| 1 | /* Originally written by Bodo Moeller for the OpenSSL project. |
| 2 | * ==================================================================== |
| 3 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
| 4 | * |
| 5 | * Redistribution and use in source and binary forms, with or without |
| 6 | * modification, are permitted provided that the following conditions |
| 7 | * are met: |
| 8 | * |
| 9 | * 1. Redistributions of source code must retain the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer. |
| 11 | * |
| 12 | * 2. Redistributions in binary form must reproduce the above copyright |
| 13 | * notice, this list of conditions and the following disclaimer in |
| 14 | * the documentation and/or other materials provided with the |
| 15 | * distribution. |
| 16 | * |
| 17 | * 3. All advertising materials mentioning features or use of this |
| 18 | * software must display the following acknowledgment: |
| 19 | * "This product includes software developed by the OpenSSL Project |
| 20 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
| 21 | * |
| 22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| 23 | * endorse or promote products derived from this software without |
| 24 | * prior written permission. For written permission, please contact |
| 25 | * openssl-core@openssl.org. |
| 26 | * |
| 27 | * 5. Products derived from this software may not be called "OpenSSL" |
| 28 | * nor may "OpenSSL" appear in their names without prior written |
| 29 | * permission of the OpenSSL Project. |
| 30 | * |
| 31 | * 6. Redistributions of any form whatsoever must retain the following |
| 32 | * acknowledgment: |
| 33 | * "This product includes software developed by the OpenSSL Project |
| 34 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
| 35 | * |
| 36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| 37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| 40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| 41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| 44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| 45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| 46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| 47 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
| 48 | * ==================================================================== |
| 49 | * |
| 50 | * This product includes cryptographic software written by Eric Young |
| 51 | * (eay@cryptsoft.com). This product includes software written by Tim |
| 52 | * Hudson (tjh@cryptsoft.com). |
| 53 | * |
| 54 | */ |
| 55 | /* ==================================================================== |
| 56 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
| 57 | * |
| 58 | * Portions of the attached software ("Contribution") are developed by |
| 59 | * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
| 60 | * |
| 61 | * The Contribution is licensed pursuant to the OpenSSL open source |
| 62 | * license provided above. |
| 63 | * |
| 64 | * The elliptic curve binary polynomial software is originally written by |
| 65 | * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems |
| 66 | * Laboratories. */ |
| 67 | |
| 68 | #include <openssl/ec.h> |
| 69 | |
| 70 | #include <string.h> |
| 71 | |
| 72 | #include <openssl/bn.h> |
| 73 | #include <openssl/err.h> |
| 74 | #include <openssl/mem.h> |
| 75 | |
| 76 | #include "internal.h" |
| 77 | #include "../../internal.h" |
| 78 | |
| 79 | |
| 80 | // Most method functions in this file are designed to work with non-trivial |
| 81 | // representations of field elements if necessary (see ecp_mont.c): while |
