1 | /* Copyright 2016 Brian Smith. |
2 | * |
3 | * Permission to use, copy, modify, and/or distribute this software for any |
4 | * purpose with or without fee is hereby granted, provided that the above |
5 | * copyright notice and this permission notice appear in all copies. |
6 | * |
7 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
8 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
9 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY |
10 | * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
11 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
12 | * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
13 | * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ |
14 | |
15 | #include <openssl/bn.h> |
16 | |
17 | #include <assert.h> |
18 | |
19 | #include "internal.h" |
20 | #include "../../internal.h" |
21 | |
22 | |
23 | static uint64_t bn_neg_inv_mod_r_u64(uint64_t n); |
24 | |
25 | OPENSSL_STATIC_ASSERT(BN_MONT_CTX_N0_LIMBS == 1 || BN_MONT_CTX_N0_LIMBS == 2, |
26 | "BN_MONT_CTX_N0_LIMBS value is invalid" ); |
27 | OPENSSL_STATIC_ASSERT(sizeof(BN_ULONG) * BN_MONT_CTX_N0_LIMBS == |
28 | sizeof(uint64_t), |
29 | "uint64_t is insufficient precision for n0" ); |
30 | |
31 | // LG_LITTLE_R is log_2(r). |
32 | #define LG_LITTLE_R (BN_MONT_CTX_N0_LIMBS * BN_BITS2) |
33 | |
34 | uint64_t bn_mont_n0(const BIGNUM *n) { |
35 | // These conditions are checked by the caller, |BN_MONT_CTX_set| or |
36 | // |BN_MONT_CTX_new_consttime|. |
37 | assert(!BN_is_zero(n)); |
38 | assert(!BN_is_negative(n)); |
39 | assert(BN_is_odd(n)); |
40 | |
41 | // r == 2**(BN_MONT_CTX_N0_LIMBS * BN_BITS2) and LG_LITTLE_R == lg(r). This |
42 | // ensures that we can do integer division by |r| by simply ignoring |
43 | // |BN_MONT_CTX_N0_LIMBS| limbs. Similarly, we can calculate values modulo |
44 | // |r| by just looking at the lowest |BN_MONT_CTX_N0_LIMBS| limbs. This is |
45 | // what makes Montgomery multiplication efficient. |
46 | // |
47 | // As shown in Algorithm 1 of "Fast Prime Field Elliptic Curve Cryptography |
48 | // with 256 Bit Primes" by Shay Gueron and Vlad Krasnov, in the loop of a |
49 | // multi-limb Montgomery multiplication of |a * b (mod n)|, given the |
50 | // unreduced product |t == a * b|, we repeatedly calculate: |
51 | // |
52 | // t1 := t % r |t1| is |t|'s lowest limb (see previous paragraph). |
53 | // t2 := t1*n0*n |
54 | // t3 := t + t2 |
55 | // t := t3 / r copy all limbs of |t3| except the lowest to |t|. |
56 | // |
57 | // In the last step, it would only make sense to ignore the lowest limb of |
58 | // |t3| if it were zero. The middle steps ensure that this is the case: |
59 | // |
60 | // t3 == 0 (mod r) |
61 | // t + t2 == 0 (mod r) |
62 | // t + t1*n0*n == 0 (mod r) |
63 | // t1*n0*n == -t (mod r) |
64 | // t*n0*n == -t (mod r) |
65 | // n0*n == -1 (mod r) |
66 | // n0 == -1/n (mod r) |
67 | // |
68 | // Thus, in each iteration of the loop, we multiply by the constant factor |
69 | // |n0|, the negative inverse of n (mod r). |
70 | |
71 | // n_mod_r = n % r. As explained above, this is done by taking the lowest |
72 | // |BN_MONT_CTX_N0_LIMBS| limbs of |n|. |
73 | uint64_t n_mod_r = n->d[0]; |
74 | #if BN_MONT_CTX_N0_LIMBS == 2 |
75 | if (n->width > 1) { |
76 | n_mod_r |= (uint64_t)n->d[1] << BN_BITS2; |
77 | } |
78 | #endif |
79 | |
80 | return bn_neg_inv_mod_r_u64(n_mod_r); |
81 | } |
82 | |
83 | // bn_neg_inv_r_mod_n_u64 calculates the -1/n mod r; i.e. it calculates |v| |
84 | // such that u*r - v*n == 1. |r| is the constant defined in |bn_mont_n0|. |n| |
85 | // must be odd. |
86 | // |
87 | // This is derived from |xbinGCD| in Henry S. Warren, Jr.'s "Montgomery |
88 | // Multiplication" (http://www.hackersdelight.org/MontgomeryMultiplication.pdf). |
89 | // It is very similar to the MODULAR-INVERSE function in Stephen R. Dussé's and |
