| 1 | /* Copyright 2016 Brian Smith. |
| 2 | * |
| 3 | * Permission to use, copy, modify, and/or distribute this software for any |
| 4 | * purpose with or without fee is hereby granted, provided that the above |
| 5 | * copyright notice and this permission notice appear in all copies. |
| 6 | * |
| 7 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| 8 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 9 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
| 10 | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 11 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| 12 | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| 13 | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
| 14 | |
| 15 | #include <openssl/bn.h> |
| 16 | |
| 17 | #include <assert.h> |
| 18 | |
| 19 | #include "internal.h" |
| 20 | #include "../../internal.h" |
| 21 | |
| 22 | |
| 23 | static uint64_t bn_neg_inv_mod_r_u64(uint64_t n); |
| 24 | |
| 25 | OPENSSL_STATIC_ASSERT(BN_MONT_CTX_N0_LIMBS == 1 || BN_MONT_CTX_N0_LIMBS == 2, |
| 26 | "BN_MONT_CTX_N0_LIMBS value is invalid" ); |
| 27 | OPENSSL_STATIC_ASSERT(sizeof(BN_ULONG) * BN_MONT_CTX_N0_LIMBS == |
| 28 | sizeof(uint64_t), |
| 29 | "uint64_t is insufficient precision for n0" ); |
| 30 | |
| 31 | // LG_LITTLE_R is log_2(r). |
| 32 | #define LG_LITTLE_R (BN_MONT_CTX_N0_LIMBS * BN_BITS2) |
| 33 | |
| 34 | uint64_t bn_mont_n0(const BIGNUM *n) { |
| 35 | // These conditions are checked by the caller, |BN_MONT_CTX_set| or |
| 36 | // |BN_MONT_CTX_new_consttime|. |
| 37 | assert(!BN_is_zero(n)); |
| 38 | assert(!BN_is_negative(n)); |
| 39 | assert(BN_is_odd(n)); |
| 40 | |
| 41 | // r == 2**(BN_MONT_CTX_N0_LIMBS * BN_BITS2) and LG_LITTLE_R == lg(r). This |
| 42 | // ensures that we can do integer division by |r| by simply ignoring |
| 43 | // |BN_MONT_CTX_N0_LIMBS| limbs. Similarly, we can calculate values modulo |
| 44 | // |r| by just looking at the lowest |BN_MONT_CTX_N0_LIMBS| limbs. This is |
| 45 | // what makes Montgomery multiplication efficient. |
| 46 | // |
| 47 | // As shown in Algorithm 1 of "Fast Prime Field Elliptic Curve Cryptography |
| 48 | // with 256 Bit Primes" by Shay Gueron and Vlad Krasnov, in the loop of a |
| 49 | // multi-limb Montgomery multiplication of |a * b (mod n)|, given the |
| 50 | // unreduced product |t == a * b|, we repeatedly calculate: |
| 51 | // |
| 52 | // t1 := t % r |t1| is |t|'s lowest limb (see previous paragraph). |
| 53 | // t2 := t1*n0*n |
| 54 | // t3 := t + t2 |
| 55 | // t := t3 / r copy all limbs of |t3| except the lowest to |t|. |
| 56 | // |
| 57 | // In the last step, it would only make sense to ignore the lowest limb of |
| 58 | // |t3| if it were zero. The middle steps ensure that this is the case: |
| 59 | // |
| 60 | // t3 == 0 (mod r) |
| 61 | // t + t2 == 0 (mod r) |
| 62 | // t + t1*n0*n == 0 (mod r) |
| 63 | // t1*n0*n == -t (mod r) |
| 64 | // t*n0*n == -t (mod r) |
| 65 | // n0*n == -1 (mod r) |
| 66 | // n0 == -1/n (mod r) |
| 67 | // |
| 68 | // Thus, in each iteration of the loop, we multiply by the constant factor |
| 69 | // |n0|, the negative inverse of n (mod r). |
| 70 | |
| 71 | // n_mod_r = n % r. As explained above, this is done by taking the lowest |
| 72 | // |BN_MONT_CTX_N0_LIMBS| limbs of |n|. |
| 73 | uint64_t n_mod_r = n->d[0]; |
| 74 | #if BN_MONT_CTX_N0_LIMBS == 2 |
| 75 | if (n->width > 1) { |
| 76 | n_mod_r |= (uint64_t)n->d[1] << BN_BITS2; |
| 77 | } |
| 78 | #endif |
| 79 | |
| 80 | return bn_neg_inv_mod_r_u64(n_mod_r); |
| 81 | } |
| 82 | |
| 83 | // bn_neg_inv_r_mod_n_u64 calculates the -1/n mod r; i.e. it calculates |v| |
| 84 | // such that u*r - v*n == 1. |r| is the constant defined in |bn_mont_n0|. |n| |
| 85 | // must be odd. |
| 86 | // |
| 87 | // This is derived from |xbinGCD| in Henry S. Warren, Jr.'s "Montgomery |
| 88 | // Multiplication" (http://www.hackersdelight.org/MontgomeryMultiplication.pdf). |
| 89 | // It is very similar to the MODULAR-INVERSE function in Stephen R. Dussé's and |
