONG)0 - bn_sub_words(tmp->d, u->d, v->d, width); |
| 89 | bn_select_words(u->d, both_odd & ~u_less_than_v, tmp->d, u->d, width); |
| 90 | bn_sub_words(tmp->d, v->d, u->d, width); |
| 91 | bn_select_words(v->d, both_odd & u_less_than_v, tmp->d, v->d, width); |
| 92 | |
| 93 | // At least one of |u| and |v| is now even. |
| 94 | BN_ULONG u_is_odd = word_is_odd_mask(u->d[0]); |
| 95 | BN_ULONG v_is_odd = word_is_odd_mask(v->d[0]); |
| 96 | assert(!(u_is_odd & v_is_odd)); |
| 97 | |
| 98 | // If both are even, the final GCD gains a factor of two. |
| 99 | shift += 1 & (~u_is_odd & ~v_is_odd); |
| 100 | |
| 101 | // Halve any which are even. |
| 102 | maybe_rshift1_words(u->d, ~u_is_odd, tmp->d, width); |
| 103 | maybe_rshift1_words(v->d, ~v_is_odd, tmp->d, width); |
| 104 | } |
| 105 | |
| 106 | // One of |u| or |v| is zero at this point. The algorithm usually makes |u| |
| 107 | // zero, unless |y| was already zero on input. Fix this by combining the |
| 108 | // values. |
| 109 | assert(BN_is_zero(u) || BN_is_zero(v)); |
| 110 | for (size_t i = 0; i < width; i++) { |
| 111 | v->d[i] |= u->d[i]; |
| 112 | } |
| 113 | |
| 114 | *out_shift = shift; |
| 115 | ret = bn_set_words(r, v->d, width); |
| 116 | |
| 117 | err: |
| 118 | BN_CTX_end(ctx); |
| 119 | return ret; |
| 120 | } |
| 121 | |
| 122 | int BN_gcd(BIGNUM *r, const BIGNUM *x, const BIGNUM *y, BN_CTX *ctx) { |
| 123 | unsigned shift; |
| 124 | return bn_gcd_consttime(r, &shift, x, y, ctx) && |
| 125 | BN_lshift(r, r, shift); |
| 126 | } |
| 127 | |
| 128 | int bn_is_relatively_prime(int *out_relatively_prime, const BIGNUM *x, |
| 129 | const BIGNUM *y, BN_CTX *ctx) { |
| 130 | int ret = 0; |
| 131 | BN_CTX_start(ctx); |
| 132 | unsigned shift; |
| 133 | BIGNUM *gcd = BN_CTX_get(ctx); |
| 134 | if (gcd == NULL || |
| 135 | !bn_gcd_consttime(gcd, &shift, x, y, ctx)) { |
| 136 | goto err; |
| 137 | } |
| 138 | |
| 139 | // Check that 2^|shift| * |gcd| is one. |
| 140 | if (gcd->width == 0) { |
| 141 | *out_relatively_prime = 0; |
| 142 | } else { |
| 143 | BN_ULONG mask = shift | (gcd->d[0] ^ 1); |
| 144 | for (int i = 1; i < gcd->width; i++) { |
| 145 | mask |= gcd->d[i]; |
| 146 | } |
| 147 | *out_relatively_prime = mask == 0; |
| 148 | } |
| 149 | ret = 1; |
| 150 | |
| 151 | err: |
| 152 | BN_CTX_end(ctx); |
| 153 | return ret; |
| 154 | } |
| 155 | |
| 156 | int bn_lcm_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) { |
| 157 | BN_CTX_start(ctx); |
| 158 | unsigned shift; |
| 159 | BIGNUM *gcd = BN_CTX_get(ctx); |
| 160 | int ret = gcd != NULL && |
| 161 | bn_mul_consttime(r, a, b, ctx) && |
| 162 | bn_gcd_consttime(gcd, &shift, a, b, ctx) && |
| 163 | bn_div_consttime(r, NULL, r, gcd, ctx) && |
| 164 | bn_rshift_secret_shift(r, r, shift, ctx); |
| 165 | BN_CTX_end(ctx); |
| 166 | return ret; |
| 167 | } |
| 168 | |
| 169 | int bn_mod_inverse_consttime(BIGNUM *r, int *out_no_inverse, const BIGNUM *a, |
| 170 | const BIGNUM *n, BN_CTX *ctx) { |
| 171 | *out_no_inverse = 0; |
| 172 | if (BN_is_negative(a) || BN_ucmp(a, n) >= 0) { |
| 173 | OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED); |
| 174 | return 0; |
| 175 | } |
| 176 | if (BN_is_zero(a)) { |
| 177 | if (BN_is_one(n)) { |
| 178 | BN_zero(r); |
| 179 | return 1; |