90 | // Burton S. Kaliski Jr.'s "A Cryptographic Library for the Motorola DSP56000" |
91 | // (http://link.springer.com/chapter/10.1007%2F3-540-46877-3_21). |
92 | // |
93 | // This is inspired by Joppe W. Bos's "Constant Time Modular Inversion" |
94 | // (http://www.joppebos.com/files/CTInversion.pdf) so that the inversion is |
95 | // constant-time with respect to |n|. We assume uint64_t additions, |
96 | // subtractions, shifts, and bitwise operations are all constant time, which |
97 | // may be a large leap of faith on 32-bit targets. We avoid division and |
98 | // multiplication, which tend to be the most problematic in terms of timing |
99 | // leaks. |
100 | // |
101 | // Most GCD implementations return values such that |u*r + v*n == 1|, so the |
102 | // caller would have to negate the resultant |v| for the purpose of Montgomery |
103 | // multiplication. This implementation does the negation implicitly by doing |
104 | // the computations as a difference instead of a sum. |
105 | static uint64_t bn_neg_inv_mod_r_u64(uint64_t n) { |
106 | assert(n % 2 == 1); |
107 | |
108 | // alpha == 2**(lg r - 1) == r / 2. |
109 | static const uint64_t alpha = UINT64_C(1) << (LG_LITTLE_R - 1); |
110 | |
111 | const uint64_t beta = n; |
112 | |
113 | uint64_t u = 1; |
114 | uint64_t v = 0; |
115 | |
116 | // The invariant maintained from here on is: |
117 | // 2**(lg r - i) == u*2*alpha - v*beta. |
118 | for (size_t i = 0; i < LG_LITTLE_R; ++i) { |
119 | #if BN_BITS2 == 64 && defined(BN_ULLONG) |
120 | assert((BN_ULLONG)(1) << (LG_LITTLE_R - i) == |
121 | ((BN_ULLONG)u * 2 * alpha) - ((BN_ULLONG)v * beta)); |
122 | #endif |
123 | |
124 | // Delete a common factor of 2 in u and v if |u| is even. Otherwise, set |
125 | // |u = (u + beta) / 2| and |v = (v / 2) + alpha|. |
126 | |
127 | uint64_t u_is_odd = UINT64_C(0) - (u & 1); // Either 0xff..ff or 0. |
128 | |
129 | // The addition can overflow, so use Dietz's method for it. |
130 | // |
131 | // Dietz calculates (x+y)/2 by (x⊕y)>>1 + x&y. This is valid for all |
132 | // (unsigned) x and y, even when x+y overflows. Evidence for 32-bit values |
133 | // (embedded in 64 bits to so that overflow can be ignored): |
134 | // |
135 | // (declare-fun x () (_ BitVec 64)) |
136 | // (declare-fun y () (_ BitVec 64)) |
137 | // (assert (let ( |
138 | // (one (_ bv1 64)) |
139 | // (thirtyTwo (_ bv32 64))) |
140 | // (and |
141 | // (bvult x (bvshl one thirtyTwo)) |
142 | // (bvult y (bvshl one thirtyTwo)) |
143 | // (not (= |
144 | // (bvadd (bvlshr (bvxor x y) one) (bvand x y)) |
145 | // (bvlshr (bvadd x y) one))) |
146 | // ))) |
147 | // (check-sat) |
148 | uint64_t beta_if_u_is_odd = beta & u_is_odd; // Either |beta| or 0. |
149 | u = ((u ^ beta_if_u_is_odd) >> 1) + (u & beta_if_u_is_odd); |
150 | |
151 | uint64_t alpha_if_u_is_odd = alpha & u_is_odd; // Either |alpha| or 0. |
152 | v = (v >> 1) + alpha_if_u_is_odd; |
153 | } |
154 | |
155 | // The invariant now shows that u*r - v*n == 1 since r == 2 * alpha. |
156 | #if BN_BITS2 == 64 && defined(BN_ULLONG) |
157 | assert(1 == ((BN_ULLONG)u * 2 * alpha) - ((BN_ULLONG)v * beta)); |
158 | #endif |
159 | |
160 | return v; |
161 | } |
162 | |
163 | int bn_mod_exp_base_2_consttime(BIGNUM *r, unsigned p, const BIGNUM *n, |
164 | BN_CTX *ctx) { |
165 | assert(!BN_is_zero(n)); |
166 | assert(!BN_is_negative(n)); |
167 | assert(BN_is_odd(n)); |
168 | |
169 | BN_zero(r); |
170 | |
171 | unsigned n_bits = BN_num_bits(n); |
172 | assert(n_bits != 0); |
173 | assert(p > n_bits); |
174 | if (n_bits == 1) { |
175 | return 1; |
176 | } |
177 | |
178 | // Set |r| to the larger power of two smaller than |n|, then shift with |
179 | // reductions the rest of the way. |
180 | if (!BN_set_bit(r, n_bits - 1) || |
181 | !bn_mod_lshift_consttime(r, r, p - (n_bits - 1), n, ctx)) { |
182 | return 0; |
183 | } |
184 | |
185 | return 1; |
186 | } |
187 | |