1 | /* Originally written by Bodo Moeller for the OpenSSL project. |
2 | * ==================================================================== |
3 | * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
4 | * |
5 | * Redistribution and use in source and binary forms, with or without |
6 | * modification, are permitted provided that the following conditions |
7 | * are met: |
8 | * |
9 | * 1. Redistributions of source code must retain the above copyright |
10 | * notice, this list of conditions and the following disclaimer. |
11 | * |
12 | * 2. Redistributions in binary form must reproduce the above copyright |
13 | * notice, this list of conditions and the following disclaimer in |
14 | * the documentation and/or other materials provided with the |
15 | * distribution. |
16 | * |
17 | * 3. All advertising materials mentioning features or use of this |
18 | * software must display the following acknowledgment: |
19 | * "This product includes software developed by the OpenSSL Project |
20 | * for use in the OpenSSL Toolkit. (http://www.openssl.org/)" |
21 | * |
22 | * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
23 | * endorse or promote products derived from this software without |
24 | * prior written permission. For written permission, please contact |
25 | * openssl-core@openssl.org. |
26 | * |
27 | * 5. Products derived from this software may not be called "OpenSSL" |
28 | * nor may "OpenSSL" appear in their names without prior written |
29 | * permission of the OpenSSL Project. |
30 | * |
31 | * 6. Redistributions of any form whatsoever must retain the following |
32 | * acknowledgment: |
33 | * "This product includes software developed by the OpenSSL Project |
34 | * for use in the OpenSSL Toolkit (http://www.openssl.org/)" |
35 | * |
36 | * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
37 | * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
38 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
39 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
40 | * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
41 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
42 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
43 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
44 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
45 | * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
46 | * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
47 | * OF THE POSSIBILITY OF SUCH DAMAGE. |
48 | * ==================================================================== |
49 | * |
50 | * This product includes cryptographic software written by Eric Young |
51 | * (eay@cryptsoft.com). This product includes software written by Tim |
52 | * Hudson (tjh@cryptsoft.com). |
53 | * |
54 | */ |
55 | /* ==================================================================== |
56 | * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
57 | * |
58 | * Portions of the attached software ("Contribution") are developed by |
59 | * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
60 | * |
61 | * The Contribution is licensed pursuant to the OpenSSL open source |
62 | * license provided above. |
63 | * |
64 | * The elliptic curve binary polynomial software is originally written by |
65 | * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems |
66 | * Laboratories. */ |
67 | |
68 | #include <openssl/ec.h> |
69 | |
70 | #include <string.h> |
71 | |
72 | #include <openssl/bn.h> |
73 | #include <openssl/err.h> |