| 90 | // Burton S. Kaliski Jr.'s "A Cryptographic Library for the Motorola DSP56000" |
| 91 | // (http://link.springer.com/chapter/10.1007%2F3-540-46877-3_21). |
| 92 | // |
| 93 | // This is inspired by Joppe W. Bos's "Constant Time Modular Inversion" |
| 94 | // (http://www.joppebos.com/files/CTInversion.pdf) so that the inversion is |
| 95 | // constant-time with respect to |n|. We assume uint64_t additions, |
| 96 | // subtractions, shifts, and bitwise operations are all constant time, which |
| 97 | // may be a large leap of faith on 32-bit targets. We avoid division and |
| 98 | // multiplication, which tend to be the most problematic in terms of timing |
| 99 | // leaks. |
| 100 | // |
| 101 | // Most GCD implementations return values such that |u*r + v*n == 1|, so the |
| 102 | // caller would have to negate the resultant |v| for the purpose of Montgomery |
| 103 | // multiplication. This implementation does the negation implicitly by doing |
| 104 | // the computations as a difference instead of a sum. |
| 105 | static uint64_t bn_neg_inv_mod_r_u64(uint64_t n) { |
| 106 | assert(n % 2 == 1); |
| 107 | |
| 108 | // alpha == 2**(lg r - 1) == r / 2. |
| 109 | static const uint64_t alpha = UINT64_C(1) << (LG_LITTLE_R - 1); |
| 110 | |
| 111 | const uint64_t beta = n; |
| 112 | |
| 113 | uint64_t u = 1; |
| 114 | uint64_t v = 0; |
| 115 | |
| 116 | // The invariant maintained from here on is: |
| 117 | // 2**(lg r - i) == u*2*alpha - v*beta. |
| 118 | for (size_t i = 0; i < LG_LITTLE_R; ++i) { |
| 119 | #if BN_BITS2 == 64 && defined(BN_ULLONG) |
| 120 | assert((BN_ULLONG)(1) << (LG_LITTLE_R - i) == |
| 121 | ((BN_ULLONG)u * 2 * alpha) - ((BN_ULLONG)v * beta)); |
| 122 | #endif |
| 123 | |
| 124 | // Delete a common factor of 2 in u and v if |u| is even. Otherwise, set |
| 125 | // |u = (u + beta) / 2| and |v = (v / 2) + alpha|. |
| 126 | |
| 127 | uint64_t u_is_odd = UINT64_C(0) - (u & 1); // Either 0xff..ff or 0. |
| 128 | |
| 129 | // The addition can overflow, so use Dietz's method for it. |
| 130 | // |
| 131 | // Dietz calculates (x+y)/2 by (x⊕y)>>1 + x&y. This is valid for all |
| 132 | // (unsigned) x and y, even when x+y overflows. Evidence for 32-bit values |
| 133 | // (embedded in 64 bits to so that overflow can be ignored): |
| 134 | // |
| 135 | // (declare-fun x () (_ BitVec 64)) |
| 136 | // (declare-fun y () (_ BitVec 64)) |
| 137 | // (assert (let ( |
| 138 | // (one (_ bv1 64)) |
| 139 | // (thirtyTwo (_ bv32 64))) |
| 140 | // (and |
| 141 | // (bvult x (bvshl one thirtyTwo)) |
| 142 | // (bvult y (bvshl one thirtyTwo)) |
| 143 | // (not (= |
| 144 | // (bvadd (bvlshr (bvxor x y) one) (bvand x y)) |
| 145 | // (bvlshr (bvadd x y) one))) |
| 146 | // ))) |
| 147 | // (check-sat) |
| 148 | uint64_t beta_if_u_is_odd = beta & u_is_odd; // Either |beta| or 0. |
| 149 | u = ((u ^ beta_if_u_is_odd) >> 1) + (u & beta_if_u_is_odd); |
| 150 | |
| 151 | uint64_t alpha_if_u_is_odd = alpha & u_is_odd; // Either |alpha| or 0. |
| 152 | v = (v >> 1) + alpha_if_u_is_odd; |
| 153 | } |
| 154 | |
| 155 | // The invariant now shows that u*r - v*n == 1 since r == 2 * alpha. |
| 156 | #if BN_BITS2 == 64 && defined(BN_ULLONG) |
| 157 | assert(1 == ((BN_ULLONG)u * 2 * alpha) - ((BN_ULLONG)v * beta)); |
| 158 | #endif |
| 159 | |
| 160 | return v; |
| 161 | } |
| 162 | |
| 163 | int bn_mod_exp_base_2_consttime(BIGNUM *r, unsigned p, const BIGNUM *n, |
| 164 | BN_CTX *ctx) { |
| 165 | assert(!BN_is_zero(n)); |
| 166 | assert(!BN_is_negative(n)); |
| 167 | assert(BN_is_odd(n)); |
| 168 | |
| 169 | BN_zero(r); |
| 170 | |
| 171 | unsigned n_bits = BN_num_bits(n); |
| 172 | assert(n_bits != 0); |
| 173 | assert(p > n_bits); |
| 174 | if (n_bits == 1) { |
| 175 | return 1; |
| 176 | } |
| 177 | |
| 178 | // Set |r| to the larger power of two smaller than |n|, then shift with |
| 179 | // reductions the rest of the way. |
| 180 | if (!BN_set_bit(r, n_bits - 1) || |
| 181 | !bn_mod_lshift_consttime(r, r, p - (n_bits - 1), n, ctx)) { |
| 182 | return 0; |
| 183 | } |
| 184 | |
| 185 | return 1; |
| 186 | } |
| 187 | |