| 82 | // standard modular addition and subtraction are used, the field_mul and |
| 83 | // field_sqr methods will be used for multiplication, and field_encode and |
| 84 | // field_decode (if defined) will be used for converting between |
| 85 | // representations. |
| 86 | // |
| 87 | // Functions here specifically assume that if a non-trivial representation is |
| 88 | // used, it is a Montgomery representation (i.e. 'encoding' means multiplying |
| 89 | // by some factor R). |
| 90 | |
| 91 | int ec_GFp_simple_group_init(EC_GROUP *group) { |
| 92 | BN_init(&group->field); |
| 93 | group->a_is_minus3 = 0; |
| 94 | return 1; |
| 95 | } |
| 96 | |
| 97 | void ec_GFp_simple_group_finish(EC_GROUP *group) { |
| 98 | BN_free(&group->field); |
| 99 | } |
| 100 | |
| 101 | int ec_GFp_simple_group_set_curve(EC_GROUP *group, const BIGNUM *p, |
| 102 | const BIGNUM *a, const BIGNUM *b, |
| 103 | BN_CTX *ctx) { |
| 104 | int ret = 0; |
| 105 | BN_CTX *new_ctx = NULL; |
| 106 | |
| 107 | // p must be a prime > 3 |
| 108 | if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) { |
| 109 | OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FIELD); |
| 110 | return 0; |
| 111 | } |
| 112 | |
| 113 | if (ctx == NULL) { |
| 114 | ctx = new_ctx = BN_CTX_new(); |
| 115 | if (ctx == NULL) { |
| 116 | return 0; |
| 117 | } |
| 118 | } |
| 119 | |
| 120 | BN_CTX_start(ctx); |
| 121 | BIGNUM *tmp = BN_CTX_get(ctx); |
| 122 | if (tmp == NULL) { |
| 123 | goto err; |
| 124 | } |
| 125 | |
| 126 | // group->field |
| 127 | if (!BN_copy(&group->field, p)) { |
| 128 | goto err; |
| 129 | } |
| 130 | BN_set_negative(&group->field, 0); |
| 131 | // Store the field in minimal form, so it can be used with |BN_ULONG| arrays. |
| 132 | bn_set_minimal_width(&group->field); |
| 133 | |
| 134 | // group->a |
| 135 | if (!BN_nnmod(tmp, a, &group->field, ctx) || |
| 136 | !ec_bignum_to_felem(group, &group->a, tmp)) { |
| 137 | goto err; |
| 138 | } |
| 139 | |
| 140 | // group->a_is_minus3 |
| 141 | if (!BN_add_word(tmp, 3)) { |
| 142 | goto err; |
| 143 | } |
| 144 | group->a_is_minus3 = (0 == BN_cmp(tmp, &group->field)); |
| 145 | |
| 146 | // group->b |
| 147 | if (!BN_nnmod(tmp, b, &group->field, ctx) || |
| 148 | !ec_bignum_to_felem(group, &group->b, tmp)) { |
| 149 | goto err; |
| 150 | } |
| 151 | |
| 152 | if (!ec_bignum_to_felem(group, &group->one, BN_value_one())) { |
| 153 | goto err; |
| 154 | } |
| 155 | |
| 156 | ret = 1; |
| 157 | |
| 158 | err: |
| 159 | BN_CTX_end(ctx); |
| 160 | BN_CTX_free(new_ctx); |
| 161 | return ret; |
| 162 | } |
| 163 | |
| 164 | int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, |
| 165 | BIGNUM *b) { |
| 166 | if ((p != NULL && !BN_copy(p, &group->field)) || |
| 167 | (a != NULL && !ec_felem_to_bignum(group, a, &group->a)) || |
| 168 | (b != NULL && !ec_felem_to_bignum(group, b, &group->b))) { |
| 169 | return 0; |
| 170 | } |
| 171 | return 1; |
| 172 | } |
| 173 | |
| 174 | void ec_GFp_simple_point_init(EC_RAW_POINT *point) { |
| 175 | OPENSSL_memset(&point->X, 0, sizeof(EC_FELEM)); |
| 176 | OPENSSL_memset(&point->Y, 0, sizeof(EC_FELEM)); |
| 177 | OPENSSL_memset(&point->Z, 0, sizeof(EC_FELEM)); |
| 178 | } |
| 179 | |
| 180 | void ec_GFp_simple_point_copy(EC_RAW_POINT *dest, const EC_RAW_POINT *src) { |
| 181 | OPENSSL_memcpy(&dest->X, &src->X, sizeof(EC_FELEM)); |
| 182 | OPENSSL_memcpy(&dest->Y, &src->Y, sizeof(EC_FELEM)); |
| 183 | OPENSSL_memcpy(&dest->Z, &src->Z, sizeof(EC_FELEM)); |
| 184 | } |
| 185 | |
| 186 | void ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group, |