74 | #include <openssl/mem.h> |
75 | |
76 | #include "internal.h" |
77 | #include "../../internal.h" |
78 | |
79 | |
80 | // Most method functions in this file are designed to work with non-trivial |
81 | // representations of field elements if necessary (see ecp_mont.c): while |
82 | // standard modular addition and subtraction are used, the field_mul and |
83 | // field_sqr methods will be used for multiplication, and field_encode and |
84 | // field_decode (if defined) will be used for converting between |
85 | // representations. |
86 | // |
87 | // Functions here specifically assume that if a non-trivial representation is |
88 | // used, it is a Montgomery representation (i.e. 'encoding' means multiplying |
89 | // by some factor R). |
90 | |
91 | int ec_GFp_simple_group_init(EC_GROUP *group) { |
92 | BN_init(&group->field); |
93 | group->a_is_minus3 = 0; |
94 | return 1; |
95 | } |
96 | |
97 | void ec_GFp_simple_group_finish(EC_GROUP *group) { |
98 | BN_free(&group->field); |
99 | } |
100 | |
101 | int ec_GFp_simple_group_set_curve(EC_GROUP *group, const BIGNUM *p, |
102 | const BIGNUM *a, const BIGNUM *b, |
103 | BN_CTX *ctx) { |
104 | int ret = 0; |
105 | BN_CTX *new_ctx = NULL; |
106 | |
107 | // p must be a prime > 3 |
108 | if (BN_num_bits(p) <= 2 || !BN_is_odd(p)) { |
109 | OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FIELD); |
110 | return 0; |
111 | } |
112 | |
113 | if (ctx == NULL) { |
114 | ctx = new_ctx = BN_CTX_new(); |
115 | if (ctx == NULL) { |
116 | return 0; |
117 | } |
118 | } |
119 | |
120 | BN_CTX_start(ctx); |
121 | BIGNUM *tmp = BN_CTX_get(ctx); |
122 | if (tmp == NULL) { |
123 | goto err; |
124 | } |
125 | |
126 | // group->field |
127 | if (!BN_copy(&group->field, p)) { |
128 | goto err; |
129 | } |
130 | BN_set_negative(&group->field, 0); |
131 | // Store the field in minimal form, so it can be used with |BN_ULONG| arrays. |
132 | bn_set_minimal_width(&group->field); |
133 | |
134 | // group->a |
135 | if (!BN_nnmod(tmp, a, &group->field, ctx) || |
136 | !ec_bignum_to_felem(group, &group->a, tmp)) { |
137 | goto err; |
138 | } |
139 | |
140 | // group->a_is_minus3 |
141 | if (!BN_add_word(tmp, 3)) { |
142 | goto err; |
143 | } |
144 | group->a_is_minus3 = (0 == BN_cmp(tmp, &group->field)); |
145 | |
146 | // group->b |
147 | if (!BN_nnmod(tmp, b, &group->field, ctx) || |
148 | !ec_bignum_to_felem(group, &group->b, tmp)) { |
149 | goto err; |
150 | } |
151 | |
152 | if (!ec_bignum_to_felem(group, &group->one, BN_value_one())) { |
153 | goto err; |
154 | } |
155 | |
156 | ret = 1; |
157 | |
158 | err: |
159 | BN_CTX_end(ctx); |
160 | BN_CTX_free(new_ctx); |
161 | return ret; |
162 | } |
163 | |
164 | int ec_GFp_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, |
165 | BIGNUM *b) { |
166 | if ((p != NULL && !BN_copy(p, &group->field)) || |
167 | (a != NULL && !ec_felem_to_bignum(group, a, &group->a)) || |
168 | (b != NULL && !ec_felem_to_bignum(group, b, &group->b))) { |
169 | return 0; |
170 | } |
171 | return 1; |
172 | } |
173 | |
174 | void ec_GFp_simple_point_init(EC_RAW_POINT *point) { |
175 | OPENSSL_memset(&point->X, 0, sizeof(EC_FELEM)); |
176 | OPENSSL_memset(&point->Y, 0, sizeof(EC_FELEM)); |
177 | OPENSSL_memset(&point->Z, 0, sizeof(EC_FELEM)); |
178 | } |
179 | |
180 | void ec_GFp_simple_point_copy(EC_RAW_POINT *dest, const EC_RAW_POINT *src) { |
181 | OPENSSL_memcpy(&dest->X, &src->X, sizeof(EC_FELEM)); |
182 | OPENSSL_memcpy(&dest->Y, &src->Y, sizeof(EC_FELEM)); |