| 180 | } |
| 181 | *out_no_inverse = 1; |
| 182 | OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE); |
| 183 | return 0; |
| 184 | } |
| 185 | |
| 186 | // This is a constant-time implementation of the extended binary GCD |
| 187 | // algorithm. It is adapted from the Handbook of Applied Cryptography, section |
| 188 | // 14.4.3, algorithm 14.51, and modified to bound coefficients and avoid |
| 189 | // negative numbers. |
| 190 | // |
| 191 | // For more details and proof of correctness, see |
| 192 | // https://github.com/mit-plv/fiat-crypto/pull/333. In particular, see |step| |
| 193 | // and |mod_inverse_consttime| for the algorithm in Gallina and see |
| 194 | // |mod_inverse_consttime_spec| for the correctness result. |
| 195 | |
| 196 | if (!BN_is_odd(a) && !BN_is_odd(n)) { |
| 197 | *out_no_inverse = 1; |
| 198 | OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE); |
| 199 | return 0; |
| 200 | } |
| 201 | |
| 202 | // This function exists to compute the RSA private exponent, where |a| is one |
| 203 | // word. We'll thus use |a_width| when available. |
| 204 | size_t n_width = n->width, a_width = a->width; |
| 205 | if (a_width > n_width) { |
| 206 | a_width = n_width; |
| 207 | } |
| 208 | |
| 209 | int ret = 0; |
| 210 | BN_CTX_start(ctx); |
| 211 | BIGNUM *u = BN_CTX_get(ctx); |
| 212 | BIGNUM *v = BN_CTX_get(ctx); |
| 213 | BIGNUM *A = BN_CTX_get(ctx); |
| 214 | BIGNUM *B = BN_CTX_get(ctx); |
| 215 | BIGNUM *C = BN_CTX_get(ctx); |
| 216 | BIGNUM *D = BN_CTX_get(ctx); |
| 217 | BIGNUM *tmp = BN_CTX_get(ctx); |
| 218 | BIGNUM *tmp2 = BN_CTX_get(ctx); |
| 219 | if (u == NULL || v == NULL || A == NULL || B == NULL || C == NULL || |
| 220 | D == NULL || tmp == NULL || tmp2 == NULL || |
| 221 | !BN_copy(u, a) || |
| 222 | !BN_copy(v, n) || |
| 223 | !BN_one(A) || |
| 224 | !BN_one(D) || |
| 225 | // For convenience, size |u| and |v| equivalently. |
| 226 | !bn_resize_words(u, n_width) || |
| 227 | !bn_resize_words(v, n_width) || |
| 228 | // |A| and |C| are bounded by |m|. |
| 229 | !bn_resize_words(A, n_width) || |
| 230 | !bn_resize_words(C, n_width) || |
| 231 | // |B| and |D| are bounded by |a|. |
| 232 | !bn_resize_words(B, a_width) || |
| 233 | !bn_resize_words(D, a_width) || |
| 234 | // |tmp| and |tmp2| may be used at either size. |
| 235 | !bn_resize_words(tmp, n_width) || |
| 236 | !bn_resize_words(tmp2, n_width)) { |
| 237 | goto err; |
| 238 | } |
| 239 | |
| 240 | // Each loop iteration halves at least one of |u| and |v|. Thus we need at |
| 241 | // most the combined bit width of inputs for at least one value to be zero. |
| 242 | unsigned a_bits = a_width * BN_BITS2, n_bits = n_width * BN_BITS2; |
| 243 | unsigned num_iters = a_bits + n_bits; |
| 244 | if (num_iters < a_bits) { |
| 245 | OPENSSL_PUT_ERROR(BN, BN_R_BIGNUM_TOO_LONG); |
| 246 | goto err; |
| 247 | } |
| 248 | |
| 249 | // Before and after each loop iteration, the following hold: |
| 250 | // |
| 251 | // u = A*a - B*n |
| 252 | // v = D*n - C*a |
| 253 | // 0 < u <= a |
| 254 | // 0 <= v <= n |
| 255 | // 0 <= A < n |
| 256 | // 0 <= B <= a |
| 257 | // 0 <= C < n |
| 258 | // 0 <= D <= a |
| 259 | // |
| 260 | // After each loop iteration, u and v only get smaller, and at least one of |