| 187 | EC_RAW_POINT *point) { |
| 188 | // Although it is strictly only necessary to zero Z, we zero the entire point |
| 189 | // in case |point| was stack-allocated and yet to be initialized. |
| 190 | ec_GFp_simple_point_init(point); |
| 191 | } |
| 192 | |
| 193 | int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group, |
| 194 | EC_RAW_POINT *point, |
| 195 | const BIGNUM *x, |
| 196 | const BIGNUM *y) { |
| 197 | if (x == NULL || y == NULL) { |
| 198 | OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); |
| 199 | return 0; |
| 200 | } |
| 201 | |
| 202 | if (!ec_bignum_to_felem(group, &point->X, x) || |
| 203 | !ec_bignum_to_felem(group, &point->Y, y)) { |
| 204 | return 0; |
| 205 | } |
| 206 | OPENSSL_memcpy(&point->Z, &group->one, sizeof(EC_FELEM)); |
| 207 | |
| 208 | return 1; |
| 209 | } |
| 210 | |
| 211 | void ec_GFp_simple_invert(const EC_GROUP *group, EC_RAW_POINT *point) { |
| 212 | ec_felem_neg(group, &point->Y, &point->Y); |
| 213 | } |
| 214 | |
| 215 | int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, |
| 216 | const EC_RAW_POINT *point) { |
| 217 | return ec_felem_non_zero_mask(group, &point->Z) == 0; |
| 218 | } |
| 219 | |
| 220 | int ec_GFp_simple_is_on_curve(const EC_GROUP *group, |
| 221 | const EC_RAW_POINT *point) { |
| 222 | if (ec_GFp_simple_is_at_infinity(group, point)) { |
| 223 | return 1; |
| 224 | } |
| 225 | |
| 226 | // We have a curve defined by a Weierstrass equation |
| 227 | // y^2 = x^3 + a*x + b. |
| 228 | // The point to consider is given in Jacobian projective coordinates |
| 229 | // where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3). |
| 230 | // Substituting this and multiplying by Z^6 transforms the above equation |
| 231 | // into |
| 232 | // Y^2 = X^3 + a*X*Z^4 + b*Z^6. |
| 233 | // To test this, we add up the right-hand side in 'rh'. |
| 234 | |
| 235 | void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, |
| 236 | const EC_FELEM *b) = group->meth->felem_mul; |
| 237 | void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = |
| 238 | group->meth->felem_sqr; |
| 239 | |
| 240 | // rh := X^2 |
| 241 | EC_FELEM rh; |
| 242 | felem_sqr(group, &rh, &point->X); |
| 243 | |
| 244 | EC_FELEM tmp, Z4, Z6; |
| 245 | if (!ec_felem_equal(group, &point->Z, &group->one)) { |
| 246 | felem_sqr(group, &tmp, &point->Z); |
| 247 | felem_sqr(group, &Z4, &tmp); |
| 248 | felem_mul(group, &Z6, &Z4, &tmp); |
| 249 | |
| 250 | // rh := (rh + a*Z^4)*X |
| 251 | if (group->a_is_minus3) { |
| 252 | ec_felem_add(group, &tmp, &Z4, &Z4); |
| 253 | ec_felem_add(group, &tmp, &tmp, &Z4); |
| 254 | ec_felem_sub(group, &rh, &rh, &tmp); |
| 255 | felem_mul(group, &rh, &rh, &point->X); |
| 256 | } else { |
| 257 | felem_mul(group, &tmp, &Z4, &group->a); |
| 258 | ec_felem_add(group, &rh, &rh, &tmp); |
| 259 | felem_mul(group, &rh, &rh, &point->X); |
| 260 | } |
| 261 | |
| 262 | // rh := rh + b*Z^6 |
| 263 | felem_mul(group, &tmp, &group->b, &Z6); |
| 264 | ec_felem_add(group, &rh, &rh, &tmp); |
| 265 | } else { |
| 266 | // rh := (rh + a)*X |
| 267 | ec_felem_add(group, &rh, &rh, &group->a); |
| 268 | felem_mul(group, &rh, &rh, &point->X); |
| 269 | // rh := rh + b |
| 270 | ec_felem_add(group, &rh, &rh, &group->b); |
| 271 | } |
| 272 | |
| 273 | // 'lh' := Y^2 |
| 274 | felem_sqr(group, &tmp, &point->Y); |
| 275 | return ec_felem_equal(group, &tmp, &rh); |
| 276 | } |
| 277 | |
| 278 | int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_RAW_POINT *a, |
| 279 | const EC_RAW_POINT *b) { |
| 280 | // Note this function returns zero if |a| and |b| are equal and 1 if they are |