183 | OPENSSL_memcpy(&dest->Z, &src->Z, sizeof(EC_FELEM)); |
184 | } |
185 | |
186 | void ec_GFp_simple_point_set_to_infinity(const EC_GROUP *group, |
187 | EC_RAW_POINT *point) { |
188 | // Although it is strictly only necessary to zero Z, we zero the entire point |
189 | // in case |point| was stack-allocated and yet to be initialized. |
190 | ec_GFp_simple_point_init(point); |
191 | } |
192 | |
193 | int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *group, |
194 | EC_RAW_POINT *point, |
195 | const BIGNUM *x, |
196 | const BIGNUM *y) { |
197 | if (x == NULL || y == NULL) { |
198 | OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER); |
199 | return 0; |
200 | } |
201 | |
202 | if (!ec_bignum_to_felem(group, &point->X, x) || |
203 | !ec_bignum_to_felem(group, &point->Y, y)) { |
204 | return 0; |
205 | } |
206 | OPENSSL_memcpy(&point->Z, &group->one, sizeof(EC_FELEM)); |
207 | |
208 | return 1; |
209 | } |
210 | |
211 | void ec_GFp_simple_invert(const EC_GROUP *group, EC_RAW_POINT *point) { |
212 | ec_felem_neg(group, &point->Y, &point->Y); |
213 | } |
214 | |
215 | int ec_GFp_simple_is_at_infinity(const EC_GROUP *group, |
216 | const EC_RAW_POINT *point) { |
217 | return ec_felem_non_zero_mask(group, &point->Z) == 0; |
218 | } |
219 | |
220 | int ec_GFp_simple_is_on_curve(const EC_GROUP *group, |
221 | const EC_RAW_POINT *point) { |
222 | if (ec_GFp_simple_is_at_infinity(group, point)) { |
223 | return 1; |
224 | } |
225 | |
226 | // We have a curve defined by a Weierstrass equation |
227 | // y^2 = x^3 + a*x + b. |
228 | // The point to consider is given in Jacobian projective coordinates |
229 | // where (X, Y, Z) represents (x, y) = (X/Z^2, Y/Z^3). |
230 | // Substituting this and multiplying by Z^6 transforms the above equation |
231 | // into |
232 | // Y^2 = X^3 + a*X*Z^4 + b*Z^6. |
233 | // To test this, we add up the right-hand side in 'rh'. |
234 | |
235 | void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, |
236 | const EC_FELEM *b) = group->meth->felem_mul; |
237 | void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = |
238 | group->meth->felem_sqr; |
239 | |
240 | // rh := X^2 |
241 | EC_FELEM rh; |
242 | felem_sqr(group, &rh, &point->X); |
243 | |
244 | EC_FELEM tmp, Z4, Z6; |
245 | if (!ec_felem_equal(group, &point->Z, &group->one)) { |
246 | felem_sqr(group, &tmp, &point->Z); |
247 | felem_sqr(group, &Z4, &tmp); |
248 | felem_mul(group, &Z6, &Z4, &tmp); |
249 | |
250 | // rh := (rh + a*Z^4)*X |
251 | if (group->a_is_minus3) { |
252 | ec_felem_add(group, &tmp, &Z4, &Z4); |
253 | ec_felem_add(group, &tmp, &tmp, &Z4); |
254 | ec_felem_sub(group, &rh, &rh, &tmp); |
255 | felem_mul(group, &rh, &rh, &point->X); |
256 | } else { |
257 | felem_mul(group, &tmp, &Z4, &group->a); |
258 | ec_felem_add(group, &rh, &rh, &tmp); |
259 | felem_mul(group, &rh, &rh, &point->X); |
260 | } |
261 | |
262 | // rh := rh + b*Z^6 |
263 | felem_mul(group, &tmp, &group->b, &Z6); |
264 | ec_felem_add(group, &rh, &rh, &tmp); |
265 | } else { |
266 | // rh := (rh + a)*X |
267 | ec_felem_add(group, &rh, &rh, &group->a); |
268 | felem_mul(group, &rh, &rh, &point->X); |
269 | // rh := rh + b |
270 | ec_felem_add(group, &rh, &rh, &group->b); |
271 | } |
272 | |
273 | // 'lh' := Y^2 |
274 | felem_sqr(group, &tmp, &point->Y); |
275 | return ec_felem_equal(group, &tmp, &rh); |
276 | } |
277 | |
278 | int ec_GFp_simple_cmp(const EC_GROUP *group, const EC_RAW_POINT *a, |
279 | const EC_RAW_POINT *b) { |