| 261 | // them shrinks by at least a factor of two. |
| 262 | for (unsigned i = 0; i < num_iters; i++) { |
| 263 | BN_ULONG both_odd = word_is_odd_mask(u->d[0]) & word_is_odd_mask(v->d[0]); |
| 264 | |
| 265 | // If both |u| and |v| are odd, subtract the smaller from the larger. |
| 266 | BN_ULONG v_less_than_u = |
| 267 | (BN_ULONG)0 - bn_sub_words(tmp->d, v->d, u->d, n_width); |
| 268 | bn_select_words(v->d, both_odd & ~v_less_than_u, tmp->d, v->d, n_width); |
| 269 | bn_sub_words(tmp->d, u->d, v->d, n_width); |
| 270 | bn_select_words(u->d, both_odd & v_less_than_u, tmp->d, u->d, n_width); |
| 271 | |
| 272 | // If we updated one of the values, update the corresponding coefficient. |
| 273 | BN_ULONG carry = bn_add_words(tmp->d, A->d, C->d, n_width); |
| 274 | carry -= bn_sub_words(tmp2->d, tmp->d, n->d, n_width); |
| 275 | bn_select_words(tmp->d, carry, tmp->d, tmp2->d, n_width); |
| 276 | bn_select_words(A->d, both_odd & v_less_than_u, tmp->d, A->d, n_width); |
| 277 | bn_select_words(C->d, both_odd & ~v_less_than_u, tmp->d, C->d, n_width); |
| 278 | |
| 279 | bn_add_words(tmp->d, B->d, D->d, a_width); |
| 280 | bn_sub_words(tmp2->d, tmp->d, a->d, a_width); |
| 281 | bn_select_words(tmp->d, carry, tmp->d, tmp2->d, a_width); |
| 282 | bn_select_words(B->d, both_odd & v_less_than_u, tmp->d, B->d, a_width); |
| 283 | bn_select_words(D->d, both_odd & ~v_less_than_u, tmp->d, D->d, a_width); |
| 284 | |
| 285 | // Our loop invariants hold at this point. Additionally, exactly one of |u| |
| 286 | // and |v| is now even. |
| 287 | BN_ULONG u_is_even = ~word_is_odd_mask(u->d[0]); |
| 288 | BN_ULONG v_is_even = ~word_is_odd_mask(v->d[0]); |
| 289 | assert(u_is_even != v_is_even); |
| 290 | |
| 291 | // Halve the even one and adjust the corresponding coefficient. |
| 292 | maybe_rshift1_words(u->d, u_is_even, tmp->d, n_width); |
| 293 | BN_ULONG A_or_B_is_odd = |
| 294 | word_is_odd_mask(A->d[0]) | word_is_odd_mask(B->d[0]); |
| 295 | BN_ULONG A_carry = |
| 296 | maybe_add_words(A->d, A_or_B_is_odd & u_is_even, n->d, tmp->d, n_width); |
| 297 | BN_ULONG B_carry = |
| 298 | maybe_add_words(B->d, A_or_B_is_odd & u_is_even, a->d, tmp->d, a_width); |
| 299 | maybe_rshift1_words_carry(A->d, A_carry, u_is_even, tmp->d, n_width); |
| 300 | maybe_rshift1_words_carry(B->d, B_carry, u_is_even, tmp->d, a_width); |
| 301 | |
| 302 | maybe_rshift1_words(v->d, v_is_even, tmp->d, n_width); |
| 303 | BN_ULONG C_or_D_is_odd = |
| 304 | word_is_odd_mask(C->d[0]) | word_is_odd_mask(D->d[0]); |
| 305 | BN_ULONG C_carry = |
| 306 | maybe_add_words(C->d, C_or_D_is_odd & v_is_even, n->d, tmp->d, n_width); |
| 307 | BN_ULONG D_carry = |
| 308 | maybe_add_words(D->d, C_or_D_is_odd & v_is_even, a->d, tmp->d, a_width); |
| 309 | maybe_rshift1_words_carry(C->d, C_carry, v_is_even, tmp->d, n_width); |
| 310 | maybe_rshift1_words_carry(D->d, D_carry, v_is_even, tmp->d, a_width); |
| 311 | } |
| 312 | |
| 313 | assert(BN_is_zero(v)); |
| 314 | if (!BN_is_one(u)) { |
| 315 | *out_no_inverse = 1; |
| 316 | OPENSSL_PUT_ERROR(BN, BN_R_NO_INVERSE); |
| 317 | goto err; |
| 318 | } |
| 319 | |
| 320 | ret = BN_copy(r, A) != NULL; |
| 321 | |
| 322 | err: |
| 323 | BN_CTX_end(ctx); |
| 324 | return ret; |
| 325 | } |
| 326 | |