| 281 | // not equal. |
| 282 | if (ec_GFp_simple_is_at_infinity(group, a)) { |
| 283 | return ec_GFp_simple_is_at_infinity(group, b) ? 0 : 1; |
| 284 | } |
| 285 | |
| 286 | if (ec_GFp_simple_is_at_infinity(group, b)) { |
| 287 | return 1; |
| 288 | } |
| 289 | |
| 290 | int a_Z_is_one = ec_felem_equal(group, &a->Z, &group->one); |
| 291 | int b_Z_is_one = ec_felem_equal(group, &b->Z, &group->one); |
| 292 | |
| 293 | if (a_Z_is_one && b_Z_is_one) { |
| 294 | return !ec_felem_equal(group, &a->X, &b->X) || |
| 295 | !ec_felem_equal(group, &a->Y, &b->Y); |
| 296 | } |
| 297 | |
| 298 | void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, |
| 299 | const EC_FELEM *b) = group->meth->felem_mul; |
| 300 | void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = |
| 301 | group->meth->felem_sqr; |
| 302 | |
| 303 | // We have to decide whether |
| 304 | // (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3), |
| 305 | // or equivalently, whether |
| 306 | // (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3). |
| 307 | |
| 308 | EC_FELEM tmp1, tmp2, Za23, Zb23; |
| 309 | const EC_FELEM *tmp1_, *tmp2_; |
| 310 | if (!b_Z_is_one) { |
| 311 | felem_sqr(group, &Zb23, &b->Z); |
| 312 | felem_mul(group, &tmp1, &a->X, &Zb23); |
| 313 | tmp1_ = &tmp1; |
| 314 | } else { |
| 315 | tmp1_ = &a->X; |
| 316 | } |
| 317 | if (!a_Z_is_one) { |
| 318 | felem_sqr(group, &Za23, &a->Z); |
| 319 | felem_mul(group, &tmp2, &b->X, &Za23); |
| 320 | tmp2_ = &tmp2; |
| 321 | } else { |
| 322 | tmp2_ = &b->X; |
| 323 | } |
| 324 | |
| 325 | // Compare X_a*Z_b^2 with X_b*Z_a^2. |
| 326 | if (!ec_felem_equal(group, tmp1_, tmp2_)) { |
| 327 | return 1; // The points differ. |
| 328 | } |
| 329 | |
| 330 | if (!b_Z_is_one) { |
| 331 | felem_mul(group, &Zb23, &Zb23, &b->Z); |
| 332 | felem_mul(group, &tmp1, &a->Y, &Zb23); |
| 333 | // tmp1_ = &tmp1 |
| 334 | } else { |
| 335 | tmp1_ = &a->Y; |
| 336 | } |
| 337 | if (!a_Z_is_one) { |
| 338 | felem_mul(group, &Za23, &Za23, &a->Z); |
| 339 | felem_mul(group, &tmp2, &b->Y, &Za23); |
| 340 | // tmp2_ = &tmp2 |
| 341 | } else { |
| 342 | tmp2_ = &b->Y; |
| 343 | } |
| 344 | |
| 345 | // Compare Y_a*Z_b^3 with Y_b*Z_a^3. |
| 346 | if (!ec_felem_equal(group, tmp1_, tmp2_)) { |
| 347 | return 1; // The points differ. |
| 348 | } |
| 349 | |
| 350 | // The points are equal. |
| 351 | return 0; |
| 352 | } |
| 353 | |
| 354 | int ec_GFp_simple_mont_inv_mod_ord_vartime(const EC_GROUP *group, |
| 355 | EC_SCALAR *out, |
| 356 | const EC_SCALAR *in) { |
| 357 | // This implementation (in fact) runs in constant time, |
| 358 | // even though for this interface it is not mandatory. |
| 359 | |
| 360 | // out = in^-1 in the Montgomery domain. This is |
| 361 | // |ec_scalar_to_montgomery| followed by |ec_scalar_inv_montgomery|, but |
| 362 | // |ec_scalar_inv_montgomery| followed by |ec_scalar_from_montgomery| is |
| 363 | // equivalent and slightly more efficient. |
| 364 | ec_scalar_inv_montgomery(group, out, in); |
| 365 | ec_scalar_from_montgomery(group, out, out); |
| 366 | return 1; |
| 367 | } |
| 368 | |
| 369 | int ec_GFp_simple_cmp_x_coordinate(const EC_GROUP *group, const EC_RAW_POINT *p, |
| 370 | const EC_SCALAR *r) { |
| 371 | if (ec_GFp_simple_is_at_infinity(group, p)) { |
| 372 | // |ec_get_x_coordinate_as_scalar| will check this internally, but this way |
| 373 | // we do not push to the error queue. |
| 374 | return 0; |
| 375 | } |
| 376 | |
| 377 | EC_SCALAR x; |
| 378 | return ec_get_x_coordinate_as_scalar(group, &x, p) && |
| 379 | ec_scalar_equal_vartime(group, &x, r); |
| 380 | } |
| 381 | |