280 | // Note this function returns zero if |a| and |b| are equal and 1 if they are |
281 | // not equal. |
282 | if (ec_GFp_simple_is_at_infinity(group, a)) { |
283 | return ec_GFp_simple_is_at_infinity(group, b) ? 0 : 1; |
284 | } |
285 | |
286 | if (ec_GFp_simple_is_at_infinity(group, b)) { |
287 | return 1; |
288 | } |
289 | |
290 | int a_Z_is_one = ec_felem_equal(group, &a->Z, &group->one); |
291 | int b_Z_is_one = ec_felem_equal(group, &b->Z, &group->one); |
292 | |
293 | if (a_Z_is_one && b_Z_is_one) { |
294 | return !ec_felem_equal(group, &a->X, &b->X) || |
295 | !ec_felem_equal(group, &a->Y, &b->Y); |
296 | } |
297 | |
298 | void (*const felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a, |
299 | const EC_FELEM *b) = group->meth->felem_mul; |
300 | void (*const felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a) = |
301 | group->meth->felem_sqr; |
302 | |
303 | // We have to decide whether |
304 | // (X_a/Z_a^2, Y_a/Z_a^3) = (X_b/Z_b^2, Y_b/Z_b^3), |
305 | // or equivalently, whether |
306 | // (X_a*Z_b^2, Y_a*Z_b^3) = (X_b*Z_a^2, Y_b*Z_a^3). |
307 | |
308 | EC_FELEM tmp1, tmp2, Za23, Zb23; |
309 | const EC_FELEM *tmp1_, *tmp2_; |
310 | if (!b_Z_is_one) { |
311 | felem_sqr(group, &Zb23, &b->Z); |
312 | felem_mul(group, &tmp1, &a->X, &Zb23); |
313 | tmp1_ = &tmp1; |
314 | } else { |
315 | tmp1_ = &a->X; |
316 | } |
317 | if (!a_Z_is_one) { |
318 | felem_sqr(group, &Za23, &a->Z); |
319 | felem_mul(group, &tmp2, &b->X, &Za23); |
320 | tmp2_ = &tmp2; |
321 | } else { |
322 | tmp2_ = &b->X; |
323 | } |
324 | |
325 | // Compare X_a*Z_b^2 with X_b*Z_a^2. |
326 | if (!ec_felem_equal(group, tmp1_, tmp2_)) { |
327 | return 1; // The points differ. |
328 | } |
329 | |
330 | if (!b_Z_is_one) { |
331 | felem_mul(group, &Zb23, &Zb23, &b->Z); |
332 | felem_mul(group, &tmp1, &a->Y, &Zb23); |
333 | // tmp1_ = &tmp1 |
334 | } else { |
335 | tmp1_ = &a->Y; |
336 | } |
337 | if (!a_Z_is_one) { |
338 | felem_mul(group, &Za23, &Za23, &a->Z); |
339 | felem_mul(group, &tmp2, &b->Y, &Za23); |
340 | // tmp2_ = &tmp2 |
341 | } else { |
342 | tmp2_ = &b->Y; |
343 | } |
344 | |
345 | // Compare Y_a*Z_b^3 with Y_b*Z_a^3. |
346 | if (!ec_felem_equal(group, tmp1_, tmp2_)) { |
347 | return 1; // The points differ. |
348 | } |
349 | |
350 | // The points are equal. |
351 | return 0; |
352 | } |
353 | |
354 | int ec_GFp_simple_mont_inv_mod_ord_vartime(const EC_GROUP *group, |
355 | EC_SCALAR *out, |
356 | const EC_SCALAR *in) { |
357 | // This implementation (in fact) runs in constant time, |
358 | // even though for this interface it is not mandatory. |
359 | |
360 | // out = in^-1 in the Montgomery domain. This is |
361 | // |ec_scalar_to_montgomery| followed by |ec_scalar_inv_montgomery|, but |
362 | // |ec_scalar_inv_montgomery| followed by |ec_scalar_from_montgomery| is |
363 | // equivalent and slightly more efficient. |
364 | ec_scalar_inv_montgomery(group, out, in); |
365 | ec_scalar_from_montgomery(group, out, out); |
366 | return 1; |
367 | } |
368 | |
369 | int ec_GFp_simple_cmp_x_coordinate(const EC_GROUP *group, const EC_RAW_POINT *p, |
370 | const EC_SCALAR *r) { |
371 | if (ec_GFp_simple_is_at_infinity(group, p)) { |
372 | // |ec_get_x_coordinate_as_scalar| will check this internally, but this way |
373 | // we do not push to the error queue. |
374 | return 0; |
375 | } |
376 | |
377 | EC_SCALAR x; |
378 | return ec_get_x_coordinate_as_scalar(group, &x, p) && |
379 | ec_scalar_equal_vartime(group, &x, r); |
380 | } |
381 | |